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Pipe failures in water distribution infrastructure have significant economic, environmental, and public health
impacts. To alleviate these impacts, pipe deterioration modeling has been increasingly implemented to char-
acterize and predict pipe failure patterns with the aim of prioritizing repair and replacement decisions. Logistic
regression has been recognized in recent literature as a strong candidate for failure prediction modeling.
However, previous studies have often been limited to demonstrating the application of logistic regression for
estimating failure probabilities. This study builds on previous efforts by proposing an approach for implementing
logistic regression into a holistic framework for asset management decision-making. This framework in-
corporates logistic regression modeling, with a flexible time-interval, into a practical condition scoring meth-
odology that accounts for the attitude of water utilities towards risk. The developed framework is demonstrated
and tested on a 20-year pipe failure dataset of a large metropolitan US city. The logistic regression model dis-
played high accuracy in estimating the probability of failure within different time intervals, and the scoring
method showed a reasonable ability to predict the criticality of repair decisions for pipes based on their

condition.

1. Introduction

In the 2017 Infrastructure Report Card, the American Society of Civil
Engineers rated the drinking water infrastructure in the United States as
poor and at risk. Water infrastructure in the US incurs 240,000 main
breaks wasting more than two trillion gallons of treated drinking water
every year [1]. In addition to water losses, structural deterioration can
undermine water quality and hydraulic integrity of the water distribu-
tion systems [2]. Today, deteriorated water distribution systems lead to
a daunting $1 trillion worth of overdue repairs for the next two to three
decades. Beyond the prohibitive economic costs, pipe deterioration also
has health and safety, social, and environmental impacts including
leached chemicals, undermined fire-fighting flows, interrupted services,
a decreased quality of life, and wasted resources [3,4]. In the face of such
deterioration, the replacement rate by water utilities has not exceeded
an average of 0.5% per year, which would take an estimated 200 years to
completely renew the current infrastructure [1]. As water utilities
struggle to keep pace with pipe repair orders with little financial means
and support at hand, asset managers need to rationalize those resources
to anticipate and prioritize the rehabilitation of deteriorated pipes.
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Pipe deterioration refers to the process through which a pipe’s
structural capacity is compromised, thus eventually leading to a failure
point when a pipe can no longer withstand internal or external pressure.
Pipe deterioration involves complex mechanical and chemical processes
that researchers are still working on thoroughly understanding.
Modeling these deterioration processes often requires investigating a
complex set of factors and their relationship with the deterioration
outcome. A wide range of factors has been identified in the literature
that contribute to pipe deterioration. These factors can be classified into
pipe-intrinsic, environmental, or operational factors [5]. Pipe-intrinsic
factors that have been extensively investigated in the literature
include pipe material, age, diameter, and length. Other deterioration
factors can be either operational, such as internal pressure properties,
network operations, and previous failures, or environmental, such as
weather conditions, soil hazards, or hydrogeological conditions [5-7].
By using a set of these deterioration factors, previous works have
investigated their influence on the deterioration process and aimed to
identify how they dictate failure trends.

In recent decades, pipe deterioration models have been extensively
developed to characterize pipe deterioration processes, evince failure
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patterns, and anticipate failure events. As described by Kleiner and
Rajani [2,8], these models can be classified into either physical or sta-
tistical in nature. Physical models study the mechanical properties of
pipes and their environment to determine the nature of the influence
and how it impacts a pipe’s service life. To characterize structural stress
and identify failure points, these physical models generally require
detailed pipe-level information. Some models include pipe intrinsic
properties related to coating, joint types, and wall thickness. Opera-
tional information might also be needed to evaluate how a pipe reacts to
pressure transients, chemical water properties, or hydraulic pressure. A
pipe environment brings another set of components to be considered
including pipe burial depth, soil properties, temperature, etc. Ideally, a
model that thoroughly characterizes the physical deterioration process
would need to include all such information that influences the process.
However, in practice, acquiring detailed information about each indi-
vidual pipe and its environment is a costly endeavor. Most water utilities
typically only have general information about their pipe network, which
drastically limits the potential of physical models. Nevertheless, phys-
ical models can be very useful when detailed analysis is needed for a
critical portion of the network or select pipes to understand and model a
deterioration behavior of specific interest.

On the other hand, statistical models evaluate deterioration patterns
on a larger scale by analyzing population-wide relationships between
deterioration and pipe attributes and can hence assess the overall con-
dition of the entire distribution system [9,10]. In 2001, Kleiner and
Rajani [2] presented an overview of statistical models, which they
classified into three categories: deterministic, probabilistic
single-variate, and probabilistic multi-variate models. This review was
later updated in 2012 to include another level of classification related to
the type of deterioration indicating whether the statistical model was
interested in breakage frequency, survival rate, or condition rating [11].
According to the review, deterministic models have generally used
grouped data and included time exponential and time linear approaches
to estimate the number of breaks or the age at failure. In contrast,
probabilistic models have incorporated uncertainty in determining
model parameters to analyze the probability of failure, life expectancy,
or failure clustering.

In their works, Kleiner and Rajani presented a comprehensive review
of statistical models and underlying assumptions, but a unified
perspective was still needed for model comparison. To that end, Schei-
degger et al. [12] presented a review of statistical models on a compa-
rable basis by formulating the models into their failure rates
representation. According to this review, models have used different
statistical distributions to characterize failure rates. Exponential,
Gamma, or Weibull distributions have been typically used to model the
increase in failure rates over time due to aging [13-17]. In these models,
the impact of past failures has been incorporated in different terms.
Some models identify separate failure rate expressions past different
levels of past failures [13-15]. Nevertheless, these models generally
include numerous parameters and require large datasets for calibration.
Others incorporate the number of past failures as a covariate to account
for the effect of repetitive repairs [18,19]. Alternately, other models
used more simplistic failure rate expressions; either assuming a contin-
uous increase of the failure rate [16,20,21] or a constant rate [22].

One advantageous set of statistical models used in both exploratory
and predictive studies of pipe failure is logistic regression [23-25].
Common advantages recognized in the literature include the relatively
simple mathematical framework, avoiding the need to make assump-
tions regarding the distribution of covariates, and its ability to discern
the relative importance of the covariates on pipe deterioration [23]. In
the context of pipe failure, logistic regression can be used to model the
relationship between a set of covariates consisting of pipe attributes and
a probability of a pipe failure. By selecting an appropriate probability
threshold, the continuous response variable can be transformed into a
binary response variable indicating whether a pipe is deficient (value
equal to 1) or non-deficient (value equal to 0).
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Several studies have used logistic regression to explore the influence
of various factors on pipe failures [26-28]. Previous work using logistic
regression has commonly identified age, diameter, pipe material, and
length as significant factors influencing pipe deterioration [23,24,
26-28]. However, studies seem to yield conflicting results and no
consensus has yet been reached as to what set of factors best explains
deterioration trends. In particular, Ana et al. [23] applied a logistic
regression model on a Belgian sewer pipe network to model the proba-
bility of a pipe having a good condition. The authors used a backward
stepwise elimination method to select covariates and identified age,
non-concrete material, and length as significant covariates. When
compared to two other similar studies using logistic regression [24,25],
there was no agreement on the significance of any of the selected
covariates. Although the underlying causes of pipe failures in pressur-
ized water distribution systems could differ from those responsible for
pipe failures in gravity-driven sewer systems, such conflictual results are
also common in water distribution system models. In fact, pipe deteri-
oration is often considered a system-specific phenomenon because dif-
ferences in construction practices, quality standards, and local
conditions can highly influence deterioration patterns in a pipe network.

Logistic regression has also been used in several cases to predict pipe
failures, and different methods to assess a model’s predictive perfor-
mance have been used [7,29,30]. Ariaratnam et al. [24] specified a lo-
gistic regression model to calculate the probability of having a deficient
pipe condition which the authors defined as the two lowest condition
ratings. Hypothesis testing on three portions of the dataset was used to
conclude that the model was stable for condition prediction. A more
common measure of the logistic predictive performance has been
through classification metrics such as specificity, precision, accuracy,
and the Receiver Operating Characteristic (ROC) curve. Salman and
Salem [27] compared an ordinal regression, a multinomial logistic
regression, and a binary logistic regression model based on their ability
to predict sewer pipe condition states according to the pipeline assess-
ment and certification program framework [31]. Their results showed
that binary logistic regression performed slightly better with precision
scores of 78% for the non-deficient condition and 45.8% for the deficient
condition.

When compared with other statistical models for pipe condition
assessment, logistic regression has been reported to produce comparable
performance. Kleiner and Rajani [32] used several datasets of individual
mains from Canadian water utilities for comparing logistic regression,
Naive Bayesian Classification (NBC), Non-Homogeneous Poisson Pro-
cess, and heuristic models. The authors assessed model performance
based on the number of correct predictions and concluded that the lo-
gistic regression model had a similar performance to the NBC in the
training phase, and no one model showed superior performance. In some
cases, binary logistic regression performed better than other commonly
used models. In particular, Debén et al. [33] applied a Cox proportional
hazard model and a logistic regression model to a medium-sized Spanish
city pipe network to predict future failure events. The authors concluded
that the logistic model showed a superior fit based on simulated ROC
curves.

Further uses of logistic models have included ranking pipes per their
likelihood of failure [26,32], and associating the likelihood of failure
with information on consequences to assign risk scores to individual
pipes as a tool to help water utilities prioritize pipe rehabilitation [27,
28]. In fact, pipe condition scoring is often a practical input for asset
management. Several methodologies have been developed in recent
decades to encode collected information on defects into condition
scores. A five-step comprehensive framework for infrastructure asset
management and planning long-term investments by integrating various
operational and convenience factors including pipe adjacency and group
replacement considerations was proposed in [34]. A decision support
system for designing intervention programs for water infrastructure was
proosed in [35]. The approach first groups water supply and sewer pipes
into practical and efficient replacement projects based on their
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proximity and priority of renewal. Then, a multi-objective genetic al-
gorithm optimizes the work program while integrating the water com-
pany’s strategic policy into a multi-objective function. Pipe failure
probability was also integraed with consequence of failure based the
impact of topological changes in the water network [36]. Kley et al. [37]
reviewed available condition scoring methodologies in the literature
and categorized them into priority-based and substance-based method-
ologies. Priority-based methodologies assign a score representing the
urgency for rehabilitation, and often incorporate information on the
level of severity and the density of defects in a pipe. On the other hand,
substance-based methodologies are more purpose-driven in the sense
that pipes are ranked per the level of rehabilitation required. For
example, a defect requiring a no-dig fix will rank better than a defect
needing open trench excavation. Scoring methodologies can also be
classified based on whether they use ratio or condition assessment
methods [38]. Ratio methods incorporate a cost-benefit component by
comparing the replacement value to the repair cost (facility condition
index, asset condition index). Condition assessment methods, such as
subjective grading, defect weighting, and statistical methods, assign
scores based on an evaluation of the defects. Because traditional
methods often provide a limited interpretation of a pipe’s condition,
Opila and Attoh-Okine [38] suggested a methodology for calculating the
Mean Time to Failure (MTF) based on different pipe failure models to
capture how a condition reflects on a pipe’s service life. The authors
further converted MTF estimates into condition scores according to a
flexible scale. Ultimately, the obtained scores incorporated various
factors in addition to a water utility’s risk level.

Studies using logistic regression have typically reduced the predic-
tion time interval to a period small enough to include at most one failure
[39]. However, a given failure may result from unusual stress and not
reflect a deteriorating trend, and thus it is important to observe failure
history in a more flexible manner to cover longer deterioration trends.
Additionally, estimating pipe failure probabilities does not provide a
direct measure of criticality that reflects the utility’s attitude towards
risk, which can assist a water utility in defining maintenance priorities
for a specific planning period. To address this research gap, this study
proposes a novel decision-making framework that is adaptive to water
utilities planning constraints as well as their attitude towards risk. The
proposed framework incorporates a condition scoring methodology [38]
with a logistic regression model to generate an estimate of the expected
remaining service life as a metric for condition assessment of pipelines.
Furthermore, the framework allows for a flexible choice of the time
interval of the prediction and discount rate, which reflects the utility’s
propensity to delay or promote rehabilitation efforts, and thus makes it
readily usable by water utilities. The intended contribution of this paper
is threefold: (1) assess the performance of a logistic regression model
with a flexible time-interval choice, (2) provide a measure of the MTF
based on a developed logistic regression model, and (3) assign and
evaluate pipe condition scores using the MTF measure.

2. Methodology

The proposed approach for pipe failure prediction and condition
scoring involves five steps: (1) data collection and processing, (2)
developing a logistic regression model to estimate the probability of a
pipe failure in a given time period, (3) estimating the mean time to
failure for each pipe, (4) assigning scores to each pipe according to a
condition scoring method reflecting a water utility’s attitude towards
risk, and (5) evaluating model performance. The main steps of the
proposed approach are illustrated in Fig. 1. The proposed approach was
applied on a dataset of 4153 water distribution pipes with 6769 failure
events covering a time period from 2000 to 2019 (a detailed description
of the data dataset used in this work is provided in Section 3.1).
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Data Collection & Processing

* Data collection (physical, environmental, historical)
* Data cleaning and imputation

Model Development

* Logistic regression
+ Estimate the probability of a failurein a given period

Time-to-Failure Estimation

» Estimate the mean time-to-failure for each pipe

Condition Scoring

* Account for a water utility’s attitude towards risk
* Assign scores to each pipe

Performance Evaluation

* Classification and error metrics
* Visualization and mapping

Fig. 1. Research methodology.

2.1. Logistic regression model

2.1.1. Model formulation

The first step of the modeling approach is to estimate the probability
of pipe failure using physical, environmental, and historical information
of individual pipes. To estimate failure probability, the proposed
approach relies on a logistic regression model with a flexible prediction
time interval, T. One to several years can be chosen as a T-year period for
predicting the probability of pipe failure depending on the resulting
model performance and the water utility’s preference that reflects its
planning horizon.

For an individual pipe i, the logistic regression model estimates the
probability of the pipe failure event Yj occurring in a jth T-year period
given a set of pipe covariates represented using a vector X;;, where Y;; =
1 indicates that pipe i failed at least once and Y; = O otherwise. The
covariates include the characteristics of an individual pipe i measured at
the beginning of the jth T-year period withj =1,2,..., n;, where n; is the
total number of T-year periods covered by a single pipe i’s timeline.
These covariates can include pipe attributes, environmental, and oper-
ational conditions, depending on the available information. In Section
3.1, a detailed description of the pipe information used in this work is
provided. Fig. 2 schematically illustrates the timeline of an individual
pipe, its covariates, and the prediction time-period T. Each covariate
influences the probability of failure according to the regression co-
efficients § = (8;, 5, ---, /ip)T. Eq. (1) represents a mean probability py of
a failure event Yj for a single pipe i in the jth T-year period given pipe
covariates, Xj.

U :pf(y..: l!X--) — # '€))
ij ij ij 1+ e,xg,,

To specify the relationship between covariates and the response
variable, regression coefficients g are to be estimated. For deterministic
models, regression coefficients are typically estimated by maximizing a
likelihood function which assumes observations to be independent [40].
However, since the dataset included observations of the same pipe but
for different periods, the longitudinal nature of observations could
potentially induce correlation across pipe failure responses, thus
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Fig. 2. Diagram of the failure timeline and prediction covariates for an individual pipe.

violating the sensitive assumption of independence.

This limitation can be observed from the way the raw data is
restructured in the form of non-overlapping periods of T years. Hence,
the same pipe appears as a data point j times in the model. These
repeated measures might create a correlation in the dataset that is
similar to the standard autocorrelation often exhibited in many time
series (e.g., hydrological time series and spatial environmental data)
where samples are not spaced enough in time or space. Correlated
samples might not provide an accurate representation of the population.
However, in statistical models, the purpose is to characterize a popu-
lation when only a sample of the population is available. Hence, mea-
surements collected from the population - pipe failures in the present
study - need to be a reliable representation of the population. It follows
that there is a need to account for a potential correlation between
samples.

To account for a possible correlation between outcomes for each
individual pipe, a Generalized Estimating Equations (GEE) method was
used to estimate regression coefficients by incorporating within-cluster
effects through the population average [41]. A cluster in the present
dataset refers to a single pipe with multiple observations. The GEE
method also avoids the need to explicitly specify a probability model of
the correlation structure.

Let Y; = (Ya, Yi2, ..., Yi,,i)T represent the response vector of the ith
pipe consisting of n; observations and p; = (41, g - yinl)T refers to
the mean vector of failure probability for pipe i. Let V; be the variance-
covariance matrix for ¥; defined as V; = (ﬁAi%Ri(a)Ai%, where A;is the
diagonal matrix of the variances of ¥;, A; = diag{var(y;, ), ...,var(uy,)},
Ri(a) is known as the working correlation structure, and ¢ is the error

variance. The error variance can be estimated as ¢ = Z - y,

where ejis the response residuals defined as e; = (Yij —py) /y/var(u;)
using the current values of the g coefficients [42]. R;(a) is a square
matrix of elements Corr(Yy, Yi) and size n; x n; and is defined based on
one of several commonly used types of covariance structures. R;(a) also
depends on a parameter @, which is estimated iteratively based on the
number of covariates, p, and response residuals e;. The parameter a
represents the correlation between observations for the same pipe at
different T-year periods. Table 1 details the matrix elements and
parameter estimation for the independent, exchangeable, and

Table 1
R;(@) Matrix elements for common working correlation structures.

Correlation structure Corr(Yy, Yi) Parameter estimator
Independent 1j= -
Exch bl ot T {%J 7’élf 1
xchangeable = ~ K
’ Corr(¥y, Yue) = {a; £k ¥-p Ziﬂ;evem
J

N =Y mm - 1)
Corr(Yy Yijum) =a™, - _
m=0,1,..., m;—j

Autoregressive AR(1)

i:l ij€ij+1

Z:l '—1

autoregressive correlation structures used in this study. The exchange-
able structure assumes the same correlation coefficient across observa-
tions for the same pipe, i.e., a defines the correlation strength between
each pair of the observations. The autoregressive structure assumes a
stronger correlation between failure events that are closer to each other
in time. In this case, a higher a will lead to a higher correlation between
consecutive observations compared to observations that are farther
apart.

Despite the existing difference among correlation structures, esti-
mates of the regression coefficients are asymptotically consistent even in
the event of a misspecification of the correlation structure [43]. For K
pipes and p covariates, regression coefficients f can be estimated by
solving the GEE in Eq. (2):

9
Z ”’V" (Yi—p)=0j=1,...p @

To decide upon the goodness of fit of a logistic model based on a
specified correlation structure that accounts for potential correlation
from multiple observations from each pipe, the Quasi-likelihood under
the Independence model Criterion (QIC) was used [44]. Unlike
likelihood-based methods such as the Maximum-Likelihood (ML),
GEE-based models do not explicitly specify a likelihood function.
However, the QIC metric provides an alternative to the commonly used
Akaike Information Criterion (AIC) metric to compare the goodness of fit
for different GEE models, such that a GEE model with a lower QIC value
fits better the dataset.

2.1.2. Covariate selection

An important step in the procedure of developing a logistic regres-
sion model is the selection of covariates. Covariate selection can
improve a model’s interpretability, filter out covariates with low rele-
vance without compromising model accuracy, avoid overfitting and
improve prediction performance for new observations. In this study,
covariate selection is carried out in two steps. First, Least Absolute
Shrinkage and Selection Operator (LASSO) regression is used to reduce
the number of covariates based on their contribution to the performance
of the logistic regression model [45]. Secondly, a Recursive Feature
Elimination (RFE) method is performed to further reduce the number of
covariates [46].

LASSO regression is a statistical tool that performs variable selection
by shrinking less significant regression coefficients to zero [45]. Coef-
ficient shrinkage is possible by integrating an additional term to the
error minimization, such that the goal of LASSO regression is to solve:

mm{ Z Yjlog(uy) (I—Yly)log(l—ﬂ,,,-)ﬂlﬁll} 3

where y; is the predicted probability and Y} is a failure event for a single
pipe i in the jth T-year period given pipe covariates, and 1 is a regula-
rization parameter that balances between two objectives: minimizing
the error between the predicted failure probability and observed failures
(first term) and regularization (second term). The [1 norm is defined as
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|| B 1lh = 3°F_, || penalizes a model with many covariates. The rationale
for including the [1 penalty is that it achieves sparsity by eliminating the
predictors that explain the response variable the least. By cross-
validating over 1 values, the value that yields the best objective func-
tion is selected for a given dataset.

An additional step of covariate selection was performed using RFE.
The goal of RFE is to select covariates by recursively considering a
decreasing number of covariates [46]. First, a logistic regression model
is trained on the set of covariates selected after the LASSO regularization
step, and the statistical significance of each covariate is obtained using
p-values for each covariate’s coefficient. The covariate with the highest
p-value is eliminated from the current set of covariates and the pro-
cedure is repeated on the resulting subsets until the highest p-value is
below a specified cutoff (0.05 in this study). The final subset of cova-
riates was then used to develop the final logistic regression model that
estimates pipe failure probability for a given T-year period.

The outcome of the logistic regression model provides an estimate of
the probability of a pipe failure in a T-year period by integrating the
effects of the correlation structure and selected physical, environmental,
and historical information. Then, a discrete decision about the state of
the pipe can be made by setting a discrimination threshold on a given
failure probability of a pipe. If the failure probability exceeds this
threshold value, a pipe is expected to fail in the next T-year period, i.e.,
the failure outcome is equal to 1. If the estimated probability is below
the designated threshold value, the pipe is expected to survive, i.e., the
failure outcome is equal to 0.

2.2. Estimating mean time to failure

The developed logistic regression model estimates failure probabil-
ities for each pipe, which provides a measure of criticality for a given T-
year period. While such a measure can assist a water utility in defining
maintenance priorities for a planning period, it does not provide a direct
measure of the expected time to failure. To estimate the remaining time
to pipe failure, the proposed approach relies on calculating the Mean
Time to Failure (MTF). MTF is a reliability parameter typically used to
account for the expected life expectancy in the design of products [47].
For repairable systems, MTF refers to the time between failures, i.e.,
inter-failure time, and can be estimated as the arithmetic mean of the
survival probability over time:

MTF = /Ps(z)dt 4)

fo

where t; denotes the pipe’s repair time and Ps(t) is the survival function
defined as the probability that a pipe will survive past a time t. For a
given pipe, with a number of n T-year periods, Eq. (4) can be approxi-
mated as:

MTF ~T i Py(n) %)

n=0

where Pg(n) is the probability of survival past time t = t, + nT. The
probability that a pipe survives past a time t is approximated by the
product of the probabilities that the pipe survives during each of the
successive T-year periods leading to time t, with each T-year survival
event being conditional on the pipe surviving up to the beginning of the

n
T-year period. Thus, Ps(n) can be approximated as Ps(n) = H ps(k),
k=0
where p;(k) is the conditional probability that a pipe survives during the
period from ty + kT to to + (k+1)T (i.e., it survived the k-th T-year
period withk =1, 2,...,n) given that it survived in all previous intervals
for k > 0. Thus, the MTF can be approximated as:
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MTF ~TY ] p(k) 6
n=0 k=0
Since the event “at least one failure” is the complement of a survival
event, i.e., p;(k) =1 — ps(k), the probability of failure in a T-year period
Dy, as estimated by the developed logistic regression model in Eq. (1),
can be used to calculate the MTF as follows:

MTF~ Ty [[(1-pk) ’“TZHH:W @

n=0 k=0 n=0 k=0

where X(k) represents the vector of covariates measured at the begin-
ning of the kth T-year period. Only time dependent covariates, e.g., pipe
age, vary across k values. Therefore, this method converts the failure
probabilities in a limited time interval to a measure of the expected time
to the next failure. The MTF is a direct measure that can be used by water
utilities to decide whether to include pipes in repair and improvement
projects.

2.3. Condition scoring

The first outcome of the proposed approach is a T-year probability of
pipe failure, and the second outcome is an estimate of the mean time to
the next failure. The third step assigns pipe condition scores to facilitate
the water utility’s risk assessment and prioritize maintenance, replace-
ment, and decide on project scope. Furthermore, the scoring approach is
flexible to the utility’s risk attitude and the granularity of scores it
desires.

The condition scoring method [38], uses the economic concept of
discount rate to assign condition scores to pipes based on the MTF es-
timates. According to its economic interpretation, a discount rate typi-
cally implies the extent to which future benefits are valued, where a
higher discount rate implies a lower present value of money accrued in
the future and a lower discount rate implies a higher present value of
money. In this study, a discount rate d is a factor that reflects the utility’s
attitude towards risk in the condition scoring of pipes, where a higher
discount rate reflects a tendency to delay rehabilitation efforts. Given a
maximum desired criticality score Spqy, a discount rate d, and the MTF of
a pipe, a pipe’s condition score can be determined as:

Smax
S= (1 +d)MTF Q)

This condition scoring method assigns a single score to a pipe, which
lumps the impact of various environmental and physical covariates and
pipe failure history (as reflected in the MTF), as well as a utility’s atti-
tude towards risk (d) and decision scale (Spmq). Higher scores indicate
higher criticality, and higher discount rates suggest that fewer pipes will
have high scores for a given MTF, thus reflecting a lower level of reha-
bilitation priority [38].

Fig. 3 illustrates the continuous condition scoring proposed in Eq. (7)
as a function of the calculated MTF proposed in Eq. (6). Based on the
curve, scores can be assigned to pipes on either a continuous (solid line
in Fig. 3) or a discrete (dashed line in Fig. 3) scale. The stepwise con-
dition scoring can be obtained by rounding the continuous scores to
integer values, e.g., a pipe with a continuous score of 3.5 < S < 4.5 will
be assigned a discrete score of 4. In the present study, scores were
assigned using a discrete scale, which allowed to categorize pipes into a
finite number of groups that can serve as a practical input for asset
management.

An advantage of using pipe scores is the ability to capture the like-
lihood of failure as inferred from the dataset without specifically esti-
mating time to failure. In fact, this scoring method incorporates pipes
covariates, probability of failure, as well as utilities’ preferences, in a
simple and easily interpretable single metric that can be used to rank
pipes and prioritize rehabilitation efforts.
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2.4. Model evaluation

The proposed framework includes a logistic regression model for
pipe failure prediction based on estimated failure probabilities and a
condition scoring method using the concept of MTF. In order to evaluate
the accuracy of the proposed framework, several classification and error
metrics were employed. To evaluate the performance of the logistic
regression model, a confusion matrix, which summarizes the perfor-
mance of a classification model by showing both discrepancy and
agreement between true labels and predicted labels, is used [48]. Before
computing the confusion matrix, predictions are obtained by converting
failure probabilities to a binary outcome (i.e., pipe failure or no pipe
failure) by setting a probability threshold. Following the confusion
matrix terminology, correctly predicted labels are either True Positives
(TP) or True Negatives (TN), and incorrectly predicted labels are either
False Positives (FP) or False Negatives (FN). Here, a positive represents a
pipe failure, and a negative represents a pipe survival. Additionally,
based on the confusion matrix, several performance metrics are calcu-
lated. Table 2 shows the calculated metrics and their definitions [49].

The accuracy metric measures the correctly predicted fraction of all
pipe failure events. While accuracy treats failure and survival events
equally, precision, also called the positive predictive value, measures the
correctly predicted fraction of predictions. Ideally, higher values of
precision are targeted. However, higher precision is only useful if correct
failure predictions make up a higher fraction of all true failure events in
the dataset. This latter fraction translates as recall. All performance
metrics, including accuracy, recall, and precision, range between 0 and
1, where 1 indicates a perfect classification model, and 0 indicates the
opposite. Matthews Correlation Coefficient (MCC) provides an alterna-
tive metric that is unaffected by unbalanced datasets. A dataset is called
unbalanced if the ratio of true failure events to true survival events in the

Table 2
Model evaluation metrics.
Classification metric Definition
Precision TP
TP + FP
Recall or True Positive Rate TP
TP + FN
False Positive Rate FP
TN + FP
Accuracy TP + TN
TP + TN + FP + FN

TP-TN — FP-FN
/(TP £ FP)(TP + FN)(TN + FP)(IN + FN)

Matthews Correlation Coefficient
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dataset is significantly low. MCC yields a high score if the model
correctly predicts both the majority of failure and survival events. An
MCC equal to 1 reflects a perfect prediction, a 0 value represents a
random prediction, and —1 reflects an inverse prediction.

Since predictions are made based on a chosen probability threshold,
the defined classification metrics can only be comprehensively inter-
preted if a threshold value is justified. To decide upon the choice of a
probability threshold, Receiving Operating Characteristic (ROC) and
Precision-Recall curves are common tools to analyze the impact of a
varying threshold on model performance [33,48,50]. A ROC curve is a
graphical tool that plots True Positive Rate (TPR) values versus False
Positive Rate (FPR) values for a varying threshold. A high TPR indicates
the rate of correctly predicted pipes that are expected to fail, and a low
FPR indicates the rate of pipes whose failure was incorrectly predicted
by the model. Hence, the goal is to achieve a high TPR and a low FPR. A
performance metric associated with a ROC curve is the Area Under the
Curve (AUC). The closer AUC is to 1, the better the model is at correctly
predicting the true events and simultaneously minimizing false
predictions.

While the ROC curve allows visualizing how well a classifier captures
true labels, ROC curves can be influenced by imbalanced true and pos-
itive events. When the number of negative events is much greater than
the number of positive events (as typically occurs for pipe failure data
where a majority of pipes do not exhibit failures), the FPR can be arti-
ficially suppressed making it more difficult to assess the model perfor-
mance. Instead, the Precision-Recall curve performs better for
imbalanced datasets, where precision indicates the fraction of pipes
identified by the model to be expected to fail that indeed experience
failure, and recall indicates the sensitivity of model prediction [50]. A
tradeoff applies between precision and recall as the probability
threshold varies. When the probability threshold is low, the number of
unidentified failure events is expected to decrease, thus having higher
recall values. However, the number of events incorrectly classified as
failures will increase as well, thus decreasing the model’s precision. As
the probability threshold increases, fewer relevant events will be iden-
tified (i.e. lower recall), however, the confidence (i.e., precision) of
correctly identified events will be greater. It is useful to plot precision
and recall curves against the threshold settings, thus visualizing how
different threshold levels specifically influence both curves. Visualizing
the precision and recall tradeoff curves allows the water utility to
directly set the probability threshold to achieve a desired level of
performance.

Classification metrics listed in Table 2 and ROC and Precision-Recall
curves are useful to improve failure predictability and, in turn, the MTF
and condition scoring by determining the probability threshold. For
MTF calculation and condition scoring, results can be evaluated against
the observations by comparing the MTF to the actual time to failure for
pipes that failed more than once in the observation period by using
qualitative and quantitative measures such as histograms, boxplots, and
the Root Mean Square Error (RMSE).

3. Application and results

The proposed framework is demonstrated using the information
provided by the City of Austin, which included data about pipe char-
acteristics, locations, and failure history. All models developed in this
work were implemented in Python 3.7, and preliminary data processing
was executed in ArcGIS Pro 2.4.0.

3.1. Data description and preprocessing

The studied drinking water distribution system consists of 244,830
pipe segments with a total network length of 5202.1 miles. Out of the
total number of pipes, only 4425 pipes incurred failures that were
recorded in the utility’s database. These repaired pipes account for a
total of 6989 recorded repair events spanning from 2000 to 2019. A
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repair event is typically triggered by a reported leak and refers to an
intervention from a utility’s maintenance team to restore a pipe into
service. Prior to considering pipe attributes, the dataset was screened for
duplicates and other inconsistencies, including failure events that were
not stored in a readable format. After omitting duplicate and inconsis-
tent entries, the dataset analyzed in this study comprised of 6769 failure
events from 4153 pipes that had a total length of 336.48 miles repre-
senting 6.5% of the entire network length.

Fig. 4. Shows the annual failure rate per unit length for the entire
network from 2001 to 2018. The first year 2000 and last year 2019 were
excluded from this figure as failure data collection may not have been
complete. Across the 2001 to 2018 period, pipes had 5.03 failures per
100 km per year on average with a standard deviation of 2.36. Break
rates mostly fluctuated between 4 and 8 failures per 100 km per year. A
2018 survey of water utilities in the USA and Canada reported an
average failure rate of 8.7 breaks per 100 km per year, which was
compared to other sources reporting failure rates ranging from 13 to 19
breaks per 100 km per year [51]. This report also refers to typical in-
dustry targets of 7 to 10 breaks per 100 km per year. This suggests that
the failure rate calculated based on the dataset provided by the city of
Austin was low. The failure records in the dataset only consisted of pipes
representing 6.5% of the entire network, and another portion of the
network must have suffered past failures, that however were not
recorded. Also, as can be seen in Fig. 4, unusually low failure rates were
recorded in 2001 and 2002 with no provided explanation. Similarly,
unusually high failure rates were recorded in 2011, which can be
partially attributed to the exceptional drought experienced by Texas
during 2011. Despite years with unusual rates, the entire pipe failure
dataset was considered in the analysis. Excluding outliers was not
warranted since individual events could not be directly associated with
any identified variability in trends. Also, rejecting some events might
influence potential correlations across the pipe network since a pipe
failure might have an impact on adjacent pipes or other parts of the
network.

Relevant attributes that were provided with the dataset included
pipe length, diameter, age, material, and pressure zone. Physical, envi-
ronmental, and historical information used in this analysis is briefly
summarized below.

Pipe material. The majority of pipes consist of cast iron (CI) pipes
(71% of pipe length) followed by ductile iron (DI) (6.1%), Polymerizing
Vinyl Chloride (PVC) (5%), and Asbestos Cement (AC) (13.7%). Other
pipe materials included concrete steel cylinder, polybutylene, and cop-
per, which comprised less than 4%. More than half of the pipes had only
one past failure and 77.3% had either one or two past failures in the 20
years observation period.

Pressure zones. Pipe attributes included six main pressure zones,
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Fig. 4. Failure rate per year.
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North (NO), Central North (CN), North West (NW), South (SO), Central
South (CS), South West (SW), and Others. CS, CN, and N pressure zones
included 73.6% of the pipes with recorded past failures.

Pipe age. Fig. 5 shows the distribution of pipe ages by pipe length and
material. Newer pipes consist mostly of DI and PVC, and older pipes
consist mostly of CI and AC pipes. As common with pipe records,
approximately 12% of pipes were missing pipe age. The age of the pipes
was approximated using spatial interpolation based on radial basis
function [52]. The age of CI pipes was further adjusted based on our
discussions with the water utility following the changes in installation
practices. As suggested by the water utility, CI pipe installation ceased in
the early 1980 s. A cutoff was therefore defined such that estimated
installation dates for CI pipes that were dated after 1980 (approximately
3% of all the pipes) were instead approximated by assigning an age
value from the geographically nearest pipe that was installed before
1980. This approximation assumed that those CI pipes were installed in
the same year as the nearest pipes that were installed before 1980. Such
an assumption is reasonable considering that rehabilitation efforts
typically target several pipes in a given geographical area for cost
considerations.

Soil and land use. Soil information was extracted from the Soil Survey
Geographic (SSURGO) Database as provided by the National Coopera-
tive Soil Survey. The database is made publicly available by the United
States Department of Agriculture (USDA) [53]. Soil attributes included
the dominant soil order, which is defined in accordance with USDA soil
taxonomy [54]. The dominant soil order refers to a soil classification
that lumps soil properties like depth, structure, and moisture. Addi-
tionally, land attributes were assigned to pipes with information on road
type and land use as potential covariates [55]. Pipe elevation informa-
tion was extracted from the 2-ft contour elevations map published by the
City of Austin in 2012 [56]. Annual precipitation was also considered as
a model covariate and was provided as an average rainfall associated
with soil information.

Table 3 summarizes the primary characteristics of the main cova-
riates considered in the model. Overall, 15 different continuous and
categorical covariates were considered in the regression model. Note
that the actual number of implemented covariates is greater due to
dummy coding of categorical variables [57]. All data was standardized
by removing the mean and scaling to unit variance before proceeding
with the regression analysis. Thus, the values of the regression co-
efficients reflect the relative importance of the standardized covariates
in determining the dependent variable of the regression model.

[ |
120 Other
s D
mm AC
100 == PVC
s Cl
8 80
a |
= |
2 60|l ’
< fift
40 | [l
i
20
0
0 25 50 75 100

Pipe Age (yrs)

Fig. 5. Distribution of pipe age and material.
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Table 3
List of covariates per category.

Category Covariate Unit Main characteristics
Pipe Length ft Mean: 419.18; Std*: 424.18
characteristic Diameter inch Mean: 7.13; Std: 4.64
Age years Mean: 45.17; Std: 18.74
Material - CI; DI; AC; PVC; Other

Mode: 0; Mean: 0.51
Mean: 5.58; Std: 3.80

Failure history Number of past failures -

Years from last failure years

Soil attribute Elevation ft Mean: 611.41; Std:103.34
Concrete corrosion - Low/Moderate/High
potential
Steel corrosion - Low/Moderate/High
potential
Saturated hydraulic inch/ Mean: 20.75; Std: 30.44
conductivity hr
Dominant soil order - Mollisols/Vertisols/

Entisols/...
Land attribute Land use - Commercial/Residential/
Office
Road type - Interstate/Minor arterials/
Private Road

Weather Mean annual mm Mean: 876.81; Std: 79.70
precipitation

Operational Pressure zone - CN; NO; CS; SO; NW; SW;

Other

* standard deviation (Std).

3.2. Logistic regression results

3.2.1. Model selection

The first step towards estimating the mean time to failure, is selecting
the appropriate planning period, i.e., T. Several T-year periods (T = 1,
...,6) were applied, trained, and evaluated based on the five perfor-
mance metrics mentioned previously. For model training, approxi-
mately 75% of the dataset with observations from 2000 to 2012 or 2015
(depending on the T-year period) was selected and used to train the
logistic regression models. The remaining records were held out for
testing and validation. The time periods selected for training and testing
of each model are listed in Table S1 in the Supporting Information (SI).
Table 4 summarizes the performance of the trained regression models
for each T-year period when applied to the test data set. In this study, the
optimal period was selected based on three criteria: (a) a high resulting
performance across the majority of scores, (b) a period that offers
practical implementation for the utility’s asset management, and (c) a
period that reduces imbalanced classification [58].

Table 4 shows that a period of T = 1, results in low precision, recall,
AUC, and MCC scores, and although good performance is achieved
based on the accuracy and FPR scores, these are mostly attributed to the
imbalanced classification of the observations, with less than 6% of
failure events versus non-failure events in the dataset. An important
issue with imbalanced data is that there may not be sufficient observa-
tions belonging to the minority class (i.e., pipes with failures) to
adequately represent both distributions. Similar results are observed for
T = 2 and 3, with low precision, recall, and MCC scores. As the T-year
period increases, the performance generally improves, trading off
increasing FPR and temporal resolution of predictions.

A period of 5 years was chosen as a T-year response window in this

Table 4

Performance scores for T-year time interval selection.
T AUC Precision Recall FPR Accuracy MCC
1 0.51 0.28 0.28 0.05 0.90 0.23
2 0.67 0.40 0.40 0.09 0.84 0.31
3 0.69 0.46 0.46 0.15 0.77 0.31
4 0.68 0.61 0.61 0.14 0.79 0.46
5 0.68 0.67 0.67 0.14 0.80 0.53
6 0.64 0.70 0.70 0.20 0.76 0.50
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study. In other words, the output of the regression model estimates the
failure probability of a pipe in the next 5 years. First, it achieves good
performance across all metrics, with the highest MCC scores, second-
highest precision, recall, and AUC, while maintaining high accuracy
and low FPR, compared to other T-year periods. Additionally, the water
utility’s Capital Improvement Program follows a 5-year planning win-
dow, according to which a budget is allocated for pipe rehabilitation. It
follows that a measure of pipe failure risk that covers the allocation
period (i.e., T = 5) ensures a coherent approach to rehabilitation. In
terms of data imbalance (i.e., the number of failure events versus the
non-failure events), the shorter the T-year period is, the more imbal-
anced the dataset becomes. Preprocessing the dataset with a 5-year
response variable yielded 32% failure events versus 68% non-failure
events, which considerably reduced class imbalance. Consequently, a
5-year period was chosen for its practical application and the higher
predictive accuracy it provided. The remaining results shown in the
paper refer to a 5-year period; however, the proposed approach gener-
alizes to different planning periods, and can hence be adjusted accord-
ingly. Figs. S1-S3 in the SI show similar results for other response
periods.

To estimate the effects of covariates, the logistic regression model
used the GEE with an independent covariance structure. In fact, when
compared to an exchangeable correlation (QIC = 13,721.76), the in-
dependent structure provided a better fit (QIC = 13,859.32), whereas
the model failed to converge with an autoregressive covariance struc-
ture. The goodness of fit with an independent covariance structure
suggests that failure events across pipes do not display a significant
correlation in the present dataset. Additionally, estimates of covariates
effects are still consistent despite possible misspecification of the cor-
relation structure [43]. Therefore, the final model estimated coefficients
and failure probabilities based on an independent covariance structure.

3.2.2. Effects of covariates

The initial set of covariates was included in the LASSO regression
model that was cross-validated across a range of continuous values for
the regularization parameter 1. LASSO regression reached an optimum
at 2 = 0.03, thus filtering out 22 continuous and categorical covariates.
The 25 retained covariates were recursively modeled into a GEE logistic
regression model with an independent covariance structure, and vari-
ables with the highest p-value were filtered out until the highest p-value
of a subset was below a 0.05 cutoff. As an exception, despite its low
statistical significance in the dataset, pipe age was retained considering
its proven importance in the literature [5,59,60]. The resulting subset of
covariates and their corresponding coefficients are shown in Table 5.

For pipe material, only the CI type was retained, which suggests that
other material types did not provide sufficient statistical significance to
count towards the final subset of covariates. In fact, over 70% of the
studied dataset consisted of CI pipes. The consideration of a larger
representation of other materials should allow for their analysis with
more certainty in terms of impact on failure. Also, despite an expected
high influence of steel and concrete corrosivity covariates, their values
were only available for a portion of the dataset, which might have led to

Table 5

Logistic regression model coefficients.
Covariate (Alias) Description Coefficient
Intercept Intercept —0.83
upTime Years from last failure 0.87
pipeLength Pipe length 0.20
NOPF Number of past failures 0.15
pipeMaterial_CI CI pipe material 0.08
soilOrder_Vertisols Soil order: Vertisols 0.08
landUse_residential Residential land use 0.07
pipeAge Pipe age 0.04
pipeDiameter Pipe diameter —0.07
pressureZone NW North-West pressure zone —0.09
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their exclusion from significant covariates. When coefficients are ranked
from most to least influential, as in Table 5, covariates related to failure
history show some of the highest contributions to pipe failure. The
number of years from the last failure (upTime) appears as the most
influential attribute, thus suggesting that the more time elapses from a
previous break, the more likely a pipe is to fail within the next 5-year
period. This correlation is also illustrated in Fig. 6. A possible explana-
tion for this effect is that a longer period without failure might indicate a
longer exposure to internal and external factors affecting the structural
integrity of a pipe. This interpretation supports the “in-usage” and
“wear-out” phases of the bathtub failure rate curve assumption where
the failure rate is expected to increase until a failure occurs [2].

Additionally, the more total previous breaks are recorded at a pipe
level, as integrated by the number of previous failures (NOPF) covariate,
the higher the pipe failure probability is. This observation also matches
the conceptual failure rate “bathtub” model, in that the failure rate in-
creases as the number of previous failures increases [12]. A rich failure
history of a pipe could suggest a structural integrity issue that has been
further undermined by repeated repairs. In terms of pipe characteristics,
covariates’ importance was generally consistent with previous research
findings. Pipe length has been associated with higher failure probability
[61-63]. Beyond an additional exposure directly correlated to pipe
length, longer pipes could be more exposed to varying environmental
conditions and more sensitive to effects like pressure transients [62].
Also in consistence with the literature findings, smaller pipes inversely
affect failure probability such that pipes with small diameters are
associated with thinner walls which translates into a lower structural
strength [59-61,64].

When comparing the logistic regression models having different T-
year prediction periods, there was an overall agreement in terms of the
most influential covariates and their magnitudes. Table S2 in the SI list
the range of the coefficients of the most significant covariates in the
logistic regression models. In all the models, the number of years from
last failure was the most influential covariate, followed by the number of
previous failures and pipe length. Other variables, such as pipe char-
acteristics (i.e., material and diameter) and environmental impacts (i.e.,
land-use, pressure zone, and soil order) were an order of magnitude less
influential, although still significant. Fig. 7 shows the median of failure
probabilities versus the time from last failure for different T-periods. As
expected, for shorter T-year prediction periods, the probability of failure
is lower compared to longer T-year periods. For example, the probability
of a pipe failure in the next 3-years is lower compared to its probability
to fail in the next 6-years. Hence, the proposed model can be adjusted to
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the desired prediction period, based on utility’s planning periods, as
long as the performance of the models is accounted for, as summarized
in Table 4 and discussed previously.

3.2.3. Model performance evaluation

In order to define a discrimination threshold for the developed lo-
gistic regression model and make predictions, the ROC curve is first
generated for the test data, as shown in Fig. 8. The corresponding AUC is
0.68, thus suggesting a reasonable discrimination strength for predicting
pipe failures. By setting a discrimination threshold, the model can be
positioned at a specific point along the ROC curve. For example, setting
the discrimination threshold at 0.75 would result in 60% TPR (knee
point in Fig. 8) just before the slope is sharply reduced. However, as
mentioned previously, while the ROC curve evinces the discrimination
strength of the model, it is insensitive to the imbalance of the dataset and
gives no measure of precision. It might be tempting to seek an additional
10% of TPR by conceding 20% of FPR (by adjusting the probability
threshold from 0.69 to 0.53), but a marginal increase in the FPR, which
is twice the marginal increase in the TPR, could result in a number of
false alarms that is much higher than twice the additional number of
correct predictions.

To account for the model’s precision, the precision-recall versus
discrimination threshold curves are plotted in Fig. 9. The precision-
recall curves can be visually used to control for the correct proportion
of total predictions based on threshold values. While the objective is to
maximize both precision and recall, the two metrics are conflicting, and
a level of compromise needs to be determined. A choice of a discrimi-
nation threshold should be determined based on an acceptable level of
performance for each metric. Acceptable levels may be determined per
the priorities of the water utility. For example, a water utility might
want to account for the fact that missing a true failure event is worse
than having a false alarm. In fact, because the loss in recall is typically
more costly than a similar loss in precision, setting a recall level that is
higher than precision could be warranted. In this study, no such pref-
erence was expressed by the utility, hence the chosen probability
discrimination threshold (0.69) was determined as the intercept of
precision and recall such that both metrics are at 67%. By defining such
a threshold, 67% of true failure events were correctly predicted by the
model, and 67% of predicted failures corresponded to true failure
events.

Using the designed discrimination threshold of 0.69, the confusion
matrix is computed for the test set in Table 6. According to this confusion
matrix, the model accuracy was calculated at 80%, the FPR at 14%, and
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the MCC was equal to 0.53. Making a direct comparison with other
papers is difficult since the performance metrics are heavily dependent
on the problem formulation, the choice of method, and the used data-
sets. Additionally, previous studies reported different metrics. For
instance, [65] reported average MCC around 0.25, precision around
0.15 and recall around 0.45; [29] reported a maximum recall of 0.036
and AUC 0.773; [7] reported average AUC around 0.75, precision be-
tween 0.3 and 0.5 and recall between 0.4 and 0.55; and [66] reported
0.58 precision. Overall, compared to the metrics typically reported in
the literature [7,29,65,66] our model’s predictive strength was deemed
satisfactory. Figs. S1-S3 in the SI show the failure probability curves,
precision and recall, and the confusion matrices for the regression
models with T = 3 and 6.

3.3. Mean time to failure and condition scoring

Logistic regression provided failure probabilities for limited time
intervals. The MTF equation allowed us to further use these probabilities
to compute the expected times to failure given the selected covariates of
each pipe (as listed in Table 5). Fig. 10 shows how the obtained values
evolve over time from the previous failure for the entire data set. As can
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Table 6
Confusion matrix with the 0.69 probability threshold.

Predicted non-failure Predicted failure

2526
411

True non-failure
True failure

411
845

be seen, the expected time to failure is shorter as the time from last
failure increases. Also, the MTF average values decrease from around 6
years to below 1 year with decreasing standard deviations. Low uncer-
tainty associated with shorter MTF values for longer elapsed times since
last failure reflects the pipes with a higher failure probability. It is
noteworthy to mention that MTF values do not exceed 12 years, which is
induced by a high failure rate in the dataset. In fact, the dataset that was
used to calculate MTF consisted of only pipes with at least 1 failure event
in a 20-year observation period. Consequently, MTF calculations do not
reflect the normally expected pipe life expectancies in the entire
network, but instead, they give an expected time between failures for
pipes with characteristics and a failure history similar to those in the
observed dataset.

To validate the estimates, an error was measured as the difference



T.M. Rifaai et al.

Reliability Engineering and System Safety 220 (2022) 108271

10 )

MTF
o

0 [} ¢ +

4

b

Pil,

12 3 4 5 6 7 8 9 10 111213 14 1516 17 18 19
Years from last failure
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between MTF values for both training and test data and the actual time
between failures. The error was calculated for 1222 pipes that failed in
at least two different years, such that the actual time between failures
could be measured. As a result, the error had a near-normal distribution
with a mean equal to 0.54 years and a standard deviation of 3.10 years.
The root mean square deviation associated with the error was equal to
3.29 years. Although an MTF value was on average off by more than 3
years, the near-zero mean suggests a tendency towards correct pre-
dictions. A larger sample could potentially reduce the deviation and lead
to more accurate MTF estimates.

The final step of obtaining a pipe score was conducted on the entire
20-year dataset utilizing the scoring equation (Eq. (7)). The scoring scale
of 1 to 5, with 5 indicating high criticality, was chosen to match the
water utility’s existing scoring scale. Based on this scale, the scoring
curve was charted for different discount rates, as shown in Fig. 11.

The choice of the discount rate should reflect a water utility’s atti-
tude towards risk, and maintenance and replacement strategy. As can be
seen, a higher discount rate leads to a decreased condition score for a
given MTF, thus reflecting a propensity to delay rehabilitation efforts by
increasing the portion of pipes with low scores. Intuitively, these score
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Fig. 11. Condition scores as a function of MTF for different discount rates.
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curves can be viewed as the “present value” of “future” pipe failure. In
other words, a pipe failure that is expected to occur in the near future (i.
e., lower MTF) is valued more highly (or critically) by the utility (i.e.,
has a higher score) as a candidate for replacement/rehabilitation.
Similarly, a pipe failure that is expected to occur farther in the future (i.
e., higher MTF), does not require urgent replacement, and thus will get a
lower score. The slopes of the curves are controlled by the rate, d, which
represents the utility’s attitude towards risk. The diminishing slope in
the score curves represents the diminishing value of failures that will
occur further into the future. For example, an extremely conservative
and risk-averse utility will have very low rate values, e.g., with d = 0, all
pipes will get the maximum score Smax, regardless of their expected
time to failure. On the other hand, a less conservative utility, e.g., with d
= 0.5, will assign a score greater than 3 only to pipes with a 1-year or less
MTE, i.e., that are expected to fail in the next year.

A discount rate of 0.2 was selected to reflect a conservative main-
tenance approach, and a stepwise scoring curve with discrete values was
utilized for practical implementation by the water utility (Fig. 12). As in
MTF calculations, assigned scores were also updated each time an
annual failure was recorded. By using the last assigned scores, a water
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Fig. 12. Stepwise scoring curve using a 0.2 discount rate.
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utility can analyze the latest criticality of its pipes.

Fig. 13 displays a map of a portion of the city’s water distribution
network given the last assigned scores. This condition scoring map can
be easily integrated in any spatial software, e.g., ArcGIS, which can be
used as a communication tool to share the results among the different
divisions involved in pipe condition assessment, including operations,
planning, and asset management. Although beyond the scope of this
study, future research could further incorporate spatial correlation into
the condition score assessment [6,9].

To evaluate the scoring method, scores were assessed against actual
time to failure. Pipes with lower condition scores, in general, took more
time to fail again. This result suggests that assigned condition scores can
give a plausible measure of the criticality for the pipes’ condition. By
analyzing the proportions of network length per condition score, it is
noted that 8.4% of the studied pipe network’s length has a score of 5,
29.6% has a score of 4, 28.2% has a score of 3, 29.5% with a score of 2,
and 4.4% has a score of 1. Out of the portion of the network having a
score of 5, 88.9% of the length consisted of pipes with 15 to 19 years
elapsed from last failure. This proportion is consistent with the inferred
covariates’ effects which suggested that a longer time from last failure
leads to higher failure probability. In terms of pipe diameter, 89.4% of
pipes with the worst score of 5 had diameters less than 8 inches, as
opposed to 86.6% for all scores. As demonstrated in the logistic model,
the covariate for pipe diameter had an effect equal to —0.07 which led to
the 2.8% difference. Although minor, this result is consistent with
literature findings which support that pipes with smaller diameters (less
than 8 inches) tend to have a higher likelihood to fail and thus a worse
condition score. Additionally, pipes older than 60 years made up 28.9%
of pipes scoring a 5 or 4 as opposed to 26.5% for all scores. This dif-
ference suggests the tendency for older pipes to have a worse condition
score, and the small percentage is due to the low effect of the pipe age
covariate.

While condition scores incorporate how deterioration factors influ-
ence failure probability for each pipe, they do not provide a measure of
the consequence of failure. Risk assessment methods typically include
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both criticality and consequence scores when prioritizing asset man-
agement [36]. Yet, to assign an integrated risk score, an advantage of the
described condition scoring method is its linear scale [38], since con-
dition scores are considered a present value of a future failure event
based on a chosen discount rate. For example, a pipe with a condition
score of 4 is twice as critical as a pipe with a score of 2. A risk score can
thus be simply obtained by multiplying the assigned condition score by a
consequence score. The resulting risk score can eventually be used to
rank pipes per risk level [38].

4. Practical implications and limitations

The key limitations of the proposed approach primarily stem from
data restrictions. The present study focuses exclusively on the pipes that
experienced past failures by trying to estimate condition scores based on
the expected time to failure, i.e., MTF. This approach is appropriate for
the regression-based modeling method implemented in this study. Un-
like the majority of previous regression-based models, the main outcome
of the proposed approach is based on estimating the MTF as opposed to a
binary decision. Regression-based models cannot explicitly account for
censoring in the failure dataset (i.e., pipes that did not experience any
failures during the observation period). One way to get around this
limitation is by setting the MTF for pipes that did not experience any
failures to be equal to the total observation period. Nevertheless, such
practice could result in significant errors since the actual time to failure
may be significantly longer than the observation period. Additionally,
although a model for predicting MTF for pipes that did not experience
failures can be developed, this model cannot be validated, and will
hence have limited usability for water utilities. Hence, the MTF calcu-
lations do not reflect normal life expectancies for all the pipes in the
entire network, but instead, MTF gives an expected time between fail-
ures for pipes with characteristics and a failure history similar to those in
the observed dataset.

Our modeling approach was primarily motivated by the practical
need and current practice of the water utility to be able to plan capital
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investment projects. Involving the water utility during this project was a
critical step towards practical implementation and for the utilization of
more advanced methods in their current decision-making processes.
Hence, although our model is limited to pipes that had at least one
failure, it still provides insights and is practically useful for assessing the
condition of this critical subset of pipes, which included over 4000 pipes
for the utility under consideration. In sum, the pipe failure prediction
problem, although extensively studied in the literature, has been shown
to be challenging in terms of generalizing conclusions across different
systems. Pipe deterioration and the results of prediction models are
heavily dependent on the specific system characteristic, local condi-
tions, and the available datasets [7,9,26].

It is worth noting that the academic-utility partnership provided
various advantages to this study. This included gaining direct access to
data as well as institutional knowledge and expertise. The utility pro-
vided ample time for meetings, discussions, sharing institutional
knowledge, and data with the research team. The development of the
models required dedicated personnel with expertise in hydraulic engi-
neering, statistical modeling, and programming, in addition to wider
support from the utility’s network of practitioners to synthesize and
incorporate the data and knowledge into the modeling and analysis. The
developed models and methods (including logistic regression, mean
time to failure estimation, selection of the T-year prediction period,
performance metrics, discrete scoring, rate, and visualization) were
discussed with the utility throughout the study during multiple meetings
between the research team and utility personnel. The outcomes of this
study (data, models, and codes) were shared with the utility. The flex-
ibility to adjust to different time horizons and the simplicity of the
outcome of the scoring method, while relying on sound theoretical
principles, was of key importance for the utility. Although the research
team prioritized using open-source software (Python) for model devel-
opment and analysis, commercial GIS-based software was also used
extensively to communicate the results with the water utility and to
synthesize with current data management practices. Undoubtedly,
further work is needed to incorporate research outcomes in the current
decision-making process for assessing the state of the pipes in the dis-
tribution network, which includes personnel training, integration with
current data management practices, long-term validation, as well as
other technical and organizational considerations.

This study enjoyed the support of a proactive and forward-looking
water utility. Nonetheless, this study still encountered several chal-
lenges associated with data collection, quantity, and quality, which are
symptomatic of the broader water sector [67,68]. While the statistical
approaches allowed handling some of the uncertainties associated with
the recorded data, they heavily relied on historical data recorded by the
utilities over a long period of time in order to properly infer pipe break
probabilities. However, most utilities do not have detailed and ample
enough records of their infrastructure and pipe break data. Moreover,
the advantages mentioned above could be barriers for smaller and
budget-constrained utilities with limited accessibility to skilled
personnel, data, and software. Overall, this study contributes to the body
of studies that highlight the need for academic-utility partnerships for
sharing resources and expertise for a successful knowledge transfer to
advance water infrastructure management [69].

5. Conclusions

This paper proposed and tested a systematic approach to capture the
criticality of pipes in a water supply system using GEE logistic regres-
sion, and to assign practical condition scores for asset management
prioritization. A pipe network dataset was first preprocessed to define a
T-year failure outcome variable and extract features that provide in-
formation on soil, traffic, land use, failure history, and operational at-
tributes. A GEE logistic regression model was then specified with
reasonable accuracy in estimating the probability of recording at least
one failure in a 5-year time interval. Beyond a measure of a period-
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specific criticality for pipes as provided by the logistic classifier, the
MTF metric estimated the expected inter-failure times. The estimates
were then used to apply a flexible scoring approach to discriminate pipes
based on their criticality. The pipe scoring provided condition metrics
with a reasonable ability to predict poor conditions.

The promising results would still need further validation with larger
datasets. An accuracy of 80% was achieved by the logistic classifier, but
specifying the model on failure records covering a period longer than 20
years might mitigate the uncertainty related to the described perfor-
mance metrics. Additionally, the MTF calculations have a fundamental
assumption that past trend perpetuates. Because failure history is used
only from the last 20 years, the model does not provide a full simulation
of a pipe’s life cycle. Therefore, accuracy is bound to decline as pre-
dictions are made farther into the future. Also, uncertainty underlying
the logistic regression model is accumulated as the MTF calculations
integrate probabilities infinitely into the future. The choice of the time-
interval in the logistic model is also a factor that influences this uncer-
tainty. It follows that failure probabilities generated by the logistic
regression model are theoretically provided with higher performance
compared to pipe scores. However, failure probabilities only provide
information on a time-interval specific condition, whereas pipe scores
attempt to additionally capture a practical measure of the service life.
These limitations in the application of this methodology might justify for
a water utility to choose between using probability outcomes or pipe
scores depending on the need. For example, a water utility that prepares
a 5-year rehabilitation plan could use 5-year probabilities as a measure
of risk, whereas using 5-year failure probabilities might not suffice in
integrating risk in a long-term rehabilitation strategy.

The suggested framework demonstrates that useful results can be
inferred using a GEE logistic model on a dataset covering a limited time
interval and suffering potential censorship. Overall, the proposed
methods provided two practical outcomes: (1) a predictive logistic
regression model to help prioritize rehabilitation for a specific time in-
terval that is determined based on the quality of the dataset and on the
utility’s preference, and (2) an integrated condition scoring model to
estimate pipe criticality. Future research could further assess the per-
formance of the presented model by using larger and high-quality
datasets as they become available. Also comparing the logistic regres-
sion model to other statistical and data-driven models could provide
further analysis of the performance [70]. Beyond a classical perfor-
mance evaluation, this paper intended to provide a flexible framework
that can adapt to real-world complexity that water utilities have to
contend with. Research has shown that deterioration modeling can be
region- and system-specific, and results may differ per local conditions.
Hence, developing models that not only deliver good performance but
also allow for flexible use is of key importance for water utilities to be
able to use and rely on model predictions.
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