

1 Progress of Thiol-Amine “Alkahest” Solutions for Thin Film

2 Deposition

3

4 Kristopher M. Koskela, Marissa J. Strumolo, and Richard L. Brutchey*^{†,‡}

5

6 Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

7

8 **Abstract:** Solution deposition of thin films has garnered interest as a replacement for vacuum

9 deposition techniques due to its scalability and lower cost. While hydrazine processing offered an

10 alternative to vacuum deposition, its commercialization is limited due to its toxicity and explosive

11 nature. Binary thiol-amine mixtures (“alkahests”) have proven usage in the dissolution of a wide

12 range of inexpensive, bulk solids to give inks. Intensive study of dissolution, solute speciation, and

13 decomposition mechanisms have bridged the quality gap between hydrazine-processed and

14 vacuum deposited thin films, but analogous studies for thiol-amine mixtures are nascent. Here, we

15 outline recent progress made in identifying the molecular solutes from bulk solid dissolution in

16 thiol-amine solutions. New applications and potential areas of future study are highlighted.

17

18 **Solution deposition of thin films**

19 Semiconductor thin films are used for a wide-range of technologically relevant devices, including

20 thermoelectrics, photovoltaics, and electrocatalysts [1-4]. Traditional deposition methods, such as

21 chemical vapor deposition and atomic layer deposition, require high vacuum, high temperatures,

22 and specialized equipment for large-scale production [1]. In contrast, solution deposition generally

23 utilizes lower temperatures and can be used with high-throughput techniques, such as spray coating

24 and roll-to-roll printing, making it more cost effective and scalable [2,5,6]. A promising method

25 for the solution deposition of semiconductor thin films is the use of molecular inks, which can

26 produce atomically homogenous thin films with good functionality (e.g., high solar cell power

27 conversion efficiencies) [7,8]. Molecular inks can be prepared by the dissolution of discrete

28 molecular complexes or by the dissolution of bulk solids. Typically, discrete molecular complexes

29 possess high solubility but are more expensive. Alternatively, the dissolution of bulk solids may

30 be cheaper, but bulk inorganic solids often have very low solubilities in standard solvents [3,7,8].

1 In 2004, Mitzi and coworkers introduced hydrazine as a potent solvent that successfully co-
2 dissolved several binary metal chalcogenides in the presence of chalcogen to produce inks that led
3 to highly efficient solution-deposited solar cells [5]. While this system is effective, hydrazine is
4 toxic and explosive, which limit its scalability [5,9]. Moreover, the dissolution of bulk materials
5 in hydrazine has been limited to metal chalcogenides.

6

7 More recently, alternate solvent systems have been explored, including a binary thiol-amine
8 mixture coined the “alkahest” introduced by Brutchey and coworkers in 2013 [10]. The alkahest
9 is less toxic than hydrazine yet possesses high solvent power. Over 100 bulk solids, including
10 metal chalcogenides, metal oxides, and zero-valent metals, have been dissolved with this system
11 at room temperature and ambient pressure with solubilities of up to 30-35 wt% (as compared to
12 40-45 wt% for hydrazine-based inks, with respect to metal precursor dissolved) (Figure 1, Key
13 figure) (Figure 2A) [2,5,9,11-13]. Dissolution using the alkahest is not only energetically favorable,
14 but kinetically favorable as well. For example, Ma *et al.* were able to dissolve bulk Cu₂S in an
15 alkahest mixture in a matter of minutes, whereas analogous dissolution in hydrazine took several
16 days [14,15]. The alkahest generally consists of short chain thiols and primary amines, both of
17 which are sufficiently volatile to produce homogenous thin films of the desired metal chalcogenide
18 upon solution deposition and mild annealing (270–350 °C) [2,10,16]. Alternatively, once
19 molecular solutes are produced by the alkahest, they can be isolated by precipitation or by
20 evaporating the excess solvent and then re-dissolved in more conventional organic solvents for
21 solution processing, such as DMSO, DMF, or acetonitrile [17,18]. Thin films deposited by the
22 alkahest have been used for a variety of applications, such as electrocatalysts (Figure 2B,C) [19-
23], solar cells (Figure 2D,E) [24,25], and thermoelectrics (Figure 2F,G) [26,27] with
24 performances comparable to hydrazine fabricated devices. For example, the champion power
25 conversion efficiencies for alkahest-processed Cu(In,Ga)(S,Se)₂ (CIGSSe) and Cu₂ZnSnSe₄
26 (CZTSSe) solar cells are 16.4% and 12.5%, respectively [24,25]. The champion hydrazine
27 processed device efficiencies are 18.1% and 12.6%, respectively [28,29]. The alkahest has also
28 been used to fabricate devices for other applications, such as photodetectors [30], wearable devices
29 [31], and neuromorphic devices [32].

30

1 As highlighted above, the alkahest solvent system has shown remarkable solvent power for a wide
2 range of bulk solids to solution deposit thin films for functional devices. To drive device
3 functionality and efficiency even higher, careful consideration of the identity and decomposition
4 properties of the resulting molecular solutes is needed to optimize thin film deposition. With a
5 fundamental understanding of the mechanisms of dissolution and the resulting molecular species
6 between different types of precursors (e.g., metals, metal chalcogenides, metal salts, etc.), future
7 studies can provide insight into decomposition mechanisms with alkahest solvent systems from
8 well-characterized molecular systems. The information garnered from these types of studies will
9 lead to further tailoring of ink compositions with possibilities of isolating and redispersing
10 molecular species in more polar/weakly coordinating solvents or purifying the solutes for higher
11 quality material deposition or tailored thermal decomposition. For high efficiency devices, the
12 number of impurities in the final materials must be limited for the commercialization of these
13 solvent systems.

14

15 While hydrazine has several issues with its scalability as a solvent, the insights gained from this
16 literature should not be overlooked. Metal chalcogenide devices processed from hydrazine still
17 represent the state-of-the-art for most solution processed metal chalcogenide materials. This is due
18 in large part to the extensive study of the mechanisms of dissolution, identities of the molecular
19 solutes, as well as the molecular condensation and decomposition mechanisms for thin film
20 formation [33-37]; for example, the methodologies garnered in these studies have pushed
21 hydrazine processed CIGSSe solar cells beyond 18% power conversion efficiency [28]. While in-
22 depth investigation into hydrazine processing has narrowed the gap between vacuum- and
23 solution-processed devices, these types of studies are not as prevalent for alkahest systems. A
24 review of bulk solid dissolution highlighting the resulting molecular solutes and their dissolution
25 mechanisms is lacking. Herein, we will focus on the recent insights gained from bulk solid
26 dissolution in alkahest systems and how these results have improved material deposition processes
27 and motivated new applications. We will first review the current understanding of metal, metal
28 chalcogenide, and metal salt dissolution in alkahest systems along with their resulting molecular
29 solutes, and how fundamental understanding of dissolution can further improve device fabrication
30 processes and efficiencies. We will then review how this knowledge has driven new applications,
31 such as using the alkahest to engineer nanocrystal surfaces [38-40]. Finally, we will highlight the

1 open questions on the fundamental understanding of dissolution and decomposition mechanisms
2 for alkahest systems and how this knowledge can lead to improved device fabrication and novel
3 applications.

4

5 **Bulk metal chalcogenide dissolution**

6 The first report of metal chalcogenide dissolution with an alkahest solvent system came from
7 Webber *et al.* in 2013, where nine bulk V_2VI_3 (As_2Ch_3 , Sb_2Ch_3 , Bi_2Ch_3 , where $Ch = S, Se, Te$)
8 chalcogenides were dissolved in a 1:10 (vol/vol) mixture of 1,2-ethanedithiol (EDT) and
9 ethylenediamine (en) at room temperature and ambient pressure [10]. Several of the materials were
10 dissolved within minutes. Initial attempts were made to understand alkahest dissolution through
11 several control experiments. Besides the case of As_2S_3 , which is known to dissolve in neat amines
12 [41], the dissolution of all other V_2VI_3 chalcogenides will not proceed without thiol. It was
13 concluded that the maximum solvent power was reached using 1,2-chelating dithiols and 1,2-
14 chelating diamines, but mixtures of monothiols and monoamines also showed appreciable solvent
15 power for metal chalcogenides [10]. Adding EDT to en (1:10 vol/vol) resulted in a $\sim 15,000\times$
16 increase in electrolytic conductivity through the formation of ammonium thiolates in solution [10].
17 To be a true molecular solution, the inks must be free of particles. Dynamic light scattering (DLS)
18 can be used to elucidate the solvodynamic size of species in solution and can confirm when inks
19 are fully dissolved molecular solutions. In the case of these nine bulk V_2VI_3 chalcogenides, those
20 solutions tested (Sb_2Se_3 and Bi_2S_3) gave molecule solutes after full dissolution [10]. In the case of
21 the Sb_2Te_3 dissolution, a polymeric Sb-Te species (>10 nm in diameter) rather than a molecular
22 species was observed by DLS, which required the use of superhydride to fully reduce the species
23 into a molecular solution that was processable for flexible devices (Figure 3) [42].

24

25 The first attempt to identify the resulting molecular solutes in an alkahest solvent system came
26 from Buckley *et al.* who probed the identity of molecular stibanes from the dissolution of bulk
27 Sb_2S_3 in mercaptoethanol (ME) and en (1:40 vol/vol) [38]. By using negative ion mode
28 electrospray ionization mass spectrometry (ESI-MS), a mixture of four different mono- or
29 binuclear stibane species were identified with anionic ME ligands (Figure 3A). Inductively-
30 coupled plasma atomic emission spectroscopy (ICP-AES) analysis of the dried ink found excess
31 C and N that were attributed to en, with a broad $\nu(N-H)$ FT-IR stretch at 3300 cm^{-1} suggesting

1 that protonated en acts as a counter cation to the stibanes. To confidently identify the molecular
2 species, careful consideration of previously reported metal-thiolate species is helpful. For example,
3 the ion cluster assigned to $[(\text{SC}_2\text{H}_4\text{O})\text{Sb}(\text{SC}_2\text{H}_4\text{O})]^-$ is analogous to the molecular stibane
4 produced from the reaction of $\text{Sb}(\text{O}i\text{Pr})_3$ and ME, which yields the neutral trigonal pyramidal
5 complex $(\text{SC}_2\text{H}_4\text{O})\text{Sb}(\text{SC}_2\text{H}_4\text{OH})$, where one ME ligand forms a five-membered, dianionic chelate
6 ring and the other ME ligand binds unidentate through a thiolate [43]; indeed, there is excellent
7 agreement between the $\nu(\text{S}-\text{C})$, $\nu(\text{C}-\text{O})$, and $\nu(\text{Sb}-\text{OC})$ FT-IR bands of this complex and the
8 observed $[(\text{SC}_2\text{H}_4\text{O})\text{Sb}(\text{SC}_2\text{H}_4\text{O})]^-$.

9
10 In the case of bulk Sb_2Te_3 dissolution in EDT and en (1:10 vol/vol), molecular products were
11 precipitated with the addition of acetonitrile after reduction with superhydride (Figure 3B,E); the
12 resulting molecular solute possessed an Sb:Te ratio of ~2:7 by energy-dispersive X-ray
13 spectroscopy (EDS) [42]. Based on the elemental composition, the authors speculate that one
14 possible form of this solute could be the previously reported $\text{Sb}_2\text{Te}_7^{4-}$ binuclear cluster synthesized
15 in hydrazine [44]. This cluster was further treated with tri-*n*-octylphosphine (TOP) to abstract
16 excess Te as $\text{TOP}=\text{Te}$, with the resulting antimony complex being soluble in polar solvents. This
17 isolated purified molecular cluster led to dense, specularly reflective thin films that were
18 processable on flexible polyimide substrates (Figure 3D,E), whereas the polymeric Sb-Te products
19 prior to superhydride reductive gave poor film quality (Figure 3C) [42]. Similarly, for bulk Ag_2S
20 dissolution in EDT and en (1:10 vol/vol), the resulting solutes change from being Ag-rich (with a
21 Ag:S ratio of 2:1) to Ag-poor (with a Ag:S ratio of 2:3) after precipitation with acetonitrile. The
22 exclusion of the unidentified Ag-rich solutes led to greatly improved film morphologies [31].
23 Additional studies on the exact mechanism of metal chalcogenide dissolution are warranted to
24 possibly direct the formation of various advantageous molecular solute(s) and further optimize
25 film deposition based on this information.

26
27 **Bulk metal dissolution**
28 Bulk metal dissolution from alkahest mixtures was first reported by Zhao *et al.*, in which bulk Cu
29 and In powders were dissolved in EDT and en, whereas Ga dissolution required the addition of
30 bulk Se for full dissolution [45]. A subsequent study by Zhang *et al.* reported a wider elemental
31 range of bulk metal dissolution (i.e., Cu, In, Sn, and Zn) from a binary mixture of EDT and

1 butylamine (BA) or hexylamine (HA), in which binary metal chalcogenides were recovered using
2 EDT as the only sulfur source and added chalcogen was not needed for dissolution [46]. To better
3 understand the mechanism of dissolution with alkahest mixtures for zero-valent metals, Agrawal
4 and coworkers attempted to isolate and identify the molecular solutes in Cu and In dissolved in
5 mixtures of EDT and HA (1:10 vol/vol) [18]. Using these isolated species, they redispersed the
6 solutes in DMSO for more benign solution deposition and device fabrication [18]. Both resulting
7 Cu- and In-thiolates were isolated by evaporating the fully dissolved EDT-HA solutions (e.g.,
8 Figure 4A). The isolated species were analyzed using ESI-MS, X-ray absorption spectroscopy
9 (XAS), and solution NMR spectroscopy. The isolated In-thiolates were found to be in the In³⁺
10 oxidation state with average bond distances matching well with In–S bonds and EXAFS In K-edge
11 showing a local coordination number of four [18]. Coupled with ESI-MS, it was concluded that
12 the most plausible molecular solute structure was [In(S₂C₂H₄)₂][–]. ¹H, ¹³C, and 2D coupled ¹H-¹³C
13 NMR spectroscopy corroborated the identity of the molecular species in solution as bis(1,2-
14 ethanedithiolate)indium(III). It has been previously reported that In-dithiolate complexes
15 decompose to In₂S₃ whereas In-monothiolates afford InS [47]. In the case of Cu dissolution, the
16 identification of the molecular species was more complex. XAS confirmed the exclusive presence
17 of Cu⁺ with a coordination number of three, and the large masses observed in ESI-MS suggests
18 high nuclearity Cu-thiolate clusters with 2-8 Cu atoms [18]. As previously reported in unrelated
19 studies on Cu-thiolate clusters, several possible geometries and structures are possible [48-50] and
20 without direct single-crystal XRD data, the exact identity of the Cu-thiolates in amine-thiol
21 mixtures is still unresolved. Moreover, a mechanism for In metal dissolution was proposed from
22 gaseous product analysis, where the exothermic, oxidative dissolution of zero-valent In is driven
23 by irreversible H₂ gas evolution (Figure 4B) [18].

24
25 For the dissolution of bulk metals, redox reactions with elemental chalcogens are typically needed
26 for processes akin to surface tarnishing. In the early 1990s, Rauchfuss *et al.* explored the
27 dissolution of bulk metals through an oxidative dissolution process [51-54]. Bulk Cu metal was
28 dissolved in the presence of sulfur with the assistance of donor solvents yielding metal complexes
29 with donor solvent and polysulfide ligands [51]. This work was expanded to several other metals
30 (i.e., Fe, Mg, Mn, Ni and Zn) with various donor solvents (*N*-methylimidazole (MeIm), pyridine
31 (py), tetramethylethylenediamine (TMEDA), 4-(dimethylamino)pyridine) [52,53]. It was shown

1 that in the case of Zn dissolution, the resulting Zn(TMEDA)S_6 molecular complex can be
2 decomposed to yield cubic ZnS [54]. The dissolution of metals with sulfur and donor solvents
3 proceeds through oxidation of the metal by the chalcogen with the strong donor-solvent interaction
4 stabilizing the resulting molecular complex [51-53]. This chemistry was recently revisited by
5 Wang and co-workers for the dissolution of bulk elemental Sn and Pb, where molecular
6 dichalcogenides serve the same role as elemental chalcogens [55,56]. For example, diphenyl
7 diselenide oxidizes both metallic Pb and Sn to give discrete Pb^{2+} and Sn^{2+} thiolate complexes,
8 suggesting an oxidative addition reaction analogous to the mechanism proposed by Rauchfuss
9 [55,56]. In the case of Pb dissolution, the molecular solute was isolated and analyzed by single
10 crystal XRD that gives confirmation of a four-coordinate geometry about Pb with two selenolate
11 ligands and two donor solvent ligands (i.e., $\text{Pb}(\text{L})_2(\text{SePh})_2$, where L = py, $\frac{1}{2}$ en) [56]. The isolated
12 Pb species are structurally similar to previously reported four-coordinate $(\text{py})_2\text{Pb}(\text{SeC}_5\text{F}_5)_2$ [57]
13 and $\text{Pb}(\text{SeCH}_2\text{CH}_2\text{NMe}_2)_2$ [58] complexes. These molecular solutes derived from Pb dissolution
14 can be thermally decomposed to give PbSe , PbTe , and $\text{PbSe}_x\text{Te}_{1-x}$ when using diphenyl diselenide,
15 ditelluride, or a combination of the two, respectively [55]. Along the same lines, SnSe and SnTe
16 phases can be returned when diphenyl diselenide or ditelluride are used, respectively, to dissolve
17 Sn metal in the presence of en, py, DMSO, or butylamine (BA) [55]. These examples suggest that
18 zero-valent metal dissolution with thiol-amine solutions may be occurring through oxidative
19 dissolution from the presence of adventitious disulfides, which are commonly found in thiols as
20 oxidation products.

21

22 **Metal salt dissolution**

23 While metal chalcogenide and zero-valent metal dissolution have been studied more extensively,
24 alkahest solutions have also been shown to dissolve a wide range of metal salts (e.g., metal acetates,
25 acetylacetones, halides) that return metal chalcogenide materials upon thermal annealing [59-
26 61]. Murria *et al.* identified the speciation of molecular solutes from the dissolution of both CuCl
27 and CuCl_2 in 1-propanthiol (PT) and BA solutions (1:1 mol/mol) using ESI high-resolution tandem
28 mass spectrometry, synchrotron XAS, and Raman spectroscopy [62]. When dissolving CuCl and
29 CuCl_2 in PT and BA, almost identical MS spectra were observed that suggest a mixture of various
30 Cu-thiolate and chloride complexes that give the same colored solutions (Figure 4C,D). XAS
31 suggested the exclusive presence of Cu^+ in solution, even for the dissolution of CuCl_2 [62]. While

1 no Cu-amine complexes were found by ESI, various sized butylammonium chloride adducts
2 ($[C_4H_9NH_3^+]_n[Cl^-]_{n+1}$) were observed as by-products [62]. The proposed Cu-thiolate, chloride, and
3 mixed thiolate chloride species were corroborated with quantum chemical calculations and are
4 similar to previously calculated Cu-thiolate structures [63,64]. The observation of Cu^{2+} reduction
5 to Cu^+ has also been observed in other alkahest processed chalcogenide materials where Cu^{2+}
6 precursors are reduced in the final annealed material as evidenced by high-resolution XPS [11].
7 These findings are in agreement with previous reports that suggest Cu^{2+} reduces to Cu^+ in the
8 presence of thiols, forming disulfides [65,66]; Cu(I) disulfide complexes are thermodynamically
9 favored over Cu(II) μ -thiolates [67]. When these solutions were annealed to 80 °C to generate thin
10 films, the only crystalline products detected were *n*-butylammonium chloride salts [62]. While
11 amorphous Cu-S species were detected by Raman at 80 °C with the addition of elemental sulfur,
12 no crystalline products were detected even when the thin films were annealed to 350 °C with or
13 without added sulfur [62]. The authors posit that chloride impurities, observed in the molecular
14 solutes, are inhibiting crystallization of copper sulfide phases. The use of chloride salts has also
15 led to complications in the fabrication of CIGSSe solar cells [60]. When using $GaCl_3$ as the Ga
16 source, or a combination of $InCl_3$ and $CuCl$ salts with $Ga(acac)_3$, $GaCl_3$ was always found in the
17 precursor ink [60]. Upon annealing these inks, the low volatilization temperature of $GaCl_3$ led to
18 significant Ga loss in the final films, which was only negated by severely increasing the amount
19 of Ga in the precursor ink or simply by using non-chloride metal precursor salts. While a wide
20 variety of precursors have been dissolved in thiol-amine solutions, and several molecular solutes
21 have been identified or postulated, direct comparisons between a single metal with analogous bulk
22 solids is lacking. These types of studies can be beneficial for understanding element-specific
23 dissolution and coordination chemistry in these solvent systems, and for subsequent thin film
24 optimization (Box 1).

Box 1. Comparing bulk Sn, SnO, SnS, and SnSe dissolution

To identify the molecular solutes of the same metal using different bulk solid precursors, Buckley *et al.* dissolved Sn, SnO, and SnS in a mixture of EDT and en (1:10 vol/vol) to give identically colored solutions free of scattering (Figure IA) [75]. Using solution ^{119}Sn NMR, a single and identical resonance at $\delta_{^{119}\text{Sn}} = 217$ ppm was observed for each precursor solution, suggesting a single molecular solute that lacks any $J_{\text{Sn-Sn}}$ coupling (Figure IB) [75]. This chemical shift is indicative of four-coordinate Sn in a sulfur environment, as ^{119}Sn NMR is extremely sensitive to coordination environment [75-78]. Several control experiments were performed to confidently identify the molecular solute. For example, the independently prepared, neutral $(\text{EDT})_2\text{Sn}(\text{IV})$ complex exhibits a chemical shift of $\delta_{^{119}\text{Sn}} = -263$ ppm in the presence of en; this chemical shift window is indicative of six-coordinate species. Indeed, negative ion mode ESI-MS suggests en chelation to Sn with the main ion cluster corresponding to $[\text{Sn}(\text{EDT})_2\text{en}]^-$. As such, this suggests the molecular solute is a four-coordinate $[(\text{EDT})_2\text{Sn}(\text{II})]^{2-}$ species (Figure IC), which was corroborated by a DFT calculation of the gas-phase ^{119}Sn NMR chemical shift. When these inks were annealed, all three returned crystalline and phase-pure SnS with identical optical band gaps [75].

When comparing Sn containing molecular solutes in alkahest solutions with those identified in hydrazine dissolution, several similarities are observed. The well-defined structures of Sn(IV) thiostannates (i.e., $[\text{Sn}_2\text{S}_6]^{4-}$, $[\text{Sn}_4\text{Se}_6]^{4-}$, $[\text{Sn}_4\text{S}_{10}]^{4-}$, $[\text{Sn}_4\text{Se}_{10}]^{4-}$) found in hydrazine provide characteristic vibrational and absorption spectroscopic handles [5,13,34,79-81]. In a recent study by Heo *et al.*, compositionally phase-impure thin films of Sn(S,Se) were obtained from the decomposition of inks derived from bulk SnSe dissolved in EDT and en (1:10 vol/vol) [17]. A purification step was performed whereby acetonitrile was used to precipitate solute species, which were identified as $[\text{Sn}_4\text{Se}_6]^{4-}$ and $[\text{Sn}_4\text{Se}_{10}]^{4-}$ using Raman and UV-vis spectroscopies. By using these isolated solutes and redispersing them in en, highly textured, mirror-like thin films of phase-pure SnSe were fabricated after annealing to 400 °C [17].

- 1
- 2 **Film impurities from alkahest method**
- 3 Minimizing impurities and defects will lead to higher quality thin film fabrication, ultimately
- 4 opening the door to commercially competitive devices. While it is known that layers fabricated

1 from nanocrystal inks leave large carbonaceous impurities from the decomposition of long chain
2 aliphatic ligands, alkahest inks can reduce carbon impurities. It has been seen that carbon
3 impurities ultimately affect grain size and device performance (i.e., in CIGSSe solar cells);
4 therefore, it is important to minimize the amount of carbon in the final films [45,68]. In an early
5 study, the decomposition of an alkahest ink consisting of dissolved In, Ga, and Se in EDT and en
6 led to trace carbon impurities that restricted the growth of large grain CIGSe films [45]. More
7 recently, annealing strategies utilizing rapid thermal annealing (RTP) have been adapted to
8 promote large grain CIGSe formation throughout the entire absorber layer using alkahest inks for
9 deposition [68,69]. It has been suggested in a recent study by Deshmukh *et al.* that their CIGSe
10 inks prepared by the alkahest contain no carbon impurities upon device fabrication [70].

11
12 Another possible limitation of alkahest inks is the incorporation of sulfur, from thiol
13 decomposition, during the crystallization of selenide and telluride thin films. Webber *et al.*
14 reported the incorporation of ~2 at% S upon decomposition and crystallization of a Sb_2Se_3 ink at
15 350 °C [10]. In the case of Sb_2Se_3 , incorporation of sulfide impurities can be circumvented by
16 using bulk elemental Sb and Se in inks containing EDT and en, where no sulfur impurities were
17 detected by EDS upon recovery of the thin film [71]. While design strategies to avoid impurities
18 in the final materials can be gleaned from these results, decomposition mechanisms from well-
19 characterized molecular solutes are needed to obtain a better understanding of these effects. In the
20 case of CIGSSe inks in thiol-amine solvent mixtures, the amount of sulfur in the final thin film
21 can be severely limited upon high temperature selenization [60,68].

22
23 **New applications of alkahest solutions**
24 Drawing inspiration from the hydrazine dissolution literature, the molecular solutes in alkahest
25 solutions can also facilitate phase-transfer ligand exchange on colloidal nanocrystals and
26 subsequently act as a molecular glue or solder between the nanocrystals in thin films [38-40]. The
27 first application of nanocrystal ligand exchange using alkahest solutions came from Buckley *et al.*,
28 where molecular stibanes (*vide supra*), in addition to dissolved As_2S_3 , As_2Se_3 , Sb_2Se_3 , SnS , and
29 ZnS species, were used to replace bulky organic ligands on the surface of CdSe , CdS/CdSe
30 core/shell, and Pt nanocrystals (Figure 5A,B) [38]. Absorption spectra of the ligand-exchanged
31 CdSe and CdS/CdSe core/shell nanocrystals showed little-to-no spectral changes in the position of

1 the exciton peak, indicating the particles are not etched (Figure 5C). A >25-fold increase in the
2 electrochemical photocurrent density was measured when installing the molecular stibinates on
3 CdSe nanocrystals because of better nanocrystal-nanocrystal coupling (Figure 5D). This
4 methodology was extended to colloidal PbS nanocrystals by Ibáñez *et al.*, where elemental S and
5 Te were separately dissolved in mixtures of EDT and en and used to exchange the oleate-capped
6 surfaces of PbS nanocrystals [39]. It was shown that after thermal annealing, PbS nanocrystals
7 treated with dissolved sulfur complexes increased the carrier concentration in nanocrystal-derived
8 dense pellets by over an order of magnitude. Conversely, when PbS nanocrystals were treated with
9 dissolved Te complexes, carrier concentrations decreased by an order of magnitude. Such an
10 approach could therefore be used to tune transport in nanocrystal solids for applications in
11 thermoelectrics and optoelectronics. Ibáñez *et al.* expanded on this strategy by installing alkahest-
12 dissolved elemental Cd and Se onto the surfaces of SnTe nanocrystals [40]. It was proposed that
13 the solution of Cd and Se dissolved in EDT and en consisted of $(Cd_2Se_3)_n^{2n-}$ or $CdSe_2^{2-}$
14 chalcogenidocadmates by extension to the analogous solutes in hydrazine solutions [40,72,73];
15 however, these species were not characterized. When these materials were pressed and annealed,
16 CdSe surface alloying led to an increased Seebeck coefficient and power factor that also yielded
17 nanojunctions of CdSe in the SnTe matrix. Resulting band engineering (i.e., wider band gap,
18 diminished energy separation between light-hole band and heavy hole-band) led to a higher *ZT*
19 than analogous thiocyanate-treated SCN-SnTe nanocrystals (Figure 5E) [40]. Surface alloying
20 with Cd in the SnTe nanocrystals was confirmed through annular dark field (ADF) scanning
21 transmission electron microscopy (STEM) that showed amorphous coverage of Cd on SnTe
22 nanocrystals (Figure 5F). These types of studies using alkahest-derived solutes for nanocrystal
23 surface engineering are gaining traction; this methodology can be used to replace hydrazine
24 elsewhere, such as using In-chalcogenidometallates (such as $In_2Se_4^{2-}$ or others) to ligand exchange
25 CdSe nanocrystals [74].

26

27 **Concluding remarks**

28 In a short amount of time, binary combinations of thiol and amines have become an incredibly
29 useful solvent mixture for the facile dissolution of a wide range of bulk solids that are generally
30 thought to be insoluble under standard conditions. This has enabled a large palette of inks to be
31 developed for the solution deposition of metal chalcogenide thin films with controllable

1 compositions and functionality. To further improve the effectiveness of alkahest chemistry for the
2 solution deposition of thin films, careful consideration must be given to the identity of dissolved
3 molecular solutes and their subsequent effect on the resulting material properties in order to close
4 the quality gap with hydrazine-processed thin films. Future studies should be devoted to
5 developing a chemical understanding of the dissolution mechanisms with different types of starting
6 solids, such as bulk metal chalcogenides and oxides, and more focused efforts on the direct
7 characterization of resulting solutes (e.g., by single crystal X-ray diffraction rather than indirect
8 MS methods where ionization may affect the solute identity) and potential deleterious byproducts.
9 With structurally well-defined molecular solutes in hand, studying their subsequent decomposition
10 to metal chalcogenides will enable further optimization of thin film deposition (see Outstanding
11 Questions). To keep pace with rapidly evolving solution deposition techniques, findings from these
12 types of studies could ultimately lead to state-of-the-art materials or devices with competitive
13 functionality.

14

15 **Acknowledgements**

16 R.L.B. acknowledges support from the National Science Foundation under DMR-1904719.

17

18 **Declaration of interests**

19 Authors declare no competing interests.

20

21 **References**

- 22 1. Matthews, P. D. *et al.* (2017) Shining a light on transition metal chalcogenides for
23 sustainable photovoltaics. *Chem. Sci.* 8, 4177-4187
- 24 2. McCarthy, C. L. *et al.* (2017) Solution processing of chalcogenide materials using thiol–
25 amine “alkahest” solvent systems. *Chem. Commun.* 53, 4888-4902
- 26 3. Jo, S. *et al.* (2019) Ink processing for thermoelectric materials and power-generating
27 devices. *Adv. Mater.* 31, 1804930
- 28 4. McCarthy, C. L. *et al.* (2018) Preparation of electrocatalysts using a thiol–amine solution
29 processing method. *Dalton Trans.* 47, 5137-5143
- 30 5. Mitzi, D. B. *et al.* (2004) High-mobility ultrathin semiconducting films prepared by spin
31 coating. *Nature* 428, 299-303

1 6. Suresh, S. *et al.* (2021) Present status of solution-processing routes for Cu(In,Ga)(S,Se)₂
2 solar cell absorbers. *Adv. Energy Mater.* 11, 2003743

3 7. Habas, S. E. *et al.* (2010) Low-cost inorganic solar cells: from ink to printed device. *Chem.*
4 *Rev.* 110, 6571-6594

5 8. Clark, J. A. *et al.* (2019) Complexation chemistry in *N,N*-dimethylformamide-based
6 Molecular inks for chalcogenide semiconductors and photovoltaic devices. *J. Am. Chem.*
7 *Soc.* 141, 298-308

8 9. Mitzi, D. B. (2008) Solution processing of chalcogenide semiconductors via dimensional
9 reduction, *Solution Processing of Inorganic Materials* (Mitzi, D. B.), pp.77-108, John
10 Wiley & Sons

11 10. Webber, D. H. *et al.* (2013) Alkahest for V₂VI₃ chalcogenides: dissolution of nine bulk
12 semiconductors in a diamine-dithiol solvent mixture. *J. Am. Chem. Soc.* 135, 15722-15725

13 11. Koskela, K. M. *et al.* (2020) Solution deposition of a bournonite CuPbSbS₃ semiconductor
14 thin film from the dissolution of bulk materials with a thiol-amine solvent mixture. *J. Am.*
15 *Chem. Soc.* 142, 6173-6179

16 12. McCarthy, C. L. *et al.* (2015) Solution-phase conversion of bulk metal oxides to metal
17 chalcogenides using a simple-thiol solvent mixture. *Angew. Chem., Int. Ed.* 54, 8378-8381

18 13. Mitzi, D. B. (2005) Synthesis, structure, and thermal properties of soluble hydrazinium
19 germanium(IV) and tin(IV) selenide salts. *Inorg. Chem.* 44, 3755-3761

20 14. Ma, Y. *et al.* (2016) Thermoelectric properties of copper chalcogenide alloys deposited via
21 the solution-phase using a thiol-amine solvent mixture. *RSC Adv.* 6, 99905-99913

22 15. Mitzi, D. B. *et al.* (2008) A high-efficiency solution-deposited thin-film photovoltaic
23 device. *Adv. Mater.* 20, 3657-3662

24 16. Albalawneh, G. *et al.* (2020) Review-solution processing of CIGSe solar cells using simple
25 thiol-amine solvents mixture: a review. *ECS J. Solid State Sci. Technol.* 9, 061013

26 17. Heo, S. H. *et al.* (2019) Composition change-driven texturing and doping in solution-
27 processed SnSe thermoelectric thin films. *Nat. Commun.* 10, 864

28 18. Zhao, X. *et al.* (2019) Investigating chemistry of metal dissolution in amine-thiol mixtures
29 and exploiting it toward benign ink formulation for metal chalcogenide thin films. *Chem.*
30 *Mater.* 31, 5674-5682

1 19. Liu, F. *et al.* (2015) Low-temperature, solution-deposited metal chalcogenide films as
2 highly efficient counter electrodes for sensitized solar cells. *J. Mater. Chem. A* 3, 6315-
3 6323

4 20. Lui, F. *et al.* (2015) Earth-abundant Cu₂SnSe₃ thin film counter electrode for high-
5 efficiency quantum dot-sensitized solar cells. *J. Power Sources* 292, 7-14

6 21. Zhao, X. *et al.* (2017) An ambient temperature, CO₂-assisted solution processing of
7 amorphous cobalt sulfide in a thiol/amine based quasi-ionic liquid for oxygen evolution
8 catalysis. *Chem. Commun.* 53, 9418-9421

9 22. McCarthy, C. L. *et al.* (2016) Method for the solution deposition of phase-pure CoSe₂ as
10 an efficient hydrogen evolution reaction electrocatalyst. *ACS Energy Lett.* 1, 607-611

11 23. McCarthy, C. L. *et al.* (2017) Room temperature dissolution of bulk elemental Ni and Se
12 for solution deposition of a NiSe₂ HER electrocatalyst. *Inorg. Chem.* 56, 10143-10146

13 24. Zhao, Y. *et al.* (2020) Controllable formation of ordered vacancy compound for high
14 efficiency solution processed Cu(In,Ga)Se₂ solar cells. *Adv. Funct. Mater.* 31, 2007928

15 25. Zhao, Y. *et al.* (2021) Local Cu component engineering to achieve continuous carrier
16 transport for enhanced kesterite solar cells. *ACS Appl. Mater. Interfaces* 13, 795-805

17 26. Lin, Z. *et al.* (2015) Cosolvent approach for solution-processable electronic thin films. *ACS*
18 *Nano* 9, 4398-4405

19 27. Lin, Z. *et al.* (2017) A solution processable high-performance thermoelectric copper
20 selenide thin film. *Adv. Mater.* 29, 1606662

21 28. Zhang, T. *et al.* (2016) High efficiency solution-processed thin-film Cu(In,Ga)(Se,S)₂ solar
22 cells. *Energy Environ. Sci.* 9, 3674

23 29. Wang, W. *et al.* (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6%
24 efficiency. *Adv. Energy Mater.* 4, 1301465

25 30. Hasan, M. R. *et al.* (2016) An antimony selenide molecular ink for flexible broadband
26 detectors. *Adv. Electron. Mater.* 2, 1600182

27 31. Jo, S. *et al.* (2021) Solution-processed stretchable Ag₂S semiconductor thin films for
28 wearable self-powered nonvolatile memory. *Adv. Mater.* 33, 2100066

29 32. Harikesh, P. C. *et al.* (2020) Cubic NaSbS₂ as an ionic-electronic coupled semiconductor
30 for switchable photovoltaic and neuromorphic device applications. *Adv. Mater.* 32,
31 1906976

1 33. Bob, B. *et al.* (2012) The development of hydrazine-processed Cu(In,Ga)(Se,S)₂ solar cells.
2 *Adv. Energy Mater.* 2, 504-522

3 34. Nørby, P. *et al.* (2014) (NH₄)₄Sn₂S₆·3H₂O: Crystal structure, thermal decomposition, and
4 precursor for textured thin film. *Chem. Mater.* 26, 4494-4504

5 35. Chung, C.-H. *et al.* (2011) Identification of the molecular precursors for hydrazine solution
6 processed CuIn(Se,S)₂ films and their interactions. *Chem. Mater.* 23, 964-969

7 36. Yang, B. *et al.* (2015) Hydrazine solution processed Sb₂S₃, Sb₂Se₃ and Sb₂(S_{1-x}Se_x)₃ film:
8 molecular precursor identification, film fabrication and band gap tuning. *Sci. Rep.* 5, 10978

9 37. Yang, W. *et al.* (2013) Molecular solution approach to synthesize electronic quality
10 Cu₂ZnSnS₄ thin films. *J. Am. Chem. Soc.* 135, 6915-6920

11 38. Buckley, J. J. *et al.* (2014) Ligand exchange of colloidal CdSe nanocrystals with stibanes
12 derived from Sb₂S₃ dissolved in a thiol-amine mixture. *Chem. Mater.* 26, 6311-6317

13 39. Ibáñez, M. *et al.* (2017) Tuning *p*-type transport in bottom-up-engineered nanocrystalline
14 Pb chalcogenides using alkali metal chalcogenides as capping ligands. *Chem. Mater.* 29,
15 7093-7097

16 40. Ibáñez, M. *et al.* (2019) Ligand-mediated band engineering in bottom-up assembled SnTe
17 nanocomposites for thermoelectric energy conversion. *J. Am. Chem. Soc.* 141, 8025-8029

18 41. Slang, S. *et al.* (2015) Mechanism of the dissolution of As-S chalcogenide glass in *n*-
19 butylamine and its influence on the structure of spin coated layers. *J. Non-Cryst Solids* 426,
20 125-131

21 42. Jo, S. *et al.* (2019) Soluble telluride-based molecular precursor for solution-processed high-
22 performance thermoelectrics. *ACS Appl. Energy Mater.* 2, 4582-4589

23 43. Gupta, A. K. S. *et al.* (1990) Heterocyclic compounds containing antimony 1. Synthesis,
24 physiochemical properties, crystal and molecular structure of 2-(β -hydroxyethylthio)1,3,2-
25 oxathiastibolane. *Inorg. Chim. Acta* 170, 191-197

26 44. Kovalenko, M. V. *et al.* (2010) Semiconductor nanocrystals functionalized with antimony
27 telluride zintl ions for nanostructured thermoelectrics. *J. Am. Chem. Soc.* 132, 6686-6695

28 45. Zhao, D. *et al.* (2015) Solution-deposited pure selenide CIGSe solar cells from elemental
29 Cu, In, Ga, and Se. *J. Mat. Chem A* 3, 19263

1 46. Zhang, R. *et al.* (2016) Metal-metal chalcogenide molecular precursors to binary, ternary,
2 and quaternary metal chalcogenide thin films for electronic devices. *Chem. Commun.* 52,
3 5007

4 47. Nomura, R. (1989) Thermal decomposition of butylindium thiolates and preparation of
5 indium sulfide powders. *Appl. Organomet. Chem.* 3, 195-197

6 48. Pickering, I. J. *et al.* (1993) X-Ray absorption spectroscopy of cuprous-thiolate clusters in
7 proteins and model systems. *J. Am. Chem. Soc.* 115, 9498-9505

8 49. Pushie, M. J. *et al.* (2012) The fickle coordination chemistry of cuprous-thiolate sites in
9 copper chaperones. *Biochim. Biophys. Acta, Bioenerg.* 1817, 938-947

10 50. Rao, C. P. *et al.* (1986) Synthesis and structural systematics of ethane-1,2-dithiolato
11 complexes. *Inorg. Chem.* 25, 428-439

12 51. Ramli, E. *et al.* (1990) Inception of copper polysulfide clusters in the reaction of copper
13 and sulfur in donor solvents: polysulfide complexes as the link between molecular and
14 nonmolecular metal sulfides. *J. Am. Chem. Soc.* 112, 4043-4044

15 52. Dev, S. *et al.* (1990) Direct approaches to zinc polychalcogenide chemistry: $ZnS_6(N$ -
16 $MeIm)_2$ and $ZnSe_4(N-MeIm)_2$. *J. Am. Chem. Soc.* 112, 6385-6386

17 53. Dev, S. *et al.* (1991) Synthesis and structure of $[M(N\text{-methylimidazole})_6]S_8$ ($M = Mn, Fe,$
18 Ni, Mg). Polysulfide salts prepared by the reaction $N\text{-methylimidazole} + \text{metal powder} +$
19 sulfur. *Inorg. Chem.* 30, 2514

20 54. Verma, A. K. *et al.* (1995) Donor solvent mediated reactions of elemental zinc and sulfur,
21 *sans* explosion. *Inorg. Chem.* 34, 3072-3078

22 55. Wang, Z. *et al.* (2018) Precursors for PbTe, PbSe, SnTe, and SnSe synthesized using
23 diphenyl dichalcogenides. *Chem. Comm.* 54, 9055

24 56. Vartak, P. B. *et al.* (2020) Solution and solid-state characterization of PbSe precursors.
25 *ACS Omega* 5, 1949-1955

26 57. Holligan, K. *et al.* (2015) Copper, indium, tin, and lead complexes with fluorinated
27 selenolate ligands: precursors to MSe_x . *Inorg. Chem.* 54, 8896-8904

28 58. Kedernath, G. *et al.* (2009) β -functionalized ethylchalcogenolate complexes of lead (II):
29 synthesis, structures and their conversion into lead chalcogenide nanoparticles. *Polyhedron*
30 28, 2749-2753

1 59. Zhang, R. *et al.* (2015) A versatile solution route to efficient Cu₂ZnSn(S,Se)₄ thin-film
2 solar cells. *Chem. Mater.* 27, 2114-2120

3 60. Zhao, X. *et al.* (2016) Solution-processed sulfur depleted Cu(In, Ga)Se₂ solar cells
4 synthesized from a monoamine-dithiol solvent mixture. *J. Mater. Chem. A* 4, 7390

5 61. Wu, W.-Y. *et al.* (2019) Thermochromism from ultrathin colloidal Sb₂Se₃ nanowires
6 undergoing reversible growth and dissolution in an amine-thiol mixture. *Adv. Mater.* 31,
7 1806164

8 62. Murria, P. *et al.* (2017) Speciation of CuCl and CuCl₂ thiol-amine solutions and
9 characterization of resulting films: implications for semiconductor device fabrication.
10 *Inorg. Chem.* 56, 14396-14407

11 63. Howell, J. A. S. (2006) Structure and bonding in cyclic thiolate complexes of copper, silver
12 and gold. *Polyhedron* 25, 2993-3005

13 64. Kacprzak, K. A. *et al.* (2010) Theoretical characterization of cyclic thiolated copper, silver,
14 and gold clusters. *J. Phys. Chem. C* 114, 13571-13576

15 65. Hellinga, H. W. (1990) Construction of a blue copper analogue through iterative rational
16 protein design cycles demonstrates principles of molecular recognition in metal center
17 formation. *J. Am. Chem. Soc.* 120, 10055-10066

18 66. Smith, R. C. *et. al.* (1994) Oxidation of thiols by copper(II). *Phosphorus, Sulfur Silicon*
19 *Relat. Elem.* 90, 147-154

20 67. Ording-Wenker, E. C. M. *et al.* (2014) Thermodynamics of the Cu^{II} μ -Thiolate and Cu^I
21 disulfide equilibrium: A combined experimental and theoretical study. *Inorg. Chem.* 53,
22 8494-8504

23 68. Arnou, P. *et al.* (2016) Hydrazine-free solution-deposited CuIn(S,Se)₂ solar cells by spray
24 deposition of metal chalcogenides. *ACS Appl. Mater. Interfaces* 8, 11893-11897

25 69. Zhao, D. *et al.* (2016) Eliminating fine-grained layers in Cu(In,Ga)(S,Se)₂ thin films for
26 solution-processed high efficiency solar cells. *J. Mater. Chem. A* 4, 13476

27 70. Deshmukh, S. D. *et al.* (2020) Investigating the potential of amine-thiol solvent system for
28 high efficiency CuInSe₂ device. *2020 47th IEEE Photovoltaic Specialists Conference*
29 (*PVSC*), 0818-0820

30 71. Webber, D. H. *et al.* (2014) Facile dissolution of selenium and tellurium in a thiol-amine
31 solvent system under ambient conditions. *Chem. Sci.* 5, 2498

1 72. Dolzhnikov, D. S. *et al.* (2015) Composition-matched molecular “solders” for
2 semiconductors. *Science* 347, 425

3 73. Hudson, M. H. *et al.* (2017) New Forms of CdSe: molecular wires, gels, and ordered
4 mesoporous assemblies. *J. Am. Chem. Soc.* 139, 3368–3377

5 74. Kovalenko, M. V. *et al.* (2010) Colloidal nanocrystals with molecular metal chalcogenide
6 surface ligands. *Science* 324, 1417-1420

7 75. Buckley, J. J. *et al.* (2016) Dissolution of Sn, SnO, and SnS in a thiol-amine solvent mixture:
8 insights into the identity of the molecular solutes for solution-processed SnS. *Inorg. Chem.*
9 55, 3175-3180

10 76. Davies, A. G. *et al.* (1988) The structures of 2,2-diakyl-1,3,2-dithiastannolanes. *J.*
11 *Organomet. Chem.* 352, 283-294

12 77. Casella, G. *et al.* (2009) Karplus-type dependence of vicinal ^{119}Sn - ^{13}C and ^{119}Sn - ^1H spin-
13 spin couplings in organotin(IV) derivatives: a DFT study. *Eur. J. Org. Chem.* 2009, 3526-
14 3534

15 78. Wang, L. *et al.* (2015) Structure vs ^{119}Sn NMR chemical shift in three-coordinated tin(II)
16 complexes: experimental data and predictive DFT computations. *Organometallics* 34,
17 2139-2150

18 79. Liu, S. *et al.* (2017) Lanthanide(III) complexes with μ - SnSe_4 and μ - Sn_2Se_6 linkers:
19 solvothermal syntheses and properties of new Ln(III) selenidostannates decorated with
20 linear polyamine. *Z. Naturforsch. B* 72, 231-240

21 80. Hsu, W.-C. *et al.* (2012) Reaction pathways for the formation of $\text{Cu}_2\text{ZnSn}(\text{Se},\text{S})_4$ absorber
22 materials from liquid-phase hydrazine-based precursor inks. *Energy Environ. Sci.* 5, 8564-
23 8571

24 81. Pirani, A. M. *et al.* (2001) Syntheses, vibrational spectra, and theoretical studies of the
25 adamantanoid $\text{Sn}_4\text{Ch}_{10}^{4-}$ ($\text{Ch}=\text{Se}$, Te) anions: X-ray crystal structures of [18-Crown-6-
26 K] $_{\text{4}}[\text{Sn}_4\text{Se}_{10}] \cdot 5\text{en}$ and [18-Crown-6-K] $_{\text{4}}[\text{Sn}_4\text{Te}_{10}] \cdot 3\text{en} \cdot 2\text{THF}$. *Inorg. Chem.* 40, 4823-4829

27

28 **Figure captions**

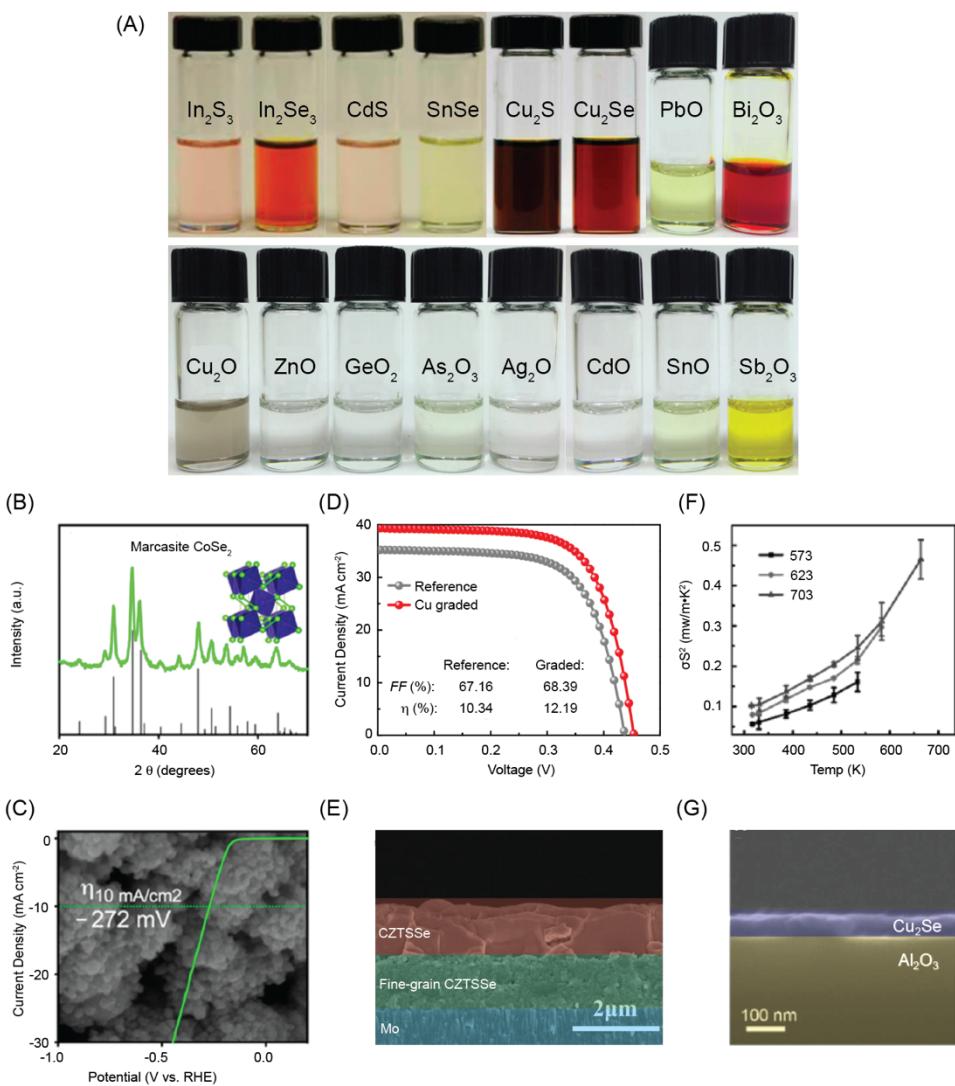
29

30 **Key figure**

31 **Periodic table of elements and their counterparts soluble in alkahest solutions**

Periodic Table of Elements Soluble in Alkahests

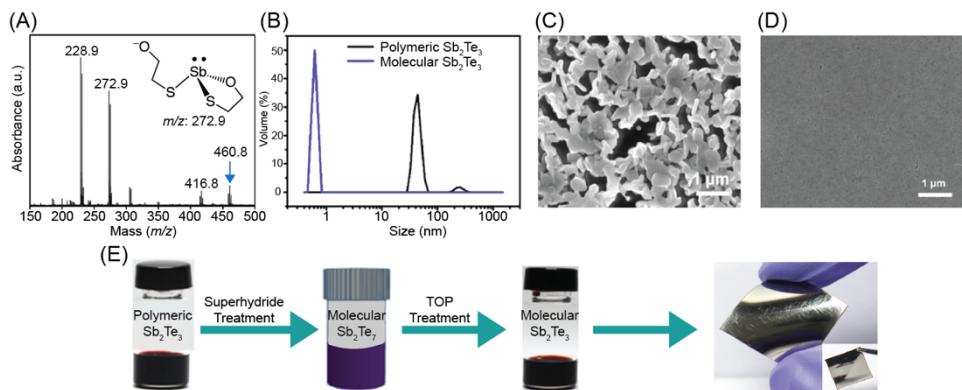
The table shows the periodic table with elements color-coded based on their solubility in alkahest solutions. The legend indicates:


- Element (Orange)
- Oxide (Yellow)
- Chalcogen (Green)
- Salt (Blue)

Elements listed in the table include H, He, Li, Be, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, S, P, Cl, Ar, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La*, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Fr, Ra, and Ac*.

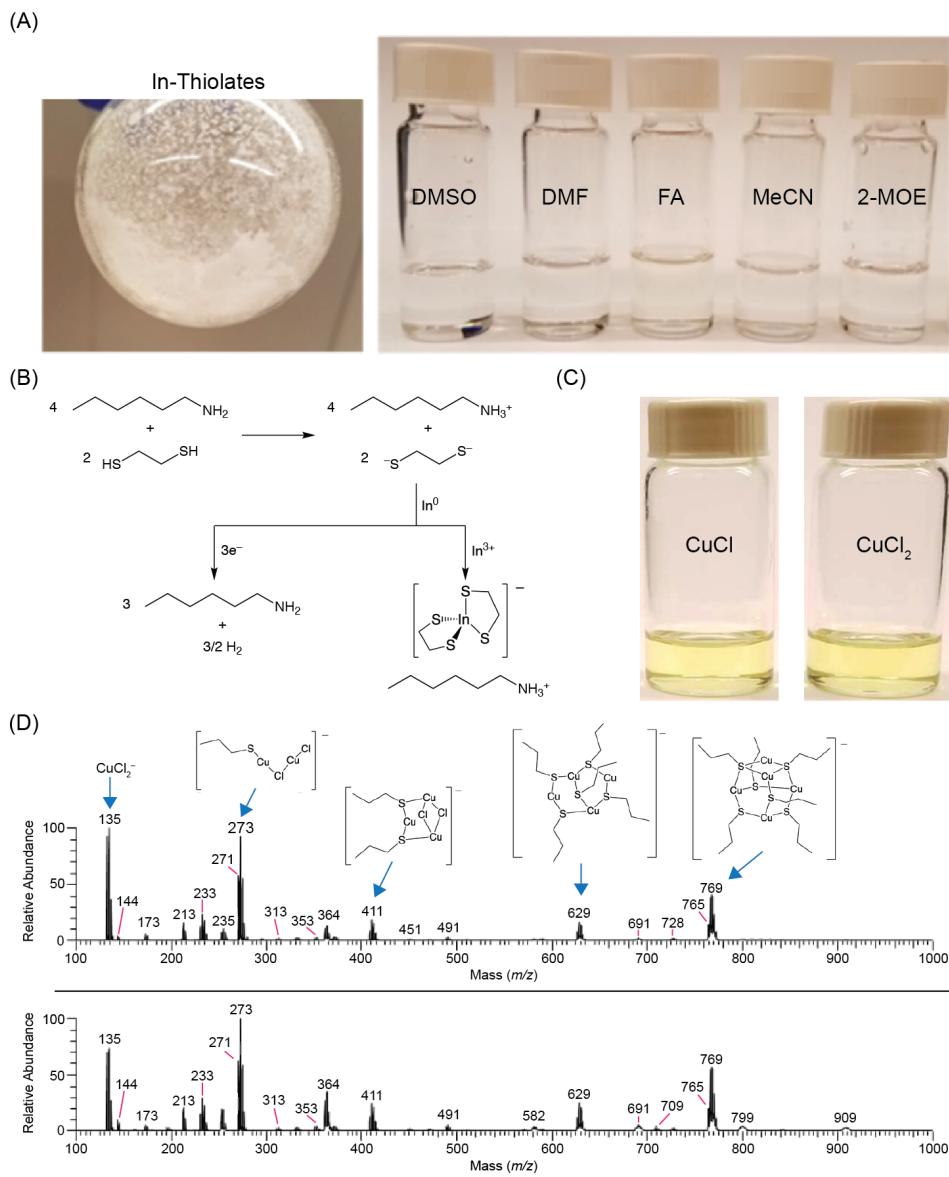
1

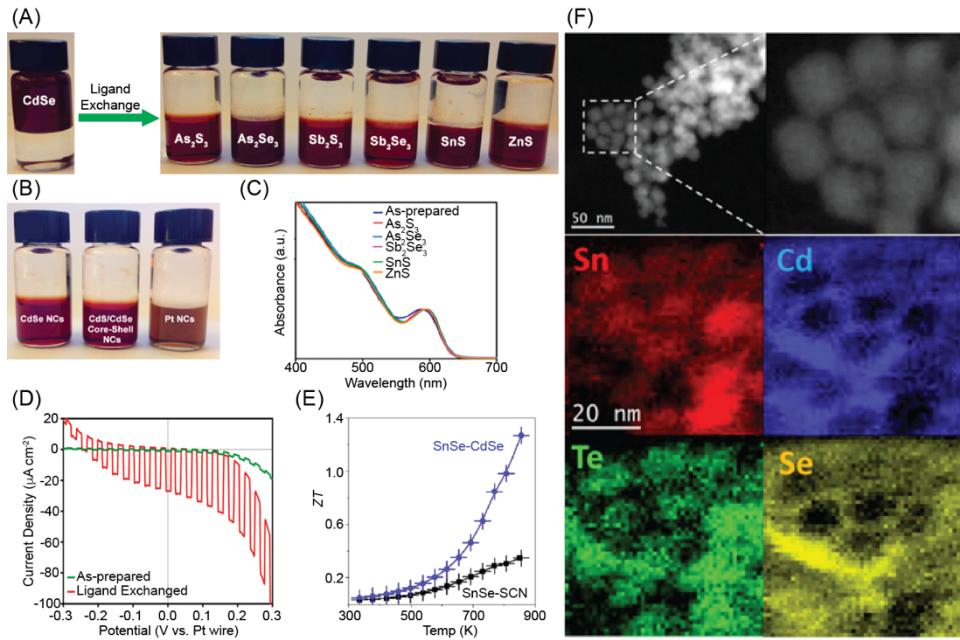
2 **Figure 1.** A comprehensive list of the types of soluble bulk precursors in alkahest solutions.


3

4

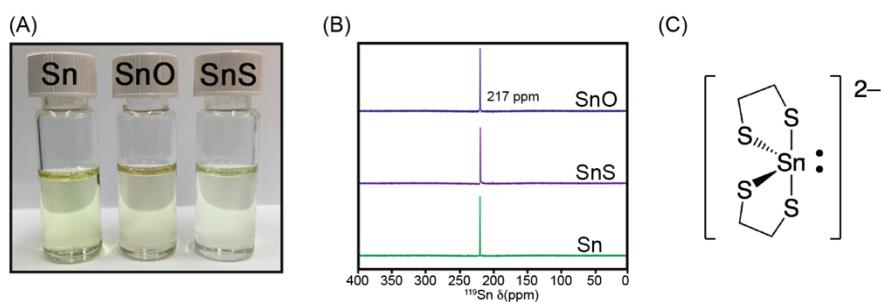
1 **Figure 2. Applications of the alkahest.** (A) Examples of various bulk solids dissolved in thiol-
 2 amine mixtures. (B) Powder X-ray diffraction pattern of solution-processed CoSe_2 from the
 3 dissolution of bulk Co and Se in ME-en with a representative marcasite crystal structure shown as
 4 the inset. (C) Polarization curve of a CoSe_2 thin film overlayed on top of an SEM image of
 5 solution-deposited CoSe_2 . (D) $J-V$ curves of bilayer structured Cu-poor and Cu-graded CZTSSe
 6 solar cells. (E) Cross-section SEM image of a Cu-graded CZTSSe solar cell with a bilayer absorber
 7 structure. (F) Power factor (σS^2) of Cu_2Se thin films deposited on polyimide substrates at different
 8 temperatures. (G) Cross-sectional SEM image of Cu_2Se deposited on an Al_2O_3 substrate. Adapted,
 9 with permission from, [12,22,25-27].


10



11

12 **Figure 3. Bulk metal chalcogenide dissolution.** (A) Negative ion mode ESI-MS of Sb_2S_3
 13 dissolved in ME-en (1:40 vol/vol) with the structure of the molecular stibaneate found at $m/z =$
 14 272.9 shown as the inset. (B) DLS pattern of polymeric and molecular Sb_2Te_3 solutions. SEM
 15 images of thin films derived from (C) polymeric Sb-Te and (D) molecular Sb_2Te_3 precursors. (E)
 16 Schematic illustration of the procedure to produce molecular telluroantimonate precursors for thin
 17 film deposition on flexible polyimide substrates. Adapted, with permission from [38,42].


18

1 **Figure 5. New applications of the alkahest.** (A) Generality of the approach of installing dissolved
2 bulk semiconductors onto the surface of CdSe nanocrystals. (B) Stibonate ligands installed on
3 CdSe nanocrystals, CdS/CdSe core/shell nanocrystals, and Pt nanocrystals. (C) Solution
4 absorption spectra of CdSe nanocrystals before and after ligand exchange with dissolved
5 semiconductors. (D) Photocurrent response for ligand-exchanged CdSe nanocrystal films heat
6 treated to 300 °C and as-prepared CdSe films heat treated to 150 °C during a potential scan from
7 -300 to +300 mV relative to a Pt pseudoreference electrode with chopped 472 nm illumination. (E)
8 Figure of merit (ZT) for SnTe nanocomposite prepared with thiocyanate (black) and CdSe (blue)
9 surface modified SnTe nanocrystals. (F) Annular dark field (ADF) scanning transmission electron
10 microscopy (STEM) micrograph of SnTe@CdSe nanocrystals and the corresponding STEM
11 electron energy loss spectroscopy (EELS) elemental composition maps: Sn (red), Te (green), Cd
12 (blue), and Se (yellow). Adapted, with permission from [38,40].

14

15

1 **Figure I. Bulk Sn, SnO, SnS dissolution.** (A) Photographs of bulk zero-valent Sn, SnO, and SnS
2 dissolved in thiol-amine solutions. (B) Solution ^{119}Sn NMR spectra of Sn, SnO, and SnS dissolved
3 in EDT-en giving a single resonance at $\delta_{^{119}\text{Sn}} = 217$ ppm. (C) Proposed structure of the
4 $[(\text{EDT})_2\text{Sn}(\text{II})]^{2-}$ molecular solute from the dissolution of bulk elemental Sn, SnO and SnS in
5 EDT-en. Adapted, with permission from [75].