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Abstract

Recently, deep learning approaches have become the main research frontier for biological image
reconstruction and enhancement problems thanks to their high performance, along with their ultra-
fast inference times. However, due to the difficulty of obtaining matched reference data for supervised
learning, there has been increasing interest in unsupervised learning approaches that do not need paired
reference data. In particular, self-supervised learning and generative models have been successfully used
for various biological imaging applications. In this paper, we overview these approaches from a coherent
perspective in the context of classical inverse problems, and discuss their applications to biological
imaging, including electron, fluorescence and deconvolution microscopy, optical diffraction tomography

and functional neuroimaging.
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I. INTRODUCTION

Biological imaging techniques, such as optical microscopy, electron microscopy, x-ray crystallography

have become indispensable tools for modern biological discoveries. Here, an image sensor measurement
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y € Y from an underlying unknown image x € X is usually described by
y= H(z)+w, (D

where w is the measurement noise and H : X — ) is a potentially nonlinear forward mapping arising
from the corresponding imaging physics. In practice, the resulting inverse problem to obtain & from
the sensor measurement y is ill-posed. Over the past several decades, many tools have been developed
to address such ill-posed inverse problems, among which a popular one is the regularized least squares

(RLS) that employs regularization (or penalty) terms to stabilize the inverse solution:
&= argminc(z,y) + R(x)  where c(z,y) 2 |y — H(z)|3. @)
x

In this objective function, the regularization term R(-) is usually designed in a top-down manner using
mathematical and engineering principles, such as sparsity, total variation, or entropy-based methods,
among others.

Recently, deep learning (DL) approaches have become mainstream for inverse problems in biological
imaging, owing to their excellent performance and ultra-fast inference time compared to RLS. Most DL
approaches are trained in a supervised manner, with paired input and ground-truth data, which often
leads to a straightforward training procedure. Unfortunately, matched label data are not available in many
applications. This is particularly problematic with biological imaging problems, as the unknown image
itself is intended for scientific investigation that was not possible by other means.

To address this problem, two types of approaches have gained interest: self-supervised learning and
generative model-based approaches. Self-supervised learning aims to generate supervisory labels auto-
matically from the data itself to solve some tasks, and has found applications in many machine learning
applications [1]. For regression tasks, such as image reconstruction and denoising, this is typically
achieved by a form of hold-out masking, where parts of the raw or image data are hidden from the
network and used in defining the training labels. For image denoising, it was shown that this idea
can be used to train a deep learning approach from single noisy images [2]. Furthermore, with an
appropriate choice of the holdout mask, the self-supervised training loss was shown to be within an
additive constant of the supervised training loss [3], providing a theoretical grounding for their success
for denoising applications. For image reconstruction, the use of self-supervised learning was proposed
in [4] for physics-guided neural networks that solve the RLS problem, showing comparable quality to
supervised deep learning. In this case, the masking is performed in a data fidelity step, decoupling it from
the regularization problem, and also facilitating the use of different loss functions in the sensor domain.
Self-supervised learning techniques have been applied in numerous biological imaging applications, such

as fluorescence microscopy [3], electron microscopy [2], [5], and functional neuroimaging [6].
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Another class of unsupervised learning approaches are based on generative models [7], such as gener-
ative adversarial nets (GAN) that have attracted significant attention in the machine learning community
by providing a way to generate a target data distribution from a random distribution. In the paper on
f-GAN [8], the authors show that a general class of so-called f-GAN can be derived by minimizing the
statistical distance in terms of f-divergence, and the original GAN is a special case of f-GAN, when the
Jensen-Shannon divergence is used as the statistical distance measure. Similarly, the so-called Wasserstein
GAN (W-GAN) can be regarded as another statistical distance minimization approach, where the statistical
distance is measured by Wasserstein-1 distance [7]. Inspired by these observations, cycle-consistent GAN
(cycleGAN) [9], which imposes one-to-one correspondence to address the mode-collapsing behavior, was
shown to be similarly obtained when the statistical distances in both measurement space and the image
space can be simultaneously minimized [10]. The cycleGAN formulation has been applied for various
biological imaging problems, such as deconvolution microscopy [I 1] and super-resolution microscopy
[10], where the forward model is known or partially known.

Given the success of these unsupervised learning approaches, one of the fundamental questions is
how these seemingly different approaches relate to each other and even to the classic inverse problem
approaches. The main aim of this paper is therefore to offer a coherent perspective to understand this
exciting area of research.

This paper is composed as follows. In Section 11, classical approaches of biological image reconstruction
problems and modern supervised learning approaches are introduced, and the need for unsupervised
learning approaches in biological imaging applications is explained. Section III then overviews the
self-supervised learning techniques, which is followed by generative model-based unsupervised learning
approaches in Section IV. Section V discusses open problems in unsupervised learning methods, which

is followed by conclusion in Section VI.

II. BACKGROUND ON BIOLOGICAL IMAGE RECONSTRUCTION AND ENHANCEMENT
A. Conventional solutions to the regularized least squares problem

The objective function of the RLS problem in Eq. (2) forms the basis of most conventional algorithms
for inverse problems in biological imaging. As this objective function does not often have a closed form
solution, especially when using compressibility-based regularizers, iterative algorithms are typically used.

For the generic form of the problem, where H(-) can be non-linear, gradient descent is a commonly

used algorithm for solution:

2 = 20— Vae(@® Y, y) = Ve R(@"Y), 3)
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where z(¥) is the solution at the k™ iteration, and 7, is the gradient step. While gradient descent remains
popular, it requires taking the derivative of the regularization term, which may not be straightforward
in a number of scenarios. Thus, alternative methods have been proposed for the types of objective
function in Eq. (2), relying on the use of the so-called proximal operator associated with R(-). These
methods encompass proximal gradient descent and its variants, and variable splitting methods, such as
alternating direction method of multipliers and variable splitting with quadratic penalty. Among these,
variable splitting approaches are popular due to their fast convergence rates and performance in a number
of applications even with non-convex objective functions. In particular, variable splitting approaches
decouple the c¢(x,y) and R(x) terms by introducing an auxiliary variable z constrained to be equal to
x, as:

argminc(x,y) + R(z) st x=z 4)

This constrained optimization problem can be solved in different ways, with the simplest being the

introduction of a quadratic penalty that leads to the following alternating minimization:

25D — arg min pljz* Y — z||2 + R(2) (5a)
z
2 = argmin ||y — H(@)|* + ple — 24| (5b)
where (¥ = —nVzc(0,y) can be initialized with a single gradient descent step on the data consistency

term and z(*) is an intermediate optimization variable. The sub-problems in Eq. (5a) and (5b) correspond
to a proximal operation and a data consistency step, respectively. While for generic H(-) and R(:),
convergence cannot be guaranteed, under certain conditions, which are more relaxed for gradient descent,
convergence can be established. Nonetheless, both gradient descent, and algorithms that utilize the
alternating data consistency and proximal operation iteratively have found extensive use in inverse
problems in biological imaging. Moreover, plug-and-play (PnP) and regularization by denoising (RED)
approaches show that powerful denoisers can be used as a prior for achieving state-of-the-art performance
for solving inverse problems, even if they do not necessarily have closed form expressions. Unfortunately,
the main drawbacks of these methods include lengthy computation times due to their iterative nature,

and sensitivity to hyper-parameter choices, which often limit their routine use in practice.

B. Deep learning based reconstruction and enhancement with supervised training

Deep learning (DL) methods have recently gained popularity as an alternative for estimating  from
the measurement model in Eq. (1). In the broadest terms, these techniques learn a parametrized non-

linear function that maps the measurements to an image estimate. Early methods that utilized DL for
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reconstruction focused on directly outputting an image estimate from (a function of) the measurement
data, y, using a neural network. These DL methods, classified under image enhancement strategies, learn
a function Fp_(y). In particular, the input to the neural network is y if the measurements are in image
domain or a function of y, such as the adjoint of H(-) applied to y for linear measurement systems, if the
measurements are in a different sensor domain. The main distinctive feature of these enhancement-type
methods is that H(-) is not explicitly used by the neural network, except potentially for generating the
input to the neural network. As such, the neural network has to learn the whole inverse problem solution
without the forward operator. While this leads to very fast runtime, these methods may face issues with
generalizability especially when H (-) varies from one sample to another [12].

An alternative line of DL methods fall under the category of physics-guided or physics-driven methods.
These methods aim to solve the objective function in Eq. (2) explicitly using H (-), and implicitly learning
an improved regularization term R(-) through the use of neural networks. These methods rely on the
concept of algorithm unrolling [12], where a conventional iterative algorithm for solving Eq. (2) is
unrolled for a fixed number of iterations, K. For instance, for the variable splitting algorithm described
in Eq. (5a)-(5b), the unrolled algorithm consists of an alternating cascade of K pairs of proximal and data
consistency operations. In unrolled networks, the proximal operation in Eq. (5a) is implicitly implemented
by a neural network, while the data consistency operation in Eq. (5b) is implemented by conventional
methods that explicitly use H(-), such as gradient descent with the only learnable parameter being the
gradient step size. These physics-guided methods have recently become the state-of-the-art in a number of
image reconstruction problems, including large-scale medical imaging reconstruction challenges, largely
due to their more interpretable nature and ability for improved generalization when faced with changes
in the forward operator H (-) across samples [12]. Thus, the final unrolled network can be described by
a function Fy (y; H) that explicitly incorporates the forward operator and is parametrized by 8,.

For both of these deep learning approaches, supervised training, which utilizes pairs of input and
ground-truth data, remains a popular approach for inverse problems in biological imaging. For a unified
notation among enhancement and reconstruction approaches, we use Fp(y) to denote the network output

for measurements y. In supervised learning, the goal is to minimize a loss of the form
mgn E%yﬁ(m, Fy (y)), (6)

where L(+, -) is a loss function that quantitatively characterizes how well the neural network Fp(-) predicts
the ground truth data for the given input.
In practice, the mapping function in Eq. (6) is approximated by minimizing the empirical loss on a

large database. Consider a database of N pairs of input and reference data, {y”, " })_,. Supervised
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learning approaches aim to learn the parameters @ of the function Fy(-). In particular, during training,
0 are adjusted to minimize the difference between the network output and the ground-truth reference.

More formally, training is performed by minimizing

N
1 n n
min ; L(xly, Fo(y™). (7

Note that the loss function does not need to be related to the negative log-likelihood, c¢(x,y) of the
RLS problem given in Eq. (2). While the mean squared error (MSE) loss, % ZQ;IH:B:;C — Fo(y™) |,
remains popular, a variety of other loss functions such as £, adversarial and perceptual losses are used

for supervised deep learning approaches.

C. Motivation for unsupervised deep learning approaches

While supervised deep learning approaches outperform classical methods and provide state-of-the-art
results in many settings, acquisition of reference ground-truth images are either challenging or infeasible
in many biological applications.

For example, in transmission electron microscopy (TEM), acquired projections are inherently low-
contrast. A common approach for high-contrast images is to acquire defocused images which in turn
reduces the resolution. Moreover, in TEM, acquisition of the clean reference images are not feasible
due to limited electron dose used during acquisition to avoid sample destruction. Similarly, in scanning
electron microscopy (SEM), the lengthy acquisition times for imaging large volumes remains a main
limitation. While it is desirable to speed up the acquisitions, such acceleration degrades the acquired
image quality [5]. Fluorescence microscopy is commonly used for live-cell imaging, but the intense
illumination and long exposure during imaging can lead to photobleaching and phototoxicity. Hence,
safer live-cell imaging requires lower intensity and exposure. However, this causes noise amplification
in the resulting images, rendering it impractical for analysis. These challenges are not unique to listed
microscopy applications. In many other biological applications, such as optical diffraction tomography,
functional magnetic resonance imaging or super resolution microscopy, such challenges exist in similar
forms. Hence, unsupervised deep learning approaches are essential for addressing the training of deep

learning reconstruction methods in biological imaging applications.

III. SELF-SUPERVISED LEARNING METHODS
A. Overview

Self-supervised learning encompasses a number of approaches, including colorization, geometric trans-

formations, content encoding, hold-out masking and momentum contrast [1]. Among these methods,
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hold-out masking is the most commonly used strategy for regression-type problems, including image
denoising and reconstruction. In these methods, parts of the image or raw measurement/sensor data are
hidden from the neural network during training, and instead are used to automatically define supervisory
training labels from the data itself. An overview of this strategy for denoising is shown in Fig. 1.
While the masking idea is similar, there is a subtle difference between the denoising and reconstruction
problems. In denoising, H(-) is the identity operator, thus all the pixels in the image are accessible,
albeit in a noise-degraded state. This allows for a theoretical characterization of self-supervised learning
loss with respect to the supervised learning loss, verifying the practicality of self-supervision. This has
also led to attention for self-supervised denoising from the broader computer vision community. On the
other hand, theoretical results have not been established for image reconstruction due to the incomplete
nature of available data, yet reported empirical results from variety of DL algorithms, especially physics-
guided ones incorporating the forward operator, show that it can achieve similar reconstruction quality as
supervised learning algorithms. In order to capture these inherent differences between the two problems,

we will next separately discuss self-supervised deep learning for denoising and reconstruction methods.
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Fig. 1. Overview of self-supervised learning for denoising. Black pixels denote masked-out locations in the images, while 1 s

is the indicator function on the indices specified by the index set J.

B. Self-supervised deep learning for denoising

1) Background on denoising using deep learning: Image denoising concerns a special case of the
acquisition model in Eq. (1), where H(-) is the identity operator. In this case, the objective function
for the inverse problem in Eq. (2) becomes arg ming ||y — x||3 + R(z). In deep learning methods for
denoising, this proximal operation is replaced by a neural network, which estimates a denoised image

Zdenoised = Fo,(y) through a @ -parametrized function. While supervised deep learning methods provide
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state-of-the-art results for denoising applications, absence of clean target images render the supervised
approaches inoperative for a number of biological imaging problems as discussed earlier.

Noise2Noise (N2N) was among the first works that tackled this challenge, where a neural network
was trained on pairs of noisy images and yielded results on par with their supervised counterparts. Given
pairs of noisy images arising from the same clean target image each with its own i.i.d. zero-mean random

noise components (y = ¢ + w,y =  + w), N2N aims to minimize an MSE loss of the form
minEy | Fo, (y) — 9I1° = min By | Fo, (y) — 2> + Bg b - 2B(d, Fo,(y) — ) (®)
d d
= min .y | o, (y) — o + Eg 0] ©)

where the last term in Eq. (8) becomes zero since Ew = 0. Note that the last term in Eq. (9) does
not depend on 6,. Hence, the % that minimize the N2N loss, Ey y | Fo,(y) — (z + w)||%, is also a
minimizer of the supervised loss Eq, || Fy,(y) — x||?. We note that different loss functions such as L;
loss can also be used with N2N [13].

In practice, training is performed by minimizing empirical loss on a database with N pairs of noisy

images {y" = " +w", §" = " + w"})_;. N2N trains a neural network for denoising by minimizing

N
: ny _ An||2
f%fl;HFed(y ) — 9" (10)

The key assumption of N2N is that the expected value of the noisy image pairs are equivalent to the
clean target image. While N2N eliminates the need for acquiring noisy/clean pairs used for supervised
training, which is either challenging or impossible in most applications, the N2N requirement for pairs
of noisy measurements may nonetheless be infeasible in some biological applications.

2) Self-supervised training for deep learning-based denoising: Self-supervised learning methods for
image denoising build on the intuitions from the N2N strategy, while enabling training from single
noisy measurements in the absence of clean or paired noisy images. Following the N2N strategy, the

self-supervised loss can be generally stated as
min, | o, (y) — vl (an
d

However, the naive application of Eq. (11) leads to the denoising function Fp, to be identity.
Noise2Void (N2V) was the first work to propose the use of masking to train such a neural network.
Concurrently, Noise2Self (N2S) proposed the idea of 7-invariance to theoretically characterize how the
function Fp, can be learned without collapsing to the identity function. To this end, consider an image
with m pixels, and define a partition (or index set) of an image as J C {1,...,m}. Further, let ; denote

the pixel values of the image on the partition defined by J. With this notation, J-invariance was defined
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as follows [3]: For a given set of partitions of an image J = {.Ji,...,Jn}, where Zf\il |Ji| = m, a
function Fy, : R™ — R™ is J-invariant if the value of Fy,(y); does not depend on the value of y; for
all J € J.In essence, the pixels of an image are split into two disjoint sets J and J¢ with |J|+|J|¢ = m,
and J-invariant denoising function Fp,(y) uses pixels in y . to predict a denoised version of y;. The

objective self-supervised loss function over J-invariant functions can be written as [3]

EyllFo,(y) — yl* = EayllFo.(y) — 2| + Exyly — z|* — 2Bz y(Fo,(y) — v,y — ) (12)
= EayllFo,(y) — || + Eaylly — @|* — 22y 0 (Fo,(y) —y.y —x)  (13)
= EoylFo,(y) — | + Exylly — =|°. (14)

Note that for each pixel j in Eq. (13), the random variables Fy,(y);|z and y;|x are independent if Fjp,
is J-invariant, while the noise is zero-mean by assumption. Hence, the third term in Eq. (13) vanishes.
Eq. (14) shows that minimizing a self-supervised loss function over J-invariant functions is equivalent
to minimizing a supervised loss up to a constant term (variance of the noise). Thus, self-supervised
denoising approaches learns a J-invariant denoising function Fy, over a database of single noisy images
by minimizing the self-supervised loss

N
argmin y Y || Fo, (v5.) — il (15)
Y p=1JeJ

Implementation-wise, it is not straightforward to just set the pixels specified by J to zero, since this
will affect the way convolutions will be computed. Thus, during training of self-supervised techniques
such as N2V or N28S, the network takes yj- = 1.y + 1 k(y) as input [3], where (+) is a function
assigning new values to masked pixel locations, J. The new pixel values in J indices of the network
input are either a result of a local averaging filter that excludes the center, or random values drawn from
a uniform random distribution [3]. In the former case, J-invariance can be achieved by using a uniform
grid structure for the masks J, where the spacing is determined by the kernel size of the averaging filter,
while for the latter case, a uniform random selection of J may suffice [3].

At inference time, two approaches can be adapted: 1) inputting the full noisy image on the trained

network, 2) inputting a partition 7 containing | 7| sets and averaging them.

C. Self-supervised learning for image reconstruction

Self-supervised learning for image reconstruction neural networks provides a method for training
without paired measurement and reference data. One important line of work entails a method called
self-supervised learning via data undersampling (SSDU) [4], which generalizes the hold-out masking of

Section III-B2 for physics-guided image reconstruction.
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For m-dimensional y, consider an index set © C {1,...,m} of all the available measurement coordi-
nates. In physics-guided DL reconstruction, the measurements interact with the neural network through
the data consistency operations. To this end, let Hg(-) be the operator that outputs the measurement
coordinates corresponding to the index set ©. In SSDU, hold-out masking is applied through these data
consistency operations. Thus, while the index set © is used in the data consistency units of the unrolled
network, the loss itself is calculated in the sensor domain on the indices specified by ©% [4]. Hence,

SSDU minimizes the following self-supervised loss
1 N
min— 37 £(yde. Hoe (Fo, (v, HS))). (16)
n=1

where the output of the network is transformed back to the measurement domain by applying the forward

operator Hgc at corresponding unseen locations in the training, ©C. An overview of this strategy is given

in Fig. 2.
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Fig. 2. Overview of the self-supervised learning methods for image reconstruction using hold-out masking. Black pixels denote

masked-out locations in the measurements and DC denotes the data consistency units of the unrolled network.

Note that unlike in the denoising scenario, the measurements for reconstruction can be in different
sensor domains, and thus the training algorithm does not have access to all the pixels of the image. Thus,
the concept of J-invariance is not applicable in this setting. Therefore, from a practical perspective, ©
is chosen randomly. In [4], which focused on a Fourier-based sensor domain, a variable density masking
approach based on Gaussian probability densities was chosen. This inherently enabled a denser sampling
of the low-frequency content in Fourier space, which contain most of the energy for images, for use in the

data consistency units. However, a Gaussian density for masking requires a hyper-parameter controlling
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its variance. Thus, in later works, SSDU was extended to a multi-mask setting [14], where multiple index
sets {©;}- | were used to define the loss

N L
1
rglnﬁzzﬁ(yglc, Hg)lc (Fe,,(y&SH&)))- (17
" n=1 =1

When utilizing multiple hold-out masks for the data consistency units, uniform random selection of the
masks becomes a natural choice, also eliminating the need for an additional hyper-parameter. Further-
more, the use of multiple {©;}~ | also leads to an improved performance, especially as H(-) becomes
increasingly ill-posed [14]. During inference time, SSDU-trained reconstruction uses all available m
measurements in y in the data consistency units for maximal performance [4].

Note that because the masking happens in the data consistency term, the implementation is simplified
to removing the relevant indices of the measurements for the data consistency components, and does not
require a modification of the regularization neural network component or its input, unlike in the denoising
scenario. This also enables a broader range of options for the loss £. While the negative log-likelihood,
c(x,y) of the RLS problem is an option, more advanced losses that better capture relevant features have
been used [4].

Apart from the hold-out masking strategy discussed here, there is a line of work that performs self-
supervision using a strategy akin to that described in Eq. (11), where all the measurements are used
in the network and for defining the loss [15]. More formally, such approaches aim to minimize a loss

function of the form N
1
IrélenNE:f(y”, H”(Fee(y”;H"))) (18)
n—=

We note that y denotes all the acquired measurements and H transforms the network output Fp_(-) to
sensor domain. However, the performance of such naive application of self-supervised learning approaches

suffers from noise amplification due to overfitting [4].

D. Biological Applications

1) Denoising: Even though N2N requires two independent noisy realizations of the target image for
unsupervised training, which may be hard to meet in general, it has been applied to light and electron
microscopy under Gaussian or Poisson noise scenarios. In cryo-TEM, the acquired datasets are inherently
noisy, since the electron dose is restricted to avoid sample destruction [5]. Cryo-CARE [5] was the first
work to show that the N2N can be applied to cryo-TEM data for denoising. Cryo-CARE was further
applied on 3D cryo-electron tomogram (cryo-ET) data showing its ability to denoise whole tomographic

volumes. Several other works have also extended N2N for denoising cryo-EM data.
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Fluo-N2DH-GOWT

Fluo-C2DL-MSC

Fig. 3. Denoising results from fluorescence microscopy datasets Fluo-N2DH-GOWT1 and Fluo-C2DL-MSC using a traditional
denoising method BM3D and a self-supervised learning method Noise2Self (N2S). We note that supervised deep learning is not

applicable as these datasets contain only single noisy images.

N2V was the first work showing the denoising can be performed from single noisy measurements.
N2V has been extensively applied to EM datasets showing improved reconstruction quality compared to
conventional blind denoising methods such as BM3D [2]. In follow-up works, Bayesian post-processing
has been used to incorporate pixel-wise Gaussian or histogram-based noise models [16] for further
improvements in the denoising performance. However, their application is limited as it requires the
knowledge of the noise model, which might be challenging to know as a prior in number of applications.
Moreover, the noise could be a mixture of noise type hence further hindering their applications. A follow-
up work on [16] show that the prior noise model knowledge requirement in probabilistic N2V models
can be tackled by learning the noise model directly from the noisy image itself via bootstrapping [17].
Another extension of this method, called structured N2V, was also proposed to mask a larger area rather
than a single pixel for removing structured noise in microscopy applications. Similarly, Noise2Self and
its variants have also been applied to various microscopy datasets [3].

Fig. 3 shows denoising results using a conventional denoising algorithm BM3D, and self-supervised
learning algorithm Noise2Self on two different microscopy datasets. These datasets contain only single

noisy images, hence supervised deep learning and N2N can not be applied. Results show that self-
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supervised learning approaches visually improve the denoising performance compared to conventional
denoising algorithms.

2) Reconstruction: DL-based ground-truth free reconstruction strategies has been applied in variety
of medical imaging applications. SSDU was one of the first self-supervised methods to be applied for
physics-guided medical imaging reconstruction in MRI [4]. Concurrently, there were approaches inspired
by N2N that was used in non-Cartesian MRI [18], where pairs of undersampled measurements were used
for training. Similar to the denoising scenario, a main limitation of these methods is the requirement of
pairs of measurements, which may be challenging in some imaging applications. Furthermore, the naive

self-supervised learning strategy of Eq. (18) was also used for MRI reconstruction, by using all acquired

a)
&
o
- <
26
@ g
0
n
=
@
£
= 0N
S (7))
=
b) Split Multi-mask tSNR c) Split Multi-mask
Slice-GRAPPA SSDU Difference Slice-GRAPPA SsSDU

Fig. 4. Reconstruction results from an fMRI application [6] using conventional split-slice GRAPPA technique and self-supervised
multi-mask SSDU method [14]. (a) Split-slice GRAPPA exhibits residual artifacts in mid-brain (yellow arrows). Multi-mask
SSDU alleviates these, along with visible noise reduction. (b) Temporal SNR (tSNR) maps show substantial gain with the
self-supervised deep learning approach, particularly for subcortical areas and cortex further from the receiver coils. (c) Phase

maps for the two reconstructions show strong agreement, with multi-mask SSDU containing more voxels above the coherence

threshold.
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measurements for both input to the network and defining the loss [15]. However, this approach suffered
from noise amplification, as expected.

While such self-supervised methods have found use in medical imaging, their utility in biological
imaging are just being explored. Recent work has started using such self-supervised deep learning methods
to functional MRI, which remains a critical biological imaging tool for neuroscientific discoveries that
expand our understanding of human perception and cognition. In a recent work [6], multi-mask SSDU
was applied to a Human Connectome Project style fMRI acquisition that was prospectively accelerated
by 5-fold simultaneous multi-slice imaging and 2-fold in-plane undersampling. Note that ground-truth
data for such high spatiotemporal resolution acquisitions cannot be acquired in practice, thus prohibiting
the use of supervised learning. The results shown in Fig. 4 indicate that the self-supervised deep learning
method based on multi-mask SSDU significantly outperforms the conventional reconstruction approaches,

both qualitatively in terms of visual quality, and quantitatively in terms of temporal signal-to-noise ratio.

IV. GENERATIVE MODEL-BASED METHODS
A. Overview

Generative models cover a large spectrum of research activities, which include variational autoencoder
(VAE), generative adversarial network (GAN), normalizing flow, optimal transport (OT), among others
[7]. Due to their popularity, there are so many variations, so one of the main goals of this section is to
provide a coherent geometric picture of generative models.

Specifically, our unified geometric view starts from Fig. 5. Here, the ambient image space is X', where
we can take samples with the real data distribution . If the latent space is Z, the generator G can be
treated as a mapping from the latent space to the ambient space, G : Z — X, often realized by a deep
network with parameter 0, i.e. G = Gg. Let ¢ be a fixed distribution on the latent space, such as uniform
or Gaussian distribution. The generator GGg pushes forward ¢ to a distribution ;19 = Gg4( in the ambient
space X. Then, the goal of the generative model training is to make g as close as possible to the real
data distribution p. Additionally, for the case of auto-encoding type generative models (e.g. VAE), the
generator works as a decoder G : Z +— X, while another neural network-encoder Fy : X +— Z maps
from sample space to the latent space. Accordingly, the additional constraint is again to minimize the
distance d((g, ().

Using this unified geometric model, we can show that various types of generative models only differ
in their choices of distances between pg and p, or (4 and ¢ and how to train the generator and encoder

to minimize the distances.
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Fig. 5. Geometric view of deep generative models. Fixed distribution ¢ in Z is pushed to pg in X by the network Gg, so that
the mapped distribution pe approaches the real distribution p. In VAE, G works as a decoder to generate samples, while Fg
acts as an encoder, additionally constraining (¢ to be as close to . With such geometric view, auto-encoding generative models

(e.g. VAE), and GAN-based generative models can be seen as variants of this single illustration.

B. VAE approaches for unsupervised learning in biological imaging

1) Variational autoencoder (VAE): In VAE, the generative model pg(x) is considered as a marginal-

ization of the conditional distribution pg(x|z), combined with simple latent distribution p(z) [7]:

logpae) =log ([ polelz)p(=)idz). (19)

The most straightforward way to train the network is to apply maximum likelihood on pg(x). However,

since the integral inside (19) is intractable, one can introduce a distribution g (z|x) such that

qf(f,;)%(m)dz)

> [10g (pofal) H2LYggtel)a

= /logpg(as\z)qd,(z]w)dz — Dk 1(gp(2|2)||p(2)), (20)

log pg(x) = log (/pg(:c|z)

where Dy is the Kullback—Leibler divergence (KL) divergence, and the first inequality comes from
Jensen’s inequality. The final term in (20) is called evidence lower bound (ELBO), or variational lower
bound in the context of variational inference. While infeasible to perform maximum likelihood on pg ()
directly, we can maximize the ELBO.

In the VAE, by using the reparametrization trick together with the Gaussian assumption, one has:

z=Fg(u) = py(x) + 0p(x) Ou, u~N(0,I), 2D
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(a)

=)

x u~ N(0,I)
z

(b)

=)

(c)

pnm(Y|%)

Fig. 6. VAE architecture. Fg encodes x, and combined with random sample u to produce latent vector z. G decodes the latent
z to acquire €. w is sampled from standard normal distribution for the reparameterization trick. (a) VAE. (b) spatial-VAE [19],
disentangling translation/rotation features from different semantics. (c) DIVNOISING [20], enabling superviesd/unsupervised

training of denoising generative model by leveraging the noise model py s (y|x).

where Ff]f(u) refers to the encoder function for a given image « which has another noisy input u, and
©® denotes the element-wise multiplication. Note that (21) enables back-propagation. Incorporating (21)

with (20) gives us the loss function to minimize for an end-to-end training of the VAE:

tvae(0,9) (22)

= % /X / & — Golug(x) + op(x) © w)||*r(u)dudu(z)

+ ; i/ (07 (@) + i (®) — log o} (x) — 1)du().
25 ' ’

Here, the first term in (22) can be conceived as the reconstruction loss (d(f, ig) in Fig. 5), and the
second term is originated from KL divergence can be interpreted as penalty-imposing term (d(¢, () in
Fig. 5).

Once the network is trained by minimizing (22), one notable advantage of VAE is that we can generate

samples from pg(x|z) simply by sampling different noise vectors u. Specifically, the decoder has explicit
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dependency on w, and the model output is expressed as

Notably, we can utilize (23) to sample multiple reconstructions by simply sampling different values of
u. Naturally, this method has been applied to many different fields, and in the following we review its
biological image applications.

2) Biological Applications: One notable application of VAE in the field of biological imaging is Bepler
et al. [19]. The work is motivated by the problem of modeling continuous 2D views of proteins from
single particle electron microscopy (EM). The goal of EM imaging is to estimate 3D electron density
of a given protein from multiple random noisy 2D projections. The first step in this process requires
estimation of the conformational states, often modeled with Gaussian mixture model, which is discrete.
Subsequently, modeling with Gaussian mixture models produces sub-optimal performance when aiming
to model protein conformations. Hence, to bridge this gap, Bepler et al. [19] propose spatial-VAE to
disentangle projection rotation and translation from the content of the projections.

Specifically, spatial-VAE [19] uses spatial generator network, first introduced in compositional pattern
producing networks (CPPNs), where the generator GG takes in as input the spatial coordinates, and outputs
a pixel value. Moreover, as shown in Fig. 6(b), latent variable z is concatenated with additional parameters

o, At, representing rotation, and translation, respectively. More precisely, the conditional distribution is

given as
log p(x|z) = log pe(x|z, ¢, At) (24)
= logpe(«'[t'R(p) + At, z), (25)
i=1
where R(p) = [cosp, —sing;sin ¢, cos @] is the rotation matrix, and n is the dimensionality of the

image. It is straightforward to extend the encoder function to output disentangled representations, which

is given as
pz () oz()
Fég(u) = | pp(x) | T | spop(x) | Ou, (26)
pat(z) satoat(x)

where s, sa¢ are chosen differently for each problem set. (26) shows that Gaussian priors are used
for all the different parameters. Notably, by constructing spatial-VAE as given in (24), (26), translation
and rotation are successfully disentangled from other features. Consequently, continuous modeling of
parameter estimation in the particle projections of EM via spatial-VAE may substantially improve the

final reconstruction of 3D protein structure.
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Another recent yet important work, dubbed DIVNOISING, utilizes a modified VAE for denoising
microscopy images [20]. As illustrated in Fig. 6(c), DIVNOISING tries to estimate the posterior p(x|y) o
pna(y|x)p(x), where x is the true signal, y is the noise-corrupted version of x, p(x) is the prior, and
pnum(ylx) is the noise model, which is typically decomposed into a product of independent pixel-
wise noise models. Note that the input image y is not a clean image, as in the other works. Instead,
the encoder of DIVNOISING takes in a noisy image y to produce the latent vector z. In this VAE
setup, one can replace the conditional distribution pg(x|z) with a known noise model in case we know
the corruption process, or learnable noise model in case we do not know the corruption process, and
unsupervised training is required. With this modification, one can perform semi-supervised training in
which the noise model is measured from paired calibration images, or bootstrapped from the noisy image.
More interestingly, it is also possible to perform unsupervised training with a modification to the decoder.
Once the VAE of DIVNOISING is trained, one can perform inference by varying the samples w, and
acquire multiple estimation of denoised images. When the user wants to acquire a point estimate of the
distribution, one can either choose the mean (i.e. MMSE) of the sampled images, or get maximum a

posteriori (MAP) estimate by iteratively applying mean shift clustering to the sampled images.

C. GAN approaches for unsupervised learning in biological imaging

1) Statistical Distance Minimization: In GAN, the generator GG, and the discriminator D, play a
minimax game, complementing each other at every optimization step. Formally, the optimization process
is defined as:

m&nmngGAN(D, G), 27

where

Lcan(D,G) = Egllog D(x)] + Ex[log(1 — D(G(2)))]- (28)

Here, D(x) is called as the discriminator, which outputs a scalar in [0, 1] representing the probability
of the input « being a real sample. While the discriminator struggles to learn the classification task, the
generator tries to maximize the probability of D making a mistake. i.e. generating samples closer and
closer to the actual distribution of x.

To understand the geometric meaning of GAN, we first provide a brief review of f-GAN [£&]. As the

name suggests, f-GAN starts with f-divergence as the statistical distance measure:

d
Df(,uHu):/Qf<d/:> dv (29)

where 1 and v are two statistical measures and u is absolutely continuous with respect to v. The key

observation is that instead of directly minimizing the f-divergence, a very interesting thing emerges if
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we formulate its dual problem. In fact, the “dualization” trick is a common idea in generative models.
More specifically, if f is a convex function, the convex conjugate of its convex conjugate is the function
itself, i.e.

f(u) = £ (u) = sup{ur — f*(7)} (30)

Tel*

if f*: I* — R. Using this, for any class of functions 7 mapping from & to R, we have the lower bound

<WMMZmWLNMW@—AjmeM@ 31)

Tel*

where f*: I* — R is the convex conjugate of f. Using the following transform [£]
T(x) = g7 (V(z)) (32)

where V' : X — R without any constraint on the output range, and gy : R — I* is an output activation

function that maps the output to the domain of f*, f-GAN can be formulated as follows:

min max Lriaan(G,gr) (33)
where
Lican(G,g5) 2 Bany [g5(V(2))] — Bz [f*(97(V(G(2))))] - (34)

Here, different choices of the functions f,g; lead to distinct statistical measures and variations of f-
GANSs, and for the case of Jensen-Shannon divergence, the original GAN as in (28) can be obtained.
Therefore, we can see that f-GANs are originated from statistical distance minimization.

Note that f-GAN interprets the GAN training as a statistical distance minimization after dualization.
Similar statistical distance minimization idea is employed for the Wasserstein GAN, but now with a real
metric in probability space rather than the divergence. More specifically, W-GAN minimizes the following

Wasserstein-1 norm:

d(u,v) = Wi(u,v) == min / |z — &'||dr(x, z) (35)
mell(pwy) Jxxx

where X is the ambient space, ¢ and v are measures for the real data and generated data, respectively,
and 7(x, ') is the joint distribution with the marginals y and v, respectively.

Similar to f-GAN, rather than solving the complicated primal problem, a dual problem is solved. The
Kantorivich dual formulation from the optimal transport theory leads to the following dual formulation
of the Wasserstein 1-norm:

A, v) = m>{Awaw—ADwmmﬂ, 36)

DeLip, (X)
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where Lip; (X') denotes the 1-Lipschitz function space with domain X', and D is the Kantorovich potential
that corresponds to the discriminator. Again, the measure v is for the generated samples from latent
space Z with the measure ¢ by generator G(z),z € Z, so v can be considered as pushforward measure
v = Gy pu. Therefore, Wasserstein 1-norm minimization problem can be equivalently represented by the

following minmax formulation:

Loan(G,D) = min  max /D Ydu(z /D ()}.

G DeLip, (X

This again confirms that W-GAN is originated from the statistical distance minimization problem.

(a) (c)
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Fig. 7. Illustration of GAN-based methods for biological image reconstruction. (a) GAN, (b) pix2pix [21], (c) AmbientGAN [22],
(d) cryoGAN [23]. @,y denote data in the image domain, and the measurement domain, respectively. GG, D refers to generator,
discriminator, respectively. H defines the function family of the forward measurement process, parameterized with . Networks

and variables that are marked in blue have learnable parameters optimized with gradient descent.

2) Biological Applications: Since the birth of GAN, myriad of variants have been introduced in
literature and used for biological imaging applications. While the earlier works based on deep learning
focused on developing supervised methods for training (e.g. DeepSTORM [24]), the later works started
to employ conditional GAN (cGAN) into the reconstruction framework. More specifically, instead of
applying the original form of the GAN that generates images from random noise, these applications of
GAN are usually conditioned on specific input images.

For example, in the context of tomographic reconstruction, TomoGAN [25] aims at low dose tomo-
graphic reconstruction, where the generator takes in as input noisy images from low dose sinogram, and
maps it into the distribution of high dose images. Another model for 3-D tomographic reconstruction,

dubbed GANTrec, was proposed in [26]. Different from TomoGAN, GANTrec takes in as input the sinogram,
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so that the generator needs also to learn the inverse mapping of the forward Radon transform. One
unique aspect is that the discriminator D learns the probability distribution of the clean sinogram. A
similar approach is used for super resolution [27], [28]. Specifically, in [28] a super-resolution (SR)
approach for Fourier ptychographic microscopy (FPM) is introduced, which proposes to reconstruct a
temporal sequence of cell images. Namely, only the first temporal sequence needs to be acquired in high
resolution to train the GAN network, after which the trained network is utilized for reconstruction at
the following temporal sequences. They also propose to use a Fourier domain loss, imposing additional
constraint on the content. For super-resolution microscopy, ANNA-PALM [27] was introduced to achieve
high-throughput in live-cell imaging, designed for accelerating PALM by using much less number of
frames for restoring the true image.

These approaches that add condition to GANs in fact corresponds to pix2pix [21] or cGAN. Unlike
GANS illustrated in Fig. 7(a), which takes random noise vector z as input, pix2pix has additional loss
function Leonten: that measures the content distance (see Fig. 7(b)). Specifically, L.ontent measures the
content space distance between the generated image and the matched target image, which is used in
addition to the L5 4N that measures the statistical distance. Therefore, pix2pix attempts to balance between
the paired data and unpaired target distributions. In fact, the addition of content loss is important to
regularize the inverse problems. Unfortunately, the methods cannot be regarded as unsupervised, since
the content loss L.ontent requires a matching label. Hence, to overcome this limitation, several works
that do not require any matched training data were proposed.

One interesting line of work stems from ambientGAN [22], where the forward measurement model
can be integrated into the framework. As in Fig. 7(c), the generator of ambientGAN generates a sample
from a random noise vector, and the discriminator takes in the measurement after the forward operator
H, parameterized by ¢, rather than the reconstructed image. Since only the function family of the
forward operator is known, the specific parameters are sampled from a feasible distribution, i.e. ¢ ~ Pp.
Although the real and fake measurements do not match, ambientGAN enables training on the distribution,
rather than on realized samples. From a statistical distance minimization perspective, ambientGAN can
be interpreted as the dual problem for the statistical distance minimization in the measurement space. To
understand this claim, suppose that we use a W-GAN discriminator, and consider the following primal
form of the optimal transport problem that minimizes the 1-Wasserstein distance in the measurement

space:

min Hy(x) —y|dr(x,y) . 37
_min /X | VHo(@) ~ yldn(ay)
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Then, the corresponding dual cost function becomes

Loan(G,D) = max /D )dv(y /D du(x) (38)

DeLip, (X)

=  max /D )dv(y /D z)))d((=). (39)

DeLip, (X)
where the last equation again comes from the change of variables formula. If we further assume that

@ € @ is random from the distribution P, (39) can be converted to

Loan(G.D) =  max / D(y)dv(y / / D(H.,(G(2)))d¢(2)dP (40)

DELip, (X
which is equivalent to the ambientGAN loss function.

In the original work of ambientGAN, simple forward measurement models such as convolve+noise,
block+patch, 2D projection, etc. were used [22]. A variant of ambientGAN was introduced in the
context of cryo electron microscopy (cryo-EM) in [23], dubbed cryoGAN. Data acquisition in cryo-
EM is performed on multiple 3D copies of the same protein, called “particles”, which are assumed
to be structurally identical. To minimize the damage held on samples, multiple particles are frozen at
cryogenic temperatures, and all particles are simultaneously projected with parallel electron beam to
acquire projections. Here, unlike in the original ambientGAN, cryoGAN considers the latent particle
itself to be a learnable parameter. The overall flow of cryoGAN is as shown in Fig. 7(d). It is interesting
that there exists no generator in cryoGAN. Rather, x, the 3D particle to be reconstructed, is the starting
point of the overall flow. As in ambientGAN, x goes through a complex random forward measurement
process which involves 3D projection, convolution with the sampled kernel, and translation. Gradients
from the discriminator backpropagates to x, and x is updated directly at every optimization step. Unlike
conventional reconstruction methods for cryo-EM based on marginal maximum-likelihood which demands
estimation of the exact projection angles, cryoGAN does not require such expensive process. Note that the
loss function of cryoGAN is equivalent to (38). Therefore, by using the statistical distance minimization
approach, cryoGAN attempts to estimate the unknown 3D particular  directly without estimating the
projection angles for each particle.

Another, more recent work was proposed in [29], which is an upgraded version of cryoGAN, called
multi-cryoGAN. While cryoGAN is able to reconstruct a single particle that explains the measured
projections, it does not take into account that the measured particle is not rigid, and hence can have
multiple conformations. To sidestep this issue, multi-cryoGAN takes an approach more similar to the
original ambientGAN, where a random noise vector is sampled from a distribution, and the generator G
is responsible for mapping the noise vector into the 3D particle. The rest of the steps follow the same

procedure in ambientGAN, although the complicated forward measurement for cryo-EM is utilized. One
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advantage of multi-cryoGAN is that once the networks are trained, multiple conformations of the particle
can be sampled by varying the noise vector z. Subsequently, this introduces flexibility in the networks.

A related work was also proposed in the context of unsupervised MRI reconstruction in [10].
More specifically, this work follows the overall flow depicted in Fig. 7(c). However, the input is not a
random noise vector, but an aliased image, inverse Fourier-transformed from the under-sampled k-space
measurement. The generator is responsible for conditional reconstruction, making the input image free of
aliasing artifacts. The reconstruction goes through the random measurement process in the context of MR
imaging, which corresponds to Fourier transform, and random masking. Then, the discriminator matches
the distribution of the aliased image, inverse Fourier transformed from the measurement. The authors
showed that even with the unsupervised learning process without any ground-truth data, reconstruction

of fair quality could be performed.

D. Optimal transport driven CycleGAN approaches for unsupervised learning for biological imaging

Another important line of work for unsupervised biological reconstruction comes from optimal transport
driven cycleGAN (OT-cycleGAN) [10], which is a generalization of the original cycleGAN [9]. Unlike
pix2pix, cycleGAN does not utilize L ontent from paired label, so it is fully unsupervised. In contrast to
the ambientGAN or cryoGAN, which is based on the statistical distance minimization in the measurement
space, cycleGAN attempts to minimizes the statistical distance in both measurement and the image domain
simultaneously, which makes the algorithm more stable.

OT-cycleGAN can be understood from the geometric description illustrated in Fig. 8. Specifically, let
us consider the target image probability space X equipped with the measure p, and the measurement
probability space ) equipped with the measure v as in Fig. 8. In order to achieve a mapping from )
to X and vice versa, we can try to find the transportation mapping from the measure space (), v) to
(X, ) with the generator Gg : ) — X, a neural network parameterized with 8, and the mapping from
the measure space (X, 1) to (), ) with the forward mapping generator H,, : X — ), parametrized with
v. In other words, the generator Gg pushes forward the measure v in X to ug in ), and H, pushes
forward the measure p in ) to the measure v, in X'. Then, our goal is to minimize the statistical distance
d(p, pe) between i and pg, and the distance d(v, v,) between v and v, simultaneously.

Specifically, if we use the Wasserstein-1 metric, the statistical distance in each space can be computed

as:
Wilpo) = int [ o= Goly)dn(e.y) (1)
mell(p,v) J xxy
Wi(v,v,) = inf / |y — Hy(x)||dn (2, y). 42)
m€ll(u,v) J xxy
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Fig. 8. Geometric view of cycleGAN. (), v) is mapped to (X, ) with Gy, while H, does the opposite. The two mappers,

i.e. generators are optimized by simultaneously minimizing d(u, pe), d(v, v,).

If we minimize them separately, the optimal joint distribution 7* for each problem may be different.
Accordingly, we attempt to find the unique joint distribution which minimizes the two distances simul-

taneously using the following primal formulation:

min / I — Go() | + [ Hy(x) — ylldn(z, y). 43)
me€ll(u,v) J xxy

One interesting finding made in [10] is that the primal cost in (43) can be represented in a dual formulation

Iggl DmaB( ﬁcycleGAN(gv P; DX» DY)7 (44)
) XY
where

Leyeecan(0,0; Dx, Dy) £ Aeyee(0, ) + Laan(0, ¢; Dx, Dy), (45)

where Leycre, Laan refers to cycle-consistency loss and discriminator GAN loss, respectively. Dy and
Dy are discriminators in X and ). The corresponding OT-cycleGAN network architecture can be
represented as in Fig. 9.

In fact, one of the most important reasons OT-cycleGAN is suitable for biological reconstruction
problems, is that the prior knowledge about the imaging physics can be flexibly incorporated into the
design of OT-cycleGAN to simplify the network. Specifically, in many biological imaging problems, the
forward mapping H, is known or partially known. In this case, we do not need to use complex deep
neural networks for forward measurement operator. Instead, we use a deterministic or parametric form
of the forward measurement operation, which makes the training much simpler.

In addition, in comparison with ambientGAN in (37), OT-cycleGAN primal formulation in (43) has

an additional term | — Gg(y)| that enforces the reconstruction images to match the target image
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distributions, which further regularizes the reconstruction process. In fact, the resulting OT-cycleGAN
formulation is closely related to the classical RLS formulation in (2). Specifically, the transportation
cost in (43) resembles closely to the cost function in (2), except that regularization term R(x) in (2) is
replaced by the deep learning-based inverse path penalty term || — Gg(y)||. However, instead of solving
x directly as in (2), OT-cycleGAN tries to find the joint distribution 7* that minimizes the average cost
for all combination of € X and y € ). This suggests that OT-cycleGAN is a stochastic generalization

of the RLS, revealing an important link to the classical RLS approaches.

Fig. 9. Network architecture of cycleGAN. Gy : YV — X,H, : X — ) are the generators responsible for inter-domain

mapping. Dx, Dy are discriminators, constructing Lgan. GAN loss is simultaneously optimized together with Lcycie

1) Applications: Thanks to the versatility of cycleGAN, which learns the distributions in both mea-
surement and image spaces, OT-cycleGAN has been adopted to numerous tasks in biological imaging.

For example, cycleGAN was used with linear blur kernel for blind and non-blind deconvolution in
[11]. More specifically, [ 1] focused on the fact that the forward operator of deconvolution microscopy
is usually represented as a convolution with a point spread function (PSF). Hence, even for the non-blind
case, the forward mapping H, : X ~ ) is partially known as a linear convolution. Leveraging this
property, one of the generators in cycleGAN, F' in Fig. 9 is replaced with a linear convolutional layer,
taking into the account the physics of deconvolution microscopy. By exploiting the physical property,
the reconstruction quality of deconvolution microscopy is further enhanced. Even more, in the case of
non-blind microscopy, it was shown that the forward mapping is deterministic so that optimization with
respect to the discriminator Dy is no longer necessary, which simplifies the network architecture, and
makes the training more robust. A similar simplification of cycleGAN leveraging the imaging physics
of microscopy was also proposed in super-resolution microscopy [10]. Interestingly, the simplified form
of cycleGAN could generate reconstructions of higher resolution, quantified in Fourier ring correlation

(FRC). Other than simplifying the mapping H, : X — ) with a linear blind kernel, a deterministic
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k-space sub-sampling operator for MR imaging was extensively studied [30].

elongation : Residual
L noise

Vague
structure

elongation

Fig. 10. ProjectionGAN for the reconstruction of ODT [31]. (a) Conventional Rytov reconstruction via Fourier binning, (b)
Gerchberg-Papoulis (GP) algorithm, (c) model-based iterative method using the total variation (TV), and (b) reconstruction via
projectionGAN. Artifacts including elongation along the optical axes can be seen in the z — z,y — z cutview of (a),(c). The
result shown in (b) is contaminated with resdual noise in the x — z,y — z planes. Result shown in (d) has high-resolution

reconstruction without such artifacts, along with boosted RI values.

When such simplification is not possible, the most general form of cycleGAN, where two sets of
generator/discriminator pair are used, can be utilized, but still the key concept of statistical distance

minimization can be utilized in the design. One work, which utilizes cycleGAN for deconvolution
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microscopy is [32], where the authors propose to use spatial constraint loss on top of cyclic loss to
further impose emphasis on the alignment of the reconstruction. The cycleGAN method adopted in [32]
is a 2D cycleGAN, so the authors propose a 3-way volume averaging of the reconstructed results in the
r —y,y — 2, and x — z plane. However, in contrast to [11], two neural network based generators are
used for both forward and inverse paths. In another work, an unsupervised reconstruction method called
projectionGAN for optical diffraction tomography (ODT) was proposed [31]. Missing cone problem in
ODT arises because the measurement angles of the imaging device does not cover the whole solid angle,
hence leaving a cone-shaped wedge in the k-space empty. The authors focus on the fact that when parallel
beam projection is performed to the 3D distribution of refractive-index (RI), the acquired projections are
sharp with high quality when the projection angle is aligned with the measurement angle ())qg), and
are blurry and with artifacts when the projection angle is not aligned ()o-). Hence, the resolution of
the blurry projections are enhanced via distribution matching between Yo and Y. with cycleGAN,
after which follows filtered back projection (FBP) to acquire the final reconstruction from the enhanced
projections. By the projectionGAN enhancement step, the missing cone artifacts are greatly resolved,
achieving accurate reconstruction, as illustrated in Fig. 10. As shown in the figure, with other methods
we see elongation along optical axes which makes the structure of the cell vague and noisy (x — z,
y — z plane). This problem is much resolved with ProjectionGAN, where we observe clear boundaries
and micro-cellular structures. Underestimated RI values are also corrected.

For optical microscopy, content-preserving cycleGAN (c2GAN) was proposed [33], showing applica-
bility of cycleGAN to various imagnig modalities and data configurations. c2GAN introduces saliency
constraint to cycleGAN framework, where the saliency constraint imposes an additional cycle-consistency
after thresholding the images at certain values. This simple fix is derived from the fact that many biological
images contain salient regions of higher intensity, while the rest is covered with low-intensity background.
Thus, by adding the saliency constraint, cycleGAN can concentrate more on the salient features. The
authors applied c?GAN to biological image denoising, restoration, super-resolution, histological coloriza-
tion, and image translation such as phase contrast images to flourescence-labeled images, showing how

cycleGAN can be easily adopted to many different tasks of biological imaging.

V. DISCUSSION
A. Open problems

The performance improvement from DL-based techniques has been one of the main drivers of their
mainstream adaptation in a large number of imaging applications. This is largely driven by the application-

specific tailoring of the regularization strategies during the training phase of DL reconstruction algorithms.
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Thus, the use of unsupervised training strategies in the absence of matched reference data is critical for
the continued utility of DL reconstruction in a number of biological imaging scenarios.

This overview article focused on two unsupervised learning strategies that tackle seemingly different
aspects of the training process. Self-supervised learning uses parts of the available data to predict the
remaining parts, in effect repurposing some of the available data as supervisory labels. Generative models
aim to minimize a statistical distance measure between an underlying target distribution and the generated
data distribution. While these goals do not necessarily appear complementary, there are self-supervisory
methods, such as content generation, which utilize properties of generative models. Similarly, there are
generative models that utilize concepts of prediction of data from self-supervision [34]. Thus, a synergistic
viewpoint that tie these two different lines of work for unsupervised learning of image reconstruction
approaches may further improve the performance of DL-based methods in the absence of reference
training data.

Self-supervised learning techniques have enabled the training on large datasets containing only noisy
or incomplete measurements. However, in some biological applications, it may not always be feasible
to obtain large training datasets. Hence, it is desirable to perform training from a single measurement.
However, training on a single noisy measurement often leads to overfitting, requiring early stopping.
Recently, self-supervised learning methods have been proposed to perform reconstruction and enhance-
ment for a single measurement without overfitting [35], [36]. Particularly, for image denoising, a dropout
regularization technique has been incorporated with a hold-out self-supervised learning framework for
avoiding overfitting [35]. For image reconstruction, a zero-shot self-supervised learning approach has
been proposed to split available measurements: two of which are used in the data consistency and the
loss as in SSDU, while the third is used as a validation set to determine the early stopping criteria [36].
These works may be essential for developing new frameworks for training biological imaging applications
with sparse datasets.

Recently, the two closely related methods, score-based models [37], and diffusion models [38] have
caught the attention with their outstanding ability to train generative models without any adversarial
training. Remarkably, one cannot only generate random samples from the distribution, but also apply a
single estimated score function to solve various problems such as denoising [39], inpainting [37], and
even reconstruction. Since these score-based generative methods are extremely flexible in that they do
not require any problem-specific training, they may open up exciting new opportunities for developing
new unsupervised learning based methods for biological image reconstruction and enhancement.

Another interesting direction is feature disentanglement. Unsupervised feature disentanglement methods

were proposed in different fields including generative modelling of material structure [40]. Although
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seemingly unrelated, the fundamental problem of biological image reconstruction and enhancement can
be viewed as disentangling salient signal from the noisy measurement. By exploiting widely used tools,
for instance adaptive instance normalization for feature disentanglement, one could build a new approach

to biological imaging.

B. Availability of training databases

While the early works in biological imaging applications relied on utilizing imaging datasets that were
released for other purposes, such as segmentation or tracking challenges, there have been substantial recent
efforts in the release and use of publicly available biological imaging data. The Biolmage Archive, Image
Data Resources (IDR), Biolmage.IO and Electron Microscopy Public Image Archive (EMPIAR) constitute
some of these efforts. Moreover, there are platforms such as Zenodo and Figshare that host and distribute
biological imaging data. The increasing availability of such large databases of raw measurement data for
different biomedical imaging modalities may further facilitate development of DL-based reconstruction

and enhancement strategies.

VI. CONCLUSION

Deep learning methods have recently become the state-of-the-art approaches for image reconstruction.
While conventionally, such methods are trained using supervised training, the lack of matched reference
data has hampered their utility in biological imaging applications. Thus, unsupervised learning strategies,
encompassing both self-supervised methods and generative models, have been proposed, showing great
promise. Self-supervised methods devise a way to create supervisory labels from the incomplete mea-
surement data itself to train the model. Hold-out masking strategy is especially useful for both image
denoising and reconstruction. With recent advances, one can perform training with as little as a single
noisy measurement. Generative model based methods encompass diverse methods for image denoising
and reconstruction, with VAE and GAN being the two most prominent strategies. Both methods can be
seen as the optimization problem of statistical minimization, with different choices for statistical distance
measure leading to seemingly unrelated methods for training the generative model.

These strategies are still being developed and applied to biological imaging scenarios, creating op-
portunities for the broader signal processing community in terms of new technical developments and

applications.
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