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ABSTRACT
Database fingerprinting have been widely adopted to prevent unau-

thorized sharing of data and identify the source of data leakages.

Although existing schemes are robust against common attacks, like

random bit flipping and subset attack, their robustness degrades

significantly if attackers utilize the inherent correlations among

database entries. In this paper, we first demonstrate the vulnerability

of existing database fingerprinting schemes by identifying different

correlation attacks: column-wise correlation attack, row-wise corre-

lation attack, and the integration of them. To provide robust finger-

printing against the identified correlation attacks, we then develop

mitigation techniques, which can work as post-processing steps for

any off-the-shelf database fingerprinting schemes. The proposed

mitigation techniques also preserve the utility of the fingerprinted

database considering different utility metrics. We empirically in-

vestigate the impact of the identified correlation attacks and the

performance of mitigation techniques using real-world relational

databases. Our results show (i) high success rates of the identified

correlation attacks against existing fingerprinting schemes (e.g.,

the integrated correlation attack can distort 64.8% fingerprint bits

by just modifying 14.2% entries in a fingerprinted database), and (ii)

high robustness of the proposed mitigation techniques (e.g., with

the mitigation techniques, the integrated correlation attack can

only distort 3% fingerprint bits).
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1 INTRODUCTION
Relational databases (or relations) have become the most popular

database systems ever since 1970s. A relation is defined as a set of

data records with the same attributes [12]. Constructing and sharing

of the relations are critical to the vision of a data-driven future that

benefits all human-beings. It supports broader range of tasks in real-

life than just sharing database statistics or machine learning models

trained from the database. For example, a relational database owner

(who collects data from individuals and constructs the dataset) can

benefit from outsourced computation (e.g., from service providers

(SP) like Amazon Elastic Compute Cloud), let other SPs analyze its

data (e.g., for personal advertisements), or exchange datasets for

collaborative research after data use agreements.

Most of the time, sharing a database with an authorized SP (who

is authorized to receive/use the database) is done via consent of

the database owner. However, when such databases are shared

or leaked beyond the authorized SPs, individuals’ (people who

contribute their data in the database) privacy is violated, and hence

preventing unauthorized sharing of databases is of great importance.

Thus, database owners want to (i) make sure that shared data is

used only by the authorized parties for specified purposes and (ii)

discourage such parties from releasing the received datasets to other

unauthorized third parties (either intentionally or unintentionally).

Such data breaches cause financial and reputational damage to

database owners. For instance, it is reported that the writing site

Wattpad suffered a major data breach in July 2020; over 270 million

individuals’ data were sold on a third party forum in the darknet

[1]. Therefore, identifying the source of data breaches is crucial for

database owners to hold the identified party responsible.

Digital fingerprinting is a technology that allows to identify the

source of data breaches by embedding a unique mark into each

shared copy of a digital object. Unlike digital watermarking, in

fingerprinting, the embedded mark must be unique to detect the

guilty party who is responsible for the leakage. Although the most

prominent usage of fingerprinting is in the multimedia domain

[14, 15, 19], fingerprinting techniques for databases have also been

developed [18, 22, 24, 25]. These techniques change database en-

tries at different positions when sharing a database copy with a

SP. However, existing fingerprinting schemes for databases have

been developed to embed fingerprints in continuous-valued nu-

merical entries (floating points) in relations. On the other hand,

fingerprinting discrete (or categorical) values is more challenging,

since the number of possible values (or instances) for a data point

is much fewer. Hence, in such databases, a small change in the

value of a data point (as a fingerprint) can significantly affect the

utility. In addition, existing fingerprinting schemes for databases
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do not consider various inherent correlations between the data

records in a database. A malicious party having a fingerprinted

copy of a database can detect and distort the embedded fingerprints

using its knowledge about the correlations in the data. For exam-

ple, the zip codes are strongly correlated with street names in a

demographic database making common fingerprinting schemes

venerable to attacks utilizing such correlations. Thus, to provide

robustness against correlation attacks (which utilizes the correla-

tions between attributes and data records to infer the potentially

fingerprinted entries), we need to consider such correlations when

developing fingerprinting schemes for relational database.

In this work, we first identify correlation attacks against the ex-

isting database fingerprinting schemes. Namely, we present column-

wise correlation attack, row-wise correlation attack, and the inte-

gration of both. To launch these attacks, a malicious SP utilizes

its prior knowledge about correlations between the columns (at-

tributes) of database, statistical relationships between the rows

(data records), and the combination of both. After launching these

attacks on a fingerprinted database, the malicious SP can easily

distort the added fingerprint to mislead the fingerprint extraction

algorithm and cause the database owner to accuse innocent parties.

For example, we show that by changing 14.2% entries in a database,

the integration of row- and column-wise correlation attack can

distort 64.8% fingerprint bits and cause the database owner falsely

accuse innocent SPs with high probability. This suggests that ex-

isting database fingerprinting schemes are vulnerable to identified

correlation attacks, and mitigation techniques are in dire need.

To reduce the identified vulnerability in existing database finger-

printing schemes, we propose novel mitigation techniques to pro-

vide robust fingerprinting that can alleviate the correlation attacks.

Although, we describe the proposed techniques for a specific vanilla

database fingerprinting scheme [24], they can be applied to other

schemes as well. In other words, the proposedmitigation techniques

can work as post-processing steps for any off-the-shelf database

fingerprinting schemes and make them robust against potential

attacks that utilize the inherent data correlations. The proposed

mitigation techniques utilize database owner’s prior knowledge on

the column- and row-wise correlations. In particular, to mitigate the

column-wise correlation attack, the database owner modifies some

of the non-fingerprinted data entries to make the post-processed

fingerprinted database have column-wise correlations close to that

of her prior knowledge. The data entry modification plans are de-

termined from the solutions to a set of “optimal transportation”

problems [13], each of which transports the mass of the marginal

distribution of a specific attribute (column) to make it resemble the

reference marginal distribution computed from database owner’s

prior knowledge while minimizing the transportation cost. To alle-

viate the row-wise correlation attack, the database owner modifies

limited number of non-fingerprinted data entries by solving a com-

binatorial search problem to make the post-processed fingerprinted

database have row-wise statistical relationships that are far away

from that of her prior knowledge. We show that even if the mali-

cious SP has access to the exactly same prior knowledge (i.e., data

correlation models) with the database owner, the proposed miti-

gation techniques can effectively reduce the vulnerability caused

by correlation attacks. The proposed mitigation techniques also

maintain the utility of the post-processed fingerprinted database

by (i) encoding the database entries as integers, such that the least

significant bit (LSB) carries the least information, and adding the

fingerprint by only changing the LSBs; and (ii) changing only a

small number of database entries.

We use an real-world Census relational database to validate the

effectiveness of the proposed robust fingerprinting scheme against

the identified correlation attacks. In particular, we show that the

malicious SP can only compromise 3% fingerprint bits, even if it

launches the powerful integrated correlation attack on the Census

database. Thus, it will be held as responsible for data leakage.

We summarize the main contributions of this paper as follows:

• We identify correlation attacks that can distort large portion

of the fingerprint bits in the existing database fingerprinting

scheme and cause the database owner to accuse innocent

SPs with high probability.

• We propose robust fingerprinting scheme that involves novel

mitigation techniques to alleviate the impact of the identified

correlation attacks. The proposed mitigation techniques can

work as post-processing steps for any off-the-shelf database

fingerprinting schemes.

• We investigate the impact of the identified correlation attacks

and the proposed mitigation techniques on an real-world

relational database. We show that the correlation attacks

are more powerful than traditional attacks, because they

can distort more fingerprint bits with less utility loss. On

the other hand, the mitigation techniques can effectively

alleviate these attacks and maintain database utility even

if the malicious SP uses data correlation models that are

directly calculated from the data.

The rest of this paper is organized as follows. We review related

works on existing fingerprinting schemes in Section 2, which is

followed by the description on the considered vanilla fingerprinting

scheme in Section 3. In Section 4, we present the system and threat

models, and evaluation metrics. Section 5 introduces the identified

correlation attacks. In Section 6, we develop robust fingerprinting

against the identified attacks. We evaluate the impact of correlation

attacks and the performance of the proposed mitigation techniques

in Section 7. Finally, Section 8 concludes the paper.

2 RELATEDWORK
We first briefly review the works on multimedia fingerprinting, and

then focus on existing works on fingerprinting relational database.

Large volume of research on watermarking and fingerprint-

ing have targeted multimedia, e.g., images [17, 30], audio [5, 21],

videos [29], and text documents [9, 10]. Such works benefit from

the high redundancy in multimedia, such that the inserted water-

mark or fingerprint is imperceptible for human beings. However,

the aforementioned multimedia fingerprinting techniques cannot

be applied to fingerprint relational databases. The reason is that

a database fingerprinting scheme should be robust against com-

mon database operations, such as union, intersection, and updating,

whereas multimedia fingerprinting schemes are designed to be

robust against operations, like compression and formatting.

Database fingerprinting schemes are usually discussed together

with database watermarking schemes [23] due to their similarity.

In the seminal work [2], Agrawal et al. introduce a watermarking
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framework for relations with numeric attributes by assuming that

the database consumer can tolerate a small amount of error in the

watermarked databases. Then, based on [2], some database finger-

printing schemes have been devised. Specifically, Guo et al. [18]

develop a two-stage fingerprinting scheme: the first stage is used

to prove database ownership, and the second stage is designed for

extracted fingerprint verification. Li et al. [24] develop a database

fingerprinting scheme by extending [2] to enable the insertion and

extraction of arbitrary bit-strings in relations. Furthermore, the

authors provide an extensive robustness analysis (e.g., about the

upper bound on the probability of detecting incorrect but valid

fingerprint from the pirated database) of their scheme. Although

[18, 24] pseudorandomly determine the fingerprint positions in

a database, they are not robust against our identified correlation

attacks. In this paper, we consider [24] as the vanilla fingerprinting

scheme and corroborate its vulnerability against correlation at-

tacks. Additionally, Liu et al. [25] propose a database fingerprinting

scheme by dividing the relational database into blocks and ensuring

that certain bit positions of the data at certain blocks contain spe-

cific values. In [25], since the fingerprint is embedded block-wise,

it is more susceptible to attacks utilizing correlations in the data.

As a result, incorporating data correlations in database fingerprint

schemes is critical to provide robustness against correlation attacks.

Recently, Yilmaz et al. [33] develop a probabilistic fingerprint-

ing scheme by explicitly considering the correlations (in terms of

conditional probabilities) between data points in data record of a

single individual. Ayday et al. [4] propose an optimization-based

fingerprinting scheme for sharing personal sequential data by min-

imizing the probability of collusion attack with data correlation

being one of the constraints. Our work differs from these works

since we focus on developing robust fingerprint scheme for rela-

tional databases, which (i) contain large amount of data records

from different individuals, (ii) include both column- and row-wise

correlations, and (iii) have different utility requirements.

3 THE VANILLA FINGERPRINT SCHEME
In this work, we consider the fingerprinting scheme proposed in

[24] as the vanilla scheme, for which we show the vulnerability

and develop the proposed scheme. Assume a database owner shares

her data with multiple service providers (SPs). The fingerprint of a

specific SP is obtained using a cryptographic hash function, whose

input is the concatenation of the database owner’s secret key and

the SP’s public series number. For fingerprint insertion, the vanilla

scheme pseudorandomly selects one bit position of one attribute of

some data records in the database and replaces those bits with the

results obtained from the exclusive or (XOR) between mask bits and

fingerprint bits, both of which are also determined pseudorandomly.

For fingerprint extraction, the scheme locates the exact positions

of the potentially changed bits, calculates the fingerprint bits by

XORing those bits with the exact mask bits, and finally recovers

each bit in the fingerprint bit-string via majority voting, since each

fingerprint bit can be used to mark many different positions. To

preserve the utility of the fingerprinted database, we will let the

vanilla scheme only change the least significant bit (LSB) of selected

database entries. For completeness, we show the steps to insert

fingerprint into a database, and the steps to extract fingerprint from

a pirated database, in Algorithms 1 and 2, respectively. In Appendix

A, we will empirically validate that only changing the LSB indeed

leads to higher utility than altering one of the least k significant

bits (LkSB) of selected entries.

Algorithm 1: Fingerprint insertion phase of the vanilla

fingerprinting scheme [24]

Input :The original relational database R, fingerprinting ratio γ ,
database owner’s secret key K , pseudorandom number

sequence generator U, and the SP’s series number n
(which can be public).

Output :The vanilla fingerprinted relational database R̃
(
FP, ∅, ∅

)
.

1 Generate the fingerprint bit string of SP n, i.e., fSPn = Hash(K |n);
2 forall data record r i ∈ R do
3 if U1(K |r i .primary key) mod γ = 0 then
4 //fingerprint this data record

5 attribute_index p = U2(K |r i .primary key) mod |F |.

//fingerprint this attribute ( |F | is the
cardinality of the attributes set)

6 Set mask_bit x = 0, if U3(K |r i .primary key) is even;

otherwise set x = 1.

7 fingerprint_index l = U4(K |r i .primary key) mod L. //L
is the length of the fingerprint bit-string

8 fingerprint_bit f = fSPn (l ).
9 mark_bitm = x ⊕ f .

10 Set the LSB of r i .p tom.

11 end
12 end

13 Return R̃
(
FP, ∅, ∅

)
.

In practice, one can choose any database fingerprinting scheme

as the vanilla scheme, because our proposed mitigation techniques

are independent of the adopted vanilla scheme, and they can be

used as post-processing steps on top of any existing database fin-

gerprinting schemes. The reason we choose the aforementioned

vanilla scheme is because (i) it is shown to have high robustness,

e.g., the probability of detecting no fingerprint as a result of ran-

dom bit flipping attack (a common attack against fingerprinting

schemes, as will be discussed in Section 4.2) is upper bounded by

(|SP | − 1)/2L , where |SP | is the number of SPs who have received

the fingerprinted copies and L is the length of the fingerprint bit-

string, (ii) it is shown to be robust even if some fingerprinted entries

are identified by a malicious SP, because it applies majority voting

on all the fingerprinted entries to extract the fingerprint bit-string,

and (iii) it can easily be extended to incorporate Boneh-Shaw code

[8] to defend against collusion attacks. Our developed robust fin-

gerprinting scheme inherits all the properties of the vanilla scheme

because (i) it uses the vanilla scheme as the building block and (ii)

it does not alter the entries that have already been changed by the

vanilla scheme (due to fingerprinting insertion).

4 SYSTEM AND THREAT MODELS
First, we introduce the nomenclature for different databases ob-

tained by applying various techniques. We denote the database

owner’s (i.e., Alice) original database as R, a fingerprinted database

shared by her as R̃, and the pirated database leaked by a malicious
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Algorithm 2: Fingerprint extraction phase of the vanilla

fingerprinting scheme [24]

Input :The leaked relational database R, fingerprinting ratio γ ,
database owner’s secret key K , pseudorandom number

sequence generator U, and a fingerprint template

(?, ?, · · · , ?), where ? represents unknown value.

Output :The extracted fingerprint from the leaked database.

1 forall l ∈ [1, L] do
2 count [l ][0] = count [l ][1] = 0. //count [l ][0] and

count [l ][1] are number of votes for f (l ) to be 0 or
1, respectively.

3 end
4 //scan all data records and obtain the counts for each

fingerprint bit
5 forall data record r i ∈ R do
6 if U1(K |r i .primary key) mod γ = 0 then
7 attribute_index p = U2(K |r i .primary key) mod |F |.

8 Set mark_bitm as the LSB of r i .p .
9 Set mask_bit x = 0, if U3(K |r i .primary key) is even;

otherwise set x = 1.

10 fingerprint_bit f =m ⊕ x .
11 fingerprint_index l = U4(K |r i .primary key) mod L.
12 count [l ][f ] = count [l ][f ] + 1.
13 end
14 end
15 //recover the fingerprint bit string

16 forall l ∈ [1, L] do
17 if count[l][0] = count[l][1] then
18 return none suspected

19 end
20 f (l ) = 0 if count [l ][0] > count [l ][1] = 0.

21 f (l ) = 1 if count [l ][0] < count [l ][1] = 0.

22 end
23 Return the extracted fingerprint bit string f .

SP as R, respectively. Both R̃ and R are represented using 3 input

parameters showing the techniques that are adopted to generate

them. 3 input parameters for R̃(α , β ,η) represent which processes

have been applied to the database during fingerprinting, where (i)

α represents the vanilla fingerprinting, (ii) β represents the pro-

posed mitigation technique against the row-wise correlation attack,

and (iii) η represents the proposed mitigation technique against

the column-wise correlation attack. On the other hand, 3 input

parameters for R(α , β ,η) represent which attacks have been con-

ducted by the malicious SP on the fingerprinted database, where

(i) α represents the random bit flipping attack, (ii) β represents the

row-wise correlation attack, and (iii) η represents the column-wise

correlation attack. We provide the details of these attacks and mit-

igation techniques in Sections 5 and 6, respectively. We will also

use R̃ (or R) when referring to a generic fingerprinted (or pirated)

database when its input parameters are clear from the context.

We summarize the frequently used notations in Table 1. For

instance, R̃
(
FP,Dfsrow(S

′),Dfs
col

(J ′)
)
represents a fingerprinted

database that is generated by applying the vanilla fingerprinting

scheme (FP) on the original database R followed by two proposed

mitigation techniques Dfsrow(S
′) and Dfs

col
(J ′) to alleviate the

potential correlation attacks (as will be discussed in Sections 6.1

and 6.2). Here, S′
(or J ′

) is the database owner’s prior knowledge

on the row-wise (or column-wise) correlations in the database.

Similarly, R
(
∅,Atkrow(S),Atkcol(J)

)
represents a pirated database

that is generated by a malicious SP by first launching the row-wise

correlation attackAtkrow(S), and then the column-wise correlation

attack Atk
col

(J) (as will be discussed in Section 5.1 and 5.2, and ∅

means random bit flipping attack is not applied). Here, S (or J ) is

the malicious SP’s prior knowledge on the row-wise (or column-

wise) correlations of the database. In general, S′ , S and J ′ , J ,

which is referred to as the prior knowledge asymmetry between

the database owner and the malicious SP. To the advantage of the

malicious SP, we assume that the malicious SP can have access to

the correlationmodels that are directly calculated from the database,

i.e., its prior knowledge is as accurate as that of the database owner.

In the future work, we will also investigate the scenario where the

database owner even has less accurate prior knowledge compared

with the malicious SPs.

4.1 System Model
We present the vanilla fingerprint system model in Figure 1. Specif-

ically, we consider the database owner (Alice) with a categorical

relational database R, which includes the data records of M indi-

viduals. We denote the set of attributes of the individuals as F

and the ith row (data record) in R as r i . Alice shares her data with
multiple service providers (SPs) to receive specific services from

them. To prevent unauthorized redistribution of her database by a

malicious SP, Alice includes a unique fingerprint in each copy of her

database when sharing it with a SP. The fingerprint bit-string asso-

ciated to SP i (SPi ) is denoted as fSPi , and the vanilla fingerprinted

dataset received by SPi is represented as R̃SPi (FP, ∅, ∅). Both fSPi
and R̃SPi (FP, ∅, ∅) are obtained using the vanilla fingerprint scheme

discussed in Section 3, which changes entries of R at different posi-

tions (indicated by the yellow dots in Figure 1. If a malicious SP (e.g.,

SPi ) pirates and redistributes Alice’s database, she is able to identify

SPi as the traitor by extracting its fingerprint in R̃SPi (FP, ∅, ∅) as
long as the data entries are not significantly modified (e.g., when

less than 80% entries are changed or removed).

Figure 1: The vanilla fingerprinting system, where Alice
adds a unique fingerprint in each shared copy of her data-
base. She is able to identify themalicious SPwho pirates and
redistributes her database as long as the data entries are not
significantlymodified (e.g., when less than 80% of the entries
are changed or removed).
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R the original database owned by the database owner (Alice)

R̃ a generic fingerprinted database shared by the database owner

R a generic pirated database generated by the malicious SP

R̃(α , β ,η)
the fingerprinted database obtained by applying (i) α , the vanilla fingerprinting scheme,

(ii) β , the mitigation technique against the row-wise correlation attack,

and (iii) η, the mitigation technique against the column-wise correlation attack in sequence

R(α , β ,η)
the pirated database generated by the malicious SP by applying (i) the random bit flipping attack α ,
(ii) the row-wise correlation attack β , and (iii) the column-wise correlation attack η in sequence

S′
and J ′

database owner’s prior knowledge on the row-wise correlations and column-wise correlations

S and J the malicious SP’s prior knowledge on the row-wise correlations and column-wise correlations

S̃ and J̃ the empirical row-wise and column-wise correlations obtained from a generic fingerprinted database R̃
Atk

col
(J) the column-wise correlation attack launched by the malicious SP by using prior knowledge J

Dfsrow(S
′) the mitigation technique using prior knowledge S′

to alleviate row-wise correlation attack

Dfs
col

(J ′) the mitigation technique using prior knowledge J ′
to alleviate column-wise correlation attack

Table 1: Frequently used notations in the paper.

Figure 2: (i) If Alice inserts fingerprinting using the vanilla scheme, and themalicious SPi conducts random bit flipping attack,
i.e., Atk

rnd
, on its received copy, i.e., R̃SPi (FP, ∅, ∅) and redistributes the data. Then, with high probability, Alice can correctly

accuse it for data leakage. (ii) If the malicious SPi conducts any correlation attack, e.g., the column-wise correlation attack
(Atk

col
(J)), the row-wise correlation attack (Atkrow(S)), or the combination of them, on the vanilla fingerprinted database.

Then, with high probability, Alice cannot identify it as the traitor, and she will accuse other innocent SPs. (iii) If Alice ap-
plies the mitigation techniques, i.e., the column-wise correlation defense (Dfs

col
(J ′)) and the row-wise correlation defense

(Dfsrow(S′)), after the vanilla fingerprinting scheme, and shares R̃(FP,Dfsrow(S′),Dfs
col

(J ′))with SPi . Then, with high probabil-
ity, she can correctly identify SPi as the traitor even if it conducts any of the correlation attack on its received copy.

4.2 Threat Model
Fingerprinted database is subject to various attacks summarized in

the following sections. In Figure 2, we show some representative

ones that are studied in this paper. Note that in all considered

attacks, a malicious SP can change/modify most of the entries in

R̃ to distort the fingerprint (and to avoid being accused). However,

such a pirated database will have significantly poor utility (as will

be introduced in Section 4.4). As discussed in Section 3, we let the

vanilla fingerprint scheme only change the LSBs of data entries to

preserve data utility. Thus, all considered attacks also change the

LSBs of the selected entries in R̃ to distort the fingerprint.

4.2.1 Random Bit Flipping Attack. In this attack, to pirate a data-

base, a malicious SP selects random entries in R̃ and flips their

LSBs [2]. The flipped entries are still in the domain of the corre-

sponding attributes. The considered vanilla fingerprint scheme is

robust against this attack [24] as shown in Figure 2(i), Alice shares

fingerprinted copies of her database by only applying FP. If a ma-

licious SP (SPi ) tries to distort the fingerprint in R̃(FP, ∅, ∅) using
the random bit flipping attack (i.e., Atk

rnd
), and then redistributes

it, Alice can still detect SPi ’s fingerprint in the pirated copy with a

high probability, and correctly accuse SPi of data leakage.

4.2.2 Subset and Superset Attacks. In subset attack, a malicious SP

generates a pirated copy of R̃ by randomly selecting data records

from it. Superset attack is the dual attack of subset attack. In this

attack, the malicious SP mixes R̃ with other databases to create a

pirated one. These two attacks are considered to be weak attacks.

For example, for subset attack, to compromise just one specific bit

in the inserted fingerprint bit-string, the malicious SP must exclude

all records that are marked by that bit [24].

4.2.3 Correlation Attacks. In correlation attacks, a malicious SP

utilizes the inherent correlations in the data to more accurately

identify the fingerprinted entries, and hence distort the fingerprint.
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Since the subset and superset attack are not as powerful as the bit

flipping attack [33], we consider developing the correlation attacks

based on the random bit flipping attack. In the following, we provide

the high level descriptions of two main correlation attacks (details

of these attacks are in Section 5).

In column-wise correlation attack, i.e., Atk
col

(J), we assume

that the malicious SP has prior knowledge about the correlations

among each pair of attributes (or columns in the database) character-

ized by the set of joint probability distributions J . Once receiving

the fingerprinted database R̃, the malicious SP first calculates a new

set of joint probability distributions based on R̃. Then, it compares

the new joint distributions with its prior knowledge J , and flips

the entries in R̃ that leads to large discrepancy between them.

In row-wise correlation attack, i.e., Atkrow(S), we consider that

the individuals belong to different communities (e.g., social cir-

cles decided by friendship, or families determined by kinship), and

assume that the malicious SP has the prior knowledge S, which

contains (i) each individual’s membership to the communities and

(ii) the statistical relationships of pairs of individuals belonging to

the same community. Once it receives the fingerprinted database

R̃, the malicious SP first calculates a new set of statistical relation-

ships based on R̃, then it compares the newly computed statistical

relationships with S, and changes the entries that leads to large

discrepancy between the two sets of statistical relationships.

Figure 2(ii) shows the scenario, where Alice identifies the source

of the data leakage wrong and accuses innocent SPs if she uses

the vanilla fingerprinting scheme, whereas, SPi conducts more

advanced attacks to distort the fingerprint. These attacks include

Atk
col

(
J

)
, Atkrow

(
S
)
, and the combination of them. Finally, Fig-

ure 2(iii) shows that if Alice uses the proposedmitigation techniques

(i.e., Dfsrow(S
′) and Dfs

col
(J ′) (as will be discussed in Section 6)

after FP to improve the robustness of the added fingerprint and

shares R̃
(
FP,Dfsrow(S

′),Dfs
col

(J ′)
)
, then, even though SPi con-

ducts the identified correlation attacks, Alice can still identify SPi
to be responsible for leaking the data with high probability.

4.2.4 Collusion Attack. Fingerprinted databases are also suscepti-

ble to collusion attack, where multiple malicious SPs ally together

to generate a pirated database from their unique fingerprinted

copies. In cryptography literature, many works have attempted to

develop collusion resistant fingerprinting schemes [7, 8, 27, 32]. Our

proposed mitigation techniques can also be used with a collusion-

resistant vanilla fingerprinting scheme [8] to provide some level

of robustness against colluding SP. In this work, we mainly focus

on correlation attacks from a single-handed malicious SP. We will

extend our work in the scenario of colluding SPs in future work.

4.3 Fingerprint Robustness Metrics
The primary goal of a malicious SP is to distort the fingerprint in

R̃, thus we consider the following fingerprint robustness metrics

about a pirated database R generated by launching attacks on R̃.

4.3.1 Number of compromised fingerprint bits. We formulate the

number of compromised fingerprint bits as

numcmp =
∑L
l=11{ f (l) , f (l)},

where 1{·} is the indicator function, L is the length of the fingerprint
bit-string, f is the extracted fingerprint bit-string from R, and f (l)

(or f (l)) is the lth bit in f (or f ).

4.3.2 Accusable ranking of a malicious SP. We quantify the confi-

dence of accusing the correct malicious SP by defining the accusable

ranking metric (denoted as r ) as follows:

r =

{
“uniquely accusable”, ifm0 >

∑L
l=1 1

{
fSPi (l) = f (l)

}
,∀SPi ∈ T

“top t accusable”, otherwise
,

where m0 =
∑L
l=1 1{ fSPmalicious

(l) = f (l)} is the number of bit

matches between the malicious SP’s fingerprint and the extracted

fingerprint from the pirated database, andT is the set of all innocent

SPs. Specifically, if the malicious SP has the most bit matches with

the extracted fingerprint, Alice will uniquely accuse it. Otherwise,

we compute t =

∑
SPi ∈T 1

{(∑L
l=1 1

{
fSPi (l )=f (l )

})
≥m0

}
|T |

× 100%, which

is the fraction of innocent SPs having more bit matches with the

extracted fingerprint than the malicious SP. For example, if t = 80%,

then the malicious SP is only top 80% accusable, which suggests

that Alice will accuse other innocent SPs with high probability.

In contrast, if t = 1%, then the malicious SP’s accusable ranking

increases and makes it among the top 1% accusable SPs, and Alice

will accuse other innocent SPs with low probability. Essentially,

a high accusable rank r corresponds to either (i) a “low t" or (ii)
the uniquely accusable case. As we will show in Section 7, for a

malicious SP to avoid being accused (i.e., have low accusable rank,

or high t value), it needs to distort more than half of the fingerprint

bits. As we will also show via evaluations, the malicious SP can

easily achieve this goal if it applies the identified correlation attacks.

Whereas, if it applies the random bit flipping attack, it becomes

“uniquely accusable” with high probability unless it overdistort the

fingerprinted database.

According to the vanilla scheme [24], the probability of extract-

ing a valid fingerprint from a database that does not belong to Alice

(i.e., misdiagnosis false hit) is upper bounded by |SP|/2L , and the

probability of extracting an incorrect but valid fingerprint from

the fingerprinted database (i.e., misattribution false hit) is upper

bounded by (|SP| −1)/2L . Since these are all negligible probabilities,

we do not consider the case in which Alice does not accuse any SP

when a copy of her database is leaked in the experiments.

4.4 Utility Metrics
Fingerprinting naturally changes the content of the database, and

hence degrades its utility. We quantify the utility of a fingerprinted

database using the following metrics.

4.4.1 Accuracy of R̃. We quantify the accuracy of R̃ as

Acc(R̃) = 1 − R̃ ⊕ R/M ∗ L,

where ⊕ is the symmetric difference operator that counts the

number of different entries in the fingerprinted and the original

databases. Acc(R̃) measures the percentage of matched entries be-

tween the fingerprinted and the original databases.
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4.4.2 Preservation of column-wise correlations. We quantify the

preservation of column-wise correlations in the database as

P
col

(R̃) = 1 −

∑
p,q∈F,p,q

∑
a∈p,b ∈q 1

{�� J̃p,q (a,b) − Jp,q (a,b)
�� ≥ τ

col

}∑
p,q∈F,p,q kpkq

,

where p and q are two attributes in the attribute set F , kp (or kq )
stands for the number of unique instances of attribute p (or q), and

J̃p,q (a,b) (or Jp,q (a,b)) is the joint probability that attribute p takes

value a and attribute q takes value b in R̃ (or R). P
col

calculates the

fraction of instances of

�� J̃p,q (a,b) − Jp,q (a,b)
��
that do not exceed a

predetermined threshold τ
col

before and after fingerprinting R.

4.4.3 Preservation of row-wise correlations. We quantify the preser-

vation of row-wise correlations in the database as

Prow(R̃) = 1 −

∑C
c=1

∑
i, j ∈commc ,i,j 1

{��s̃i, j commc − scommc
i, j

�� ≥ τrow
}∑C

c=1 nc (nc − 1)
,

where commc represents the set of all individuals in a community

c , s̃i, j
commc

(or scommc
i, j ) is the statistical relationship between in-

dividual i and j belonging to commc in R̃ (or R), nc is the number

of individuals in commc , and C is the number of communities. In

essence, Prow(R̃) evaluates the fraction of statistical relationship

that has absolute difference less than τrow in the entire population

before and after fingerprinting.

4.4.4 Preservation of empirical covariance matrix. We quantify the

preservation of empirical covariance matrix of the database as

Pcov = 1 − ||cov(R̃) − cov(R)| |F /| |cov(R)| |F ,

where cov(R) =
∑M
i=1 r

T
i r i/M is the empirical covariance matrix

of data records in R. Pcov evaluates the similarity between the

covariance matrices of the database before and after fingerprinting.

We consider this metric because the fingerprinted database may

also be used in data analysis tasks, and empirical covariance matrix

is frequently utilized to establish predictive models, e.g., regression

and probability fitting [11, 20]. Besides, multivariate data analysis

often involves the investigation of inter-relationships among data

records which requires an accurate covariance matrix estimation.

Note that the utility of the pirated database R generated by the

malicious SP can also be quantified using the same metrics, i.e.,

Acc(R), P
col

(R), Prow(R), and Pcov(R). As discussed, a malicious SP

can successfully (without being accused) distort the fingerprint

easily by over-distorting R̃, however, to preserve the data utility, a

rational malicious SP will not over-distort a database.

In addition to the general utility metrics defined above, we will

also consider specific statistical utilities, e.g., portion of individuals

that have a particular education degree or higher, and the standard

deviation of individuals’ age distribution. It is noteworthy that if the

general utility metrics are high, it implicitly suggests high utility

for the specific statistical (or other application related) utilities.

5 IDENTIFIED CORRELATION ATTACKS
In the correlation attacks, we assume that the malicious SP has

access to both column- and row-wise correlations of Alice’s data-

base, which contains (i) correlations between all pairs of attributes

(columns), (ii) each individual’s membership to the communities

and (iii) the statistical relationships of pairs of individuals belonging

to the same community. Specifically, the column-wise correlations

are characterized by the set of joint distributions among pairs of at-

tributes (columns) in the database, i.e., J = {Jp,q |p,q ∈ F ,p , q}.
Row-wise correlations, on the other hand, are characterized by the

set of statistical relationships between pairs of individuals (rows)

in a community. For instance, S = {scommc
i j |i, j ∈ commc , i , j, c ∈

[1,C]}, where scommc
i j = e−dist(r i ,r j ) is the statistical relationship

between individuals (data records) i and j in community commc
(dist(r i ,r j ) denotes the Hamming distance between r i and r j ).
Since the added fingerprint changes some entries in the original

database, which will lead to the change of both joint distributions

and statistical relationships, the malicious SP can utilize its aux-

iliary (publicly available) information about J and S to identify

the positions of suspicious entries in R̃ that are potentially finger-

printed.

5.1 Column-wise Correlation Attack
To launch the column-wise correlation attack (Atk

col
(J)) on R̃, the

malicious SP first calculates the empirical joint distributions among

pairs of attributes in R̃, denoted as J̃ . Then, it compares each joint

distribution in J̃ (i.e., J̃p,q ) with that in J (i.e., Jp,q ). For instance, if
the absolute difference of joint probabilities when attribute p takes

value a and attribute q takes value b (i.e.,

��Jp,q (a,b) − J̃p,q (a,b)
��
) is

higher than a threshold τAtk
col

, then, the malicious SP queries the row

indices of the data records in R̃ whose attributes p and q take values

a and b, respectively, and collects the corresponding row indices in

a setI, i.e., for the previous example, I = row index query

(
R̃.p ==

a and R̃.q == b
)
(R̃.p includes attribute p of all data record in data-

base R̃). For each row index i ∈ I, either position {i,p} or {i,q} (i.e.,
the row index and attribute tuple) can be potentially fingerprinted,

because they both affect the joint distribution J̃p,q (a,b). Thus, the
malicious SP adds each of these tuples, i.e., {i,p} and {i,q}, i ∈ I

into a suspicious position set denoted as P.

Since a specific suspicious row index i can be associated with

multiple attributes in the suspicious position set P, the suspicious

attribute that is most frequently associated with i is considered
to be highly suspicious. The malicious SP collects these highly

suspicious combinations of row index and attribute in a set H =

H ∪ {i,mode(Ai )}, where Ai includes all the attributes that are

paired with row index i in set P, and mode(Ai ) returns the most

frequent attribute inAi (if there is a tie, the malicious SP randomly

chooses one). Then, the malicious SP launches the column-wise

correlation attack by flipping the LSB of entries in R̃whose positions

are in H , i.e., R̃.(i,p),∀{i,p} ∈ H (R̃.(i,p) represents the value of
attribute p for the ith data record in R̃).

In practice, the malicious SP can launch multiple rounds of

Atk
col

(J) by iteratively comparing the new joint distributions

obtained from the attacked fingerprinted database in the previous

round with its prior knowledge J . In each round, a new H is

constructed, but the malicious SP does not flip the highly suspi-

cious positions that have already been flipped in previous rounds.

This can be achieved by maintaining and updating an accumula-

tive highly suspicious position setZ. We summarize the steps of

conducting t rounds of Atk
col

(J) in Algorithm 3.
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Algorithm 3: Atk
col

(J): Column-wise Correlation Attack

Input :Fingerprinted database R̃, malicious SP’s prior knowledge

on the pairwise joint distributions among attributes, J,

and attack rounds t .
Output :column-wise correlation attacked DB R

(
∅, ∅, Atk

col
(J)

)
.

1 Initialize cnt = 1;

2 Initialize Z = ∅;

3 while cnt ≤ t do
4 Initialize P = ∅, H = ∅;

5 Update the empirical joint distributions set J̃ using R̃;
6 forall p, q ∈ F, p , q do
7 forall a ∈ [0, kp − 1], b ∈ [0, kq − 1] do
8 if

��Jp,q (a, b) − J̃p,q (a, b)
�� ≥ τ Atk

col
then

9 I = row index query

(
R̃.p == a and R̃.q == b

)
;

10 forall row index i ∈ I do
11 if {i, p } < P then
12 P = P ∪ {i, p };
13 end
14 if {i, q } < P then
15 P = P ∪ {i, q };
16 end
17 end
18 end
19 end
20 end
21 forall row index and attribute tuple {i, p } ∈ P do
22 Collect all attributes paired with row index i into set Ai

23 H = H ∪ {i, mode(Ai)};//the most frequent
attribute associate with row index i is
recorded in H.

24 end
25 forall highly suspicious row index and attribute tuple

{i, p } ∈ H do
26 if {i, p } < Z then
27 Change the LSB of R̃.(i, p);
28 Z = Z ∪ {i, p };
29 end
30 end
31 cnt = cnt + 1;
32 end

33 Return R
(
∅, ∅, Atk

col
(J)

)
= R̃;

Next, we show that a malicious SP can increase its inference

power (confidence) about whether a particular entry in the data-

base is fingerprinted or not by launching Atk
col

(J). In Section 7,

we experimentally validate this finding using a real-world database.

Under Atk
rnd

, we denote the malicious SP’s confidence that an

entry, whose attribute p takes value a in the original database

(R), is changed due to the fingerprinting as Conf
Atk

rnd

( 1γ ;p,a).

Likewise, under Atk
col

(J), we represent such confidence as

Conf
Atk

col
(J)(

1

γ ;p,a). Here,γ ∈ (0, 1) is the fingerprinting ratio and

we use
1

γ as the decision parameter to investigate the asymptotic

behavior of the malicious SP’s confidence gain, which is defined as

the ratio G
col

( 1γ ;p,a) = Conf
Atk

col
(J)(

1

γ ;p,a)
/
Conf

Atk
rnd

( 1γ ;p,a).

Thus, we have the following proposition.

Proposition 1. By launching Conf
Atk

col
(J), the malicious SP’s

confidence gain about an entry, whose attribute p takes value a in R,
is fingerprinted can be shown in an asymptotic manner as

G
col

(
1

γ
;p,a) = Θ

©­­«
©­­«1 −

∏
q∈T,q,p

©­«
τAtk
col

γ
|T |

2f req
p
a

ª®¬
kq ª®®¬

/ (
γ

|T |
f req

p
a

)ª®®¬ ,
where f reqpa is the frequency of records with attribute p taking value
a in R, kq is the number of different values for attribute q, and Θ(·)
is the Big-Theta notation.

Proof Sketch. For the vanilla fingerprinting scheme,

we have Conf
Atk

rnd

(p,a) =
γ
|T |

f req
p
a . When launching

the Atk
col

(J), the malicious SP will add the correspond-

ing suspicious row index and attribute tuple in P if��Jp,q (a,b) − J̃p,q (a,b)
�� ≥ τAtk

col
. Thus, we have Conf

Atk
col
(J)(p,a) =

1 −
∏

q∈T,q,p
∏

b ∈[0,kq−1] Pr
(��Jp,q (a,b) − J̃p,q (a,b)

�� < τAtk
col

)
.

Since the inserted fingerprint will cause Jp,q (a,b) − J̃p,q (a,b) vary

in the range of

[
−

γ
|T |

2f req
p,q
a,b ,

γ
|T |

2f req
p,q
a,b

]
, where f req

p,q
a,b

is the frequency of entries whose attributes p and q take values

a and b in R. Then, |Jp,q (a,b) − J̃p,q (a,b)| can be shown as a

random variable attributed to an uniform distribution in the

support of

[
0,

γ
|T |

2f req
p,q
a,b

]
, which leads to Conf

Atk
col
(J)(p,a) =

1 −
∏

q∈T,q,p
∏

b ∈[0,kq−1] τ
Atk

col

/(
γ
|T |

2f req
p
a

)
. By applying

arithmetic-geometric mean inequality along with the fact∑
b ∈[0,kq−1] f req

p,q
a,b = f req

p
a ,∀q , p, we can complete the

proof. □

Remark 1. We aim at presenting a generic confidence gain
achieved fromAtk

col
(J), thus we consider the potential fingerprinted

entries in the suspicious set P instead of the highly suspicious set H .
In practice, the generation process ofH from P heavily depends on
the data distribution in the considered databases.

5.2 Row-wise Correlation Attack
Since the malicious SP has access to both individuals’ memberships

to communities and row-wise correlations, i.e., S, after receiving

the fingerprinted database, it can compute a new set of statistical

relationships among pairs of individuals in each of the communities

using R̃, i.e., S̃ = {s̃i j
commc |i, j ∈ commc , i , j, c ∈ [1,C]}, where

s̃i j
commc = e−dist(r̃ i , r̃ j ) is the statistical relationship between the

ith and jth data records (i.e., r̃ i and r̃ j ) in R̃. Then, to conduct

Atkrow(S), the malicious SP flips the LSBs of all attributes of a

data record r i , if the cumulative absolute difference of its statistical

relationships with respect to other records in the same commu-

nity exceeds a predetermined threshold τAtk
row

after fingerprinting,

i.e.,

∑nc
j,i

��scommc
i j − s̃i j

commc
�� ≥ τAtk

row
, i, j ∈ commc . The rationale

behind this is because the row-wise statistical information S is cal-

culated using the entire data records, instead of individual entries

between the rows. Although, this represents the strongest row-wise

attack as it changes all the entries of a given data record, in prac-

tice, Atkrow(S) changes only a limited number of data records, as

will be shown in Section 7.2.1. We summarize the steps to launch

Atkrow(S) on R̃ in Algorithm 4.
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Algorithm 4: Atkrow(S): Row-wise correlation attack

Input :Fingerprinted database, R̃, malicious SP’s prior knowledge

on the row-wise correlations S and individuals’ affiliation

to the C communities.

Output :R
(
∅, Atkrow(S), ∅,

)
.

1 Obtain the new set of pairwise statistical relationships among

individuals in each community from R̃, i.e., S̃;
2 forall commc , c ∈ [1, C] do
3 forall individual i ∈ commc do
4 if

∑nc
j,i

��scommc
i j − s̃i j commc

�� ≥ τ Atk
row

then
5 Flip the LSBs of all attributes of r i in R̃;
6 end
7 end
8 end

9 Return R
(
∅, Atkrow(S), ∅,

)
= R̃.

We analyze the impact of Atkrow(S) by denoting the ma-

licious SP’s confidence that an entry (r i ) is fingerprinted as

Conf
Atk

rnd

( 1γ ;r i ) and Conf
Atkrow(S)(

1

γ ;r i ), under Atk
rnd

and

Atkrow(S), respectively. Then, the confidence gain of the malicious

SP is Grow(
1

γ ;r i ) =
Conf

Atkrow(S)(
1

γ ;r i )

Conf
Atk

rnd

( 1

γ ;r i )
, which is calculated in the

following proposition.

Proposition 2. By launching Conf
Atkrow(S), the malicious SP’s

maximum confidence gain about an entry in R is fingerprinted can
be shown asymptotically as

Grow(
1

γ
;r i ) = Θ

((
1−

⌊
τ Atk

row

⌋∑
j=0

(
nc − 1

j

)
(2γ−γ 2)j (1−γ )2(nc−1−j)

)/
γ

)
.

Proof Sketch. Clearly, Conf
Atk

rnd

(r i ) = γ . According to

Algorithm 4, Conf
Atkrow(S)(

1

γ ;r i ) = Pr(
∑nc
j,i

��e−dist(r i ,r j ) −

e−dist(r̃ i , r̃ j )
�� ≥ τAtk

row
)
∗
≈ Pr(

∑nc
j,i

��
dist(r i ,r j ) − dist(r̃ i , r̃ j )

�� ≥ τAtk
row

),

where ∗ is due to the Taylor approximation and the assumption

that the distance between individuals in the same community is

small. Then, |dist(r i ,r j ) − dist(r̃ i , r̃ j )
��
can be shown as a Bernoulli

random variable, which is 0with probability (1−γ )2, and is nonzero
with probability 2γ −γ 2. Since the summation of Bernoulli random

variable is attributed to binomial distribution, we can finish the

proof. □

Remark 2. In the above analysis, we ignored the scenario where
|dist(r i ,r j )−dist(r̃ i , r̃ j )

�� is 2with probabilityγ 2 to avoid extra heavy
notations. In the experiments, we set γ = 1/35, thus, γ 2 is negligible.

5.3 Integrated Correlation Attack
In practice, the malicious SP will apply Atkrow(S) followed by

Atk
col

(J) if it launches the integrated correlation attack. This is

because (i) Atkrow(S) is computationally light and modifies signifi-

cantly less entries in R̃(FP, ∅, ∅) compared to Atk
col

(J) (as we will

show in Section 7.2.1). (ii) IfAtk
col

(J) is applied first, it will change

the row-wise correlations (Prow) significantly, yet, if Atkrow(S) is

applied first, it only has a small impact on the column-wise cor-

relations P
col

(as we will also show in Section 7.2.1). Algorithm 5

summarizes the major steps of this integrated attack. Note that, in

practice, there is no minimum distribution difference requirement

to perform the proposed attacks, because a malicious SP can al-

ways reduce the value of τAtk
col

and τAtk
row

to obtain more potentially

fingerprinted entries.

Algorithm 5: Integrated correlation attack

Input :Fingerprinted database, R̃, malicious SP’s prior knowledge

on the row-wise correlations S, individuals’ affiliation to

the C communities, and column-wise correlations J.

Output :R
(
∅, Atkrow(S), Atkcol(J)

)
.

1 Launch row-wise correlation attack Atkrow(S) on R̃ using

Algorithm 4, and obtain R
(
∅, Atkrow(S), ∅

)
;

2 Launch column-wise correlation attack Atk
col
(J) on

R
(
∅, Atkrow(S), ∅

)
using Algorithm 3, obtain and return

R
(
∅, Atkrow(S), Atkcol(J)

)
.

By taking advantage of the correlation models, the identified

attacks (in Sections 5.1 and 5.2) are more powerful than the tradi-

tional random bit flipping attack (in Section 4.2). As we will show in

Section 7.2.1, to effectively distort the added fingerprint and cause

Alice to accuse innocent SPs with high probability, a malicious SP

only needs to change a small fraction of entries in the fingerprinted

database if it conducts the correlation attacks on R̃(FP, ∅, ∅). In
contrast, to achieve a similar attack performance, the random bit

flipping attack needs to change more than 80% of the entries in

R̃(FP, ∅, ∅), which results in a significant loss in database utility.

Thus, the correlation attacks not only distort the inserted finger-

print but they also maintain a high utility for the pirated database.

Due to the identified vulnerability of existing fingerprinting

schemes for relations against correlation attacks, it is critical to

develop defense mechanisms that can mitigate these attacks. In

the next section, we discuss how to develop robust fingerprinting

techniques against both column- and row-wise correlation attacks.

6 ROBUST FINGERPRINTING AGAINST
IDENTIFIED CORRELATION ATTACKS

Now, we propose robust fingerprinting schemes against the iden-

tified correlation attacks that can serve as post-processing steps

for any off-the-shelf (vanilla) fingerprinting schemes. To provide

robustness against column- and row-wise correlation attack, i.e.,

Atk
col

(J) and Atkrow(S), the database owner (Alice) utilizes her

prior knowledge J ′
and S′

as the reference column-wise joint dis-

tributions and statistical relationships, respectively. We will show

that to implement the proposed mitigation techniques, Alice needs

to change only a few entries (e.g., less than 3%) in R̃(FP, ∅, ∅), such
that the post-processed fingerprinted database has column-wise

correlation close to J ′
and row-wise correlation far from S′

.

6.1 Robust Fingerprinting Against
Column-wise Correlation Attack

6.1.1 Mitigation via mass transportation. To make a vanilla fin-

gerprinting scheme robust against column-wise correlation attack,
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the main goal of the proposed technique Dfs
col

(J ′) is to trans-

form R̃(FP, ∅, ∅) to have column-wise joint distributions close to

the reference joint distributions inJ ′
. We developDfs

col
(J ′) using

“optimal transportation” [13], which moves the probability mass of

the marginal distribution of each attribute in R̃(FP, ∅, ∅) to resemble

the distribution obtained from the marginalization of each reference

joint distribution in J ′
. Then, the optimal transportation plan is

used to change the entries in each attribute of R̃(FP, ∅, ∅) to obtain

R̃
(
FP, ∅,Dfs

col
(J ′)

)
. While doing this, the new empirical joint dis-

tributions calculated from R̃
(
FP, ∅,Dfs

col
(J ′)

)
also become close

to the ones in J ′
.

In particular, for a specific attribute (column)p, we denote its mar-

ginal distribution obtained from the (vanilla) fingerprinted database

as Pr(Cp̃ ), and that obtained from the marginalization of a reference

J ′p,q distribution in J ′
as Pr(Cp′) = J ′p,q1

T
(q can be any attribute

that is different from p, because the marginalization with respect

to p using different J ′p,q will lead to the identical marginal distri-

bution of p). To move the mass of Pr(Cp̃ ) to resemble Pr(Cp′), we

need to find another joint distribution (i.e., the mass transportation

plan) Gp̃,p′ ∈ Rkp×kp
(kp is the number of possible values that

attribute p can take), whose marginal distributions are identical to

Pr(Cp̃ ) and Pr(Cp′). Let a and b be two distinct values that attribute

p can take (a,b ∈ [0,kp − 1]). Then, Gp̃,p′(a,b) indicates that the

database owner should change Gp̃,p′(a,b) percentage of entries in

R̃(FP, ∅, ∅)whose attributep takes value a (i.e.,p = a) to valueb (i.e.,
change them to make p = b), so as to make Pr(Cp̃ ) close to Pr(Cp′).

In practice, such a transportation plan can be obtained by solv-

ing a regularized optimal transportation problem, i.e., the entropy

regularized Sinkhorn distance minimization [16] as follows:

d
(
Pr(Cp̃ ), Pr(Cp′), λp

)
= min

Gp̃,p′ ∈G
(
Pr(Cp̃ ),Pr(Cp′ )

) < Gp̃,p′ ,Θp̃,p′ >F −
H (Gp̃,p′)

λp
,

(1)

where G
(
Pr(Cp̃ ), Pr(Cp′)

)
=

{
G ∈ Rkp×kp

��G1 = Pr(Cp̃ ),G
T 1 =

Pr(Cp′)
}
is the set of all joint probability distributions whose mar-

ginal distributions are the probability mass functions of Pr(Cp̃ )

and Pr(Cp′). < ·, · >F denotes the Frobenius inner product of

two matrices with the same size. Also, Θp̃,p′ is the transporta-

tion cost matrix and Θp̃,p′(a,b) > 0 represents the cost to move

a unit percentage of mass from Pr(Cp̃ = a) to Pr(Cp̃ = b). Finally,

H (Gp̃,p′) = − < Gp̃,p′ , logGp̃,p′ >F calculates the information en-

tropy of Gp̃,p′ and λp > 0 is a tuning parameter. In practice, (1)

can be solved by iteratively rescaling rows and columns of the ini-

tialized Gp̃,p′ to have desired marginal distributions. The obtained

Gp̃,p′ is more heterogeneous for larger values of λp . This suggests

that the transportation plan tends to move the mass of Pr(Cp̃ = a)

to the adjacent instances, i.e, b = a − 1 or b = a + 1. In contrast,

the obtainedGp̃,p′ is more homogeneous for smaller values of λp ,

which suggests that the transportation plan tends to move the mass

of Pr(Cp̃ = a) to all other instances. A homogeneous plan makes

Pr(Cp̃ ) much closer to Pr(Cp′) after the mass transportation, but

it causes more data entries to be changed, and results in a higher

decrease in the database utility. On the other hand, a heterogeneous

plan changes less data entries by tolerating a larger difference

between Pr(Cp̃ ) and Pr(Cp′) after the mass transportation. In the

evaluation (in Section 7), we will try different values of λp to strike

a balance between the mitigation performance and data utility.

6.1.2 A toy example on mass transportation. To illustrate

Dfs
col

(J ′) via mass transportation of Pr(Cp̃ ) to resemble Pr(Cp′),

we use a pair of discrete probability distributions shown in Fig-

ure 3(a) as an example, and demonstrate the transportation plans

obtained by solving (1) when λp = 500 and λp = 50 in Figures

3(b) and (c), respectively. In Figure 3(b), we have a heterogeneous

Gp̃,p′ , which often moves the mass to adjacent instances, e.g., the

mass of Pr(Cp̃ = 0) is divided into 3 parts and a larger portion of

mass is moved to Pr(Cp̃ = 1). Gp̃,p′(0, 1) = 0.157, thus 0.157 mass

of Pr(Cp̃ = 0) is moved to Pr(Cp̃ = 1). In Figure 3(c), we obtain a

homogeneous Gp̃,p′ , which distributes the mass to many other in-

stances. For example, the mass of Pr(Cp̃ = 0) is divided into 5 parts

and 4 of them are moved to Pr(Cp̃ = 1), Pr(Cp̃ = 2), Pr(Cp̃ = 3),

and Pr(Cp̃ = 5).

Figure 3: Visualization of mass transportation plans ob-
tained by solving (1) using different λp values to move mass
of Pr(Cp̃ ) to resemble Pr(Cp′). (a) example discrete probabil-
ity distributions. (b) if λp = 500, we achieve a heteroge-
neous plan, which tolerates more difference between Pr(Cp̃ )

and Pr(Cp′) after the mass transportation. (c) if λp = 50,
we achieve a homogeneous plan. which makes Pr(Cp̃ ) more
closer to Pr(Cp′) after the mass transportation.

6.1.3 Algorithm description. In the following, we formally describe

the procedure of Dfs
col

(J ′). After Alice generates R̃(FP, ∅, ∅) using
the vanilla fingerprinting scheme, she evaluates the new joint distri-

butions of all pairs of attributes, i.e., J̃p,q ,p,q ∈ F ,p , q, and com-

pares themwith the reference joint distributions J ′
p,q ,p,q ∈ F ,p ,

q. If the discrepancy between a particular pair of joint distributions

exceeds a predetermined threshold, i.e., | | J̃p,q − J ′p,q | |F ≥ τDfs
col

,

Alice records both attributes p and q in a set Q. For all the at-

tributes in Q, Alice obtains Pr(Cp̃ ) from R̃(FP, ∅, ∅).p and calculates

Pr(Cp′) = J ′p,q1
T
. Next, she gets the optimal transportation plan

for attribute p by solving (1). Then, she changes the instances of

R̃(FP, ∅, ∅).p to other instances by following the transportation

moves suggested by Gp̃,p′ , i.e., given Gp̃,p′(a,b), Alice randomly

421



The Curse of Correlations for Robust Fingerprinting of Relational Databases RAID ’21, October 6–8, 2021, San Sebastian, Spain

samples Gp̃,p′(a,b) fraction of entries (excluding the fingerprinted

entries) whose attribute p takes value a and changes them to b. We

summarize the procedure of Dfs
col

(J ′) in Algorithm 6, where lines

9-?? solves (1) to obtain the optimal mass transportation plan for at-

tributep, and lines 16-?? change the values of entries in R̃(FP, ∅, ∅).p
according to Gp̃,p′ .

Algorithm6:Dfs
col

(J ′): defense against column-wise cor-

relation attack.

Input :Vanilla fingerprinted database R̃(FP, ∅, ∅), locations of
entries changed by the vanilla fingerprinting scheme, and

Alice’s prior knowledge on the joint distributions of the

pairwise attributes, i.e., J′
.

Output : R̃
(
FP, ∅, Dfs

col
(J′)

)
.

1 Initialize Q = ∅;

2 Obtain the empirical joint distributions set J̃ using R̃(FP, ∅, ∅);
3 forall p, q ∈ F, p , q do
4 if | | J ′p,q − J̃p,q | |F > τ Dfs

col
then

5 Q = Q ∪ p ∪ q;
6 end
7 end
8 forall p ∈ Q do
9 Initialize the mass movement cost matrix Θp̃,p′ and tuning

parameter λp ;
10 Obtain empirical marginal distribution Pr(Cp̃ ) from

R̃(FP, ∅, ∅).p ;
11 Initialize Gp̃,p′ = e

−λpΘp̃,p′
;

12 while not converge do
13 Scale the rows of Gp̃,p′ to make the rows sum to the

marginal distribution Pr(Cp̃ );
14 Scale the columns of Gp̃,p′ to make the columns sum to

the marginal distribution Pr(Cp′ );
15 end
16 forall a ∈ [0, kp − 1] do
17 forall b ∈ [0, kp − 1], b , a do
18 Sample Gp̃,p′ (a, b) percentage of entries from

R̃(FP, ∅, ∅).p (excluding the vanilla fingerprinted

entries) whose attribute p takes value a, and change

their value to b ;
19 end
20 end
21 end

22 Return R̃
(
FP, ∅, Dfs

col
(J′)

)
.

6.1.4 Design details of Dfs
col

(J ′). We do not apply the optimal

transportation technique to directly move the mass of the joint

distributions obtained from R̃(FP, ∅, ∅) to resemble the joint dis-

tributions in J ′
. One reason is that, to do so, the database owner

(Alice) needs to solve (1) for
|F |( |F |−1)

2
joint distributions. This is

computationally expensive if the database includes a large number

of attributes. Thus, by considering the mass transportation in mar-

ginal distributions, the developed mitigation technique becomes

more efficient. Furthermore, by only considering the marginal dis-

tributions, Alice can arrange R̃
(
FP, ∅,Dfs

col
(J ′)

)
to have Pearson’s

correlations among attribute pairs that are close to those obtained

from R
(
∅, ∅,Atk

col
(J)

)
if J ′

is close to J . For instance, denote

the Pearson’s correlation between attributesp andq calculated from

R̃
(
FP, ∅,Dfs

col
(J ′)

)
and R

(
∅, ∅,Atk

col
(J)

)
as ρp′,q′ and ρp,q , re-

spectively. Then, we have ρp′,q′ =

∑
a,b (a−µCp′ )(b−µCq′ )J

′
p,q (a,b)

σCp′ σCq′
,

where µCp′ (or µCq′ ) and σCp′ (or σCq′ ) is the expected value and the

standard deviation of attribute p (or q) obtained after applying the

vanilla fingerprinting scheme followed by Dfs
col

(J ′), respectively.

Also, J ′p,q (a,b) is the database owner’s prior knowledge on the joint
probability distribution of attribute p taking value a and attribute

q taking value b. Likewise, ρp,q =

∑
a,b (a−µCp )(b−µCq )Jp,q (a,b)

σCp σCq
,

where µCp (or µCq ) and σCp (or σCq ) is the expected value and

the standard deviation of attribute p (or q) in R
(
∅, ∅,Atk

col
(J)

)
.

Also, Jp,q (a,b) is the malicious SP’s prior knowledge on the joint

probability distribution of attribute p taking value a and attribute q
taking value b. If J ′

is close to J , then µCp′ (or µCq′ ) is also close

to µCp (or µCq ), because of the marginalization of the similar joint

distributions. Similar discussion also holds for σCp′ (or σCq′ ) and

σCp (or σCq ). As a result, ρp′,q′ also becomes close to ρp,q , which

improves the robustness of the fingerprint (against correlation at-

tacks by a malicious SP), and hence prevents a malicious SP from

distorting the potentially fingerprinted positions.

6.2 Robust Fingerprinting Against Row-wise
Correlation Attack

To make a vanilla fingerprinting scheme also robust against row-

wise correlation attack (in Section 5.2), we develop another mit-

igation technique, i.e., Dfsrow(S
′). The main goal of Dfsrow(S

′)

is to avoid a malicious SP from distorting the fingerprint due to

discrepancies in the expected statistical relationships between data

records. Different from the design principle of Dfs
col

(J ′), which

makes the newly obtained joint distributions resemble the prior

knowledge, we design Dfsrow(S
′) by changing selected entries of

non-fingerprinted data records to make the newly obtained sta-

tistical relationships as far away from Alice’s prior knowledge S′

as possible. This is because the row-wise correlation attack usu-

ally changes limited number of entries in the vanilla fingerprinted

database (as we validate in Section 7.2.1), thus, to make the newly

obtained statistical relationships resemble S′
, one needs to change

all non-fingerprinted data records and this will significantly com-

promise the database utility. Instead, by making the new statistical

relationships far away from her prior knowledge, Alice can make

additional (non-fingerprinted) data records that have cumulative

absolute difference (with respect to the other records in the same

community) exceeding a predetermined threshold. As a result, when

launching Atkrow(J), the malicious SP will identify wrong data

records (r i ), which causes

∑nc
j,i

��scommc
i j − s̃i j

commc
�� ≥ τAtk

row
, and

hence change the non-fingerprinted records.

In Dfsrow(S
′), Alice selects a subset of non-fingerprinted data

records in a community c , i.e., Ec ⊂ commc , c ∈ [1,C], and changes

their value to
˜̃r i , i ∈ Ec , such that the cumulative absolute differ-

ence between statistical relationships in her prior knowledge and
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those obtained from the fingerprinted database achieves the maxi-

mum difference after applying Dfsrow(S
′). This can be formulated

as the following optimization problem:

max

Ec ,˜̃r i d(Ec ) =
��� ∑
j ∈commc /Ec

∑
i ∈Ec

���s ′i j commc − ˜̃si j commc
���

−
∑

j ∈commc /Ec

∑
i ∈Ec

���s ′i j commc − s̃i j
commc

������
s.t. Ec ⊂ commc/Qc ,˜̃si j commc

= e−dist(
˜̃r i ,r j ), i ∈ Ec , j ∈ commc/Ec ,˜̃r i = value change(r̃ i ), i ∈ Ec ,

|Ec | ≤ ⌈ncγ ⌉ ,

(2)

∀c ∈ [1,C]. Qc is the set of fingerprinted records in community c ,
s ′i j

commc
denotes Alice’s prior knowledge on the statistical relation-

ship between individuals i and j in community c , s̃i j
commc

is the

statistical relationship between individuals i and j in community c

in R̃(FP, ∅, ∅), whose ith data record is denoted as r̃ i , and ˜̃si j commc

is such information obtained from R̃(FP,Dfsrow(S′), ∅), whose ith

data record is represented as
˜̃r i . Also, value change(·) is the func-

tion that changes each attribute of r̃ i , and it will be elaborated later.
In (2), we let the cardinality of Ec to be smaller than ⌈ncγ ⌉ (γ is

the percentage of fingerprinted records) to restrict the number of

selected non-fingerprinted records to maintain database utility.

(2) is an NP-hard combinatorial search problem [6]. Thus, we

use a greedy algorithm to determine Ec and a heuristic approach

to obtain
˜̃r i , i ∈ Ec . In fact, (2) also belongs to the problems of

set function maximization, which can be connected to submod-

ular optimization [31], and greedy algorithms are widely used

for selecting candidate sets. Specifically, Alice constructs Ec by

greedily choosing up to ⌈ncγ ⌉ non-fingerprinted data records

(in R̃(FP, ∅, ∅)) that have the maximum cumulative absolute dif-

ference (i.e.,

∑nc
j ∈commc , j,i

��s ′i j commc − s̃i j
commc

��, i ∈ commc/Qc )

with Alice’s prior knowledge (S′
). Next, she changes the value

of each attribute of the selected data records in Ec to the most

frequent occurring instance of that attribute to obtain
˜̃r i (i.e.,˜̃r i = value change(r̃ i )). We describe the steps to apply Dfsrow(S

′)

in Algorithm 7.

The solution to (2) depends on the database and the distribution

of data entries, thus, it is infeasible to derive a generic closed-form

expression to quantify the mitigation performance of Dfsrow(S
′).

However, in Section 7.2.2, we will empirically show that the fraction

of the fingerprinted entries inferred by Atkrow(S) will decrease

significantly if Alice applies the post-processing step Dfsrow(S
′).

6.3 Integrated Robust Fingerprinting
Although after applyingDfsrow(S

′), the malicious SP may still iden-

tify (and distort) some fingerprinted data records using Atkrow(J),

the amount of distortion in the fingerprint will not be enough to

compromise the fingerprint bit-string due to the majority voting

considered in the vanilla scheme. In Section 7.2.1, we validate that

Algorithm 7 can successfully mitigate the row-wise correlation at-

tack in a real-world database. SinceDfsrow(S
′) changes less number

Algorithm 7: Dfsrow(S′): defense against row-wise corre-

lation attack.

Input :Vanilla fingerprinted database, R̃(FP, ∅, ∅), fingerprinting
ratio γ , database owner’s prior knowledge on the

row-wise correlations S′
and individuals’ affiliation to the

C communities.

Output : R̃
(
FP, Dfsrow(S

′), ∅,
)
.

1 Obtain S̃, i.e., the set of pairwise statistical relationships among

individuals in each community, from the vanilla fingerprinted

database R̃(FP, ∅, ∅);
2 forall commc , c ∈ [1, C] do
3 forall non-fingerprinted individual i ∈ commc /Qc do
4 Calculate ei =

∑nc
j∈commc , j,i

��s′i j commc − s̃i j commc
��, i ∈

commc /Qc ;

5 end
6 Obtain the largest ⌈ncγ ⌉ ei ’s, and collect these row index i in

set Ec ;

7 forall row index i ∈ Ec do
8 ˜̃r i = value change(r̃ i ); //change the value of each

attribute of r̃ i to the most frequently
occurred instance of that attribute in commc.

9 end
10 end

11 Return R̃
(
FP, Dfsrow(S

′), ∅,
)
.

of entries than Dfs
col

(J ′), database owner will apply Dfsrow(S
′)

first after the vanilla fingerprinting. In Algorithm 8, we summa-

rize the main steps of our integrated robust fingerprinting scheme

against the identified correlation attacks.

Algorithm 8: Robust fingerprinting against correlation

attacks.

Input :A database R, a vanilla fingerprinting scheme FP, database

owner’s prior knowledge on the column-wise and

row-wise correlation, i.e., J′
and S′

, and individuals’

affiliation to the C communities.

Output : R̃
(
FP, Dfsrow(S

′), Dfs
col
(J′)

)
.

1 Apply the vanilla fingerprinting scheme on R and obtain

R̃
(
FP, ∅, ∅

)
;

2 Apply Dfsrow(S
′) on R̃

(
FP, ∅, ∅

)
using Algorithm 7 and obtain

R̃
(
FP, Dfsrow(S

′), ∅
)
;

3 Apply Dfs
col
(J′) on R̃

(
FP, Dfsrow(S

′), ∅
)
using Algorithm 6 and

obtain R̃
(
FP, Dfsrow(S

′), Dfs
col
(J′)

)
;

7 EVALUATION
Now, we evaluate the correlation attacks and the robust fingerprint-

ing mechanisms, investigate their impact on fingerprint robustness

and database utility, and empirically study the effect of knowledge

asymmetry between the database owner and a malicious SP.

7.1 Experiment Setup
We consider a Census database [3] as the study case. As discussed

in Section 3, we choose the state-of-the-art scheme developed in
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[24] as the vanilla mechanism, because it is shown to be robust

against common attacks (such as random bit flipping, subset, and

superset attacks). We use 128-bits fingerprint string (L = 128) for

the vanilla scheme, because when considering N SPs, as long as

L > lnN , the vanilla scheme can thwart exhaustive search and

various types of attacks [24], and in most cases a 64-bits fingerprint

string is shown to provide high robustness.

In different experiments, to distinguish different instances of the

row-wise and column-wise correlations, we also parametrize J ′
,

S′
, J , and S when specifying their resources. For instance, J ′(R)

indicates Alice’s prior knowledge on column-wise correlations are

calculated directly from the original database.

7.2 Evaluations on Census Database
Census database [3] records 14 discrete or categorical attributes

of 32561 individuals. To add fingerprint to this database, Alice

first encodes the values of each attribute as integers in a way that

the LSB carries the least information. Recall that to achieve high

database utility, we let the vanilla scheme only fingerprint the

LSBs (in Appendix A we validate that fingerprinting the other bits

reduces database utility). In particular, for a discrete numerical

attribute (e.g., age), the values are first sorted in an ascending order

and then divided into non-overlapping ranges, which are then

encoded as ascending integers starting from 0. For a categorical

attribute (e.g., marital-status), the instances are first mapped to a

high dimensional space via the word embedding technique [26].

Words having similar meanings appear roughly in the same area

of the space. After mapping, these vectors are clustered into a

hierarchical tree structure, where each leaf node represents an

instance of that attribute and is encoded by an integer and the

adjacent leaf nodes differ in the LSB. Besides, we use K-means to

group the individuals in the Census database into non-overlapping

communities, and according to the Schwarz’s Bayesian inference

criterion (BIC) [28], the optimal number of communities is C = 10.

7.2.1 Impact of Correlation Attacks on Census Database. We first

study the impact of Atkrow(S) and Atkcol(J), and then present the

impact of the integration of them. In this experiment, we assume

that the malicious SP has the ground truth knowledge about the

row- and column-wise correlations, i.e., it has access to S and J

that are directly computed from R. As a result, we represent its prior
knowledge as S(R) and J(R). By launching the row-wise, column-

wise, and integrated correlation attack, the malicious SP generates

pirated database R
(
FP,Atkrow(S(R)), ∅)

)
, R

(
FP, ∅,Atk

col
(J(R))

)
,

and R
(
FP,Atkrow(S(R)),Atkcol(J(R))

)
, respectively.

Impact of Atk
col

(J(R)). First, we validate that Atk
col

(J(R)) is
more powerful than the random bit flipping attackAtk

rnd
discussed

in Section 4. We set the threshold τAtk
col
= 0.0001 when comparing

|Jp,q (a,b) − J̃p,q (a,b)|.
1
As a result, it takes 8 iterations (attack

1
In all experiments, we choose a small value for τ Atk

col
, τ Dfs

col
, and τ

col
, because a database

usually contains thousands of data records and the addition of fingerprint changes a

small fraction of entries, which does not cause large changes in the joint distributions.

On the contrary, we choose a large value for τ Atk

row
and τrow , because the statistical

relationship is defined as an exponentially decay function, which ranges from 0 to 1,

and the added fingerprint results in a larger change for this statistical relationship.
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Figure 4: Comparison of (a) P
col

, (b) Prow, and (c) Pcov

achieved by R(∅, ∅,Atk
col

(J(R))) and R(Atk
rnd
, ∅, ∅) when

per
chg

are set as the values highlighted in gray in Table 2.

rounds) for Atk
col

(J(R)) to converge (i.e., stop including new sus-

picious fingerprinted positions in P). In Table 2, we record the

fingerprint robustness (i.e., numcmp and r ) and utility loss of the

malicious SP (fraction of modified entries as a result of the attack,

i.e., per
chg
= 1 − Acc(R)) when launching increasing rounds of

Atk
col

(J(R)) on the vanilla fingerprinted Census database. We

observe that with more attack rounds, more fingerprint bits are

compromised, and the accusable ranking of the malicious SP also

decreases, which suggests that Alice may accuse innocent SP with

increasing probability. In Table 3, we present the performance of

Atk
rnd

on the vanilla fingerprinted database. Specifically, by setting

the fraction of entries changed (per
chg

) due to Atk
rnd

equal to that

of Atk
col

(J(R)) with increasing rounds (i.e., the cells highlighted

in gray in Table 2), we calculated numcmp and r achieved by Atkrnd.
Combining Tables 2 and 3, we observe that if per

chg
is below

14.2%, Atk
rnd

cannot compromise any fingerprint bits, whereas

Atk
col

(J(R)) compromises 28 fingerprint bits (out of 128). Even

when per
chg
= 27.1%, Atk

rnd
can only distort 4 fingerprint bits. As

a result, if the malicious SP launches Atk
rnd

, it will be uniquely

accusable for pirating the database. Whereas, when per
chg
= 27.1%

Atk
col

(J(R)) distorts 82 bits, which makes the malicious SP only

rank top 91.4% accusable and will cause Alice accuse innocent SP

with very high probability (the cells highlighted in green in Table

2). In fact, for Atk
rnd

to compromise enough fingerprint bits so as

to cause Alice to accuse innocent SPs, it needs to flip more than

83% of the entries in the fingerprinted Census database. Clearly,

the vanilla fingerprint scheme is robust against Atk
rnd

, however,

its robustness significantly degrades against Atk
col

(J(R)).
In Figure 4, by setting per

chg
to the values highlighted in gray in

Table 2, we compute and compare the utility of the pirated database

(i.e, P
col

(R) for τ
col
= 0.0001, Prow(R) for τrow = 10, and Pcov(R))

obtained from the vanilla fingerprinted database after Atk
rnd

and

Atk
col

(J(R)), i.e., R(Atk
rnd
, ∅, ∅) and R(∅, ∅,Atk

col
(J(R))). We

also plot the utility of the vanilla fingerprinted database using black

lines as the benchmark (P
col

(R̃(FP, ∅, ∅)) = 0.95, Prow(R̃(FP, ∅, ∅)) =
1.00, and Pcov(R̃(FP, ∅, ∅)) = 0.99). Clearly, R(∅, ∅,Atk

col
(J(R)))

always achieves higher utility values than R(Atk
rnd
, ∅, ∅), and it

has similar utility values compared to R̃(FP, ∅, ∅) when per
chg

is

small, e.g., if per
chg

≤ 20%, P
col

(
R(∅, ∅,Atk

col
(J(R)))

)
≥ 0.92.

Combining Table 2, 3, and Figure 4, we conclude that Atk
col

(J(R))
is not only more powerful (in terms of distorting the fingerprint

bit-string), but it also preserves more database utility compared to
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Attack on robustness & using rounds of Atk
col

(
J(R)

)
R̃(FP, ∅, ∅) utility loss Atkrow

(
S(R)

)
1 2 3 4 5 6 7 8

using numcmp

N/A

28 43 55 58 63 74 77 82

Atk
col

(
J(R)

) r u u u < 0.08% < 0.73% < 53.2% < 71.8% < 91.4%

per
chg

4.4% 10.9% 14.2% 15.9% 18.4% 23.7% 25.3% 27.1%

using Atkrow

(
S(R)

)
numcmp 78 78 79 80 81 82 83 83 83

and Atk
col

(
J(R)

) r < 82.9% < 82.9% < 89.1% < 89.4% < 90.1% < 91.4% < 93.7% < 93.7% < 93.7%

per
chg

2.9% 8.9% 10.5% 11.3% 11.5% 11.9% 12.6% 13.7% 14.2%

Table 2: Fingerprint robustness and utility loss of different correlation attacks on the vanilla fingerprinted Census database
R̃(FP, ∅, ∅). The fingerprint robustness metrics are the number of compromised fingerprint bits, i.e., numcmp and i.e., accusable
ranking r . The utility loss of the malicious SP is the fraction of modified entries as a result of the attack, i.e., per

chg
= 1−Acc(R).

‘u’ stands for uniquely accusable. ‘< r ’ means top r accusable.

per
chg

≤ 14.2% 15.9% 18.4% 23.7% 25.3% 27.1%

numcmp 0 1 1 2 3 4

r u u u u u u

Table 3: Performance and cost of Atk
rnd

on the vanilla fin-
gerprinted Census database. per

chg
values are set to be equal

to that of Atk
col

(J(R)) (cells highlighted in gray in Table 2).
r = u means uniquely accusable.

Atk
rnd

. In addition to the generic utility metrics defined in Section

4.4, we also calculate and compare the utility some specific statisti-

cal computations on the pirated database. For example, under the

same attack performance (i.e., compromising exactly 63 fingerprint-

ing bits) Atk
col

(J) only causes 0.3% change in the frequency of

individuals having bachelor degree or higher and 0.01 change for

the standard deviation of individuals’ age, whereas, the same values

for Atk
rnd

are 1.4% and 0.12, respectively.

Impact ofAtkrow(S(R)). By setting the threshold τAtkrow
= 0.1when

comparing

∑nc
j,i |s

commc
i j − s̃i j

commc | in Section 5.2 we show the

impact of Atkrow(S(R)) in the blue cells of Table 2. After launch-

ing row-wise correlation attack on R̃(FP, ∅, ∅), 78 fingerprint bits
are distorted at the cost of only 2.9% utility loss. It makes the ma-

licious SP only rank top 82.9% accusable, and may cause Alice

accuse innocent SP with high probability. In particular, we have

P
col

(
R(∅,Atk

col
(S(R)), ∅)

)
= 0.90, Prow

(
R(∅,Atk

col
(S(R)), ∅)

)
=

0.95, and Pcov
(
R(∅,Atk

col
(S(R)), ∅)

)
= 0.97, which are all closer to

that of R̃(FP, ∅, ∅). This suggests again that the identified correla-

tion attacks are powerful than the conventional attacks and they

can maintain the utility of database.

Impact of integrated correlation attack. By launching

Atkrow(S(R)) on R̃(FP, ∅, ∅) followed by 8 rounds of Atk
col

(J(R)),
the integrated correlation attack can distort more fingerprint bits,

i.e., 83 bits, which makes the malicious SP’s accusable ranking drops

to top 93.7% (the cells highlighted in red in Table 2). This suggests

again that the vanilla fingerprint scheme is not capable of iden-

tifying the guilty SP that is liable for pirating the database if the

malicious SP utilizes data correlations to distort the fingerprint.

Note that, althoughAtk
col

(J(R)) has similar attack performance

compared to the integrated attack, its utility loss is higher, i.e., 27.1%

entries are modified by the attacker. Besides, at the early stages

of Atk
col

(J(R)), the malicious SP cannot distort more than half

of the fingerprint bits (e.g., at the end of the 5th round, only 63

bits are compromised by modifying 15.9% of the entries), which

is inadequate to cause Alice accuse innocent SPs and also makes

the malicious SP uniquely accusable. Since Atkrow(S(R)) can dis-

tort sufficient fingerprint bits and cause Alice to accuse innocent

SPs with high probability at a much lower utility loss (measured

using both generic utility metrics and specific statistical utilities,

like the change in frequencies of data records and standard devi-

ations), we conclude that it is more powerful than Atk
col

(J(R)).
This suggests that in real-world integrated correlation attacks, the

malicious SP can conduct Atkrow(S(R)) followed by a few rounds

of Atk
col

(J(R)) to simultaneously distort a large number of fin-

gerprint bits and preserve data utility when generating the pirated

database.

7.2.2 Performance of Mitigation Techniques on Census Database.
We have shown that correlation attacks can distort the fingerprint

bit-string and maymake the database owner accuse innocent SPs by

resulting in low degradation in terms of database utility. In this sec-

tion, we first evaluate the proposed mitigation techniques against

correlation attacks separately, and then consider the integrated

mitigation technique against the integrated correlation attack, i.e.,

the row-wise correlation attack followed by the column-wise cor-

relation attack. In this experiment, we also assume that Alice has

access to S′
and J ′

that are directly computed from R. Thus, we
represent her prior knowledge as S′(R) and J ′(R). As a result, we
have S′ = S and J ′ = J .

Performance of Dfs
col

(J ′(R)). As discussed in Section 6.1, the

mitigation strategy is determined by the marginal probability mass

transportation plan, which is heterogeneous for higher λp (a tun-

ing parameter controlling the entropy of the transportation plan)

and homogeneous for lower λp . To evaluate the utility loss due to

Dfs
col

(J ′(R)), we calculate the utility of R̃
(
FP, ∅,Dfs

col
(J ′(R))

)
by setting λp ∈ {100, · · · , 1000},∀p ∈ F , and show the results

in Figure 5. We see that all utilities monotonically increase as the
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mass transportation plans transform from homogeneous to hetero-

geneous (i.e., as λp increases). This is because, as the transporta-

tion plans become more heterogeneous, the mitigation technique

can tolerate more discrepancy between two marginal distributions

(Section 6.1), and hence fewer number of entries are modified by

Dfs
col

(J ′(R)).

200 400 600 800 1000
0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 5: Utilities of R̃(FP, ∅,Dfs
col

(J ′(R))) under varying λp .

Next, we fix λp = 500,∀p ∈ F , evaluate the performance (in

terms of both fingerprint robustness and database utility) of launch-

ingAtk
col

(J(R)) on R̃
(
FP, ∅,Dfs

col
(J ′(R))

)
with increasing attack

rounds. In Figure 6(a), we observe that at then end of 8 rounds of

Atk
col

(J(R)), the malicious SP can only compromise 24 (out of

128) fingerprint bits, which is not enough to cause Alice accuse

innocent SPs and will make itself uniquely accusable. In contrast,

as shown in Table 2, when launching Atk
col

(J(R)) on the vanilla

fingerprinted database R̃(FP, ∅, ∅), the malicious SP can compro-

mise 82 bits and make itself only rank top 91.4% accusable. This

suggests that proposed Dfs
col

(J ′(R)) significantly mitigates the

column-wise correlation attack.
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Figure 6: Fingerprint robustness and database utilities when
launching Atk

col
(J(R))) on R̃(FP, ∅,Dfs

col
(J ′(R))).

Furthermore, in Figure 6(b) we observe that Atk
col

(J(R)) also
degrades the utilities of the vanilla fingerprinted database post-

processed byDfs
col

(J ′(R)). In particular, the accuracy drops to 0.76
and the preservation of column-wise correlation drops to 0.67 at the

end of 8 rounds of Atk
col

(J(R)). Combining Figures 5 and 6, we

conclude that, as a post-processing step, the proposed column-wise

correlation mitigation technique provides robust fingerprint against

column-wise correlation attack and preserves database utility.

Performance of Dfsrow(S′(R)). In Table 4, we evaluate the per-

formance of the robust fingerprinted database against row-wise

attack, i.e., R̃(FP,Dfsrow(S′(R), ∅), along with the pirated database

obtained by launching Atkrow(S(R) on it. Clearly, Dfsrow(S
′(R))

successfully defends against Atkrow(S(R)), since the pirated data-

base only distorts 13 fingerprint bits and makes the malicious SP

uniquely accusable. Combining this result with Table 2 (cells in

blue), we conclude that Dfsrow(S
′(R)) not only mitigates the row-

wise correlation attack but it also preserves the database utility.

Acc P
col

Prow Pcov numcmp r

R̃(FP,Dfsrow(S′), ∅) 0.97 0.94 0.99 0.99 N/A N/A

R(∅,Atkrow(S), ∅) 0.93 0.92 0.94 0.98 13 u

Table 4: Impact of Dfsrow(S
′(R)) before and after

Atkrow(S(R)). r = u means uniquely accusable.

Performance of integratedmitigation.Here, we investigate the
performance of the integrated mitigation against the integrated

correlation attacks. By setting λp = 500,∀p ∈ F , we evaluate the

utility of R̃
(
FP,Dfsrow(S

′(R)),Dfs
col

(J ′(R))
)
before and after it

is subject to the integrated attack, i.e., Atkrow(S(R)) followed by

Atk
col

(J(R)). We show the results in Table 5. Clearly, after inte-

grated mitigation, the fingerprinted database still maintains high

utilities. Even if the malicious SP launches integrated correlation

attack, it can only compromise 4 fingerprint bits and makes it-

self uniquely accusable. It suggests that the proposed mitigation

techniques provide high robustness against integrated correlated

attacks.

Acc P
col

Prow Pcov numcmp r

after int. mitigation 0.94 0.91 0.96 0.97 N/A N/A

after int. attack 0.77 0.82 0.86 0.94 4 u

Table 5: Impact of integrated mitigation before and after in-
tegrated correlation attack. r = umeans uniquely accusable.

8 CONCLUSION
In this paper, we have proposed robust fingerprinting for relational

databases. First, we have validated the vulnerability of existing

database fingerprinting schemes by identifying different correla-

tion attacks: column-wise correlation attack (which utilizes the joint

distributions among attributes), row-wise correlation attack (which

utilizes the statistical relationships among the rows), and integra-

tion of them. Next, to defend against the identified attacks, we have

developed mitigation techniques that can work as post-processing

steps for any off-the-shelf database fingerprinting schemes. Specifi-

cally, the column-wise mitigation technique modifies limited en-

tries in the fingerprinted database by solving a set of optimal mass

transportation problems concerning pairs of marginal distributions.

On the other hand, the row-wise mitigation technique modifies

a small fraction of the fingerprinted database entries by solving

a combinatorial search problem. We have also empirically inves-

tigated the impact of the identified correlation attacks and the

performance of proposed mitigation techniques on an real-world
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relational database. Experimental results show high success rates

for the correlation attacks and high robustness for the proposed

mitigation techniques, which alleviate the attacks having access to

correlation models directly calculated from the data.
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A TRADEOFF BETWEEN FINGERPRINT
ROBUSTNESS AND DATABASE UTILITY

As discussed in Section 3, to preserve database utility, the added

fingerprint only changes the LSB of database entries. In this ex-

periment, we show that if the fingerprint bits are embedded into

other bits of entries, some utility metrics will decrease. Specifi-

cally, by fixing the fingerprinting ratio to 1/30, we evaluate the

utility (e.g., preservation of correlations and statistics metrics) of

the fingerprinted Census database obtained by using the vanilla

fingerprinting scheme and changing one of the least k (k ≥ 2) sig-

nificant bits (i.e., LkSB) of database entries (to add the fingerprint).

We show the results in Table 6.

Utilities LSB L2SB L3SB L4SB

Acc
(
R̃(FP, ∅, ∅)

)
0.98 0.98 0.98 0.98

P
col

(
R̃(FP, ∅, ∅)

)
0.95 0.90 0.88 0.86

Prow

(
R̃(FP, ∅, ∅)

)
1.00 0.98 0.98 0.98

Pcov

(
R̃(FP, ∅, ∅)

)
0.99 0.96 0.95 0.94

Table 6: Different database utility values obtained when the
insertion of fingerprint changes one of the leastk significant
bits of database entries.

We observe that although all fingerprinted databases achieve the

same accuracy when the fingerprinting ratio is set to be 1/30, other

utilities decrease if the added fingerprint changes LkSB (k ≥ 2) of

data entries. Especially, the preservation of column-wise correlation

degrades the most as k increases. The reason is that some pairs of

attributes are highly correlated and changing one of the LkSB may

create statistical unlikely pairs. For example, Masters education

degree corresponds to education of 14 years, if the L4SB of 14

(“1110”) is flipped, we end up with an individual who has a master

degree with only 6 (“0110”) years of education, which compromise

the correlation between “education” and “education-num”.
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