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ABSTRACT 

A major challenge for science educators is teaching foundational concepts while introducing 

their students to current research. Here we describe an active learning module developed to teach 

protein structure fundamentals while supporting ongoing research in enzyme discovery. It can be 

readily implemented in both entry-level and upper-division college biochemistry or biophysics 

courses. Preactivity lectures introduced fundamentals of protein secondary structure and 

provided context for the research projects, and a homework assignment familiarized students 



with 3-dimensional visualization of biomolecules with UCSF Chimera, a free protein structure 

viewer. The activity is an online survey in which students compare structure elements in papain, 

a well-characterized cysteine protease from Carica papaya, to novel homologous proteases 

identified from the genomes of an extremophilic microbe (Halanaerobium praevalens) and 2 

carnivorous plants (Drosera capensis and Cephalotus follicularis). Students were then able to 

identify, with varying levels of accuracy, a number of structural features in cysteine proteases 

that could expedite the identification of novel or biochemically interesting cysteine proteases for 

experimental validation in a university laboratory. Student responses to a postactivity survey 

were largely positive and constructive, describing points in the activity that could be improved 

and indicating that the activity was an engaging way to learn about protein structure. 

Keywords: protein structure prediction, enzyme, biochemistry, active learning, undergraduate 

I. INTRODUCTION 

 The Protein Data Bank (1) contains more than 174 000 structures of biomolecules as of 

early 2021, and familiarity with protein structures is necessary for understanding the literature in 

many subfields of biology. Experimentally, protein structures are generally solved by X-ray 

crystallography, nuclear magnetic resonance spectroscopy, cryogenic electron microscopy, or, 

for complex molecular assemblies, a combination thereof. Advances in experimental 

methodology, including automated data collection at synchrotron beamlines, improved nuclear 

magnetic resonance instrumentation, and the “resolution revolution” in cryogenic electron 

microscopy have greatly accelerated the pace of protein structure determination studies. As this 

methodology becomes easier to use, familiarity with protein structures has become an essential 

competency needed for many types of biological research. Being able to visualize the relevant 

molecular structures improves mechanistic understanding of enzyme activity, protein–protein 



interactions, and regulation of biological processes such as transcription and translation. 

Connecting protein structure to function has been identified by the American Society for 

Biochemistry and Molecular Biology as 1 of 5 foundational concepts in molecular biology 

education, and learning how to relate the primary sequence to 3-dimensional (3D) structure is a 

prerequisite for the associated learning goals (2). 

 Learning to interpret protein structures is therefore one of the fundamental tasks of a 

student in an introductory biochemistry course. This topic is traditionally considered difficult, 

and analysis of semantic distance between fields shows that molecular biology and biochemistry 

are culturally isolated from other disciplines (3). Therefore, a large corpus of field-specific 

language must be learned starting in the introductory classes, even without considering the 

information-packed graphical symbology used to express chemical structures. Examples in 

textbooks and lectures, not to mention the current literature, interchangeably switch between 

different representations of the same molecules depending on the features being emphasized. 

Representations in which all atoms are shown are generally eschewed because the distracting 

level of atomic detail obscures the overall fold and key structural motifs and makes it difficult to 

locate functional residues without prior knowledge. Space-filling models are useful for building 

intuition about molecular shape and, with appropriate color coding, surface properties such as 

charge and hydrophobicity, but they do not allow visualization of the protein interior. 

 Ribbon or licorice diagrams that omit side chains and individual atoms and represent α-

helical and β-strand secondary structure elements as coiled helices or flat ribbons, respectively, 

highlight the 3D organization of the protein. These diagrams were first systematized by Jane 

Richardson in 1981 (4), although similar drawings had already appeared in individual structural 

biology papers. Although every introductory biochemistry textbook has a concise explanation of 



these diagrams, we recommend Richardson’s original review to students who are interested in 

structural biology: various structural motifs are clearly explained, numerous instructive examples 

of structural motifs are presented, and the beautiful hand-drawn diagrams highlight the human 

effort that went into developing this highly efficient representation scheme. Computer programs 

for automating the production of ribbon diagrams soon followed (5, 6), and modern Protein Data 

Bank (PDB) structure viewers, such as UCSF Chimera (7), PyMOL, version 1.8 (Schrödinger 

LLC, New York, NY), and Visual Molecular Dynamics (8), use these representations as one of 

the standard settings. Several such programs are available online for free and are relatively easy 

to install and use. Here we take advantage of these tools to have students apply their recently 

gained knowledge about protein structure to an enzyme discovery project with the use of 

structures predicted from genomic data. 

 This activity is linked to an ongoing project in the lab of RWM, where a major research 

goal is the discovery of novel enzymes from genome and transcriptome data, in particular from 

carnivorous plants. These plants have adapted to grow in nutrient-poor environments by 

obtaining much of their nitrogen from protein in insect prey (9). Carnivorous plants are expected 

to have a variety of proteases with different activities, because they rely on these enzymes for 

digestion as well as the more typical functions of plant proteases: cellular housekeeping, defense 

against insects and pathogens, and hydrolysis of seed storage proteins. In the Venus flytrap 

(Dionaea muscipula), expression of at least 1 digestive protease is upregulated in response to 

prey stimuli (10). As expected, the genomes of the Cape sundew (Drosera capensis) (11) and the 

Albany pitcher plant (Cephalotus follicularis) (12) have yielded many new proteases—so many, 

that the main problem is choosing appropriate targets for experimental investigation. In general, 

determination of experimental structures is a bottleneck for enzyme discovery from nucleic acid 



sequencing data. Advances in sequencing methodology have outstripped even the rapid pace of 

development in structural biology methods, in part because of the difficulties inherent in sample 

preparation. Preparing protein samples of sufficient quantity and purity for structural studies is 

time consuming and expensive and requires extensive training and experience, as does 

interpretation of the data. Performing these experiments is impractical for every putative enzyme 

discovered from a genome or transcriptome. Therefore, we use structural models derived from 

sequence data with protein structure prediction tools such as Rosetta (13, 14) and I-TASSER 

(15). Although the predicted structures do not capture every detail, particularly when considering 

side chain conformations, we find that they are highly reliable for predicting the overall folds of 

enzymes belonging to well-known structural classes, including the cysteine proteases used in this 

activity. This capability was illustrated by the crystal structure of a cysteine protease from D. 

muscipula (16), which was solved after we predicted its structure (17). Our predicted structure 

has excellent overall agreement with the experimental one and captures all of the functionally 

important features of the active site. Results such as this, as well as ongoing validation efforts 

such as the CASP competition (18), provide evidence that structures predicted in this manner are 

sufficient to verify functional folds and active sites for well-known enzyme classes. With recent 

machine learning–based advances in protein structure prediction such as AlphaFold (19) and 

RoseTTAFold (20), it is now possible to obtain large numbers of predicted structures for 

members of an enzyme class of interest, such that the activity can be updated frequently or 

tailored to fit the theme of a particular class. 

 Predicting structures en masse for enzymes discovered from genomic data provides a 

foundation for predicting which proteins will have functional differences from well-characterized 

members of the same enzyme class; however, examination of the structures and prediction of 



functionality is not easily automated. Some features, such as extra domains, are apparent from 

the sequence alone and could be detected with standard software tools. Others are more subtle 

and require examination by a human with some training in protein structure analysis. For 

instance, even relatively small occluding loops can dramatically alter substrate specificity by 

partially blocking the active site cleft, and these cannot necessarily be identified in sequence 

space because they interact with the active site cleft in 3 dimensions. Fortunately, given an 

appropriate reference protein, undergraduate biochemistry students can learn to identify such 

features relatively quickly in the context of a class activity. Here we describe such an active 

learning module for students in an undergraduate biochemistry class. Students received training 

in protein sequence and structure analysis and then worked individually to identify similarities 

and differences between papain, a well-characterized plant cysteine protease, and a novel protein 

from either D. capensis, C. follicularis, or the extremophilic microbe Halanaerobium praevalens 

(21). 

II. SCIENTIFIC AND PEDAGOGICAL BACKGROUND 

 A major challenge in teaching protein structure interpretation is that the connection 

between the intermolecular forces holding proteins together and the 3D structures that result is 

abstract. Furthermore, many students enter introductory biochemistry with limited 3D 

visualization skills, such that practicing a task that requires manipulating protein structures in a 

virtual 3D environment is helpful. The examples presented in introductory textbooks are often 

selected to present a wide range of different structural motifs, which provides a good overview of 

existing structures but can come across as disconnected. Here we introduce a particular enzyme 

class, cysteine proteases (MEROPS family C1) (22), and invite students to look for relatively 

subtle structural differences. We selected cysteine proteases because there are a large number of 



characterized structures for this enzyme class in the PDB, making structure prediction very 

useful for determining overall folds and relative domain orientations. At the same time, there are 

no shortage of newly discovered and uncharacterized cysteine proteases, because many plants 

have multiple paralogs of these common defensive proteins (23, 24), of which only a few have 

been studied in detail. D. capensis has 44 cysteine proteases (17), which we have previously 

modeled and categorized according to the classification scheme of Richau et al. (23), whereas C. 

follicularis has at least 16 (12). Our protein set consisted of the 16 novel papain-like cysteine 

proteases from C. follicularis, matched with 17 cysteine proteases from D. capensis, whose 

structural features had already been examined by the Martin group. One additional cysteine 

protease from the extremophilic microbe, H. praevalens, was also included to assess the 

robustness of this characterization method when examining proteins that are less closely related. 

Each student was assigned a unique protease from this set of 34, and all students used the crystal 

structure of papain from Carica papaya [UniProt ID, PAPA1_CARPA; PDB ID, 9PAP] (25) as a 

reference protein to compare structural features. The main objectives of this class activity were 

to introduce students to the basics of protein structure, to help them examine and manipulate 

protein structures in a virtual 3D environment, and to provide an opportunity to participate in a 

live enzyme discovery research project. 

 Our active learning module was motivated by the success of Course-based Undergraduate 

Research Experiences (CUREs), which have numerous benefits for students, including making 

research experiences more equitably available to all students (26), increasing scientific affect 

(27), improving scientific skills (28), and increasing student retention (29). Furthermore, 

participation in CUREs early in their university experience improved the odds of students 

graduating with a science, technology, engineering, or mathematics degree and improved student 



GPAs when they graduated (30). Shorter term gains from CUREs included improved content 

knowledge, increased probability of pursuing longer term, apprenticeship-based research 

experiences before graduation (29, 31), and abrogation of some so called “achievement gaps” for 

minoritized students (32). Traditionally, CUREs have been implemented either in lab courses or 

in the lab sections of theory courses. CURE courses often have limited enrollment and are 

usually available only to upper-division students. However, a variety of research-based active 

learning activities have recently been developed, some of which also include opportunities for 

students to contribute to community resources (33) or citizen science initiatives (34). A major 

objective of this activity is to provide an introduction to an active research project very early in 

the undergraduate experience. Given the numerous benefits of exposing students to research 

experiences, we sought to create a shorter research experience on the basis of our enzyme 

discovery research, embedded within a lecture course typically taken by first-year 

undergraduates. 

 Aside from the educational benefits of the class activity itself, this experience gives 

students an opportunity to learn about ongoing research at their university. It also helps them see 

their instructors as scientists, as well as teachers, and provides an opening for interested students 

to join a research group as early as their first year at university. Over the last few years, a total of 

12 undergraduates (including 3 coauthors on this paper) have joined the authors’ enzyme 

discovery efforts by independent study (course credit for research), summer research programs 

after performing various early versions of this activity, or both. We have found that this type of 

activity enables recruitment of students at an earlier career stage, compared with the more typical 

situation in which upper-division students join labs either as part of a formalized capstone course 

or after being exposed to research topics in more specialized classes. In the event that not every 



student who is interested in performing follow-up research can be accommodated because of 

space or enrollment constraints, which can happen after announcing the opportunity to a large 

class, it is useful to have a list of other faculty who offer undergraduate research experiences. In 

the future, we also plan to develop a full CURE course based on this type of research, which 

would make it possible for more students to participate in an extended study of novel enzymes 

and potentially become coauthors on a publication. 

 As a pilot for the large class, we first performed the activity by Zoom with undergraduate 

students in Chem341L (Physical Chemistry Lab), an upper-division course at Fisk University, a 

private historically Black university in Nashville, TN (October 2020). There is precedent for 

sophisticated protein structure activities in upper-division biophysical courses such as this. For 

example, undergraduate students assigned to solve the crystal structure of a small protein from 

its electron density map were very successful even without knowledge of the protein sequence, 

modeling ambiguous residues using chemical knowledge to identify local interactions, and in 

some cases producing a better result than the original structure (35). Other activities have 

focused on the use of molecular dynamics tools to teach structure visualization, ligand 

interactions (36), and noncovalent interresidue interactions (37). 

 In this activity, graduate students taught a lesson introducing protein structure concepts in 

general and important structural features of proteases in particular. The lecture material focused 

on secondary and tertiary protein structure, with examples of types of secondary structures found 

in globular proteins as well as the importance of intrinsically disordered proteins. An informal 

and highly interactive class discussion also took place around current protease projects in the lab 

of RWM, including the carnivorous plant proteins in this dataset, as well as the SARS-CoV-2 

main protease (Mpro), which served as a transition into the hands-on activity. The goal of the 



activity was to help students solidify their knowledge and exercise what they learned from the 

lecture, using their new insight to help discover novel structural features in papain-like protein 

structures. Because of the small class size (9 students) and the students’ relatively advanced 

knowledge of molecular structure, each student was able to examine multiple structures and 

compare notes about different protein features, including pro-sequences, granulin domains, and 

differing degrees of active site cohesion. Three-dimensional–printed structures of selected 

proteins were provided, because there is evidence that examining 3D-printed models of protein 

structures helps students build accurate mental models of protein structure (38). 

 To incorporate this module into a large lecture course, we created a shorter version that 

we implemented in 2 sections of a lower division biochemistry course. This class had a large 

enrollment (356 students in one section and 252 students in the other section) and was required 

for all students in several majors, including Biology, Pharmaceutical Sciences, Nursing, and 

Public Health. The course is taught as a one-quarter survey course of major concepts in 

biochemistry, including amino acid properties and protein structure and function. 

 In the rest of this paper, we describe the design of lecture materials and the cysteine 

protease survey and discuss the results of the activity and its assessment, which we hope will be 

useful for other biochemistry educators. The survey materials and the protein models used are 

provided in the Supplementary Material. 

III. MATERIALS AND METHODS 

A. Protein sequences and structural models 

 Sequence alignments were performed with Clustal Omega (39), with settings for gap 

open penalty = 10.0 and gap extension penalty = 0.05, hydrophilic residues = GPSNDQERK, 

and the BLOSUM weight matrix. For the D. capensis proteases, the presence and position of a 



signal sequence flagging the protein for secretion was predicted by SignalP 4.1 (40, 41). An 

initial model was created for each complete sequence by the Robetta (13) implementation of 

Rosetta (14). Any residues not present in the mature protein were removed, disulfide bonds 

identified by homology to papain were added, and the protonation states of active site residues 

were fixed to their literature values. Each corrected structure was then equilibrated in explicit 

solvent under periodic boundary conditions in NAMD (42) by the CHARMM22 forcefield (43) 

with the CMAP correction (44) and the TIP3P model for water (45; after this minimization, each 

structure was simulated at 293K for 500 ps, with the final conformation retained for subsequent 

analysis. The published structure of papain (PDB ID: 9PAP) (25) was used as the initial starting 

model (after removal of heteroatoms and protonation by REDUCE) (46), and similarly 

equilibrated before use as a reference. 

 For the proteases from C. follicularis and H. praevalens retrieved from UniProt (47) 

(Supplemental Table S1), structure prediction was performed by I-TASSER (15). Signal 

sequences were not removed from these proteins, to leave them as a point of discussion for the 

class activity. 

 The sequence alignments, minimal quality control (e.g., removal of proteins lacking the 

active site residues), and molecular modeling were performed by the research team in 

preparation for the activity; students were provided with sequences and structural models for 

their proteins. 

B. The cysteine protease survey 

 The cysteine protease survey was designed to guide students through the process of 

comparing a novel cysteine protease structure to that of papain in UCSF Chimera. Questions 

identified characteristics like various secondary structure locations, blocked active sites, and 



relative lengths of N- and C-termini. The full survey can be found in the Supplementary 

Material. 

C. Postactivity survey 

 After completion of the activity, students were asked to answer a questionnaire about 

their experience. The survey was administered in Canvas as a regular weekly activity for the 

class. The questions were: “1. In how many classes at UCI (prior to this one) did you have the 

opportunity to apply the concepts you were learning about in class to a research project? 2. 

Please tell us what you liked best about the project. 3. Please tell us what you liked least about 

the project. 4. Do you agree or disagree with the following statement: This research project 

helped me understand protein structure-function better. 5. Do you agree or disagree with the 

following statement: This research project should continue to be a part of this course. 6. How can 

this research project be improved?” 

IV. RESULTS AND DISCUSSION 

A. Preactivity training 

 During the class period before the protease discovery activity, a general introduction to 

protein structure was presented. The concepts of primary, secondary, and tertiary structures were 

introduced, along with a primer on interpreting ribbon diagrams. Examples are shown in Figure 

1. 

 Before the in-class exercise, an introductory lecture on cysteine protease discovery was 

presented, taking approximately 20 min. This lecture was delivered by a graduate student 

directly involved in the research and began with a description of the motivation for discovering 

new cysteine proteases. Examples presented included finding highly specific proteases to cleave 

expression tags or break down proteins into smaller peptides for bottom-up proteomics and, on 



the other hand, finding very general proteases to break down biofilms and cleave protease-

resistant aggregates such as amyloid fibrils. The overall workflow of the project was 

summarized, emphasizing the large number of proteases discovered from the D. capensis 

genome and how molecular modeling could help narrow down the targets chosen for 

experimental characterization. The graduate researcher also explained how the students’ 

responses would be used by the group: their answers regarding which proteins have features that 

are significantly different from papain’s were aggregated and used in the manner of 

crowdsourcing data. Because 509 students completed the activity and there were only 34 unique 

proteins, each protein was subject to independent analysis from multiple participants. Although  

 

 

 

 

 

 

 

 

 

Fig 1. Papain secondary structure examples presented in presurvey lecture. (A) All α-helices (red) displayed as 

ribbons. (B) One α-helix (red) displayed with all atoms shown as stick models. (C) All β-strands (blue) displayed as 

ribbons. (D) Two β-strands (blue) displayed with all atoms shown as stick models. 

 

students were allowed to work together in small groups, each student was randomly assigned a 

different protein, so it is likely that most of the observations of a given protein were independent. 



This method enabled the research team to identify potentially interesting target proteins that 

multiple observers indicated had significant differences from the reference protein. 

Finally, some examples of D. capensis cysteine proteases with functional features 

different from papain’s were shown. During the initial training, it was pointed out that although 

the correlation between structure and function is not perfectly predictable, enzymes that are 

structurally very similar are likely to be functionally similar as well. Therefore, enzymes that 

structurally resemble papain are likely to have similar activity to this well-characterized protease, 

whereas enzymes with notable differences of the types described in the background lecture are 

more likely to provide novel functionality. In future versions of the activity, we plan to ask 

students specifically whether their assigned protein is a good candidate for further study and to 

explain their reasoning. 

 The example proteases are shown in Figure 2. The first, aspain, has an unusual active site 

configuration with an aspartic acid taking the place of the canonical asparagine and a large 

occluding loop partially blocking the active site, potentially modulating substrate specificity. The 

second, DCAP_6097, has a C-terminal granulin domain, which is common in proteases that 

cleave storage proteins during seed sprouting. Both contain examples of structures students may 

encounter when studying novel papain-like proteases. Students were also instructed in how to 

compare aligned sequences and locate particular amino acid residues on the protein structure. 

Overall, the background material took one full 50-minute class period, with a second class period 

devoted to the active learning activity. Students were then allowed 2 extra days to work on the 

survey before having to submit their responses; this arrangement provided some flexibility, but 

more than half of the responses were received by the end of the designated activity day. In total, 

students were given about 5 d to complete the activity. 



B. In-class exercise 

 To provide practical experience comparing structurally related proteins, we assigned each 

student a protein model from our set of predicted structures, which they were instructed to 

compare to papain. Every student was given 2 PDB files to download: the reference papain 

structure and the predicted structure of a novel protein. An example is shown in Figure 3. The 

structure of papain (Fig 3A) and the model of the novel protein DCAP_4793 (Fig 3B) are very 

similar in overall fold, and differences are difficult to determine when examining them 

separately. However, overlaying them (Fig 3C) reveals some potentially functionally relevant 

differences. The region labeled 1 shows the difference in length of 2 β-strands and the loop 

connecting them: both the strands and the loop are longer in DCAP_4793 than in papain. The 

area labeled 2 shows a short α-helix in DCAP_4793 that is absent in papain. Both proteins have a 

long helix ending in the area labeled 3, but it is longer in papain than in DCAP_4793. 

Differences in backbone position of the long loops are also observed (e.g., in the region labeled 

4), but these are considered to be a result of variable dynamics in these structural elements rather 

than persistent, meaningful differences. Discussion of which of these structural differences are 

likely to be functionally relevant was arguably the most difficult part of the exercise, and at the 

same time led to valuable conversations about the types of judgement calls made by structural 

biologists and how protein structure can serve as a starting point for hypotheses about function. 

C. Detection of novel protease features 

 Not all protease features were interpreted in the same way; some were correctly identified 

by most participants, whereas others received mixed responses of varying accuracy. Students 

did, for example, correctly match most large α-helices to those in papain (Fig 4A,D) but often 

struggled to identify partially or fully blocked active sites (Fig 4C,D). Furthermore, more  



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Example cysteine proteases, aligned with papain (red), presented to students before taking the in-class survey. 

(A) Aspain: DCAP_3968 (orange). Aspain’s unusual active site (top inset) replaces the typical asparagine (dark 

green) of papain (bottom inset) with aspartic acid (lime green). Its occluding loop, which partially blocks the active 

site, is indicated by an arrow. Other active site residues: cysteine, gold/yellow; histidine, purple/magenta for papain 

and aspain, respectively. (B) DCAP_6097 (dark grey). DCAP_6097’s C-terminal granulin domain, indicated by an 

arrow, extends well beyond the rest of the papain-aligned structure. 

 

ambiguous structural features, like papain’s small sixth α-helix (Fig 4B,D), were identified with 

mixed levels of success. Representative data for several of these questions are shown in Figure 4: 

Q3: “Is there an α-helix on your structure that lines up with the first α-helix in papain? (yes/no)”; 

Q4.5: “Is there an α-helix on your structure that lines up with the sixth α-helix in papain? 

(yes/no)”; Q13: “Do you see a feature that is partially or fully blocking the active site? (yes/no)”; 



Q17: “What differences does your protein have when compared to papain that were either not 

fully captured or not addressed at all in earlier questions? (free response)”. For DCAP_5945 (Fig 

4A), Q3 and Q13 were answered accurately, because this protein does have an α-helix that 

matches papain’s first α-helix and does not appear to have a blocked active site. In the free 

response to Q17, most students also suggested the presence of DCAP_5945’s granulin domain, 

describing a much longer sequence and extra secondary structure elements. DCAP_5945’s Q17 

response bar shows that a number of students responded with some identifying description of this 

granulin domain (yes they did or no they did not). These responses demonstrate what students 

did very well: identify large structural features that were clearly explained in presurvey 

presentations. Other questions, however, did not receive such consistent answers. Papain’s sixth 

α-helix is an example of a more ambiguous structural feature, whose presence or absence in 

other proteins is subject to interpretation. For example, DCAP_6547 (Fig 4B) does contain an α-

helix near papain’s sixth α-helix, but a lack of overlapping residues and some variation in local 

 

Fig 3. Comparison of the reference papain structure to a molecular model of a new protein, DCAP_4793. (A) The 

papain structure is shown in red. Circled areas (cyan) highlight differences in compared with DCAP_4793. (B) The 

molecular model for DCAP_4793, generated with Rosetta, is shown in blue. (C) An overlay of the 2 proteins in 

panels A and B highlights similarities and differences described in the main text. The active site residues in both 

proteins are shown as space-filling models with color codes as follows: cysteine, gold/yellow; histidine. 

purple/magenta; asparagine, dark/lime green for papain and DCAP_4793, respectively. 



torsion angles make it difficult to judge whether these are truly aligned; in this case, both “yes” 

and “no” are reasonable answers to Q4.5. Additionally, most students did not recognize a large 

N-terminal pro-sequence blocking the active site in many proteins, answering “no” to Q13; this 

can be seen in the responses given in Figure 4B and D. When viewing the accuracy of student 

responses as a whole (Fig 4D), clear differences emerge between questions. Question Q3 was 

answered with relatively high levels of accuracy, whereas Q4.5 received responses of mixed 

accuracy, although several proteins had no unambiguously correct answer. In contrast to the 

largely accurate responses to Q3 and Q4.5, in Q13, students were able to identify active sites that 

were not blocked with good accuracy but did have difficulty identifying blocked active sites, 

which suggests that more instruction should be given on this topic in future implementations of 

the activity. 

 Discrepancies may have a number of causes, including the inherent difficulty of 

capturing snapshots of certain dynamic protein features (e.g., very short α-helices or flexible 

termini), differences in survey interpretation, and use of structural cues, rather than Chimera’s 

predictive software for secondary structure identification. For example, the ambiguous alignment 

of papain’s sixth α-helix in several proteins (Fig 4B,D) is likely a result of the torsion angle 

cutoff used to define true α-helices in Chimera; despite the clear visual alignment of these coil-

like structures, part or all of their residues may not be considered α-helical in nature. These 

results speak to the importance of both clarity in what is being asked of participants, as well as 

emphasis on natural variation of the structural patterns they are asked to characterize. For many 

of these features, however, different responses are simply a result of varied, but equally valid 

interpretations of ambiguous data. This kind of harmless variance contributes to the strength of 

crowdsourced studies and allows researchers to note potentially mobile or disordered regions.  

 



 

Fig 4. Example survey questions and student responses using proteins aligned to papain (red). (A) Examples of 

accurate and informative student responses using DCAP_5945 (light grey). (B) Example of ambiguity in student 

responses with DCAP_6547 (black). (C) Example of inaccuracy in student responses with C. follicularis protein 

A0A1Q3AYB2 (dark grey). (D) Accuracy of all student responses to Q3, Q4.5, and Q13. All 34 proteins are shown 

in each panel, and those whose examples appear in panels A, B, and C are indicated by colored stars (DCAP_5945, 

light grey; DCAP_6547, black; A0A1Q3AYB2, dark grey). Black brackets below each graph show which subsets of 

proteins contain the feature in question. 



Consequently, future iterations will work to refine the organization and clarity of presurvey 

presentations and survey questions, without biasing students’ answers. Another modification that 

could improve students’ experience as well as help the instructors identify points of confusion 

would be to ask students to explain their answers regarding whether particular structural features 

are present or whether their assigned protein is different from papain or not. 

On the research side, student answers will be used by the research group in aggregate. The 

approach we are using relies on a crowdsourcing model, where multiple students answer 

questions about each protein independently. Using the data effectively therefore depends on the 

observation that there is only 1 right and many possible wrong answers, such that the consensus 

is more likely to be correct than any one answer chosen from the class. This methodology was 

first introduced by Francis Galton in 1907 (48) and later elaborated for anthropological studies 

where the reliability of individual informants is unknown (49). Modern versions have been used 

to solve a variety of problems in fields ranging from engineering and computer science to text 

analysis (50, 51).  

 

Table 1. In how many classes at UCI (prior to this one) did you have the opportunity to apply the concepts you were 

learning about in class to a research project? 

0, n (%) 1, n (%) 2, n (%) 3, n (%) 4, n (%) ≥5, n (%) 

243 (67.7) 54 (15.0) 35 (9.8) 17 (4.7) 4 (1.1) 6 (1.7) 

 

Therefore, proteins that have been identified by several students as having novel features can be 

selected for further investigation, whereas those that are agreed to be similar to the reference 

protein do not merit further scrutiny. Proteins that generate an unusually high level of 

disagreement may also be of interest, both from the standpoint of improving the instruction and 



because they may have interesting features that were not captured by the survey questions (which 

are made up in advance of detailed examination of the novel proteins). Of course, this strategy is 

vulnerable to systematic errors if everyone in the class shares a common misconception, making 

the quality of the instructional materials critical for the research outcome as well as for the 

students. Because the student results are used in aggregate, the students will be acknowledged as 

a group in the publication (e.g., Bio98, Winter 2020). However, students who are interested in 

further participation in enzyme discovery research are offered the opportunity to sign up for 

research credits. So far, 7 undergraduates have become coauthors on related projects by this 

mechanism. In our experience, the students recruited in this way are at an earlier stage in their 

degree program and are more likely to belong to historically underrepresented demographic 

groups compared with those identified by more traditional methods. 

 To encourage open discussion and to minimize stress from having to produce correct 

descriptions of sometimes ambiguous results, this activity was graded only for participation: full 

credit was granted for submitting a screenshot of the assigned protein model. After completion of 

the activity, students were given feedback en masse in a class presentation by the graduate 

student researchers. The “correct” or expert answers referred to in Figure 4 were generated by 

having 2 experienced undergraduate researchers (with at least 6 mo of experience with protein 

structure analysis) answer the questions independently. Conflicting answers were then 

adjudicated by a graduate student. To provide feedback within 1 wk and to be consistent with 

how we envision using these data for research in the future, this time-consuming process was 

initially performed only for a subset of enzymes for which several students described features 

worthy of further investigation. The full set of answers presented in part in Figure 4D was 

generated later, to assess which aspects of our training module could be improved. The examples 



chosen for the follow-up presentation included 1 protein that did not appear to be significantly 

different from papain and several that had novel features. For example, proteins with occluding 

loops, granulin domains, pro-sequences, and extra or missing secondary structure elements were 

shown and the relevant features pointed out. Other instructors may prefer to give each student 

personalized feedback, although this requires a tradeoff between using new, research-relevant 

examples and the research team being able to complete the analysis of every protein quickly 

enough to provide feedback to the students while the activity is fresh in their minds. 

D. Student experience assessment 

 Students’ responses to the questions about their experience with the activity (N = 359) are 

summarized in the tables. Results are not mutually exclusive because multiple features were 

coded from each answer where applicable. Therefore, the number of responses in each category 

does not necessarily add up to 100%. Table 1 shows in how many classes students were given 

the opportunity to apply concepts learned in class to a research project. Most students had never 

performed a similar activity in a class before, although some reported as many as 3 such 

experiences. Table 2 summarizes the most common responses given for what students liked best 

about the project. The most common responses cited the interactivity of the activity, seeing how 

concepts learned in class applied to real-world examples, and having the opportunity to 

contribute to an ongoing research project. Many students mentioned applying their knowledge to 

a real-world problem (25.9%) or knowing their work would contribute to an active research 

project (25.1%) (e.g., “I really enjoyed putting what I have learned to use! It really motivated me 

to work hard on that assignment and to pay attention in lecture, as I knew it had pertinent 

information I would need.” Others focused on the interactive format of the exercise (22.8%) and 

the ability to view the proteins in 3D, examine them from different angles, and correlate 

 



Table 2. Please tell us what you liked best about the project (topics from free response). 

Real world,  

n (%) 

Research,  

n (%) 

3D,  

n (%) 

Interactive,  

n (%) 

Understand  

better, n (%) 

Chimera,  

n (%) 

Instruction,  

n (%) 

Fun,  

n (%) 

93 (25.9) 90 (25.1) 86 (24.0) 82 (22.8) 59 (16.4) 55 (15.3) 38 (10.6) 30 (8.4) 

 

sequence with structural features (24.0%), none of which are possible with a picture in a 

textbook. “What I like the most about this project is that I got to look at the protein in 3D, and it 

is very interesting. On the textbook or online, the protein are always 2D and we cannot spin it 

around to see its structure.” Some students specifically stated that doing the activity helped them 

understand protein features (16.4%), and others indicated that it was fun (8.4%). Roughly 15% 

cited using the UCSF Chimera software as one of their favorite aspects of the project, with 

several of them explaining that they enjoyed learning a tool that is used by researchers working 

on protein structures. “I loved the program Chimera and how easy it was to visualize the protein. 

It was very interesting to compare the different structures to each other based on their 

sequencing. I felt like a real scientist” and “I liked actually getting to use software that 

professionals use! It was also nice to apply my own knowledge on something useful, it makes me 

remember what I’m learning more effortlessly and I enjoy it.” Around 11% mentioned some 

aspect of the instruction as among their favorite features, including the topic lectures by the 

instructor or graduate students or the survey activity itself. 

 Table 3 summarizes the most common responses given for what students liked least 

about the project. The most common responses focused on some aspect of the instructions being 

confusing or hard to follow (33.4%), or difficulty or frustration with the Chimera software 

(17.8%), although many also said that they got used to the software with practice. “What I liked 

least about the project was that the instructions were not always clear. While doing the survey 



during lecture time, I found myself confused by the instructions and I feel that affected the 

responses I submitted into the survey.” “I did not like having to download Chimera and go 

through that entire process for only a one time use.” “Getting used to using Chimera was my 

least favorite part, but it was also part of the learning experience.” “It was somewhat tough to get 

acquainted with the program in the beginning, but practice over the week helped with this.” 

Some students thought that the activity was rushed and they would have preferred either more 

class time or more time to work with their groups (3.1%). A few students did not like the open-

ended nature of the assignment given that it is part of a live research project. Some were 

concerned about possibly providing incorrect information for the project (1.4%) or frustrated 

about not finding out the correct answer at the end (1.7%). “I didn’t like how stressful it was to 

think about how it could affect real research if we got a part incorrect.” “The right answer is  

 

Table 3. Please tell us what you liked least about the project (topics from free response). 

Instructions,  

n (%) 

Chimera,  

n (%) 

Blank,  

n (%) 

Survey design,  

n (%) 

Rushed,  

n (%) 

No right answer,  

n (%) 

Stressed,  

n (%) 

120 (33.4) 64 (17.8) 57 (15.9) 

 

32 (8.9) 11 (3.1) 6 (1.7) 5 (1.4) 

Table 4. How can this research project be improved (topics from free response)?  

Clearer instructions, n (%) More feedback, n (%) Chimera video or demo, n (%) 

116 (32.3) 28 (7.8) 27 (7.5) 

 

not known.” “I wish I could have been able to look at other proteins gathered from the project to 

see what they looked like.” However, the total number of negative responses to participation in 

an active research project with no known answer (3.1%) were far outweighed by the positive 

ones described above (25.9% “real world experience” + 25.1% “research” = 51.0%). About 16% 



of respondents specifically stated that they did not have a least favorite part or that they liked 

everything about the exercise (blank responses were not included in this category). The least 

liked aspects of the project included finding the instructions for using Chimera and comparing 

the 2 proteins confusing and feeling rushed to complete the activity during the class time. The 

most commonly given suggestions for improvement focused on making the instructions more 

clear (Table 4). Another idea that was mentioned frequently was to allow students to analyze 

their proteins as a team. Finally, one student commented that the activity was difficult because of 

color blindness, which is a useful reminder that instructions for changing the default colors in 

Chimera should be specifically discussed in the future. Overall, students indicated that this 

activity helped them understand protein structure and function (Table 5) and should continue to 

be a part of this course (Table 6). As such, future iterations of this activity will implement 

suggestions described in Table 4 to make it a more engaging and informational part of their 

curricula. 

V. CONCLUSION 

 This interactive exercise is adaptable for use in both smaller, upper-division and larger 

introductory biochemistry courses and can serve as an early exposure to current research 

projects; it could also be repeated after additional training with more advanced material. It 

enables students to use fundamental knowledge of protein secondary structures and motifs 

gained from lectures to build new skills actively that are essential for more advanced study and 

participation in research on structural biology and protein function. Student feedback after 

participation in the in-class activity was generally positive. In particular, students indicated that 

the potential for the work conducted in class to affect real-world research benefited their short-

term engagement with the material and bolstered their sense of the value of investing in learning 



the information long-term. Criticism was primarily centered on actionable areas of improvement, 

such as providing more detailed instructions for using the software tools. We expect that future 

iterations will further benefit from tempering student expectations about the process and 

continuing to improve clarity in both the presentations and survey by conducting a separate 

analysis of how interpretations could lead to inconsistent answers. Increased participation and 

further development in this type of pedagogical tool will serve not only to improve students’ 

educational experience, but also expedite the pipeline for discovering new enzymes that are 

worthy of experimental validation, a particularly relevant activity in light of recent developments 

in protein structure prediction. A full description of how the crowdsourced data are used to help 

streamline the enzyme discovery process will be the topic of a forthcoming publication. Equally 

importantly, we find that this activity serves as a mechanism to recruit undergraduate researchers 

at an earlier career stage. 

 

Table 5. Do you agree or disagree with the following statement: This research project helped me understand protein 

structure/function better (choose one). 

Strongly agree,  

n (%) 

Agree,  

n (%) 

Mildly agree,  

n (%) 

Mildly disagree,  

n (%) 

Disagree,  

n (%) 

Strongly disagree,  

n (%) 

72 (20.1) 170 (47.4) 96 (26.7) 11 (3.1) 5 (1.4) 5 (1.4) 

 

Table 6. Do you agree or disagree with the following statement: This research project should continue to be a part of 

this course (choose one). 

Strongly agree,  

n (%) 

Agree,  

n (%) 

Mildly agree,  

n (%) 

Mildly disagree,  

n (%) 

Disagree,  

n (%) 

Strongly disagree,  

n (%) 

95 (26.5) 158 (44.0) 71 (19.8) 15 (4.2) 7 (1.9) 13 (3.6) 
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