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1. Introduction

We study metric properties of symmetrized divergence measures on hermitian posi-
tive definite (hpd) matrices. Such divergence measures are widely useful, ranging from
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quantum information theory [3,8,13], to optimization [22,25], to machine learning and
computer vision [7,29,31], among others [3-5,10,11,14,16,19,21,30].

Our focus on studying metric properties of these divergences was inspired by the aim
to build a theory that answers Conjecture 1.1 as a special case. A secondary aim is
to obtain a family of metrics closely related to the S-Divergence [21] (which has found
a variety of applications), and thus obtain a new family of potentially useful metrics.
Remarkably, the metric property of the S-Divergence, which was the central result of [21],
plays a crucial role in the present paper too.

The divergence underlying our primary aim is obtained by symmetrizing a Bregman
divergence (see Section 2), or equivalently, by using midpoint convexity. For instance,
consider the von Neumann entropy

S(X) = —tr(Xlog X), X € Py, (1.1)
which leads to the so-called the Quantum Jensen-Shannon divergence [13]:
QJISD(X,Y) := 5 (X4X) — $(S(X) + S(Y)). (1.2)

Divergence (1.2) has found a variety of applications, including several cited above. While
it is clearly symmetric and nonnegative, it is not a true distance; nevertheless, empirically
its square root QJSDl/ % has been long observed to satisfy the triangle inequality [3,13].

A formal study QJSDl/ 2 as a metric was started by Lamberti et al. [13], who used
it for measuring distances between quantum states. They also showed that QJSD is the
square of a metric for pure states. Shortly thereafter, Briét and Harremoés [3] claimed
that (3.1) is the square of a Hilbertian metric for qubits and pure states of any dimension;
their proof, apparently contains an error, and a proof was furnished by Carlen, Lieb and
Seiringer—please see [28, §3] for more details. For general quantum states, the work [28]
(which appeared 2 weeks before a version of this paper appeared online [24]) furnished a
proof of Conjecture 1.1). Our work is completely independent of [28], and it recovers not
only Conjecture 1.1 as a special case, but also proves the metric properties of Jensen-
Rényi divergence, a task that proves to be more challenging.

Specifically, Lamberti et al. had made the following conjecture:

Conjecture 1.1 (Lamberti et al. [13]). QISDY? is a metric on Py (see also [3]).

1.1. Summary of contributions
The main contributions of this paper are as follows:

m We prove in Theorem 3.1 the metric property for a rich class of Jensen divergences
(please see Section 2 for background). This class includes QJSD, (a € [0,2]) as
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a special case, and thus a fortiori also includes QJSD, yielding another proof of
Conjecture 1.1 (the first publicly circulated proof of this conjecture is due to [28]).
Moreover, our proof extends to more general settings based on certain convex func-
tions (Theorem 3.6). Both Theorems 3.1 and 3.6 rely on integrals related to Pick
functions (Section 5).

m In Section 4 we prove the Jensen-Shannon divergence generated by the a-Tsallis
relative entropy is also the square of a metric.

m Finally, in Theorem 6.3 we prove the harder result that the quantum Jensen-Rényi
divergence QJRD,, is the square of a metric for & € (0,1). Our technique relies on
integral representations of completely monotonic functions and an argument based
on 3 x 3 matrices that may be of independent interest.

2. Background

We begin by recalling some basic facts about divergences. Perhaps the most well-
known divergence is the Bregman divergence [6]," which is generated by differentiable
and convex function f: R™ — R as follows,

Dy(z,y) :== f(z) = f(y) = (Vf(y), = —y). (2.1)

By construction, Ds(x,y) is nonnegative, convex in x, and equals 0 if z = y. It is
typically asymmetric and does not satisfy the triangle inequality, which explains the
name “divergence” as opposed to “distance.”

Example 2.1. Some common Bregman divergences are listed below.

« Squared (>-distance: Let f(z) = $z7z, then Dy(z,y) = ||z — y|)3.
o KL divergence on R, . f(z) = xzlogz, so Dy(x,y) = xlog(z/y) —z + .

o Burg divergence on R, .. f(z) = —logz, so Ds(x,y) = log(y/z) + x/y — 1.

The Bregman divergence (2.1) extends naturally to hermitian matrices. Let X,Y be
hermitian, and let the scalar function f be defined on hermitian matrices the usual way
(via spectral decomposition), then the Bregman matriz divergence is defined as

Dy(X,Y) = tr f(X) — tr f(¥) = (f'(¥), X~ V). (2.2)

It is an instructive exercise to verify that D¢(X,Y’) > 0.

Example 2.2. The matrix versions of Example 2.1 are:

L Bregman divergences over scalars and vectors have been well-studied; see e.g., [1,6]. They are called
divergences because they are not distances.
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« Squared Frobenius: here tr f(X) = tr(X?), so that D;(X,Y) = 1| X — V3.
e von Neumann divergence (Umegaki relative entropy): here tr f(X) = tr(X log X),
so Dy(X,Y) yields the von Neumann divergence of quantum information theory [17]:

Dyn(X,Y) =tr(Xlog X — XlogY — X +Y).
o Stein’s loss: here tr f(X) = —logdet(X), so Df(X,Y’) becomes
Dy(X,Y) =tr(Y H(X —Y)) — logdet(XY 1),
which is also known as the LogDet Divergence [12], or Stein’s loss [26].
2.1. Jensen and Jensen-Shannon divergences

Although Bregman divergences are widely useful, their asymmetry can be undesirable.
A popular symmetric alternative is the Jensen divergence (sometimes called Jensen-
Bregman divergence [7]):

SH(X.Y) = 1Dy, X52) 4 Dy(v, 54, (23

This divergence has two possibly more transparent representations:

SHX,Y)
Sp(X,Y)

300 X0+t f(V)] = o (555, (2.4)
min - 5[Ds(X,Z) + Dy(Y, Z)]. (2.5)

Remark 2.3. In some contexts (2.4) is also called the Jensen-Shannon divergence. But
for clarity within the context of the quantum setting, we reserve that name for sym-
metrization (2.5) applied to Dy being a suitable quantum relative entropy.

Example 2.4. The symmetric versions of Example 2.2 are:

o Iftr f(X) = %trX2, we obtain S¢(X,Y) = Ds(X,Y) = %HX -Y|3.

o If tr f(X) = tr(X log X), both (2.4) and (2.5) yield the QJSD (1.2).
e For tr f(X) = —logdet(X) = —4d(X), we obtain the S-Divergence [21]:
SHX,Y) = Sa(X,Y) = 65(X,Y) i=td (£X) — 20d(X) — $d(Y). (2.6)
With this background, we are now ready to present the main results on this paper.

3. Metric properties of quantum Jensen divergences

In this section we study symmetric divergence whose square roots are metrics.
The class of divergences covered is chosen to capture the a-Tsallis generalization to
QJSD (1.2):
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QJISD, (X, Y) := 8o (X)) — $(Sa(X) + Sa(Y)), (3.1)
where S, is the a-Tsallis entropy

tr(X*) —tr X
5 (x) = TEDZ X ¢ o, qay, (32)
Note that, lim, 1+ So(X) = S(X); and that S, is concave on hpd matrices.
We present a technique which implies that QJSDi/ 2 is a metric as a special case;
this result in turn immediately yields a proof of Conjecture 1.1 (which corresponds to
a — 17). Specifically, consider a function f on (0,00) that can be written as:

oo

t
f(z):a+bx+clogx—|—/log( + )
0

h(t)

dp(t), (3.3)

where a,b € R, ¢ > 0, h(t) > 0, and p is a nonnegative measure. This function is concave,
so using it we can define a “quantum” Jensen divergence (on hpd matrices):

Ap(X,Y) = te[F(X5Y) — LX) - SF(Y)]. (3.4)

Our first main result is Theorem 3.1.

Theorem 3.1. Let f be a function that admits the representation (3.3), and let Ay
be the Jensen-divergence (3.4). Then, A}/Q is a distance on Pg.

Crucial to our proof is the metric property of the S-Divergence (2.6).

Theorem 3.2 (Sra (2016) [21]). s given by (2.6) is a metric.

Proof of Theorem 3.1. The only non-trivial part is to prove the triangle inequality for
A}/Q. Using (3.3) and noting that trlog(X) = ¢d(X) we can express Ay as

Ap(X,Y) = c(td (XEY) — Led(X) — Led(y))

+ /[éd(t[ + &) — Led((tI + X)(tT +Y))]dp(t),
0

which may be written in terms of the S-Divergence as
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oo
Ap(X,Y) = e84(X,Y) +/5 (t1 + X, 1 + Y )dp(t), (3.5)
0

Since ¢ > 0, it follows from (3.5) that Ay is a non-negatively weighted sum of squared
distances, therefore A}/ ? satisfies the triangle inequality, completing the proof. O

Corollary 3.3. Let a € (0,1). Then, QJSD:‘)/2 is a metric.

Proof. For 0 < a < 1 and x > 0, we use the integral representation introduced in [23]:

o0

xt = asin(ar /log )t lat, (3.6)

0

which is an instance of (3.3). Now, Theorem 3.1 immediately yields the corollary. O

While Corollary 3.3 holds for a € (0, 1), a slightly different integral representation
allows us to also obtain the following result:

Corollary 3.4. Let o € (1,2). Then, QJSD})/2 is a metric.
Proof. The key idea is to use the following integral representation (for 1 < a < 2):
2z = |0‘Sln o) / —log(1 + tx))t—>"1dt, (3.7)

which was also noted in [23]; notice that this representation is not captured by (3.3).
Using (3.7) and arguing as for Theorem 3.1, the proof readily follows. O

Observing that lim,_,1+ QJSD, = QJSD, we obtain a proof for Conjecture 1.1.

Corollary 3.5. QJSDI/2 is a metric on Py.

3.1. Generalizing Corollary 3./

The reader has perhaps already realized that the argument used to prove Corollary 3.4
also holds for convex functions on (0, c0) that admit the representation
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o}

f(x) =a+bx —clogx + /(ta: — log(1 + ta))du(t), (3.8)
0

where a,b € R, ¢ > 0, and p is a nonnegative measure. Then we have the following:

Theorem 3.6. Let f(x) be given by (3.8), and define the Jensen divergence
Ap(X,Y) =2 tr f(X) + Str f(Y) —tr f (2FY). (3.9)

Then, A'Y? is a distance function on Pg.

4. The Jensen-Shannon «-Tsallis relative entropy

This section addresses a question posed by a referee of an earlier version. They re-
marked that the channel capacity interpretation of the Jensen-Shannon Tsallis relative
entropy (4.2) makes its corresponding metric property more valuable than that of QJSD,,.
However, as shown below, this property easily follows from that of QJSD,,.

Consider the a-Tsallis relative entropy

atrX + (1 —a)trY —tr Xoyl-e
l-a

So(X,Y) = . ae(0,00)\{1}.

The “centroid” of its symmetrization reduces to a power-mean; more precisely,

argmin S, (X,Z2)+ S,(Y,Z) = (W)l/a. (4.1)
ZePy

Using (4.1), we arrive at the main result of this section.

Theorem 4.1. Let the Jensen-Shannon «-Tsallis divergence be defined as

Aa(X,Y) i= So(X, M) + Sa(Y, M)

(4.2)
= (atr(X+Y)+2(1—a)tr Z —tr(Z'"*(X* 4+ Y?))),

where M denotes the rhs of (4.1). Then, for a > %, Atl)/z is a metric.

Proof. We prove this metricity by reducing it to Corollaries 3.3 and 3.4. To that end,
write A = X® and B?%, and t = 1/«. Then, we see that

Aa(X,Y) = 5 (atr(A' + B) = 20 tr (452)"). (4.3)
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For o € [%, 1), we have t € (1, 2], whereby we can apply Corollary 3.4 to deduce metricity

of A}/Q. For the case o > 1, we have t < 1, and also 1 — a < 0. In this case, we can
apply Corollary 3.3 to obtain metricity of A}X/ 2.0

Remark 4.2. Similarly, one could consider Jensen-Shannon versions of Rényi relative
entropies such as the Petz-Rényi relative entropy [18] and the sandwiched Rényi relative
entropy [15]; we defer such a discussion to the future.

5. Divergences and Pick functions

We briefly remark below on the deeper connection that motivates our choice (3.3).
This connection also provides a valuable converse, namely, conditions under which such
a representation holds for a given function.

In particular, in [20, Theorem 2.1] it was shown that if z f'(«) has an analytic extension
whose restriction to the upper half plane is a Pick function [9] and zf’(z) is bounded,
then f admits the representation (valid for z > 0):

(t+x) logz
A+t 1+

d o0
f@)=a+bx+cloga + pu —i—/[log }du(t), (5.1)
0

with a,c € R, b,d > 0, and the nonnegative measure p satisfies [ ¢/(1 + t*)du(t) < oo.
Moreover, if in addition f’ > 0, then (see [20, Thm. 4.2])

t+zx
T ), (5.2)

flz) = a—l—bx—i—clogw—i—/log
0

with a € R, b,¢ > 0 and fooo(l—l—tQ)_ldu(t) < o0; this form is what motivates our slightly
more general choice (3.3).

6. Quantum Jensen-Rényi divergence

Recall that the Quantum Rényi Entropy is defined as

1 tr(X )
log )

a>0,a#1. (6.1)

Observe that (6.1) is concave for o € (0, 1); thus, for such a we can define the Quantum
Jensen-Rényi Divergence as:

QJRD,, := H, (3X) — 1H,(X) — 3H,(Y). (6.2)

Proving that QJRD,, is the square of a metric (Theorem 6.3) turns out to be harder
than analyzing QJSD,,. Indeed, QJRD,, is not directly amenable to the Pick function
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technique developed above, and it requires a more intricate argument that uses two
more ingredients: complete monotonicity and the relation between conditionally negative
definite matrices and metrics.

Definition 6.1 (Complete monotonicity). A function F : (0,00) — R is called completely
monotonic (CM) if (—1)*F®)(z) > 0, for k > 0. Bernstein’s theorem (see e.g., [27,
Thm. 6.13]) shows that such an F can be written as

F(z) = [ e ™dv(t), (6.3)

for a nonnegative measure v on [0, ).
Definition 6.2 (CND). X € Hg is conditionally negative definite (cnd) if

v*Xv <0, forallveC?s.t. v*l=0. (6.4)

Theorem 6.3. QJRDY/? is a metric on HPD matrices for a € (0,1).

Proof. Without loss of generality we may assume that tr(X) = 1. Introduce now the
shorthand d,, = tr (X—;Y)a, dy = dgg; define dg.,d,., and d,,d. similarly. Then, by
Theorems 3.1 and A.1 it follows that the matrix

0 2y — dp — dy 2y — dy — d.
D= |2dyy, — dy —d, 0 2d,, —dy —d. | ,
%y, —dp —d,  2dy. —dy, — d, 0

is cnd. It is also known that (see e.g., [2, Thm. 4.4.2]) that if an elementwise nonnegative
matrix [m;;] is cnd, and F is a CM function, then [F(m;;)] is positive definite. Let
0 = [dy,dy,d;]T; then, M = 017 + 167 + D is also cnd, and so is 2t117 + M for all
t > 0. Thus, using the CM function F(s) = 2/s on M we see that

1 1 1
T+d, 1tdey Itdas
r_ -+ 1 1
M = |74, a4, 174, | =0 (6.5)
1 1 1

Td,. i1d,. trds

Using n = 3[t +du, t + dy, t + d.]7, we construct n17 + 1n” — M’, which is clearly cnd.
Explicitly, this matrix is given by (we suppress symmetric entries via * for brevity):

0 3wz tmg) ~wa, 2(Fe twc)
* 0 g + o) — e

* * 0



134 S. Sra / Linear Algebra and its Applications 616 (2021) 125-138

Since d, = tr(X®) is concave for « € (0,1), it follows that 1/(¢ + d;) is convex, whereby

1,1 1 1
=+ ) - > 0.
o\i+d, ttdy)  ttdy,

Thus, we can invoke Theorem A.1 again to conclude that

1, 1 1 1
- - =6} (X,Y :
2(t+d$+t+dy> t+ dyy (XY, (6.6)

where J; is a distance metric. Next, recall the following integral representation

logz = dt, .
BT = /t+m 1+ﬁ) (6.7)
0

which can be obtained for instance by first writing (logz)? using (5.1) and then differ-
entiating [20]. Integrating (6.6) using representation (6.7) we can finally write

QJRD,,( t/é
0

which proves that QJRD&/ % is a metric. O
6.1. Other extensions

The above proof actually also shows that if d,, = h (X—'Q*'Y) where h(X) is concave
and Ap(X,Y) =dgy — %dw — %dy is the square of a metric, then

Ap(X,Y) = 5F(ds) + 5F(dy) — F(day),

is the square of a metric. Indeed, if A is concave, then e ** is convex for ¢ > 0. Thus,

for a CM function F' the map F(h(X)) is convex, whence Ap(X,Y) > 0. The triangle
inequality follows from a construction analogous to (6.5). We omit details for brevity.

7. Conclusions

In this paper, we identified sufficient conditions based on Pick-Nevanlinna integral
representations for ensuring that the corresponding (quantum) Jensen divergence is the
square of a metric. At this point, it is natural to consider the following (likely harder)
task as an open problem:

Problem 7.1. Identify conditions that are both necessary and sufficient for a given (quan-
tum) Jensen divergence to be the square of a metric.



S. Sra / Linear Algebra and its Applications 616 (2021) 125-138 135

Declaration of competing interest
None declared.
Acknowledgements

I would like to thank Déniel Virosztek for bringing [28] to my attention, and also for
pointing out to me certain corrections in the attribution of the QJSD conjecture, as well
as the reference to a proof by Carlen-Lieb-Seiringer (see [28, §3]) as the correct proof of
metricity for qubits.

Appendix A. Distances and 3 X 3 cnd matrices*

In this section, we summarize the equivalence between 3 x 3 cnd matrices and cor-
responding distance metrics. This material is classical, but we include our proofs for
keeping the description self-contained. Indeed, squared distances are intimately related
with cnd matrices. The following theorem summarizes this connection.

Theorem A.1. Let D be a 3 x 3 symmetric positive definite matriz that is elementwise
nonnegative; we write explicitly

d; di, d.
dzz dyz dz

Let @ = $[d2,d2,d?]" and define M = 017 + 167 — D. Then for the statements

x) Yy Yz

(i) D is positive definite;
(i1) M is cnd and nonnegative; and
(iii) d*(z,y) is a squared metric,

the following claims hold: (i) = (it) < (ii).
Proof. (i) = (ii): Immediate, as x7 Mx = —zT Dz < 0 for any z € R? such that
2T1=0.

(i) = (i4): First, consider nonnegativty. It suffices to discuss «; the others follow
similarly.

a=3(d+d)—-d, >0 & di, <i(d+d).

But D is psd, whereby diy < didi.
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What remains to show is that

0 a pf
M=]a 0 v is cnd,

B v O
where «, 8, are shorthand for the actual entries of M. For the vector x = [—s —t, s, ],
we have
1.7 2 2
—52° Mz = as” 4+ st(a+ 3 — ) + ft° > 0. (A1)

From this inequality we need to deduce that

al/? < 51/2+,Y1/2’ (A.2)
B2 < QM2 4412, (A.3)
Y2 < a2 4 g2, (A4)

Assume without loss of generality that ~ is the largest. Then, if we can prove that
12 < al/2 4 /2 the other inequalities follow immediately since o, 3 > 0. To that end,
we can equivalently show that

y<a+p+2vV/aB & a+fB—v>-2vapb. (A.5)
Let us see how to deduce (A.5) from (A.1), which says that
(4B —7)st > —sa — t23. (A.6)
In particular, let s? = /B/y/a and t? = \/a/+/B; this yields st = 1 and s« + 23 =
2v/af, so that (A.6) reduces to the desired inequality (A.4).
(iii) = (ii): Let x = [—s — t, 5,t] as before. We wish to show that 27 Mz < 0; we
split this task into two subcases: (a) st < 0, and (b) st > 0.

Case (a). Let o, 8, be squared distances as before, with ~ that largest. Then, from
inequality (A.4) it follows that

Y2l =B = v > a+B-2V/ab. (A7)

The only way to violate cnd property of M is to choose s and ¢ such that 27 Mz > 0, or
equivalently to show that

sfa+ 2B +st(a+p—v) <0. (A.8)

Since st < 0, (A.8) turns into
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1
a+/3’—v260z+§ﬁ22\/a5.
That is, to break the cnd property of M we need to have

a+ﬁ_2m277

which contradicts (A.7).
Case (b). If st > 0, then from (A.4) it follows that

(a+ B —7)st > —2st\/aff = —2\/s2at?f > —s*a — 2.

But this inequality can not contradict the cnd property, as it is just inequality (A.6)
analyzed above. Thus, in both cases, we obtain that M must be cnd. 0O
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