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A B S T R A C T   

Pipe failures in water distribution infrastructure have significant economic, environmental, and public health 
impacts. To alleviate these impacts, pipe deterioration modeling has been increasingly implemented to char
acterize and predict pipe failure patterns with the aim of prioritizing repair and replacement decisions. Logistic 
regression has been recognized in recent literature as a strong candidate for failure prediction modeling. 
However, previous studies have often been limited to demonstrating the application of logistic regression for 
estimating failure probabilities. This study builds on previous efforts by proposing an approach for implementing 
logistic regression into a holistic framework for asset management decision-making. This framework in
corporates logistic regression modeling, with a flexible time-interval, into a practical condition scoring meth
odology that accounts for the attitude of water utilities towards risk. The developed framework is demonstrated 
and tested on a 20-year pipe failure dataset of a large metropolitan US city. The logistic regression model dis
played high accuracy in estimating the probability of failure within different time intervals, and the scoring 
method showed a reasonable ability to predict the criticality of repair decisions for pipes based on their 
condition.   

1. Introduction 

In the 2017 Infrastructure Report Card, the American Society of Civil 
Engineers rated the drinking water infrastructure in the United States as 
poor and at risk. Water infrastructure in the US incurs 240,000 main 
breaks wasting more than two trillion gallons of treated drinking water 
every year [1]. In addition to water losses, structural deterioration can 
undermine water quality and hydraulic integrity of the water distribu
tion systems [2]. Today, deteriorated water distribution systems lead to 
a daunting $1 trillion worth of overdue repairs for the next two to three 
decades. Beyond the prohibitive economic costs, pipe deterioration also 
has health and safety, social, and environmental impacts including 
leached chemicals, undermined fire-fighting flows, interrupted services, 
a decreased quality of life, and wasted resources [3,4]. In the face of such 
deterioration, the replacement rate by water utilities has not exceeded 
an average of 0.5% per year, which would take an estimated 200 years to 
completely renew the current infrastructure [1]. As water utilities 
struggle to keep pace with pipe repair orders with little financial means 
and support at hand, asset managers need to rationalize those resources 
to anticipate and prioritize the rehabilitation of deteriorated pipes. 

Pipe deterioration refers to the process through which a pipe’s 
structural capacity is compromised, thus eventually leading to a failure 
point when a pipe can no longer withstand internal or external pressure. 
Pipe deterioration involves complex mechanical and chemical processes 
that researchers are still working on thoroughly understanding. 
Modeling these deterioration processes often requires investigating a 
complex set of factors and their relationship with the deterioration 
outcome. A wide range of factors has been identified in the literature 
that contribute to pipe deterioration. These factors can be classified into 
pipe-intrinsic, environmental, or operational factors [5]. Pipe-intrinsic 
factors that have been extensively investigated in the literature 
include pipe material, age, diameter, and length. Other deterioration 
factors can be either operational, such as internal pressure properties, 
network operations, and previous failures, or environmental, such as 
weather conditions, soil hazards, or hydrogeological conditions [5–7]. 
By using a set of these deterioration factors, previous works have 
investigated their influence on the deterioration process and aimed to 
identify how they dictate failure trends. 

In recent decades, pipe deterioration models have been extensively 
developed to characterize pipe deterioration processes, evince failure 
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patterns, and anticipate failure events. As described by Kleiner and 
Rajani [2,8], these models can be classified into either physical or sta
tistical in nature. Physical models study the mechanical properties of 
pipes and their environment to determine the nature of the influence 
and how it impacts a pipe’s service life. To characterize structural stress 
and identify failure points, these physical models generally require 
detailed pipe-level information. Some models include pipe intrinsic 
properties related to coating, joint types, and wall thickness. Opera
tional information might also be needed to evaluate how a pipe reacts to 
pressure transients, chemical water properties, or hydraulic pressure. A 
pipe environment brings another set of components to be considered 
including pipe burial depth, soil properties, temperature, etc. Ideally, a 
model that thoroughly characterizes the physical deterioration process 
would need to include all such information that influences the process. 
However, in practice, acquiring detailed information about each indi
vidual pipe and its environment is a costly endeavor. Most water utilities 
typically only have general information about their pipe network, which 
drastically limits the potential of physical models. Nevertheless, phys
ical models can be very useful when detailed analysis is needed for a 
critical portion of the network or select pipes to understand and model a 
deterioration behavior of specific interest. 

On the other hand, statistical models evaluate deterioration patterns 
on a larger scale by analyzing population-wide relationships between 
deterioration and pipe attributes and can hence assess the overall con
dition of the entire distribution system [9,10]. In 2001, Kleiner and 
Rajani [2] presented an overview of statistical models, which they 
classified into three categories: deterministic, probabilistic 
single-variate, and probabilistic multi-variate models. This review was 
later updated in 2012 to include another level of classification related to 
the type of deterioration indicating whether the statistical model was 
interested in breakage frequency, survival rate, or condition rating [11]. 
According to the review, deterministic models have generally used 
grouped data and included time exponential and time linear approaches 
to estimate the number of breaks or the age at failure. In contrast, 
probabilistic models have incorporated uncertainty in determining 
model parameters to analyze the probability of failure, life expectancy, 
or failure clustering. 

In their works, Kleiner and Rajani presented a comprehensive review 
of statistical models and underlying assumptions, but a unified 
perspective was still needed for model comparison. To that end, Schei
degger et al. [12] presented a review of statistical models on a compa
rable basis by formulating the models into their failure rates 
representation. According to this review, models have used different 
statistical distributions to characterize failure rates. Exponential, 
Gamma, or Weibull distributions have been typically used to model the 
increase in failure rates over time due to aging [13–17]. In these models, 
the impact of past failures has been incorporated in different terms. 
Some models identify separate failure rate expressions past different 
levels of past failures [13–15]. Nevertheless, these models generally 
include numerous parameters and require large datasets for calibration. 
Others incorporate the number of past failures as a covariate to account 
for the effect of repetitive repairs [18,19]. Alternately, other models 
used more simplistic failure rate expressions; either assuming a contin
uous increase of the failure rate [16,20,21] or a constant rate [22]. 

One advantageous set of statistical models used in both exploratory 
and predictive studies of pipe failure is logistic regression [23–25]. 
Common advantages recognized in the literature include the relatively 
simple mathematical framework, avoiding the need to make assump
tions regarding the distribution of covariates, and its ability to discern 
the relative importance of the covariates on pipe deterioration [23]. In 
the context of pipe failure, logistic regression can be used to model the 
relationship between a set of covariates consisting of pipe attributes and 
a probability of a pipe failure. By selecting an appropriate probability 
threshold, the continuous response variable can be transformed into a 
binary response variable indicating whether a pipe is deficient (value 
equal to 1) or non-deficient (value equal to 0). 

Several studies have used logistic regression to explore the influence 
of various factors on pipe failures [26–28]. Previous work using logistic 
regression has commonly identified age, diameter, pipe material, and 
length as significant factors influencing pipe deterioration [23,24, 
26–28]. However, studies seem to yield conflicting results and no 
consensus has yet been reached as to what set of factors best explains 
deterioration trends. In particular, Ana et al. [23] applied a logistic 
regression model on a Belgian sewer pipe network to model the proba
bility of a pipe having a good condition. The authors used a backward 
stepwise elimination method to select covariates and identified age, 
non-concrete material, and length as significant covariates. When 
compared to two other similar studies using logistic regression [24,25], 
there was no agreement on the significance of any of the selected 
covariates. Although the underlying causes of pipe failures in pressur
ized water distribution systems could differ from those responsible for 
pipe failures in gravity-driven sewer systems, such conflictual results are 
also common in water distribution system models. In fact, pipe deteri
oration is often considered a system-specific phenomenon because dif
ferences in construction practices, quality standards, and local 
conditions can highly influence deterioration patterns in a pipe network. 

Logistic regression has also been used in several cases to predict pipe 
failures, and different methods to assess a model’s predictive perfor
mance have been used [7,29,30]. Ariaratnam et al. [24] specified a lo
gistic regression model to calculate the probability of having a deficient 
pipe condition which the authors defined as the two lowest condition 
ratings. Hypothesis testing on three portions of the dataset was used to 
conclude that the model was stable for condition prediction. A more 
common measure of the logistic predictive performance has been 
through classification metrics such as specificity, precision, accuracy, 
and the Receiver Operating Characteristic (ROC) curve. Salman and 
Salem [27] compared an ordinal regression, a multinomial logistic 
regression, and a binary logistic regression model based on their ability 
to predict sewer pipe condition states according to the pipeline assess
ment and certification program framework [31]. Their results showed 
that binary logistic regression performed slightly better with precision 
scores of 78% for the non-deficient condition and 45.8% for the deficient 
condition. 

When compared with other statistical models for pipe condition 
assessment, logistic regression has been reported to produce comparable 
performance. Kleiner and Rajani [32] used several datasets of individual 
mains from Canadian water utilities for comparing logistic regression, 
Naïve Bayesian Classification (NBC), Non-Homogeneous Poisson Pro
cess, and heuristic models. The authors assessed model performance 
based on the number of correct predictions and concluded that the lo
gistic regression model had a similar performance to the NBC in the 
training phase, and no one model showed superior performance. In some 
cases, binary logistic regression performed better than other commonly 
used models. In particular, Debón et al. [33] applied a Cox proportional 
hazard model and a logistic regression model to a medium-sized Spanish 
city pipe network to predict future failure events. The authors concluded 
that the logistic model showed a superior fit based on simulated ROC 
curves. 

Further uses of logistic models have included ranking pipes per their 
likelihood of failure [26,32], and associating the likelihood of failure 
with information on consequences to assign risk scores to individual 
pipes as a tool to help water utilities prioritize pipe rehabilitation [27, 
28]. In fact, pipe condition scoring is often a practical input for asset 
management. Several methodologies have been developed in recent 
decades to encode collected information on defects into condition 
scores. A five-step comprehensive framework for infrastructure asset 
management and planning long-term investments by integrating various 
operational and convenience factors including pipe adjacency and group 
replacement considerations was proposed in [34]. A decision support 
system for designing intervention programs for water infrastructure was 
proosed in [35]. The approach first groups water supply and sewer pipes 
into practical and efficient replacement projects based on their 
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proximity and priority of renewal. Then, a multi-objective genetic al
gorithm optimizes the work program while integrating the water com
pany’s strategic policy into a multi-objective function. Pipe failure 
probability was also integraed with consequence of failure based the 
impact of topological changes in the water network [36]. Kley et al. [37] 
reviewed available condition scoring methodologies in the literature 
and categorized them into priority-based and substance-based method
ologies. Priority-based methodologies assign a score representing the 
urgency for rehabilitation, and often incorporate information on the 
level of severity and the density of defects in a pipe. On the other hand, 
substance-based methodologies are more purpose-driven in the sense 
that pipes are ranked per the level of rehabilitation required. For 
example, a defect requiring a no-dig fix will rank better than a defect 
needing open trench excavation. Scoring methodologies can also be 
classified based on whether they use ratio or condition assessment 
methods [38]. Ratio methods incorporate a cost-benefit component by 
comparing the replacement value to the repair cost (facility condition 
index, asset condition index). Condition assessment methods, such as 
subjective grading, defect weighting, and statistical methods, assign 
scores based on an evaluation of the defects. Because traditional 
methods often provide a limited interpretation of a pipe’s condition, 
Opila and Attoh-Okine [38] suggested a methodology for calculating the 
Mean Time to Failure (MTF) based on different pipe failure models to 
capture how a condition reflects on a pipe’s service life. The authors 
further converted MTF estimates into condition scores according to a 
flexible scale. Ultimately, the obtained scores incorporated various 
factors in addition to a water utility’s risk level. 

Studies using logistic regression have typically reduced the predic
tion time interval to a period small enough to include at most one failure 
[39]. However, a given failure may result from unusual stress and not 
reflect a deteriorating trend, and thus it is important to observe failure 
history in a more flexible manner to cover longer deterioration trends. 
Additionally, estimating pipe failure probabilities does not provide a 
direct measure of criticality that reflects the utility’s attitude towards 
risk, which can assist a water utility in defining maintenance priorities 
for a specific planning period. To address this research gap, this study 
proposes a novel decision-making framework that is adaptive to water 
utilities planning constraints as well as their attitude towards risk. The 
proposed framework incorporates a condition scoring methodology [38] 
with a logistic regression model to generate an estimate of the expected 
remaining service life as a metric for condition assessment of pipelines. 
Furthermore, the framework allows for a flexible choice of the time 
interval of the prediction and discount rate, which reflects the utility’s 
propensity to delay or promote rehabilitation efforts, and thus makes it 
readily usable by water utilities. The intended contribution of this paper 
is threefold: (1) assess the performance of a logistic regression model 
with a flexible time-interval choice, (2) provide a measure of the MTF 
based on a developed logistic regression model, and (3) assign and 
evaluate pipe condition scores using the MTF measure. 

2. Methodology 

The proposed approach for pipe failure prediction and condition 
scoring involves five steps: (1) data collection and processing, (2) 
developing a logistic regression model to estimate the probability of a 
pipe failure in a given time period, (3) estimating the mean time to 
failure for each pipe, (4) assigning scores to each pipe according to a 
condition scoring method reflecting a water utility’s attitude towards 
risk, and (5) evaluating model performance. The main steps of the 
proposed approach are illustrated in Fig. 1. The proposed approach was 
applied on a dataset of 4153 water distribution pipes with 6769 failure 
events covering a time period from 2000 to 2019 (a detailed description 
of the data dataset used in this work is provided in Section 3.1). 

2.1. Logistic regression model 

2.1.1. Model formulation 
The first step of the modeling approach is to estimate the probability 

of pipe failure using physical, environmental, and historical information 
of individual pipes. To estimate failure probability, the proposed 
approach relies on a logistic regression model with a flexible prediction 
time interval, T. One to several years can be chosen as a T-year period for 
predicting the probability of pipe failure depending on the resulting 
model performance and the water utility’s preference that reflects its 
planning horizon. 

For an individual pipe i, the logistic regression model estimates the 
probability of the pipe failure event Yij occurring in a jth T-year period 
given a set of pipe covariates represented using a vector Xij, where Yij =

1 indicates that pipe i failed at least once and Yij = 0 otherwise. The 
covariates include the characteristics of an individual pipe i measured at 
the beginning of the jth T-year period with j = 1,2,…, ni, where ni is the 
total number of T-year periods covered by a single pipe i’s timeline. 
These covariates can include pipe attributes, environmental, and oper
ational conditions, depending on the available information. In Section 
3.1, a detailed description of the pipe information used in this work is 
provided. Fig. 2 schematically illustrates the timeline of an individual 
pipe, its covariates, and the prediction time-period T. Each covariate 
influences the probability of failure according to the regression co
efficients β = (β1, β2, …, βp)

T. Eq. (1) represents a mean probability pf of 
a failure event Yij for a single pipe i in the jth T-year period given pipe 
covariates, Xij. 

μij = pf
(
Yij = 1

⃒
⃒Xij

)
=

1
1 + e−XT

ij β
(1) 

To specify the relationship between covariates and the response 
variable, regression coefficients β are to be estimated. For deterministic 
models, regression coefficients are typically estimated by maximizing a 
likelihood function which assumes observations to be independent [40]. 
However, since the dataset included observations of the same pipe but 
for different periods, the longitudinal nature of observations could 
potentially induce correlation across pipe failure responses, thus 

Fig. 1. Research methodology.  
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violating the sensitive assumption of independence. 
This limitation can be observed from the way the raw data is 

restructured in the form of non-overlapping periods of T years. Hence, 
the same pipe appears as a data point j times in the model. These 
repeated measures might create a correlation in the dataset that is 
similar to the standard autocorrelation often exhibited in many time 
series (e.g., hydrological time series and spatial environmental data) 
where samples are not spaced enough in time or space. Correlated 
samples might not provide an accurate representation of the population. 
However, in statistical models, the purpose is to characterize a popu
lation when only a sample of the population is available. Hence, mea
surements collected from the population - pipe failures in the present 
study - need to be a reliable representation of the population. It follows 
that there is a need to account for a potential correlation between 
samples. 

To account for a possible correlation between outcomes for each 
individual pipe, a Generalized Estimating Equations (GEE) method was 
used to estimate regression coefficients by incorporating within-cluster 
effects through the population average [41]. A cluster in the present 
dataset refers to a single pipe with multiple observations. The GEE 
method also avoids the need to explicitly specify a probability model of 
the correlation structure. 

Let Yi = (Yi1, Yi2, …, Yini )
T represent the response vector of the ith 

pipe consisting of ni observations and μi = (μi1, μi2, …, μini
)
T refers to 

the mean vector of failure probability for pipe i. Let Vi be the variance- 
covariance matrix for Yi defined as Vi = ϕAi

1
2Ri(α)Ai

1
2, where Aiis the 

diagonal matrix of the variances of Yi, Ai = diag{var(μi1), …, var(μini
)}, 

Ri(α) is known as the working correlation structure, and ϕ is the error 
variance. The error variance can be estimated as ϕ = 1

N−p
∑ni

j=1
∑p

i=1e2
ij , 

where eijis the response residuals defined as eij = (Yij −μij) /
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(μij)

√

using the current values of the β coefficients [42]. Ri(α) is a square 
matrix of elements Corr(Yij, Yik) and size ni × ni and is defined based on 
one of several commonly used types of covariance structures. Ri(α) also 
depends on a parameter α, which is estimated iteratively based on the 
number of covariates, p, and response residuals eij. The parameter α 
represents the correlation between observations for the same pipe at 
different T-year periods. Table 1 details the matrix elements and 
parameter estimation for the independent, exchangeable, and 

autoregressive correlation structures used in this study. The exchange
able structure assumes the same correlation coefficient across observa
tions for the same pipe, i.e., α defines the correlation strength between 
each pair of the observations. The autoregressive structure assumes a 
stronger correlation between failure events that are closer to each other 
in time. In this case, a higher α will lead to a higher correlation between 
consecutive observations compared to observations that are farther 
apart. 

Despite the existing difference among correlation structures, esti
mates of the regression coefficients are asymptotically consistent even in 
the event of a misspecification of the correlation structure [43]. For K 
pipes and p covariates, regression coefficients β can be estimated by 
solving the GEE in Eq. (2): 

∑K

i=1

∂μi

∂βj
Vi

−1(Yi − μi) = 0 j = 1, …, p (2) 

To decide upon the goodness of fit of a logistic model based on a 
specified correlation structure that accounts for potential correlation 
from multiple observations from each pipe, the Quasi-likelihood under 
the Independence model Criterion (QIC) was used [44]. Unlike 
likelihood-based methods such as the Maximum-Likelihood (ML), 
GEE-based models do not explicitly specify a likelihood function. 
However, the QIC metric provides an alternative to the commonly used 
Akaike Information Criterion (AIC) metric to compare the goodness of fit 
for different GEE models, such that a GEE model with a lower QIC value 
fits better the dataset. 

2.1.2. Covariate selection 
An important step in the procedure of developing a logistic regres

sion model is the selection of covariates. Covariate selection can 
improve a model’s interpretability, filter out covariates with low rele
vance without compromising model accuracy, avoid overfitting and 
improve prediction performance for new observations. In this study, 
covariate selection is carried out in two steps. First, Least Absolute 
Shrinkage and Selection Operator (LASSO) regression is used to reduce 
the number of covariates based on their contribution to the performance 
of the logistic regression model [45]. Secondly, a Recursive Feature 
Elimination (RFE) method is performed to further reduce the number of 
covariates [46]. 

LASSO regression is a statistical tool that performs variable selection 
by shrinking less significant regression coefficients to zero [45]. Coef
ficient shrinkage is possible by integrating an additional term to the 
error minimization, such that the goal of LASSO regression is to solve: 

min
β

{
1
N

∑N

i=1
− Yijlog

(
μij

)
−

(
1 − Yij

)
log

(
1 − μij

)
+ λ‖ β ‖1

}

(3)  

where μij is the predicted probability and Yij is a failure event for a single 
pipe i in the jth T-year period given pipe covariates, and λ is a regula
rization parameter that balances between two objectives: minimizing 
the error between the predicted failure probability and observed failures 
(first term) and regularization (second term). The l1 norm is defined as 

Fig. 2. Diagram of the failure timeline and prediction covariates for an individual pipe.  

Table 1 
Ri(α) Matrix elements for common working correlation structures.  

Correlation structure Corr(Yij, Yik) Parameter estimator 

Independent Corr(Yij, Yik) = {
1 j = k
0 j ∕= k  

– 

Exchangeable Corr(Yij, Yik) = {
1 j = k
α j ∕= k  α̂ =

1
N′

− p
∑K

i=1

∑

j∕=k
eijeik 

N′

=
∑K

i=1ni(ni − 1)

Autoregressive AR(1) Corr(Yij, Yi,j+m) = αm,

m = 0, 1, …, ni − j  
α̂ =

1
K1 − p

∑K
i=1

∑

j≤ni −1
eijei,j+1 

K1 =
∑K

i=1(ni − 1)
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‖ β ‖1 =
∑p

i=1|βi| penalizes a model with many covariates. The rationale 
for including the l1 penalty is that it achieves sparsity by eliminating the 
predictors that explain the response variable the least. By cross- 
validating over λ values, the value that yields the best objective func
tion is selected for a given dataset. 

An additional step of covariate selection was performed using RFE. 
The goal of RFE is to select covariates by recursively considering a 
decreasing number of covariates [46]. First, a logistic regression model 
is trained on the set of covariates selected after the LASSO regularization 
step, and the statistical significance of each covariate is obtained using 
p-values for each covariate’s coefficient. The covariate with the highest 
p-value is eliminated from the current set of covariates and the pro
cedure is repeated on the resulting subsets until the highest p-value is 
below a specified cutoff (0.05 in this study). The final subset of cova
riates was then used to develop the final logistic regression model that 
estimates pipe failure probability for a given T-year period. 

The outcome of the logistic regression model provides an estimate of 
the probability of a pipe failure in a T-year period by integrating the 
effects of the correlation structure and selected physical, environmental, 
and historical information. Then, a discrete decision about the state of 
the pipe can be made by setting a discrimination threshold on a given 
failure probability of a pipe. If the failure probability exceeds this 
threshold value, a pipe is expected to fail in the next T-year period, i.e., 
the failure outcome is equal to 1. If the estimated probability is below 
the designated threshold value, the pipe is expected to survive, i.e., the 
failure outcome is equal to 0. 

2.2. Estimating mean time to failure 

The developed logistic regression model estimates failure probabil
ities for each pipe, which provides a measure of criticality for a given T- 
year period. While such a measure can assist a water utility in defining 
maintenance priorities for a planning period, it does not provide a direct 
measure of the expected time to failure. To estimate the remaining time 
to pipe failure, the proposed approach relies on calculating the Mean 
Time to Failure (MTF). MTF is a reliability parameter typically used to 
account for the expected life expectancy in the design of products [47]. 
For repairable systems, MTF refers to the time between failures, i.e., 
inter-failure time, and can be estimated as the arithmetic mean of the 
survival probability over time: 

MTF =

∫∞

t0

Ps(t)dt (4)  

where t0 denotes the pipe’s repair time and Ps(t) is the survival function 
defined as the probability that a pipe will survive past a time t. For a 
given pipe, with a number of n T-year periods, Eq. (4) can be approxi
mated as: 

MTF ≈ T
∑∞

n=0
Ps(n) (5)  

where Ps(n) is the probability of survival past time t = to + nT. The 
probability that a pipe survives past a time t is approximated by the 
product of the probabilities that the pipe survives during each of the 
successive T-year periods leading to time t, with each T-year survival 
event being conditional on the pipe surviving up to the beginning of the 

T-year period. Thus, Ps(n) can be approximated as Ps(n) =
∏n

k=0
ps(k), 

where ps(k) is the conditional probability that a pipe survives during the 
period from t0 + kT to t0 + (k +1)T (i.e., it survived the k-th T-year 
period with k = 1, 2,…,n) given that it survived in all previous intervals 
for k > 0. Thus, the MTF can be approximated as: 

MTF ≈ T
∑∞

n=0

∏n

k=0
ps(k) (6) 

Since the event “at least one failure” is the complement of a survival 
event, i.e., ps(k) = 1 − pf (k), the probability of failure in a T-year period 
pf , as estimated by the developed logistic regression model in Eq. (1), 
can be used to calculate the MTF as follows: 

MTF ≈ T
∑∞

n=0

∏n

k=0

(
1 − pf (k)

)
≈ T

∑∞

n=0

∏n

k=0

1
1 + eX(k)T β

(7)  

where X(k) represents the vector of covariates measured at the begin
ning of the kth T-year period. Only time dependent covariates, e.g., pipe 
age, vary across k values. Therefore, this method converts the failure 
probabilities in a limited time interval to a measure of the expected time 
to the next failure. The MTF is a direct measure that can be used by water 
utilities to decide whether to include pipes in repair and improvement 
projects. 

2.3. Condition scoring 

The first outcome of the proposed approach is a T-year probability of 
pipe failure, and the second outcome is an estimate of the mean time to 
the next failure. The third step assigns pipe condition scores to facilitate 
the water utility’s risk assessment and prioritize maintenance, replace
ment, and decide on project scope. Furthermore, the scoring approach is 
flexible to the utility’s risk attitude and the granularity of scores it 
desires. 

The condition scoring method [38], uses the economic concept of 
discount rate to assign condition scores to pipes based on the MTF es
timates. According to its economic interpretation, a discount rate typi
cally implies the extent to which future benefits are valued, where a 
higher discount rate implies a lower present value of money accrued in 
the future and a lower discount rate implies a higher present value of 
money. In this study, a discount rate d is a factor that reflects the utility’s 
attitude towards risk in the condition scoring of pipes, where a higher 
discount rate reflects a tendency to delay rehabilitation efforts. Given a 
maximum desired criticality score Smax, a discount rate d, and the MTF of 
a pipe, a pipe’s condition score can be determined as: 

S =
Smax

(1 + d)
MTF (7) 

This condition scoring method assigns a single score to a pipe, which 
lumps the impact of various environmental and physical covariates and 
pipe failure history (as reflected in the MTF), as well as a utility’s atti
tude towards risk (d) and decision scale (Smax). Higher scores indicate 
higher criticality, and higher discount rates suggest that fewer pipes will 
have high scores for a given MTF, thus reflecting a lower level of reha
bilitation priority [38]. 

Fig. 3 illustrates the continuous condition scoring proposed in Eq. (7) 
as a function of the calculated MTF proposed in Eq. (6). Based on the 
curve, scores can be assigned to pipes on either a continuous (solid line 
in Fig. 3) or a discrete (dashed line in Fig. 3) scale. The stepwise con
dition scoring can be obtained by rounding the continuous scores to 
integer values, e.g., a pipe with a continuous score of 3.5 ≤ S < 4.5 will 
be assigned a discrete score of 4. In the present study, scores were 
assigned using a discrete scale, which allowed to categorize pipes into a 
finite number of groups that can serve as a practical input for asset 
management. 

An advantage of using pipe scores is the ability to capture the like
lihood of failure as inferred from the dataset without specifically esti
mating time to failure. In fact, this scoring method incorporates pipes 
covariates, probability of failure, as well as utilities’ preferences, in a 
simple and easily interpretable single metric that can be used to rank 
pipes and prioritize rehabilitation efforts. 
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2.4. Model evaluation 

The proposed framework includes a logistic regression model for 
pipe failure prediction based on estimated failure probabilities and a 
condition scoring method using the concept of MTF. In order to evaluate 
the accuracy of the proposed framework, several classification and error 
metrics were employed. To evaluate the performance of the logistic 
regression model, a confusion matrix, which summarizes the perfor
mance of a classification model by showing both discrepancy and 
agreement between true labels and predicted labels, is used [48]. Before 
computing the confusion matrix, predictions are obtained by converting 
failure probabilities to a binary outcome (i.e., pipe failure or no pipe 
failure) by setting a probability threshold. Following the confusion 
matrix terminology, correctly predicted labels are either True Positives 
(TP) or True Negatives (TN), and incorrectly predicted labels are either 
False Positives (FP) or False Negatives (FN). Here, a positive represents a 
pipe failure, and a negative represents a pipe survival. Additionally, 
based on the confusion matrix, several performance metrics are calcu
lated. Table 2 shows the calculated metrics and their definitions [49]. 

The accuracy metric measures the correctly predicted fraction of all 
pipe failure events. While accuracy treats failure and survival events 
equally, precision, also called the positive predictive value, measures the 
correctly predicted fraction of predictions. Ideally, higher values of 
precision are targeted. However, higher precision is only useful if correct 
failure predictions make up a higher fraction of all true failure events in 
the dataset. This latter fraction translates as recall. All performance 
metrics, including accuracy, recall, and precision, range between 0 and 
1, where 1 indicates a perfect classification model, and 0 indicates the 
opposite. Matthews Correlation Coefficient (MCC) provides an alterna
tive metric that is unaffected by unbalanced datasets. A dataset is called 
unbalanced if the ratio of true failure events to true survival events in the 

dataset is significantly low. MCC yields a high score if the model 
correctly predicts both the majority of failure and survival events. An 
MCC equal to 1 reflects a perfect prediction, a 0 value represents a 
random prediction, and −1 reflects an inverse prediction. 

Since predictions are made based on a chosen probability threshold, 
the defined classification metrics can only be comprehensively inter
preted if a threshold value is justified. To decide upon the choice of a 
probability threshold, Receiving Operating Characteristic (ROC) and 
Precision-Recall curves are common tools to analyze the impact of a 
varying threshold on model performance [33,48,50]. A ROC curve is a 
graphical tool that plots True Positive Rate (TPR) values versus False 
Positive Rate (FPR) values for a varying threshold. A high TPR indicates 
the rate of correctly predicted pipes that are expected to fail, and a low 
FPR indicates the rate of pipes whose failure was incorrectly predicted 
by the model. Hence, the goal is to achieve a high TPR and a low FPR. A 
performance metric associated with a ROC curve is the Area Under the 
Curve (AUC). The closer AUC is to 1, the better the model is at correctly 
predicting the true events and simultaneously minimizing false 
predictions. 

While the ROC curve allows visualizing how well a classifier captures 
true labels, ROC curves can be influenced by imbalanced true and pos
itive events. When the number of negative events is much greater than 
the number of positive events (as typically occurs for pipe failure data 
where a majority of pipes do not exhibit failures), the FPR can be arti
ficially suppressed making it more difficult to assess the model perfor
mance. Instead, the Precision-Recall curve performs better for 
imbalanced datasets, where precision indicates the fraction of pipes 
identified by the model to be expected to fail that indeed experience 
failure, and recall indicates the sensitivity of model prediction [50]. A 
tradeoff applies between precision and recall as the probability 
threshold varies. When the probability threshold is low, the number of 
unidentified failure events is expected to decrease, thus having higher 
recall values. However, the number of events incorrectly classified as 
failures will increase as well, thus decreasing the model’s precision. As 
the probability threshold increases, fewer relevant events will be iden
tified (i.e. lower recall), however, the confidence (i.e., precision) of 
correctly identified events will be greater. It is useful to plot precision 
and recall curves against the threshold settings, thus visualizing how 
different threshold levels specifically influence both curves. Visualizing 
the precision and recall tradeoff curves allows the water utility to 
directly set the probability threshold to achieve a desired level of 
performance. 

Classification metrics listed in Table 2 and ROC and Precision-Recall 
curves are useful to improve failure predictability and, in turn, the MTF 
and condition scoring by determining the probability threshold. For 
MTF calculation and condition scoring, results can be evaluated against 
the observations by comparing the MTF to the actual time to failure for 
pipes that failed more than once in the observation period by using 
qualitative and quantitative measures such as histograms, boxplots, and 
the Root Mean Square Error (RMSE). 

3. Application and results 

The proposed framework is demonstrated using the information 
provided by the City of Austin, which included data about pipe char
acteristics, locations, and failure history. All models developed in this 
work were implemented in Python 3.7, and preliminary data processing 
was executed in ArcGIS Pro 2.4.0. 

3.1. Data description and preprocessing 

The studied drinking water distribution system consists of 244,830 
pipe segments with a total network length of 5202.1 miles. Out of the 
total number of pipes, only 4425 pipes incurred failures that were 
recorded in the utility’s database. These repaired pipes account for a 
total of 6989 recorded repair events spanning from 2000 to 2019. A 

Fig. 3. Condition scoring curve.  

Table 2 
Model evaluation metrics.  

Classification metric Definition 

Precision TP
TP + FP  

Recall or True Positive Rate TP
TP + FN  

False Positive Rate FP
TN + FP  

Accuracy TP + TN
TP + TN + FP + FN  

Matthews Correlation Coefficient TP⋅TN − FP⋅FN
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√
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repair event is typically triggered by a reported leak and refers to an 
intervention from a utility’s maintenance team to restore a pipe into 
service. Prior to considering pipe attributes, the dataset was screened for 
duplicates and other inconsistencies, including failure events that were 
not stored in a readable format. After omitting duplicate and inconsis
tent entries, the dataset analyzed in this study comprised of 6769 failure 
events from 4153 pipes that had a total length of 336.48 miles repre
senting 6.5% of the entire network length. 

Fig. 4. Shows the annual failure rate per unit length for the entire 
network from 2001 to 2018. The first year 2000 and last year 2019 were 
excluded from this figure as failure data collection may not have been 
complete. Across the 2001 to 2018 period, pipes had 5.03 failures per 
100 km per year on average with a standard deviation of 2.36. Break 
rates mostly fluctuated between 4 and 8 failures per 100 km per year. A 
2018 survey of water utilities in the USA and Canada reported an 
average failure rate of 8.7 breaks per 100 km per year, which was 
compared to other sources reporting failure rates ranging from 13 to 19 
breaks per 100 km per year [51]. This report also refers to typical in
dustry targets of 7 to 10 breaks per 100 km per year. This suggests that 
the failure rate calculated based on the dataset provided by the city of 
Austin was low. The failure records in the dataset only consisted of pipes 
representing 6.5% of the entire network, and another portion of the 
network must have suffered past failures, that however were not 
recorded. Also, as can be seen in Fig. 4, unusually low failure rates were 
recorded in 2001 and 2002 with no provided explanation. Similarly, 
unusually high failure rates were recorded in 2011, which can be 
partially attributed to the exceptional drought experienced by Texas 
during 2011. Despite years with unusual rates, the entire pipe failure 
dataset was considered in the analysis. Excluding outliers was not 
warranted since individual events could not be directly associated with 
any identified variability in trends. Also, rejecting some events might 
influence potential correlations across the pipe network since a pipe 
failure might have an impact on adjacent pipes or other parts of the 
network. 

Relevant attributes that were provided with the dataset included 
pipe length, diameter, age, material, and pressure zone. Physical, envi
ronmental, and historical information used in this analysis is briefly 
summarized below. 

Pipe material. The majority of pipes consist of cast iron (CI) pipes 
(71% of pipe length) followed by ductile iron (DI) (6.1%), Polymerizing 
Vinyl Chloride (PVC) (5%), and Asbestos Cement (AC) (13.7%). Other 
pipe materials included concrete steel cylinder, polybutylene, and cop
per, which comprised less than 4%. More than half of the pipes had only 
one past failure and 77.3% had either one or two past failures in the 20 
years observation period. 

Pressure zones. Pipe attributes included six main pressure zones, 

North (NO), Central North (CN), North West (NW), South (SO), Central 
South (CS), South West (SW), and Others. CS, CN, and N pressure zones 
included 73.6% of the pipes with recorded past failures. 

Pipe age. Fig. 5 shows the distribution of pipe ages by pipe length and 
material. Newer pipes consist mostly of DI and PVC, and older pipes 
consist mostly of CI and AC pipes. As common with pipe records, 
approximately 12% of pipes were missing pipe age. The age of the pipes 
was approximated using spatial interpolation based on radial basis 
function [52]. The age of CI pipes was further adjusted based on our 
discussions with the water utility following the changes in installation 
practices. As suggested by the water utility, CI pipe installation ceased in 
the early 1980 s. A cutoff was therefore defined such that estimated 
installation dates for CI pipes that were dated after 1980 (approximately 
3% of all the pipes) were instead approximated by assigning an age 
value from the geographically nearest pipe that was installed before 
1980. This approximation assumed that those CI pipes were installed in 
the same year as the nearest pipes that were installed before 1980. Such 
an assumption is reasonable considering that rehabilitation efforts 
typically target several pipes in a given geographical area for cost 
considerations. 

Soil and land use. Soil information was extracted from the Soil Survey 
Geographic (SSURGO) Database as provided by the National Coopera
tive Soil Survey. The database is made publicly available by the United 
States Department of Agriculture (USDA) [53]. Soil attributes included 
the dominant soil order, which is defined in accordance with USDA soil 
taxonomy [54]. The dominant soil order refers to a soil classification 
that lumps soil properties like depth, structure, and moisture. Addi
tionally, land attributes were assigned to pipes with information on road 
type and land use as potential covariates [55]. Pipe elevation informa
tion was extracted from the 2-ft contour elevations map published by the 
City of Austin in 2012 [56]. Annual precipitation was also considered as 
a model covariate and was provided as an average rainfall associated 
with soil information. 

Table 3 summarizes the primary characteristics of the main cova
riates considered in the model. Overall, 15 different continuous and 
categorical covariates were considered in the regression model. Note 
that the actual number of implemented covariates is greater due to 
dummy coding of categorical variables [57]. All data was standardized 
by removing the mean and scaling to unit variance before proceeding 
with the regression analysis. Thus, the values of the regression co
efficients reflect the relative importance of the standardized covariates 
in determining the dependent variable of the regression model. 

Fig. 4. Failure rate per year.  Fig. 5. Distribution of pipe age and material.  
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3.2. Logistic regression results 

3.2.1. Model selection 
The first step towards estimating the mean time to failure, is selecting 

the appropriate planning period, i.e., T. Several T-year periods (T = 1, 
…,6) were applied, trained, and evaluated based on the five perfor
mance metrics mentioned previously. For model training, approxi
mately 75% of the dataset with observations from 2000 to 2012 or 2015 
(depending on the T-year period) was selected and used to train the 
logistic regression models. The remaining records were held out for 
testing and validation. The time periods selected for training and testing 
of each model are listed in Table S1 in the Supporting Information (SI). 
Table 4 summarizes the performance of the trained regression models 
for each T-year period when applied to the test data set. In this study, the 
optimal period was selected based on three criteria: (a) a high resulting 
performance across the majority of scores, (b) a period that offers 
practical implementation for the utility’s asset management, and (c) a 
period that reduces imbalanced classification [58]. 

Table 4 shows that a period of T = 1, results in low precision, recall, 
AUC, and MCC scores, and although good performance is achieved 
based on the accuracy and FPR scores, these are mostly attributed to the 
imbalanced classification of the observations, with less than 6% of 
failure events versus non-failure events in the dataset. An important 
issue with imbalanced data is that there may not be sufficient observa
tions belonging to the minority class (i.e., pipes with failures) to 
adequately represent both distributions. Similar results are observed for 
T = 2 and 3, with low precision, recall, and MCC scores. As the T-year 
period increases, the performance generally improves, trading off 
increasing FPR and temporal resolution of predictions. 

A period of 5 years was chosen as a T-year response window in this 

study. In other words, the output of the regression model estimates the 
failure probability of a pipe in the next 5 years. First, it achieves good 
performance across all metrics, with the highest MCC scores, second- 
highest precision, recall, and AUC, while maintaining high accuracy 
and low FPR, compared to other T-year periods. Additionally, the water 
utility’s Capital Improvement Program follows a 5-year planning win
dow, according to which a budget is allocated for pipe rehabilitation. It 
follows that a measure of pipe failure risk that covers the allocation 
period (i.e., T = 5) ensures a coherent approach to rehabilitation. In 
terms of data imbalance (i.e., the number of failure events versus the 
non-failure events), the shorter the T-year period is, the more imbal
anced the dataset becomes. Preprocessing the dataset with a 5-year 
response variable yielded 32% failure events versus 68% non-failure 
events, which considerably reduced class imbalance. Consequently, a 
5-year period was chosen for its practical application and the higher 
predictive accuracy it provided. The remaining results shown in the 
paper refer to a 5-year period; however, the proposed approach gener
alizes to different planning periods, and can hence be adjusted accord
ingly. Figs. S1–S3 in the SI show similar results for other response 
periods. 

To estimate the effects of covariates, the logistic regression model 
used the GEE with an independent covariance structure. In fact, when 
compared to an exchangeable correlation (QIC = 13,721.76), the in
dependent structure provided a better fit (QIC = 13,859.32), whereas 
the model failed to converge with an autoregressive covariance struc
ture. The goodness of fit with an independent covariance structure 
suggests that failure events across pipes do not display a significant 
correlation in the present dataset. Additionally, estimates of covariates 
effects are still consistent despite possible misspecification of the cor
relation structure [43]. Therefore, the final model estimated coefficients 
and failure probabilities based on an independent covariance structure. 

3.2.2. Effects of covariates 
The initial set of covariates was included in the LASSO regression 

model that was cross-validated across a range of continuous values for 
the regularization parameter λ. LASSO regression reached an optimum 
at λ = 0.03, thus filtering out 22 continuous and categorical covariates. 
The 25 retained covariates were recursively modeled into a GEE logistic 
regression model with an independent covariance structure, and vari
ables with the highest p-value were filtered out until the highest p-value 
of a subset was below a 0.05 cutoff. As an exception, despite its low 
statistical significance in the dataset, pipe age was retained considering 
its proven importance in the literature [5,59,60]. The resulting subset of 
covariates and their corresponding coefficients are shown in Table 5. 

For pipe material, only the CI type was retained, which suggests that 
other material types did not provide sufficient statistical significance to 
count towards the final subset of covariates. In fact, over 70% of the 
studied dataset consisted of CI pipes. The consideration of a larger 
representation of other materials should allow for their analysis with 
more certainty in terms of impact on failure. Also, despite an expected 
high influence of steel and concrete corrosivity covariates, their values 
were only available for a portion of the dataset, which might have led to 

Table 3 
List of covariates per category.  

Category Covariate Unit Main characteristics 

Pipe 
characteristic 

Length ft Mean: 419.18; Std*: 424.18 
Diameter inch Mean: 7.13; Std: 4.64 
Age years Mean: 45.17; Std: 18.74 
Material – CI; DI; AC; PVC; Other 

Failure history Number of past failures – Mode: 0; Mean: 0.51 
Years from last failure years Mean: 5.58; Std: 3.80 

Soil attribute Elevation ft Mean: 611.41; Std:103.34 
Concrete corrosion 
potential 

– Low/Moderate/High 

Steel corrosion 
potential 

– Low/Moderate/High 

Saturated hydraulic 
conductivity 

inch/ 
hr 

Mean: 20.75; Std: 30.44 

Dominant soil order – Mollisols/Vertisols/ 
Entisols/… 

Land attribute Land use – Commercial/Residential/ 
Office 

Road type – Interstate/Minor arterials/ 
Private Road 

Weather Mean annual 
precipitation 

mm Mean: 876.81; Std: 79.70 

Operational Pressure zone – CN; NO; CS; SO; NW; SW; 
Other  

* standard deviation (Std). 

Table 4 
Performance scores for T-year time interval selection.  

T AUC Precision Recall FPR Accuracy MCC 

1 0.51 0.28 0.28 0.05 0.90 0.23 
2 0.67 0.40 0.40 0.09 0.84 0.31 
3 0.69 0.46 0.46 0.15 0.77 0.31 
4 0.68 0.61 0.61 0.14 0.79 0.46 
5 0.68 0.67 0.67 0.14 0.80 0.53 
6 0.64 0.70 0.70 0.20 0.76 0.50  

Table 5 
Logistic regression model coefficients.  

Covariate (Alias) Description Coefficient 

Intercept Intercept −0.83 
upTime Years from last failure 0.87 
pipeLength Pipe length 0.20 
NOPF Number of past failures 0.15 
pipeMaterial_CI CI pipe material 0.08 
soilOrder_Vertisols Soil order: Vertisols 0.08 
landUse_residential Residential land use 0.07 
pipeAge Pipe age 0.04 
pipeDiameter Pipe diameter −0.07 
pressureZone_NW North-West pressure zone −0.09  
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their exclusion from significant covariates. When coefficients are ranked 
from most to least influential, as in Table 5, covariates related to failure 
history show some of the highest contributions to pipe failure. The 
number of years from the last failure (upTime) appears as the most 
influential attribute, thus suggesting that the more time elapses from a 
previous break, the more likely a pipe is to fail within the next 5-year 
period. This correlation is also illustrated in Fig. 6. A possible explana
tion for this effect is that a longer period without failure might indicate a 
longer exposure to internal and external factors affecting the structural 
integrity of a pipe. This interpretation supports the “in-usage” and 
“wear-out” phases of the bathtub failure rate curve assumption where 
the failure rate is expected to increase until a failure occurs [2]. 

Additionally, the more total previous breaks are recorded at a pipe 
level, as integrated by the number of previous failures (NOPF) covariate, 
the higher the pipe failure probability is. This observation also matches 
the conceptual failure rate “bathtub” model, in that the failure rate in
creases as the number of previous failures increases [12]. A rich failure 
history of a pipe could suggest a structural integrity issue that has been 
further undermined by repeated repairs. In terms of pipe characteristics, 
covariates’ importance was generally consistent with previous research 
findings. Pipe length has been associated with higher failure probability 
[61–63]. Beyond an additional exposure directly correlated to pipe 
length, longer pipes could be more exposed to varying environmental 
conditions and more sensitive to effects like pressure transients [62]. 
Also in consistence with the literature findings, smaller pipes inversely 
affect failure probability such that pipes with small diameters are 
associated with thinner walls which translates into a lower structural 
strength [59-61,64]. 

When comparing the logistic regression models having different T- 
year prediction periods, there was an overall agreement in terms of the 
most influential covariates and their magnitudes. Table S2 in the SI list 
the range of the coefficients of the most significant covariates in the 
logistic regression models. In all the models, the number of years from 
last failure was the most influential covariate, followed by the number of 
previous failures and pipe length. Other variables, such as pipe char
acteristics (i.e., material and diameter) and environmental impacts (i.e., 
land-use, pressure zone, and soil order) were an order of magnitude less 
influential, although still significant. Fig. 7 shows the median of failure 
probabilities versus the time from last failure for different T-periods. As 
expected, for shorter T-year prediction periods, the probability of failure 
is lower compared to longer T-year periods. For example, the probability 
of a pipe failure in the next 3-years is lower compared to its probability 
to fail in the next 6-years. Hence, the proposed model can be adjusted to 

the desired prediction period, based on utility’s planning periods, as 
long as the performance of the models is accounted for, as summarized 
in Table 4 and discussed previously. 

3.2.3. Model performance evaluation 
In order to define a discrimination threshold for the developed lo

gistic regression model and make predictions, the ROC curve is first 
generated for the test data, as shown in Fig. 8. The corresponding AUC is 
0.68, thus suggesting a reasonable discrimination strength for predicting 
pipe failures. By setting a discrimination threshold, the model can be 
positioned at a specific point along the ROC curve. For example, setting 
the discrimination threshold at 0.75 would result in 60% TPR (knee 
point in Fig. 8) just before the slope is sharply reduced. However, as 
mentioned previously, while the ROC curve evinces the discrimination 
strength of the model, it is insensitive to the imbalance of the dataset and 
gives no measure of precision. It might be tempting to seek an additional 
10% of TPR by conceding 20% of FPR (by adjusting the probability 
threshold from 0.69 to 0.53), but a marginal increase in the FPR, which 
is twice the marginal increase in the TPR, could result in a number of 
false alarms that is much higher than twice the additional number of 
correct predictions. 

To account for the model’s precision, the precision-recall versus 
discrimination threshold curves are plotted in Fig. 9. The precision- 
recall curves can be visually used to control for the correct proportion 
of total predictions based on threshold values. While the objective is to 
maximize both precision and recall, the two metrics are conflicting, and 
a level of compromise needs to be determined. A choice of a discrimi
nation threshold should be determined based on an acceptable level of 
performance for each metric. Acceptable levels may be determined per 
the priorities of the water utility. For example, a water utility might 
want to account for the fact that missing a true failure event is worse 
than having a false alarm. In fact, because the loss in recall is typically 
more costly than a similar loss in precision, setting a recall level that is 
higher than precision could be warranted. In this study, no such pref
erence was expressed by the utility, hence the chosen probability 
discrimination threshold (0.69) was determined as the intercept of 
precision and recall such that both metrics are at 67%. By defining such 
a threshold, 67% of true failure events were correctly predicted by the 
model, and 67% of predicted failures corresponded to true failure 
events. 

Using the designed discrimination threshold of 0.69, the confusion 
matrix is computed for the test set in Table 6. According to this confusion 
matrix, the model accuracy was calculated at 80%, the FPR at 14%, and 

Fig. 6. Failure probabilities versus the time from last failure. Whiskers are 1.5 times the interquartile range, any data point beyond is considered an outlier.  
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the MCC was equal to 0.53. Making a direct comparison with other 
papers is difficult since the performance metrics are heavily dependent 
on the problem formulation, the choice of method, and the used data
sets. Additionally, previous studies reported different metrics. For 
instance, [65] reported average MCC around 0.25, precision around 
0.15 and recall around 0.45; [29] reported a maximum recall of 0.036 
and AUC 0.773; [7] reported average AUC around 0.75, precision be
tween 0.3 and 0.5 and recall between 0.4 and 0.55; and [66] reported 
0.58 precision. Overall, compared to the metrics typically reported in 
the literature [7,29,65,66] our model’s predictive strength was deemed 
satisfactory. Figs. S1–S3 in the SI show the failure probability curves, 
precision and recall, and the confusion matrices for the regression 
models with T = 3 and 6. 

3.3. Mean time to failure and condition scoring 

Logistic regression provided failure probabilities for limited time 
intervals. The MTF equation allowed us to further use these probabilities 
to compute the expected times to failure given the selected covariates of 
each pipe (as listed in Table 5). Fig. 10 shows how the obtained values 
evolve over time from the previous failure for the entire data set. As can 

be seen, the expected time to failure is shorter as the time from last 
failure increases. Also, the MTF average values decrease from around 6 
years to below 1 year with decreasing standard deviations. Low uncer
tainty associated with shorter MTF values for longer elapsed times since 
last failure reflects the pipes with a higher failure probability. It is 
noteworthy to mention that MTF values do not exceed 12 years, which is 
induced by a high failure rate in the dataset. In fact, the dataset that was 
used to calculate MTF consisted of only pipes with at least 1 failure event 
in a 20-year observation period. Consequently, MTF calculations do not 
reflect the normally expected pipe life expectancies in the entire 
network, but instead, they give an expected time between failures for 
pipes with characteristics and a failure history similar to those in the 
observed dataset. 

To validate the estimates, an error was measured as the difference 

Fig. 7. Median failure probabilities versus the time from last failure for different T-year periods.  

Fig. 8. ROC curve.  
Fig. 9. Precision (solid line) and recall (dashed line) versus discrimina
tion threshold. 

Table 6 
Confusion matrix with the 0.69 probability threshold.   

Predicted non-failure Predicted failure 

True non-failure 2526 411 
True failure 411 845  
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between MTF values for both training and test data and the actual time 
between failures. The error was calculated for 1222 pipes that failed in 
at least two different years, such that the actual time between failures 
could be measured. As a result, the error had a near-normal distribution 
with a mean equal to 0.54 years and a standard deviation of 3.10 years. 
The root mean square deviation associated with the error was equal to 
3.29 years. Although an MTF value was on average off by more than 3 
years, the near-zero mean suggests a tendency towards correct pre
dictions. A larger sample could potentially reduce the deviation and lead 
to more accurate MTF estimates. 

The final step of obtaining a pipe score was conducted on the entire 
20-year dataset utilizing the scoring equation (Eq. (7)). The scoring scale 
of 1 to 5, with 5 indicating high criticality, was chosen to match the 
water utility’s existing scoring scale. Based on this scale, the scoring 
curve was charted for different discount rates, as shown in Fig. 11. 

The choice of the discount rate should reflect a water utility’s atti
tude towards risk, and maintenance and replacement strategy. As can be 
seen, a higher discount rate leads to a decreased condition score for a 
given MTF, thus reflecting a propensity to delay rehabilitation efforts by 
increasing the portion of pipes with low scores. Intuitively, these score 

curves can be viewed as the “present value” of “future” pipe failure. In 
other words, a pipe failure that is expected to occur in the near future (i. 
e., lower MTF) is valued more highly (or critically) by the utility (i.e., 
has a higher score) as a candidate for replacement/rehabilitation. 
Similarly, a pipe failure that is expected to occur farther in the future (i. 
e., higher MTF), does not require urgent replacement, and thus will get a 
lower score. The slopes of the curves are controlled by the rate, d, which 
represents the utility’s attitude towards risk. The diminishing slope in 
the score curves represents the diminishing value of failures that will 
occur further into the future. For example, an extremely conservative 
and risk-averse utility will have very low rate values, e.g., with d = 0, all 
pipes will get the maximum score Smax, regardless of their expected 
time to failure. On the other hand, a less conservative utility, e.g., with d 
= 0.5, will assign a score greater than 3 only to pipes with a 1-year or less 
MTF, i.e., that are expected to fail in the next year. 

A discount rate of 0.2 was selected to reflect a conservative main
tenance approach, and a stepwise scoring curve with discrete values was 
utilized for practical implementation by the water utility (Fig. 12). As in 
MTF calculations, assigned scores were also updated each time an 
annual failure was recorded. By using the last assigned scores, a water 

Fig. 10. Mean time to failure versus time from last failure. Whiskers are 1.5 times the interquartile range, any data point beyond is considered an outlier.  

Fig. 11. Condition scores as a function of MTF for different discount rates.  Fig. 12. Stepwise scoring curve using a 0.2 discount rate.  
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utility can analyze the latest criticality of its pipes. 
Fig. 13 displays a map of a portion of the city’s water distribution 

network given the last assigned scores. This condition scoring map can 
be easily integrated in any spatial software, e.g., ArcGIS, which can be 
used as a communication tool to share the results among the different 
divisions involved in pipe condition assessment, including operations, 
planning, and asset management. Although beyond the scope of this 
study, future research could further incorporate spatial correlation into 
the condition score assessment [6,9]. 

To evaluate the scoring method, scores were assessed against actual 
time to failure. Pipes with lower condition scores, in general, took more 
time to fail again. This result suggests that assigned condition scores can 
give a plausible measure of the criticality for the pipes’ condition. By 
analyzing the proportions of network length per condition score, it is 
noted that 8.4% of the studied pipe network’s length has a score of 5, 
29.6% has a score of 4, 28.2% has a score of 3, 29.5% with a score of 2, 
and 4.4% has a score of 1. Out of the portion of the network having a 
score of 5, 88.9% of the length consisted of pipes with 15 to 19 years 
elapsed from last failure. This proportion is consistent with the inferred 
covariates’ effects which suggested that a longer time from last failure 
leads to higher failure probability. In terms of pipe diameter, 89.4% of 
pipes with the worst score of 5 had diameters less than 8 inches, as 
opposed to 86.6% for all scores. As demonstrated in the logistic model, 
the covariate for pipe diameter had an effect equal to −0.07 which led to 
the 2.8% difference. Although minor, this result is consistent with 
literature findings which support that pipes with smaller diameters (less 
than 8 inches) tend to have a higher likelihood to fail and thus a worse 
condition score. Additionally, pipes older than 60 years made up 28.9% 
of pipes scoring a 5 or 4 as opposed to 26.5% for all scores. This dif
ference suggests the tendency for older pipes to have a worse condition 
score, and the small percentage is due to the low effect of the pipe age 
covariate. 

While condition scores incorporate how deterioration factors influ
ence failure probability for each pipe, they do not provide a measure of 
the consequence of failure. Risk assessment methods typically include 

both criticality and consequence scores when prioritizing asset man
agement [36]. Yet, to assign an integrated risk score, an advantage of the 
described condition scoring method is its linear scale [38], since con
dition scores are considered a present value of a future failure event 
based on a chosen discount rate. For example, a pipe with a condition 
score of 4 is twice as critical as a pipe with a score of 2. A risk score can 
thus be simply obtained by multiplying the assigned condition score by a 
consequence score. The resulting risk score can eventually be used to 
rank pipes per risk level [38]. 

4. Practical implications and limitations 

The key limitations of the proposed approach primarily stem from 
data restrictions. The present study focuses exclusively on the pipes that 
experienced past failures by trying to estimate condition scores based on 
the expected time to failure, i.e., MTF. This approach is appropriate for 
the regression-based modeling method implemented in this study. Un
like the majority of previous regression-based models, the main outcome 
of the proposed approach is based on estimating the MTF as opposed to a 
binary decision. Regression-based models cannot explicitly account for 
censoring in the failure dataset (i.e., pipes that did not experience any 
failures during the observation period). One way to get around this 
limitation is by setting the MTF for pipes that did not experience any 
failures to be equal to the total observation period. Nevertheless, such 
practice could result in significant errors since the actual time to failure 
may be significantly longer than the observation period. Additionally, 
although a model for predicting MTF for pipes that did not experience 
failures can be developed, this model cannot be validated, and will 
hence have limited usability for water utilities. Hence, the MTF calcu
lations do not reflect normal life expectancies for all the pipes in the 
entire network, but instead, MTF gives an expected time between fail
ures for pipes with characteristics and a failure history similar to those in 
the observed dataset. 

Our modeling approach was primarily motivated by the practical 
need and current practice of the water utility to be able to plan capital 

Fig. 13. Predicted pipe condition scores (1-green, 2-blue, 3-yellow, 4-orange, 5-red).  
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investment projects. Involving the water utility during this project was a 
critical step towards practical implementation and for the utilization of 
more advanced methods in their current decision-making processes. 
Hence, although our model is limited to pipes that had at least one 
failure, it still provides insights and is practically useful for assessing the 
condition of this critical subset of pipes, which included over 4000 pipes 
for the utility under consideration. In sum, the pipe failure prediction 
problem, although extensively studied in the literature, has been shown 
to be challenging in terms of generalizing conclusions across different 
systems. Pipe deterioration and the results of prediction models are 
heavily dependent on the specific system characteristic, local condi
tions, and the available datasets [7,9,26]. 

It is worth noting that the academic-utility partnership provided 
various advantages to this study. This included gaining direct access to 
data as well as institutional knowledge and expertise. The utility pro
vided ample time for meetings, discussions, sharing institutional 
knowledge, and data with the research team. The development of the 
models required dedicated personnel with expertise in hydraulic engi
neering, statistical modeling, and programming, in addition to wider 
support from the utility’s network of practitioners to synthesize and 
incorporate the data and knowledge into the modeling and analysis. The 
developed models and methods (including logistic regression, mean 
time to failure estimation, selection of the T-year prediction period, 
performance metrics, discrete scoring, rate, and visualization) were 
discussed with the utility throughout the study during multiple meetings 
between the research team and utility personnel. The outcomes of this 
study (data, models, and codes) were shared with the utility. The flex
ibility to adjust to different time horizons and the simplicity of the 
outcome of the scoring method, while relying on sound theoretical 
principles, was of key importance for the utility. Although the research 
team prioritized using open-source software (Python) for model devel
opment and analysis, commercial GIS-based software was also used 
extensively to communicate the results with the water utility and to 
synthesize with current data management practices. Undoubtedly, 
further work is needed to incorporate research outcomes in the current 
decision-making process for assessing the state of the pipes in the dis
tribution network, which includes personnel training, integration with 
current data management practices, long-term validation, as well as 
other technical and organizational considerations. 

This study enjoyed the support of a proactive and forward-looking 
water utility. Nonetheless, this study still encountered several chal
lenges associated with data collection, quantity, and quality, which are 
symptomatic of the broader water sector [67,68]. While the statistical 
approaches allowed handling some of the uncertainties associated with 
the recorded data, they heavily relied on historical data recorded by the 
utilities over a long period of time in order to properly infer pipe break 
probabilities. However, most utilities do not have detailed and ample 
enough records of their infrastructure and pipe break data. Moreover, 
the advantages mentioned above could be barriers for smaller and 
budget-constrained utilities with limited accessibility to skilled 
personnel, data, and software. Overall, this study contributes to the body 
of studies that highlight the need for academic-utility partnerships for 
sharing resources and expertise for a successful knowledge transfer to 
advance water infrastructure management [69]. 

5. Conclusions 

This paper proposed and tested a systematic approach to capture the 
criticality of pipes in a water supply system using GEE logistic regres
sion, and to assign practical condition scores for asset management 
prioritization. A pipe network dataset was first preprocessed to define a 
T-year failure outcome variable and extract features that provide in
formation on soil, traffic, land use, failure history, and operational at
tributes. A GEE logistic regression model was then specified with 
reasonable accuracy in estimating the probability of recording at least 
one failure in a 5-year time interval. Beyond a measure of a period- 

specific criticality for pipes as provided by the logistic classifier, the 
MTF metric estimated the expected inter-failure times. The estimates 
were then used to apply a flexible scoring approach to discriminate pipes 
based on their criticality. The pipe scoring provided condition metrics 
with a reasonable ability to predict poor conditions. 

The promising results would still need further validation with larger 
datasets. An accuracy of 80% was achieved by the logistic classifier, but 
specifying the model on failure records covering a period longer than 20 
years might mitigate the uncertainty related to the described perfor
mance metrics. Additionally, the MTF calculations have a fundamental 
assumption that past trend perpetuates. Because failure history is used 
only from the last 20 years, the model does not provide a full simulation 
of a pipe’s life cycle. Therefore, accuracy is bound to decline as pre
dictions are made farther into the future. Also, uncertainty underlying 
the logistic regression model is accumulated as the MTF calculations 
integrate probabilities infinitely into the future. The choice of the time- 
interval in the logistic model is also a factor that influences this uncer
tainty. It follows that failure probabilities generated by the logistic 
regression model are theoretically provided with higher performance 
compared to pipe scores. However, failure probabilities only provide 
information on a time-interval specific condition, whereas pipe scores 
attempt to additionally capture a practical measure of the service life. 
These limitations in the application of this methodology might justify for 
a water utility to choose between using probability outcomes or pipe 
scores depending on the need. For example, a water utility that prepares 
a 5-year rehabilitation plan could use 5-year probabilities as a measure 
of risk, whereas using 5-year failure probabilities might not suffice in 
integrating risk in a long-term rehabilitation strategy. 

The suggested framework demonstrates that useful results can be 
inferred using a GEE logistic model on a dataset covering a limited time 
interval and suffering potential censorship. Overall, the proposed 
methods provided two practical outcomes: (1) a predictive logistic 
regression model to help prioritize rehabilitation for a specific time in
terval that is determined based on the quality of the dataset and on the 
utility’s preference, and (2) an integrated condition scoring model to 
estimate pipe criticality. Future research could further assess the per
formance of the presented model by using larger and high-quality 
datasets as they become available. Also comparing the logistic regres
sion model to other statistical and data-driven models could provide 
further analysis of the performance [70]. Beyond a classical perfor
mance evaluation, this paper intended to provide a flexible framework 
that can adapt to real-world complexity that water utilities have to 
contend with. Research has shown that deterioration modeling can be 
region- and system-specific, and results may differ per local conditions. 
Hence, developing models that not only deliver good performance but 
also allow for flexible use is of key importance for water utilities to be 
able to use and rely on model predictions. 
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recherche scientifique, 2000. 

[16] Economou T, Kapelan Z, Bailey T. A zero-inflated Bayesian model for the 
prediction of water pipe bursts. In: Proceedings of the 10th annual water 
distribution systems analysis conference, WDSA 2008; 2009. p. 724–34. https:// 
doi.org/10.1061/41024(340)61. 

[17] Scheidegger A, Scholten L, Maurer M, Reichert P. Extension of pipe failure models 
to consider the absence of data from replaced pipes. Water Res 2013;47(11): 
3696–705. https://doi.org/10.1016/j.watres.2013.04.017. 

[18] Kleiner Y, Rajani B. I-WARP: individual water mAin renewal planner. Drink Water 
Eng Sci 2010;3(1):71–7. https://doi.org/10.5194/dwes-3-71-2010. May. 

[19] Le Gat Y. Une extension du processus de Yule pour la modélisation stochastique des 
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