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Many and varied methods currently exist for featurization, which is the process of mapping
persistence diagrams to Euclidean space, with the goal of maximally preserving structure.
However, and to our knowledge, there are presently no methodical comparisons of
existing approaches, nor a standardized collection of test data sets. This paper provides a
comparative study of several such methods. In particular, we review, evaluate, and
compare the stable multi-scale kernel, persistence landscapes, persistence images,
the ring of algebraic functions, template functions, and adaptive template systems.
Using these approaches for feature extraction, we apply and compare popular
machine learning methods on five data sets: MNIST, Shape retrieval of non-rigid 3D
Human Models (SHREC14), extracts from the Protein Classification Benchmark Collection
(Protein), MPEG7 shape matching, and HAM10000 skin lesion data set. These data sets
are commonly used in the above methods for featurization, and we use them to evaluate
predictive utility in real-world applications.

Keywords: persistent homology, machine learning, topological data analysis, persistence diagrams, barcodes

1 INTRODUCTION

Persistence diagrams are an increasingly useful shape descriptor from Topological Data Analysis.
One of their more popular uses to date has been as features for machine learning tasks, with success
in several applications to science and engineering. Though many methods and heuristics exist for
performing learning with persistence diagrams, evaluating their relative merits is still largely
unexplored. Our goal here is to contribute to the comparative analysis of machine learning
methods with persistence diagrams.

Starting with topological descriptors of datasets, in the form of persistence diagrams, we provide
examples and methodology to create features from these diagrams to be used in machine learning
algorithms. We provide the necessary background and mathematical justification for six different
methods (in chronological order): the Multi-Scale Kernel, Persistence Landscapes, Persistence
Images, Adcock-Carlsson Coordinates, Template Systems, and Adaptive Template Systems. To
thoroughly evaluate these methods, we have researched five different data sets and the relevant
methods to compute persistence diagrams from them. The datasets, persistence diagrams and code to
compute the persistence diagrams is readily available for academic use.

As part of this review, we also provide a user guide for these methods, including comparisons and
evaluations across the different types of datasets. After computing the six types of features, we
compared the predictive accuracy of a ridge regression, random forest, and support vector machine
model to assess the type of featurization that is most useful in predictive models. The code developed
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FIGURE 1 | Left: The 2-dimensional sphere S? ¢ R®, right: the Mébius band M.
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FIGURE 2 | The Rips complex on a point cloud (X, dx) sampled around the unit circle, for four different scale choices.
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for this analysis is available, with some functions developed
specifically for use in machine learning applications, and easy-
to-use jupyter notebooks showing examples of each function with
multiple dataset types.

Of these methods, Persistence Landscapes, Adcock-Carlsson
Coordinates, and Template Systems are quite accurate and create
features for large datasets quickly. Adaptive Template Systems
and Persistence Images took somewhat longer to run, however,
the Adaptive Template Systems featurization method did
improve accuracy over other methods. The Multi-Scale Kernel
was the most computationally intensive, and during our
evaluation we did not observe instances of it outperforming
other methods.

2 BACKGROUND

Algebraic topology is the branch of mathematics concerned with
the study of shape in abstract spaces. Its main goal is to quantify
the presence of features which are invariant under continuous
deformations; these include properties like the number of
connected components in the space, the existence of holes and
whether or not the space is orientable. As an example, Figure 1
shows two spaces: the 2-dimensional sphere on the left, which is
the set § = {x € R® : x = 1} of 3-dimensional vectors with unit
norm, and the Mobius band M =[-1,1] x
[-1,1]/(-1,y) ~ (1,—y) on the right. The latter can be
thought of as the result of gluing the right and left edges of
the square [-1,1] x [-1,1] with opposite orientations.

The aforementioned properties of shape for these spaces are as
follows. Both S? and M are connected, while S? is orientable but

M is not. Moreover, any closed curve drawn on the surface of S
bounds a 2-dimensional spherical cap, and thus we say that the
sphere has no 1-dimensional holes. The equator {(x,0) : |x| <1}
of the Mdobius band, on the other hand, is a closed curve in M
which is not the boundary of any 2-dimensional region, and
therefore we say that M has one 1-dimensional hole. Finally, $ is
itself a closed 2-dimensional surface bounding a 3-dimensional
void—thus the sphere is said to have a 2-dimensional hole—but
M has no such features.

The homology of a space is one way in which topologists
have formalized measuring the presence of n-dimensional
holes in a space (Hatcher, 2002). Indeed, for a space X (e.g.,
like the sphere or the M6bius band) an integer n>0and a field
[ (like the integers modulo a prime p, denoted Z,), the n-th
homology of X with coefficients in [ is a vector space over [
denoted H, (X;[F). The main point is that the dimension of
this vector space corresponds roughly to the number of
essentially distinct n-dimensional holes in X. Going back
to the examples from Figure 1:

H, (Sz; Zz) =7y, Hy(M;Z,) = Z,
H($57,)=0, H(M;Z) =17,
Hy($57,) = Ty Hy(M;Z) =0

where, again, the dimension of Hj(X;[F) corresponds to the
number of connected components in X, the dimension of
H, (X; F) represents the number of 1-dimensional holes, and
soon for H, (X;F)andn > 1.Itis entirely possible that different
choices of F result in different dimensions for H,, (X; [); this is an
indication of intricate topological structure in X, but the
metaphor of holes is still useful.
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FIGURE 3 | The Rips persistence diagrams in dimensions O (blue) and 1
(orange), for a point cloud sampled around the unit circle.

2.1 Persistent Homology

There are several learning tasks where each point in a data set
has shape or geometric information relevant to the problem at
hand. Indeed, in shape retrieval, database elements are often 3D
meshes discretizing physical objects, and the ensuing learning
tasks are often related to pose-invariant classification (Pickup

Machine Learning Methods for Persistence Diagrams

et al, 2014). In computational chemistry and drug design,
databases of chemical compounds are mined in order to
discover new targets with desirable functional properties. In
this case, the shape of each molecule (i.e., of the collection of
comprising atoms) is closely related to molecular function, and
thus shape features can be useful in said data analysis tasks (Bai
et al., 2009).

If homology is what topologists use to measure the
shape of abstract spaces, then persistent homology is how
the shape of a geometric data set can be quantified (Perea,
2019). Persistent homology takes as input an increasing
sequence of spaces

X:X()CXIC"'CXL.

Any such sequence is called a filtration. The definition of
persistent homology relies on two facts: first, that one can
compute homology for each space separately, ie., H,(X,;[F)
for each 0<¢<L, and second, that each inclusion X, C X,
induces a linear transformation H, (X,;F)— H, (Xe1;F)
between the corresponding vector spaces. The n-th persistent
homology of the filtration X’ is the sequence

of vector spaces and induced linear transformations.
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FIGURE 4 | (A) An example apple from MPEG7 data. (B) An example image contour used for MPEG7. (C) The distance to mean point calculation used for sublevel
set persistence (D) Persistence diagrams from lower star persistence (E) Persistence diagrams from the contour.
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A Example 8

the persistence diagrams.
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FIGURE 5 | (A) Example number 8 from the MNIST dataset. (B) The same number 8 after computing each of the four types of coordinate transforms to compute

B Left to Right Sweep Right to Left Sweep

The evolution of features in PH,, (X; F), which is the main
point of interest, can be encoded and visualized through a
persistence diagram. In a nutshell, if each H, (Xj;[) is finite
dimensional and ﬁ’f(X ;F) denotes the rank of the linear
transformation  H, (Xj;F) » H,(X,;F)  induced by the
inclusion Xj Cc X,, j<¢, then the persistence diagram of
PH, (X;F), denoted dgm, (X;F), is the collection of pairs
(j, £) with nonzero multiplicity (i.e., number of repeats).

P =BG F) = BN (G ) - B (G F) + B (X F),
0<j<<L.

See section VIL.1 of Edelsbrunner and Harer (2010) for more
details. In other words, dgm,, (X'; ) is a multiset (i.e., a set whose
elements appear with multiplicity) of pairs, where each
(j,€) € dgm, (X;F) encodes ‘uf;’f homological features of the
filtration X" which appear at X; (i.e, j is the birth time) and
disappear entering X, (¢ is the death time). The persistence € — j
of (j,€) is often used as a measure of prominence across the
filtration X, but short-lived features can be quite informative for
learning purposes as well [see for instance Bendich et al. (2016)].

2.1.1 Filtrations From Point Cloud Data

There are several ways of constructing filtrations from geometric
data. Indeed, let X be a set and dy a measure of distance between
its elements. The pair (X, dx) is often referred to as point cloud
data, and the running hypothesis is that it is the result of sampling
X from an unknown continuous space. The ensuing inference
problem in Topological Data Analysis is to use (X,dx) to
estimate  shape/homological features of the unknown
underlying space. A popular strategy is to compute the
Vietoris-Rips complex

0<j.ksm

R, (X) := {{xo,...,xm} C X| max dX(xj,xk)SS,m € N} (1)

where € >0, a singleton {x} is thought of as a vertex at x, a set
with two elements {xo, x; } represents an edge between x; and x;,

a set {xg,x1,x,} spans a triangle, and so on. This construction
is motivated by the fact that R, (X) is known to approximate
the topology of the underlying space from which X was
sampled under various conditions on X and e (Latschev,
2001). In practice, however, an optimal choice of scale €>0
is unclear at best, so one instead considers the Vietoris-Rips
filtration

R(X): R, (X) CR,(X) C-- CR,; (X) (2)

for0<ep<e; <+ <er. The €¢’s can be chosen, for instance, to be
the different values of the distance function dx. Figure 2 shows an
example of this construction for X ¢ C sampled around the unit
circle S! = {z € C : |z| = 1}, and four scales € > 0.

The persistent homology of the Vietoris-Rips filtration,
i.e, PH, (R (X);F), can then be used to measure the shape of
the underlying shape of the point cloud. An important point is
that even though homology is invariant under continuous
deformations, the Vietoris-Rips complex is a metric-based
construction. Thus, the resulting Vietoris-Rips persistence
diagrams

dgm[ (X) = {(q, eg) with multiplicity y#* > ()}

often encode features such as density and curvature, in addition
to the presence of holes and voids (Bubenik et al., 2020).
Figure 3 shows the Vietoris-Rips persistence diagrams in
dimensions #n =0,1 for the data sampled around the unit
circle in Figure 2. The persistence of a point in a persistence
diagram can be visualized as its vertical distance to the diagonal.
This measures how likely it is for said feature to correspond to
one of the underlying space, instead of being a reflection of
sampling artifacts [see for instance Theorem 5.3 in Oudot
(2015)]. The fact that there is one highly persistent point for
n = 0 indicates that the data has one cluster (i.e., one connected
component), while the presence of one highly persistent point
for n =1 indicates that there is a strong 1-dimensional hole in
the data. Both are consistent with, and suggest, that the circle is
the underlying space.
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FIGURE 6 | Persistence Landscapes from the MPEG7 dataset to show differences in features. Each color corresponds to a different landscape, i.e., A for
k=1,2,8.
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FIGURE 7 | Persistence Images of a 5 from the MNIST set in dimension 0.

2.1.2 Filtrations From Scalar Functions and Image barycentric coordinates) to the triangular faces. The persistent
Data homology of the sublevel set filtration is often called sublevel set
If X is a topological space and f : X —> R is a function, then the  persistence, and it is useful in quantifying shape properties of
sublevel sets geometric objects which are endowed with scalar functions. See

O Figure 4 for an application of this idea. The corresponding
Xo=f (-00.a], acR persistence diagrams are denoted dgm,, (f).

define the so called sublevel set filtration of X. If X is a 3D mesh, Images provide another data modality where sublevel set

for example, then one can compute estimates of curvature at  persistence can be useful. Indeed, an image can be thought of

every vertex, and then extend said function linearly (via  as a function on a grid of pixels; if the image is in grey scale,
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FIGURE 8 | (A) Persistence Diagrams (B) Persistence Diagrams with boundaries of the support function for Tent Features (C) Persistence Diagrams with

then we have a single scalar valued function, and if the image is
multi-channel (like RGB color representations) then each
channel is analyzed independently. The grid yields a
triangulated space via a Freudenthal triangulation of the
plane, and the values of pixel intensity in each channel can
be extended via convex combinations to the faces [see Lemma
1 of Kuhn (1960)]. We will apply this methodology later on to
the MNIST hand written digit data base (Figure 5). This
approach to computing persistent homology from images is
not unique in the literature; other popular methods such as
cubical homology (Kaczynski et al., 2004) have been used for
this same purpose. This work, however, deals exclusively with
simplicial homology as it is the standard approach in many
applications.

2.2 The Space of Persistence Diagrams
Persistence diagrams have shown to be a powerful tool for
quantifying shape in geometric data (Carlsson, 2014).
Moreover, one of their key properties is their stability with
respect to perturbations in the input, which is crucial when
dealing with noisy measurements. Indeed, two persistence
diagrams D and D' are said to be §-matched, 8 >0, if there
exists a bijection m: A— A" of multisets A c D and A" c D’
with.

[x — m(x)|lo < 6 for every x € A, where || -[loo is the maximum
metric in R2.

If (a,b) € (D\A)U(D\A"), then b—a<26.

The bottleneck distance dg (D, D') is the infimum over all § > 0
so that Dand D' are §-matched; this defines a metric on the set Dy
of all finite persistence diagrams. The stability theorem of Cohen-
Steiner et al. (2007) for sublevel set persistence contends that if X
is a finitely triangulated space and f,g: X —» R are tame and
continuous, then

dy (dgm, (f), dgm, () <|f - g|.,

for every integer n>0. We note that the theorem is still true if
continuous is replaced by piecewise linear. Similarly, if (X, dx)
and (Y,dy) are finite metric spaces, then the stability of Rips
persistent homology (Chazal et al., 2014, Theorem 5.2) says that

dy (dgm” (X), dgm” (Y)) < 2dgu (X, Y)

where dgg(-,-) denotes the Gromov-Hausdorff distance
(Gromov, 2007).

In order to develop the mathematical foundations needed for
doing machine learning with persistence diagrams, it has been
informative to first study the structure of the space they form.
Indeed, if Dy denotes the space of finite persistence diagrams,
then we will let D denote its metric completion with respect to the
bottleneck distance dg. It readily follows that dp extends to a
metric on D. See Blumberg et al. (2014) for an explicit description
of what the elements of D are. In addition to the bottleneck
distance, the Wasserstein metric from optimal transport suggests
another way of measuring similarity between persistence
diagrams. Indeed, for each integer p>1 and D,D € D, their
p-th Wasserstein distance is

dw,(D,D) :

b\ 1/p
:irn11f<Z||x—m(x)||1;O+ D < > >>
x€A (a,b) e (D\A)U(D\A")

where the infimum runs over all multiset bijections m : A — A’, for
A cDandA' ¢ D'.One can show that de defines a metric on the set

D, = {D € D|dw, (D, @) < oo}

and that (D,, dwp) is a complete separable metric space (Mileyko
et al.,, 2011) with de —dg as p— 00.

Doing statistics and machine learning directly on the space
of persistence diagrams turns out to be quite difficult. Indeed,
(D, dp) does not have unique geodesics, and thus the Fréchet
mean of general collections of persistence diagrams is not
unique (Turner et al., 2014). Since computing averages, and
in general, doing linear algebra on persistence diagrams is not
available, then several authors have proposed mapping
(D, dg) to topological vector spaces where further analysis
can be done. These methods are the main focus of this review.
The theory of vectorization of persistence diagrams is an
active area of research, with recent results showing the
impossibility of full embeddability. Indeed, even though
the space of persistence diagrams with exactly n points can
be coarsely embedded in a Hilbert space (Mitra and Virk,
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TABLE 1 | Results from the Shrec14 Dataset using the average model classification accuracy + standard deviation over 100 trials.

Full results for SHREC14 dataset

Method Train Test Model
Multi-scale kernel (sigma = .5, sum of kernels) .8942 +.0142 .8938 +.0464 Kernel SVM
Persistence landscapes (n = 5, r = 200) .9968 + .0037 19312 +.0336 Ridge regression
.9302 +.0098 19186 +.0417 SVM (RBF, ¢ = 10)
19739 +.0190 9114 +.0441 Random forest
Persistent images (o = 40, s = .5) 7243 +.0387 .7048 +.0588 Ridge regression
9067 +.0147 .8876 +.0479 SVM (RBF, ¢ = 1)
.9855 +.0092 .865 +.0764 Random forest
Adcock-carlsson coordinates .85 +.0199 .7124 +.0814 Ridge regression
.8671 +£.0183 .6928 +.0599 SVM (RBF, ¢ = 50)
9147 +.0299 .6976 +.0899 Random forest
Template systems (d = 12, p = 1.1) 19442 +.0087 19100 + .0405 Ridge regression
.9350 +.0079 .9159 +.0383 SVM (RBF, ¢ = 1)
19483 +.0214 .8874 +.0481 Random forest
Adaptive template systems (CDER) .9937 +.0078 .9169 + .0395 Ridge regression
.9929 +.0083 .9064 +.0397 SVM (RBF, ¢ = 10)
.9729 +.0200 9164 +.0422 Random forest

TABLE 2| Results from the Protein Dataset using the average model classification accuracy + standard deviation over 54 trials corresponding to the predefined indices of the
dataset.

Full results for protein dataset

Method Train Test Model
Multi-scale kernel (sum of kernels) .8294 + .1063 .8803 +.0702 Kernel SVM
Persistence landscapes .9108 +.0615 .9620 +.0204 Ridge regression

19012 +.0682 .9782 +.0151 SVM (RBF)

.9011 +.0686 9782 +.0152 Random forest
Persistent images 19011 +.0682 .9758 +.0165 Ridge regression

.9007 +.0684 .9782 +.0151 SVM (RBF)

.9008 + .0685 .9782 +.0151 Random forest
Adcock-carlsson coordinates .9008 + .0685 .9780 +.0151 Ridge regression

.9009 + .0685 .9782 +.0151 SVM (RBF)

.9015 +.0677 9779 +.0151 Random forest
Template systems .9008 +.0684 .9780 +.0151 Ridge regression

.9020 +.0678 .9782 +.0151 SVM (RBF)

.9016 +.0678 9775 +.0152 Random forest
Adaptive template systems .9008 + .0685 .9782 +.0151 Ridge regression (CDER)

.9007 +.0684 .9782 +.0151 SVM (CDER) (HDB)

19100 +.0685 .9800 +.0151 Random forest

2021), this ceases to be true if the number of points is allowed
do vary (Wagner, 2019; Bubenik and Wagner, 2020). That
said, partial featurization 1is still useful as we will
demonstrate here.

3 FEATURIZATION METHODS

For each of the methods below, we start with a collection of
persistence diagrams. A persistence diagram can be represented
in either the birth-death plane or birth-lifetime plane—some
methods will require birth-death coordinates and others will
require birth-lifetime coordinates. The birth-death plane is the
representation pair (x,y) where x is the time of birth, and y is
the time of death of the feature in the persistence diagram. The
birth-lifetime plane can be defined as the collection of points

(x,y — x), where (x,y) is in birth-death coordinates. In this
manner, we define lifetime as the persistence y — x of a feature
(x, ). The persistence diagrams of a particular geometric object
can be calculated in a variety of ways, which will be made
explicit for each dataset at time of evaluation.

3.1 Multi-Scale Kernel

The Multi-Scale Kernel of Reininghaus et al. (2015) defines a
Kernel over the space of persistence diagrams, which can then be
used in various types of kernel learning methods. In general, a
kernel k is by definition a symmetric and positive definite function
of two variables. Mathematically, from Reininghaus et al. (2015),
given a set X, a function k : X x X — R is a kernel if there exists a
Hilbert space H, called the feature space, and a map @ : X — H,
called the feature map, such that k(x,y) = (@ (x), D (y))y for all
x,y € X. The kernel induces a distance on X defined as
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FIGURE 9 | (A) Example of skin lesion in HAM10000 (B) Skin lesion with mask (C) Mask only dataset.

TABLE 3| Characteristics of each dataset. The column headings can be explained as such: Observations—number of observations in the dataset, Diagrams —the number
of homological types used to compute persistence diagrams, Average Pairs —the average number of birth/death pairs across the set of persistence diagrams for a single
observation in the original dataset, and Min/Max Pairs —the minimum and maximum number of birth/death pairs across the set of persistence diagrams for a single

observation in the original dataset.

Dataset characteristics

Dataset Observations Diagrams
MNIST 70,000 8
SHREC14 300 2
Protein 1,357 2
MPEG7 1,400 2
HAM10000 10,000 18

di(%,y) = (k(xx) +k(3,y) - 2k(x,9)) = |[© @) - D),

Reininghaus et al. (2015) propose a multi-scale kernel on D as
follows. Given F, G € D, the persistence scale space kernel k, is

kq (F,G) = (D, (F), q)J(G)>L2(Q) (3)

where @, : D — L*(Q) is the associated feature map, and Q ¢ R?
is the closed half-plane above the diagonal. Deriving the solution
of a distribution-analogue of the Heat equation with boundary
conditions in Definition 1 of Reininghaus et al. (2015), the closed
form expression of the multi-scale kernel is:

1 Ilp-all? =
k,(F,G) = — T 8 — ¢ 80
( ) 8o Z ¢ ¢

where if g = (a, b), then g = (b, a).

The multi-scale kernel is shown to be stable w.r.t the 1-
Wasserstein distance by Theorem 2 of Reininghaus et al.
(2015), which is a desirable property for classification
algorithms. However, by Theorem 3 of Reininghaus et al.
(2015), the multi-scale kernel is not stable in the Wasserstein
sense for 1 <p <oo.

3.2 Persistence Landscapes

Persistence landscapes are a mapping of persistence diagrams
into a function space that is either a Banach space or Hilbert space
(Bubenik, 2020). Advantages of persistence landscapes are that
they are invertible, stable, parameter-free, and nonlinear.
Persistence landscapes can be computed from a persistence
diagram as follows.

Average pairs Min/Max pairs

1.15 077
14 1/29
346 3/500
205 1/500
5,783 13/32610

From Bubenik (2020), for a persistence diagram D = (a;, b;);p,
and for a<b, let

fiaw () = max (0, min (a + t,b - t)) @
and
Ak (f) = kmax{f(ubhi) (t)}iel (5)

with kmax as the kth largest element.

The persistence landscape is the sequence of piecewise linear
functions, A1, 1,, ... : R— R. Bubenik shows desirable properties
for working with persistence landscapes in statistical modeling, in
particular that even if unique means do not exist in the set of
persistence diagrams, persistence landscapes do have unique
means and the mean landscape converges to the expected
persistence landscape. Figure 6 shows an example of
persistence landscapes from the MPEG7 dataset, described in
the data section.

3.3 Persistence Images

From Adams et al. (2015), persistence images are a mapping
sending a persistence diagram to an integrable function,
called a persistence surface. Fixing a grid on R? the
integral over this grid yields pixel values forming the
persistence image. Advantages of persistence images
include a representation in R”", stability, and ease of
computation. When calculating the persistence image, a
resolution, a distribution, and a weighting function are
required as parameters. It is worth noting that the
resolution (i.e., number of pixels) determines the number
of features computed by the persistence image.
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TABLE 4 | Results from the MNIST Dataset using the average model classification accuracy + standard deviation over 10 trials.

Full results for MNIST dataset

Topological method Training accuracy Testing accuracy Model type
Multi-scale kernel (sum of kernels for 12,000 observations) .6895 +.0035 6932 +.0117 SVM
Persistence landscapes .8844 +.0004 .8786 +.0019 Ridge regression
.9231 +.0004 .9180 +.0018 SVM (RBF)
.5814 +.0098 .5828 +.0098 Random forest
Persistent images .8997 +.0005 .8934 +.0021 Ridge regression
.9368 + .0004 .9199 + .0023 SVM (RBF)
.6889 +.0036 .69563 +.0123 Random forest
Adcock-carlsson coordinates .8590 +.0010 .8547 +.0030 Ridge regression
.9525 +.0004 .9356 +.0018 SVM (RBF)
7214 +.0092 .7170 +.0097 Random forest
Template systems .896 +.0005 .8959 +.0017 Ridge regression
.9638 + .0003 9477 +.0015 SVM (RBF)
.6967 +.0035 .6973 +.0031 Random forest
Adaptive template systems .8819 +.0016 .8817 +.0027 Ridge regression (GMM)
.9515 +.0021 .9363 + .0021 SVM (RBF) (GMM)
.6914 +.0188 .6932 +.0209 Random forest

More explicitly, let D be a persistence diagram in birth-lifetime
coordinates. We take ¢, :R*—>R to be a differentiable
probability distribution. Using, for instance, the Gaussian
Distribution with mean u and variance 0> we have

R (A

¢, (xy) =

" 2m0?

The persistence surface p,, : R* - R is the function

Y fwe,(2)

u= (x,y—x)eD

pp(2) =

with f : R - R, a nonnegative weighting function that is zero

along the horizontal axis, continuous, and piecewise

differentiable. ~ The  persistence  image is  then

I(pp)p = ﬂdeydx, where integration is over the fixed grid
p

on R, This creates an image depicting high and low density
areas in the defined grid, that are represented as a high-
dimensional vector for use in machine learning algorithms.
An example is shown in Figure 7 taken from the MNIST
dataset.

3.4 Adcock-Carlsson Coordinates: The Ring
of Algebraic Functions on Persistence
Diagrams
This method is explored by Adcock et al. (2016) where the
authors highlight the fact that any persistence diagram with
exactly n points can be described by a vector of the form
(%1, Y15 X2, ¥25 - - - » Xu> ¥u) Where x; denotes the birth of the i-th
class and y; the corresponding death time. Since this specific
representation imposes an arbitrary ordering of the elements in
the persistence diagram, one can more precisely identify the set of
persistence diagrams with exactly #n points with elements of the
n-symmetric product of R?, denoted Sp" (R?).

The inclusions Sp” (R?) b SpH (R?) thus produce an inverse
system of affine coordinate rings

o A" (R?)] - A[Sp" (R)] = -

which provide the basis for studying algebraic functions on the
space of persistence diagrams.

With this setting in mind, the main goal of Adcock et al. (2016)
is to determine free generating sets for the subalgebra of
A[Sp™® (R?*)] comprised of elements which are invariant
under adjoining a point of zero persistence to a persistence
diagram. The following theorem is an answer to this question
(see Theorem 1 Adcock et al. (2016)).

Theorem 1 The subalgebra of 2-multisymmetric functions
invariant under adding points with zero persistence, is freely
generated over R by the set of elements of the form

Pap = z (xi +2:)" (i = xi)h

1

for integers >0 and b> 1.

These are the features we call Adcock-Carlsson coordinates.
Using this method we chose the following features for both the 0-
dimensional and 1-dimensional persistence diagrams, as suggested
in Adcock et al. (2016) when analyzing the MNIST data set:
226 (3 = %) X Omax = ) (i = 00 2o (i = )" X i = 31)°
i—x)". ! ’ ’

3.5 Template Systems

The goal of this method is to find features for persistence
diagrams by finding dense subsets of C(D,R). To accomplish
this we will rely on the fact that given a persistence diagram
D e D, and a continuous and compactly supported real-valued
function on W = {(x,y) € R* : 0<x <y}, i.e. for f € C, (W), we
can define a continuous [see Theorem 26 Perea et al. (2019)] map
v(D) : C.(W) — R given by

v(D,f) = Y f (%)

xeD

The function D+ (D) defines a continuous injection
D+ C.(W) into the topological dual of C.(W). The specific
topology in the codomain is chosen so that v is in fact continuous.
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Timing comparison by method
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FIGURE 10 | Comparison of timing by method. The legend is the same for all plots. The x-axis represents the size of the dataset, and the y-axis represents the time
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This injective featurization allows us to define a template
system for D as a collection 7 € C.(W) such that Fr := {v(-,f) :
D — R|f € T} separates points. That is, if D, D' € D are distinct,
then there exists f € 7 for which v(D,f) # »(D, f).

The advantage of working with these template systems is that
they can be used to approximate real-valued functions on the
space of persistence diagrams as proven by the following theorem
[see Theorem 29 Perea et al. (2019)].

Theorem 2 Let 7 ¢ C.(W) Be a Template System for D, let
C ¢ D Be Compact, and let F : C — R Be Continuous. Then for
Every € >0 There Exist N € N, a Polynomial p € R[x,...,xy]
and Template Functions fi,...,fy € 7 so That

p(/(Df).....v (D)) - F(D)| <
for every D € C.

That is, the collection of functions of the form
D—p(D,f1),...,v(D,fn)), is dense in C(D,RR) with respect
to the compact-open topology.

Even though this theorem provides the theoretical
underpinnings to guarantee the existence of solutions to
supervised machine learning problems, it does not provide
the specifics for doing so. In particular, one question to
answer is how to choose suitable families of template
functions. In our evaluations we will explore both prescribed
families for template systems, as well as data-driven or
adaptive ones.

In the prescribed front we have the tent functions described
below. See also Figure 8. In the birth-lifetime plane, and given a
point x = (a,b) € W and a discretization scale 0<§<b, the
associated tent function on W is given by
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TABLE 5 | Results from the HAM10000 Dataset using the average model classification accuracy + standard deviation over 10 trials.

Results for HAM10000 dataset

Machine Learning Methods for Persistence Diagrams

Topological method

Multi-scale kernel
Persistence landscapes .8347 +.0022
.6695 + 0
6695 + 0
7417 +.0017
7122 +.0012
.6695 + 0
.6719 +.0007
.6801 +.0009
.6695 + 0
.7193 +.0015
.7830 +.0024
.6695 + 0

Persistent images (pixels = 20, spread = 1)
Adcock-carlsson coordinates
Template systems (d = 10, p = 1.5)

Adaptive template systems

1
8o (%) = |1 - smax{lx —al, |y - b|}‘

where |r|, = max{0, r}. As § < b, this function has support in the
compact box [a—-8,a+d8]x[b-8,b+5] cW. Given a
persistence diagram D € D in birth-death coordinates, the
value of the tent function is

Geo(D) = ) gus(%y—x).

(x,y)eD

3.6 Adaptive Template Systems

The Adaptive Template Systems methodology of Polanco and
Perea (2019a) concerns itself with improving and furthering
some of the work presented in Perea et al. (2019). The goal is to
produce template systems that are attuned or adaptive to the
input data set and the supervised classification problem at hand.
One shortcoming of template systems, like tent functions, when
applied to Theorem 2 is that without prior knowledge about the
compact set C C D, the number of template functions that carry
no information relevant to the problem can be high. By reducing
this overhead, adaptive templates improve the computation
times and accuracy in some specific problems.

The relationship between template systems and adaptive
template systems is demonstrated in Figure 4, showing the
adaptive template systems depend on density of data. To do
so, given a compact set C C D we consider theset S= U D c W
along with different algorithms such as Gaussian mixtdre models
(GMM) (Reynolds, 2009), Hierarchical density-based spatial
clustering of applications with noise (HDBSCAN) (Campello
et al. ,2013) and Cover-Tree Entropy Reduction (CDER)
(Smith et al., 2017) to define a family of ellipsoidal domains
{zeR?: (z-x)"A(z-x)<1} in W, fitting the density
distribution of S. Here A is a 2x2 symmetric matrix and
x € R%

Once this family of ellipsoidal domains is computed, we use
them to define the following adaptive template functions

| 1-@z-x"A(z-x) if(z-x)"A(z-x)<1
fA(z)_{O if (z-x)"A(z-x)>1

Training accuracy

Testing accuracy Model type
Did not run
.6881 +.0074 Ridge regression

.6692 + 1.2 - 16
.6692 + 1.2 - 16

SVM (RBF, ¢ = 1)
Random forest

6371 +.0671 Ridge regression
.6895 +.0031 SVM (RBF, ¢ = 1)

.6692 + 1.2e - 16 Random forest
.6696 +.0025 Ridge regression
.6710 +.0019 SVM (RBF)

6692 + 1.12e - 16 Random forest
.6987 +.0041 Ridge regression
.7303 +.0054 SVM (RBF, ¢ = 5)

6692 + 1.2e - 16 Random forest
Did not run

3.7 Other Approaches

The featurization methods presented in this section are by no
means an exhaustive list of what is available in the literature. Here
are some others that the interested reader may find useful:

e The Persistent homology rank functions of Robins and
Turner (2016) are similar in spirit to persistent
landscapes, in that they provide an injective inclusion
of Dy into a Hilbert space of functions where techniques
like functional Principal Component Analysis are
available. Indeed, for a filtration X, its n-th persistent
rank function is defined as

\\% - R
(ab) — P*(X)=rank(H,(X.) — H, (Xp)).

This is equivalent, for a persistence diagram D € Dy, to
defining the function

W - R
(a,b) = #{(x,y) e D:x<aandy>b}

where # is multiset cardinality. The Hilbert space in question is
the weighted L?-space L*(W,¢). Here ¢ : [0,00)— [0, 0c0)
satisfies Jgo ¢(t)dt<oco, and the inner product of rank
functions is

F.89y = [£ (g (5)0 O = )y

w

This approach has shown to be effective in analyzing point
processes, and sphere packing patterns.

The Persistent curve (Chung et al., 2018; Giusti et al., 2015)
provides another functional summary closely related to
persistent rank functions. Specifically, for a persistence
diagram D € D, its persistence curve (Chung et al.,, 2018)
is the function

[0,00) — [0,00)
t —  #{(x,y) e D:x<t<y}
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Discretizations of these curves have been useful in computer
vision tasks (Chung and Lawson, 2020), as well as in neuroscience
applications (Giusti et al., 2015).

Other kernel methods, besides the Multi-Scale kernel of
Reininghaus et al. (2015), have appeared in the literature.
They correspond to the following choices of kernel function
k : Dy x Dy — R. The Persistence Weighted Gaussian Kernel of
Kusano et al. (2016) is defined as

e
202

kpwe (D,D') = Z arctan (Cly - x"’) -arctan (C|y’ - x' ‘P) ‘e
i’::((i}:)ygfjev'
for parameters C, p, 0 >0, while the Sliced Wassertein Kernel of
Carriere et al. (2017) takes the form

—dgw (D,D’)
202

kSW(D, D') = exp
where dgw (-,-) is the so-called sliced Wasserstein distance
between persistence diagrams [see Eq. 2 and Definition 3.1 of
Carriere et al. (2017)]. If instead one uses the Fisher Information
metric dppy (-, ) [see Eq. 3 of Le and Yamada (2018)], then the
result is the Persistence Fisher Kernel

ker(D,D') = ¢t (D) 50,

Persistence diagrams as features for deep neural networks
have also been studied recently. In particular, the PersLay
framework of Carriere et al. (2020) leverages the Deep Sets
architecture of Zaheer et al. (2017) to implement layers that
can process persistence diagrams. Specifically, layers of the
form:

D op ({w(x)¢(®)},.p)

where op (-) is a permutation invariant operator (e.g., max, min,
sum, etc), w : R? > R is a weight function, and ¢ : R* > R is a
representation function. By optimizing w and ¢ in a parametric
family—i.e., w = w, and ¢ = ¢ —the training of the network can
lead to vectorizations attuned to specific learning tasks.

4 DATASETS

The five different datasets considered in this work were
chosen from a collection of experiments presented in the
literature of topological methods for machine learning. We
acknowledge that this selection is inherently bias towards
datasets with favorable performance with regards to specific
topological methods. Nevertheless, we counterbalance this by
applying all the evaluated featurization methods to all the
data sets here considered and compare the classification
results across all the presented methodologies. This
comparative work showcases how the variation between
methods results in the need for the user to find suitable
combination of featurization methods and parameter
tuning to obtain optimal results in a given dataset. As

Machine Learning Methods for Persistence Diagrams

such, readers should view this as a resource for their own
analysis, and not as a recommendation for specific
techniques.

For all datasets and methods, parameter tuning was done
using a grid search method on a subset of data that was not used
to report final results, and parameters were chosen based on
performance of a ridge regression model, random forest and
support-vector machine (SVM) model. It is worth noting a
weakness of the analysis in that the same parameters were
used in the feature set calculation for all reported models, and
run with a single split. This was due to time required for feature
calculation.

The ridge regression and random forest classifier were run
with default parameters, and the support-vector machine was run
using the radial basis function (RBF) with some tuning on the cost
parameter (C). The exception is for the Multi-Scale Kernel feature
set—we only fit a support-vector machine model. It is important
to highlight that results regarding ridge regression with
(polynomial and radial basis function) kernel methods are not
included in this work as they produce increased computational
times while the classification results do not improve significantly
compared to the one presented here. Each dataset was sampled
for a 10 or 100 trials depending on size, with the exception of the
Protein Classification Dataset, which included indices for
predefined problems.

Random forest classifiers as presented in Breiman (2001) are
used to solve the same classification problems presented for each
data set. Parameters such as number of trees in each forest and the
size of each tree are chosen based on performance and tuned on
the testing set.

4.1 MNIST
The MNIST dataset from LeCun and Cortes (1999) is a
database of 70,000 handwritten single digits of numbers zero
to nine. An example image from the MNIST database is shown
in Figure 7.

The calculation of persistence diagrams for the MNIST dataset
is as in Adcock et al. (2016). This method creates a base of 8
different persistence diagrams to use in the application of
methods. The persistence diagrams are calculated using a
“sweeping” motion in one of four directions: left to right, right
to left, top to bottom, or bottom to top, corresponding to the 0-
dimensional and 1-dimensional persistence diagrams. To
compute this filtration, pixels are converted to a binary
response with intensity calculated based on position. This has
the effect that depending on the direction of sweep, features will
have different birth and death times, providing distinct
information for each direction. The number of topological
features available for model fitting is dependent on the
method. For the Persistent Images, Persistence Landscapes,
and Template Systems there are eight features each. The
Multi-Scale Kernel produces eight different kernel matrices,
and for Adcock-Carlsson Coordinates, 32 different features
were computed from these persistence diagrams.

Figure 5 shows the various calculations of persistence diagrams
for an example number eight. Both 0-dimensional and 1-dimensional
persistence diagrams were used for the MNIST dataset, noting that
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some observations did not have 1-dimensional persistence diagrams,
so these observations were filled with a single diagram of birth-death
coordinate of [0,.01].

For the MNIST dataset, a random sample of 1,000 images was
used to tune parameters, with 80% used for the training portion,
and 20% used for the testing portion. We used the set of 60,000
images corresponding to the training set of MNIST to create our
own training and testing sets for model fitting and evaluation. For
this set of 60,000, 10 trials were run with an 80% training and 20%
testing split to determine model performance.

4.2 SHREC14

We evaluated the SHREC 2014 dataset (Pickup et al,, 2014) in the
same manner as the authors of Polanco and Perea (2019a). To
compute the topological features, the authors of Reininghaus et al.
(2015) describe using a heat kernel signature to compute
persistence diagrams for both the 0-dimensional and 1-
dimensional persistence diagrams. The dataset consists of 15
different labels, corresponding to five different poses for the
three classes of male, female, and child figures.

As noted in Polanco and Perea (2019a), parameters in the
dataset define different problems due to a different calculation of
the heat kernel signature, and for this evaluation we focused on
the problem with the highest accuracy as reported in Polanco and
Perea (2019a).

For the SHREC14 dataset, a random sample of 90 images (30%
of the data) was used to tune the model and determine appropriate
model parameters. The remaining 210 observations were split into
80% training and 20% testing for 100 trials to report final model fit.
Persistence diagrams for 0-dimensional homology and 1-
dimensional homology were computed for this dataset.

Table 1 shows complete results for the SHREC 2014 dataset.

4.3 Protein Classification

We use the Protein Classification Benchmark dataset
PCB00019 Sonego et al. (2007) as another type of data to
evaluate the topological methods above. This specific set
contains information for 1,357 proteins corresponding to 55
classification problems, and we reported on 54 of the
problems using one to tune parameters. The training and
testing index were provided, and the mean accuracy was
reported for both training and testing sets using these indices.
Table 2 shows results from our experiments using the training
and testing indices provided in the original dataset.

Persistence diagrams for this dataset were computed for each
protein by considering the 3-D structure [provided in wwPDB
consortium (2018)] as a point cloud in R?. This point cloud was
built using the x, y and z position of each atom in the molecule at
hand. With this information the persistent 0-dimensional and 1-
dimensional homology is computed using Ripser from Tralie
et al. (2018).

4.4 MPEG7

The mpeg-7 dataset from Bai et al. (2009) is a database of object
shapes in black and white, with 1,400 shapes in 70 classes. An
example from the original dataset is shown in Figure 4 along with
the contour as described below.

Machine Learning Methods for Persistence Diagrams

To compute persistence diagrams, first the image contour is
computed by placing observations from the point cloud into a
sequence. The distance curve is computed as the distance from
the center of the sequence. Sublevel set persistence is taken using
the computed distance curves as point cloud data. Persistence
diagrams for both 0-dimensional and 1-dimensional homology
were computed for this dataset.

We used this dataset for a timing comparison of featurization
methods from persistence diagrams. We do not report on the
results of this dataset. An example notebook of MPEG7 is
provided using only four shapes—apple, children, dog, and
bone. This approach is due to the initial difficulty in getting
accurate models for the full dataset. Due to the small number of
samples (80 total) and lack of repeated sampling, the estimates
provided for this dataset are not stable and are not reported.

4.5 HAM10000

The HAM10000 dataset provided by Philipp Tschandl et al. (2018) is
a collection of 10,000 images of skin lesions with one 7 potential
classifications: Actinic Keratoses and Intraepithelial Carcionma, Basal
cell carcinoma, Benign keratosis, Dermatofibroma, Melanocytic nevi,
Melanoma, Vascular skin lesions. A total of 18 persistence diagrams
for this set were calculated using the methods outlined in Chung et al.
(2018), 9 corresponding to the 0-dimensional homology and 9
corresponding to the 1-dimensional homology.

To obtain such diagrams, first a mask is computed by
implementing the methodology proposed in Chung et al.
(2018). In general terms, this method creates a filtration of
binary images obtained from different thresholds to convert the
gray scale image into a binary one. Once this binary filtration is
obtained, the center most region of the image is computed using
the “persistence” of each point in the binary filtration. An example
image and this process is shown in Figure 9.

Once the mask is computed it is applied to the original image and
then it is converted into three different color models: RGB, HSV , and
XYZ. Each color model is split into their corresponding channels,
and for each channel we use sublevel set filtration to obtain 0-
dimensional and 1-dimensional persistence diagrams. In total, for
each image on the data set we obtain 18 persistence diagrams, 9 in
homological dimension 0 and 9 for homological dimension 1.

To tune the models, a random sample of 250 images were
taken a ridge regression, random forest, and support vector
machine model were fit to determine parameters. The
remaining 9,750 images were split into an 80% training and
20% testing set to report final results.

To evaluate the HAM10000 dataset, due to the large number of
birth and death pairs in each persistence diagram, subsampling of
persistent features was required. Each observation in a data set, for
example an image, will yield 18 persistence diagrams corresponding
to homological features in that observation. In the HAM10000
dataset, there was an average of 5,783 birth-death pairs in each
persistence diagram. This was an issue to complete computation for
the vectorization methods, even for adaptive templates, so each
persistence diagram was subsampled as follows.

The method of subsampling is two steps: Highly persistent
features were always included, and a uniform random sampling
method (without replacement) was used to sample the remaining
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points. The threshold for feature lifetime and number of points to
sample was determined by using parameters that preserve the
distribution of points in each persistence diagram. As a result,
features in each persistence diagram with a lifetime of five or
more were automatically included, and 5% of the rest of the
points were also included. This resulted in sampled persistence
diagrams with an average of 290 points each (Table 3).

5 USER GUIDE

5.1 Available Functions
As part of the available code, a function for each method is
included. Each function requires two sets of persistence diagrams,
a training set and a testing set, and parameters specific to the
function. The function returns two feature sets for that method,
corresponding to the training and test set respectively. Each
function also prints the time in seconds taken at the end of
each run. In this section of the user guide each function is
described, along with the required parameters for the function.
The Multi-Scale Kernel feature matrix can be computed using
the function kernel features or fast kernel features. It
is recommended to use fast_kernel_features due to computation
time. Both functions require a parameter sigma, denoted as s in the
function with a default value of 4. In Reininghaus et al. (2015) this
parameter is referred to as the scale parameter. From the closed
form distribution of the Multi-Scale Kernel

Alp-al——5
-|le-l|s

80-¢

1
k(G =— Y e
peFgeG

(6)

we note that as sigma, o, increases the function decreases. Increasing
sigma results in a less diffuse kernel matrix, while decreasing sigma
results in a more diffuse kernel matrix.

Due to time required for the Multi-Scale Kernel, there are two
additional sets of functions that use Numba (Siu Kwan Lam and
Seibert, 2015) for significantly faster computation. In the current
implementation, these are not able to be combined with multi-core
processing (MPI for example), and have a different format than the
other functions included. These functions are provided in the
github repository for this project, and were used to compute results
for the Multi-Scale Kernel for the MNIST dataset.

The Persistence Landscapes features can be computed using
the function landscape_features. The Multi-Scale Kernel function,
landscape_features requires two parameters: the number of
landscapes, n and resolution, r. The number of landscapes
parameter, n, controls the number of landscapes used, and the
resolution, r, controls the number of samples used to compute the
landscapes. The default parameters for # is 5 and r is 100.

The Persistence Images can be computed using the function
persistence_image_features. The  persistence_image features
function requires two parameters, pixels and spread. The pixels,
p is a pair that defines the number of pixels along each axis. The
spread, s, is the standard deviation of the gaussian kernel used to
generate the persistence image. It is worth noting that the
implementation here uses the gaussian kernel, however, other
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distributions could be chosen so that s would correspond to
parameters specific to the chosen distribution. Additionally, the
weighting function is constant for this implementation. Increasing
spread increases the variance for each distribution, resulting in
larger “hot spots”. Increasing pixels provides a smoother
distribution, whereas decreasing pixels yields a less smooth
distribution. Note that increasing pixels increases computation
time. This is demonstrated in Figure 7 in the methods section.
The Adcock-Carlsson Coordinates features can be computed
using the function carlsson_coordinates, does not require any
parameters. This function returns four different features for every
type of persistence diagram provided. So for datasets that have
persistence diagrams corresponding to 0-dimensional and 1-
dimensional homology, 8 features are returned for machine
learning. The features returned correspond to the four
coordinates calculated in Adcock et al. (2016), and are:

25 0=
Z(ym =) (i = x)
fo (i -x)",

Z Omax = 25)” (i = %)’

The Template Systems features can be computed using the
function tent_features, and has a choice of two parameters: d,
which defines the number of bins in each axis and padding, which
controls the padding around the collection of persistence
diagrams. This function returns a training and testing set. This
function computes the tent features from Perea et al. (2019).

The Adaptive Template Systems features can be called with
the function adaptive_features, and requires the labels for the
training set. Users can choose three different types of Adaptive
Templates: Gaussian Mixture Modeling (GMM), Cover-Tree
Entropy Reduction (CDER), and Hierarchical density-based
clustering of applications with noise (HDBSCAN). The
parameter d refers to the number of components when using
the GMM model type. This would be minimally the number of
classes in your data, and ideally represents closer to the number of
distributions in the data that correspond to each observation.
Details on these methods can be found in Polanco and Perea
(2019a), as well as the original references linked in the methods
section. During this evaluation, we evaluated adaptive templates
using both GMM and CDER methods, but did not formally
evaluate HDBSCAN. HDBSCAN was difficult to formally assess
as we had difficulty with completion of the algorithm for some
datasets. For those datasets we were able to complete, we did not
notice an improvement over other adaptive methods.

6 RESULTS

One consideration we must make before analysing the results comes
from the computation of Multi-Scale Kernel features. As explained
for each dataset in Section 4, more often than not we will compute
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multiple persistent diagrams per data point in a given data set. Such
persistent diagram correspond to 0-dimensional, 1-dimensional,
and in some cases 2-dimensional persistent homology (see details in
Section 2). To compute Multi-Scale Kernel as given by Eq. 6 we
require pairs of persistent diagrams. Since this multi-scale kernel
provides a notion of similarity between persistent diagrams
(Reininghaus et al.,, 2015) we require it to be computed between
diagrams corresponding to the same dimension homology and
method type. For example, the kernel matrix that corresponds to
the 0-dimensional homology of a data set is computed using the
persistence scale space kernel between two sets of persistence
diagrams that represent the O0-dimensional homology. This
means that for a dataset that has sets of 0-dimensional
homology persistence diagrams and 1-dimensional homology
persistence diagrams, two kernel matrices were returned (one
per each dimension).

The kernel matrix used in our models is the sum of available
kernels, and differs based on the persistence diagrams available for
each dataset. While this does improve accuracy significantly over
individual kernel matrices, other methods of combining kernel
features were not explored in this paper, but is available in Génen
and Alpaydin (2011) for the interested reader. The available
parameter, sigma, is consistent across all types of diagrams for
our evaluation.

For each of the other methods, Persistence Landscapes,
Persistence Images, Adcock-Carlsson Coordinates, Template
Systems, and Adaptive Template Systems, each feature matrix
was constructed for the relevant set of diagrams, and all
topological types were used in fitting the same model.

The datasets used in this analysis were of varying size, both in
terms of observations and the size of sets of persistence diagrams.
As noted in the descriptions of data, the types of persistence
diagrams calculated also differs. A summary of characteristics for
each dataset is included in Table 3.

6.1 MNIST

The Multi-Scale Kernel features calculated yielded eight
different kernel matrices, and the final kernel matrix was
calculated using the unweighted summation of these kernels
as in Gonen and Alpaydin (2011). Due to the time needed for
computation of the Multi-Scale Kernel, a smaller set of 12,000
observations was used to report final results and a version of
the kernel computation using Numba with a gpu target was
necessary.

Table 4 shows complete results for the MNIST analysis. Four
different methods (highlighted on the table) provided similar
results for the MNIST dataset, and we note the SVM model had
higher accuracy in each case. This table, and all subsequent results
tables, include the method used to construct topological features,
training and test accuracy, and model and parameters used for
evaluation.

6.2 SHREC14

Results are reported in Table 1. Adaptive Template Systems and
Persistence Landscapes were the two methods with highest
classification accuracy on the test dataset, with Template Systems
and the Multi-Scale Kernel performing nearly as well.

Machine Learning Methods for Persistence Diagrams

6.3 Protein Classification
Nearly all of the topological methods in this paper

provided similar classification accuracy for this dataset. We
observe the testing accuracy as higher than the training
accuracy for this dataset, and the results are similar to those
in Polanco and Perea (2019b). The Multi-Scale Kernel though did
not perform as well and as shown in Figure 10 is the most
computationally intensive. Results are reported in Table 2.

6.4 HAM10000

Due to run time for the large number of points in each persistence
diagram, even after subsampling, results were not reported for the
Multi-Scale Kernel or Adaptive Template Systems.

Results are listed in Table 5. The HAMI10000 dataset
presented the largest computational challenge during this
review, and is a continued area of research.

7 COMPUTATION TIME OF FEATURES

Formal timings were captured for all features for the 0-dimensional
persistence diagrams for the MPEG7 and Protein Datasets. A
comparison of timings is in Figure 10. The timing reported is
for the generation of features from one type of persistence diagram
for a dataset of that size. This means when computing a training
feature set and testing feature set for multiple types of persistence
diagrams, the expected time to generate features can be
significantly longer. For example, in the MNIST dataset we
compute four different types of persistence diagrams with both
0-dimensional and 1-dimensional homology, giving eight sets of
features that can be generated for the sets of persistence diagrams
for that dataset. Specific to the multi-scale kernel method, the
timing reported is for a symmetric feature matrix that is nxn, where
n is the number of observations in the dataset. This means the
training feature set requires less computation time than a testing
feature set of comparable size.

Additionally, during the review of these methods, we did not
encounter significant issues with model fitting, hence formal timings
were not recorded for this portion of the analysis. Conclusions from
these timings are addressed in the discussion section.

7.1 Data Availability
The datasets, persistence diagrams (or code to compute the diagrams),
and all other associated code for this study can be found in the
machine learning methods for persistence diagrams github repository
https://github.com/barnesd8/machine_learning for_persistence.

For each of the five datasets, the following code is available:

e A jupyter notebook that loads and formats the persistence
diagrams including images and does a preliminary model
fitting on a subset of the data

e A python script that calculates the persistence diagrams
from the original dataset - some of these are written using
MPI depending on the size of the dataset

e A python script that fits models for random samples of the
data to get mean estimates of accuracy for both the training
and test dataset
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These scripts reference modules included in the github
repository, including a persistence methods script that calculates
features from persistence diagrams for a training and test dataset.
This uses a combination of other available functions and functions
written specifically for this paper.

The Template Systems and Adaptive Template Systems
methods use functions from https://github.com/lucho8908/
adaptive_template_systems, which is the corresponding code
repository for Polanco and Perea (2019a). The available
methods in our extension include Tent Functions and
Adaptive Template Functions (GMM, CDER, and HDBScan
methods).

The Adcock-Carlsson Coordinates method is a function
developed specifically for this paper, and includes the
calculation of the 4 different features used in our analysis. The
Persistence Landscape method uses the persistence landscape
calculation from the Gudhi Package Dlotko (2021). The Multi-
Scale Kernel Method has two included implementations, one is
from Nathaniel Saul (2019) and is slower to compute, while the
other is a faster implementation that can be used on larger
datasets. All of the results in this paper were reported using
the implementation written specifically for this paper. The
Persistence Images features are also from Nathaniel Saul
(2019). Additionally, many functions from Pedregosa et al.
(2011) are used throughout.

8 DISCUSSION

Adcock-Carlsson Coordinates, Tent Functions, and Persistence
Landscapes scale well, and perform well even for large datasets. It
is of note though that parameter choice will affect computation
time. This was especially notable in the Template Features (Tent
Functions) computation time. As the number of tent functions is
increased, the time to compute features also increases. We
observed a superlinear increase, however, even with this
increase computation time was not a barrier for analysis.

Persistence Images and Adaptive Template Functions do not
scale or perform as well, however, do provide good featurizations
for accurate models and should be considered depending on
the dataset. Specifically, the Adaptive Template Functions was
not completed for the full HAMI10000 dataset due to
computation time.

When using these methods, it should be of note that the Multi-
Scale Kernel method is computationally intensive, and does not
scale well. Additionally, the accuracy achieved is not better than
other methods for the datasets in this paper.
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