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We study metric properties of symmetric divergences on Her-
mitian positive definite matrices. In particular, we prove that 
the square root of these divergences is a distance metric. As a 
corollary we obtain a proof of the metric property for Quan-
tum Jensen-Shannon-(Tsallis) divergences (parameterized by 
α ∈ [0, 2]). When specialized to α = 1, we obtain as a corol-
lary a proof of the metric property of the Quantum Jensen-
Shannon divergence that was conjectured by Lamberti et al. 
(2008) [13], and recently also proved by Virosztek (2019) [28]. 
A more intricate argument also establishes metric properties 
of Jensen-Rényi divergences (for α ∈ (0, 1)); this argument 
develops a technique that may be of independent interest.
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1. Introduction

We study metric properties of symmetrized divergence measures on hermitian posi-

tive definite (hpd) matrices. Such divergence measures are widely useful, ranging from 
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quantum information theory [3,8,13], to optimization [22,25], to machine learning and 

computer vision [7,29,31], among others [3–5,10,11,14,16,19,21,30].

Our focus on studying metric properties of these divergences was inspired by the aim 

to build a theory that answers Conjecture 1.1 as a special case. A secondary aim is 

to obtain a family of metrics closely related to the S-Divergence [21] (which has found 

a variety of applications), and thus obtain a new family of potentially useful metrics. 

Remarkably, the metric property of the S-Divergence, which was the central result of [21], 

plays a crucial role in the present paper too.

The divergence underlying our primary aim is obtained by symmetrizing a Bregman 

divergence (see Section 2), or equivalently, by using midpoint convexity. For instance, 

consider the von Neumann entropy

S(X) := − tr(X log X), X ∈ Pd, (1.1)

which leads to the so-called the Quantum Jensen-Shannon divergence [13]:

QJSD(X, Y ) := S
(

X+Y
2

)

− 1
2

(

S(X) + S(Y )
)

. (1.2)

Divergence (1.2) has found a variety of applications, including several cited above. While 

it is clearly symmetric and nonnegative, it is not a true distance; nevertheless, empirically 

its square root QJSD1/2 has been long observed to satisfy the triangle inequality [3,13].

A formal study QJSD1/2 as a metric was started by Lamberti et al. [13], who used 

it for measuring distances between quantum states. They also showed that QJSD is the 

square of a metric for pure states. Shortly thereafter, Briët and Harremoës [3] claimed 

that (3.1) is the square of a Hilbertian metric for qubits and pure states of any dimension; 

their proof, apparently contains an error, and a proof was furnished by Carlen, Lieb and 

Seiringer—please see [28, §3] for more details. For general quantum states, the work [28]

(which appeared 2 weeks before a version of this paper appeared online [24]) furnished a 

proof of Conjecture 1.1). Our work is completely independent of [28], and it recovers not 

only Conjecture 1.1 as a special case, but also proves the metric properties of Jensen-

Rényi divergence, a task that proves to be more challenging.

Specifically, Lamberti et al. had made the following conjecture:

Conjecture 1.1 (Lamberti et al. [13]). QJSD1/2 is a metric on Pd (see also [3]).

1.1. Summary of contributions

The main contributions of this paper are as follows:

� We prove in Theorem 3.1 the metric property for a rich class of Jensen divergences 

(please see Section 2 for background). This class includes QJSDα (α ∈ [0, 2]) as 
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a special case, and thus a fortiori also includes QJSD, yielding another proof of 

Conjecture 1.1 (the first publicly circulated proof of this conjecture is due to [28]). 

Moreover, our proof extends to more general settings based on certain convex func-

tions (Theorem 3.6). Both Theorems 3.1 and 3.6 rely on integrals related to Pick 

functions (Section 5).

� In Section 4 we prove the Jensen-Shannon divergence generated by the α-Tsallis 

relative entropy is also the square of a metric.

� Finally, in Theorem 6.3 we prove the harder result that the quantum Jensen-Rényi 

divergence QJRDα is the square of a metric for α ∈ (0, 1). Our technique relies on 

integral representations of completely monotonic functions and an argument based 

on 3 × 3 matrices that may be of independent interest.

2. Background

We begin by recalling some basic facts about divergences. Perhaps the most well-

known divergence is the Bregman divergence [6],1 which is generated by differentiable 

and convex function f : R
n → R as follows,

Df (x, y) := f(x) − f(y) − 〈∇f(y), x − y〉. (2.1)

By construction, Df (x, y) is nonnegative, convex in x, and equals 0 if x = y. It is 

typically asymmetric and does not satisfy the triangle inequality, which explains the 

name “divergence” as opposed to “distance.”

Example 2.1. Some common Bregman divergences are listed below.

• Squared ℓ2-distance: Let f(x) = 1
2xT x, then Df (x, y) = 1

2‖x − y‖2
2.

• KL divergence on R++. f(x) = x log x, so Df (x, y) = x log(x/y) − x + y.

• Burg divergence on R++. f(x) = − log x, so Df (x, y) = log(y/x) + x/y − 1.

The Bregman divergence (2.1) extends naturally to hermitian matrices. Let X, Y be 

hermitian, and let the scalar function f be defined on hermitian matrices the usual way 

(via spectral decomposition), then the Bregman matrix divergence is defined as

Df (X, Y ) := tr f(X) − tr f(Y ) − 〈f ′(Y ), X − Y 〉. (2.2)

It is an instructive exercise to verify that Df (X, Y ) ≥ 0.

Example 2.2. The matrix versions of Example 2.1 are:

1 Bregman divergences over scalars and vectors have been well-studied; see e.g., [1,6]. They are called 
divergences because they are not distances.



128 S. Sra / Linear Algebra and its Applications 616 (2021) 125–138

• Squared Frobenius: here tr f(X) = tr(X2), so that Df (X, Y ) = 1
2‖X − Y ‖2

F.

• von Neumann divergence (Umegaki relative entropy): here tr f(X) = tr(X log X), 

so Df (X, Y ) yields the von Neumann divergence of quantum information theory [17]:

DvN(X, Y ) = tr(X log X − X log Y − X + Y ).

• Stein’s loss: here tr f(X) = − log det(X), so Df (X, Y ) becomes

Dℓd(X, Y ) = tr(Y −1(X − Y )) − log det(XY −1),

which is also known as the LogDet Divergence [12], or Stein’s loss [26].

2.1. Jensen and Jensen-Shannon divergences

Although Bregman divergences are widely useful, their asymmetry can be undesirable. 

A popular symmetric alternative is the Jensen divergence (sometimes called Jensen-

Bregman divergence [7]):

Sf (X, Y ) := 1
2

(

Df (X, X+Y
2 ) + Df (Y, X+Y

2 )
)

. (2.3)

This divergence has two possibly more transparent representations:

Sf (X, Y ) = 1
2

[

tr f(X) + tr f(Y )
]

− tr f
(

X+Y
2

)

, (2.4)

Sf (X, Y ) = min
Z

1
2 [Df (X, Z) + Df (Y, Z)]. (2.5)

Remark 2.3. In some contexts (2.4) is also called the Jensen-Shannon divergence. But 

for clarity within the context of the quantum setting, we reserve that name for sym-

metrization (2.5) applied to Df being a suitable quantum relative entropy.

Example 2.4. The symmetric versions of Example 2.2 are:

• If tr f(X) = 1
2 tr X2, we obtain Sf (X, Y ) = Df (X, Y ) = 1

2‖X − Y ‖2
F.

• If tr f(X) = tr(X log X), both (2.4) and (2.5) yield the QJSD (1.2).

• For tr f(X) = − log det(X) ≡ −ℓd(X), we obtain the S-Divergence [21]:

Sf (X, Y ) ≡ Sℓd(X, Y ) := δ2
S(X, Y ) := ℓd

(

X+Y
2

)

− 1
2ℓd(X) − 1

2ℓd(Y ). (2.6)

With this background, we are now ready to present the main results on this paper.

3. Metric properties of quantum Jensen divergences

In this section we study symmetric divergence whose square roots are metrics. 

The class of divergences covered is chosen to capture the α-Tsallis generalization to 

QJSD (1.2):
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QJSDα(X, Y ) := Sα

(

X+Y
2

)

− 1
2

(

Sα(X) + Sα(Y )
)

, (3.1)

where Sα is the α-Tsallis entropy

Sα(X) :=
tr(Xα) − tr X

1 − α
, α ∈ [0, 2] \ {1}. (3.2)

Note that, limα→1+ Sα(X) = S(X); and that Sα is concave on hpd matrices.

We present a technique which implies that QJSD1/2
α is a metric as a special case; 

this result in turn immediately yields a proof of Conjecture 1.1 (which corresponds to 

α → 1+). Specifically, consider a function f on (0, ∞) that can be written as:

f(x) = a + bx + c log x +

∞
∫

0

log
(t + x)

h(t)
dμ(t), (3.3)

where a, b ∈ R, c ≥ 0, h(t) > 0, and μ is a nonnegative measure. This function is concave, 

so using it we can define a “quantum” Jensen divergence (on hpd matrices):

∆f (X, Y ) := tr
[

f
(

X+Y
2

)

− 1
2f(X) − 1

2f(Y )
]

. (3.4)

Our first main result is Theorem 3.1.

Theorem 3.1. Let f be a function that admits the representation (3.3), and let ∆f

be the Jensen-divergence (3.4). Then, ∆
1/2
f is a distance on Pd.

Crucial to our proof is the metric property of the S-Divergence (2.6).

Theorem 3.2 (Sra (2016) [21]). δS given by (2.6) is a metric.

Proof of Theorem 3.1. The only non-trivial part is to prove the triangle inequality for 

∆
1/2
f . Using (3.3) and noting that tr log(X) = ℓd(X) we can express ∆f as

∆f (X, Y ) = c
(

ℓd
(

X+Y
2

)

− 1
2ℓd(X) − 1

2ℓd(Y )
)

+

∞
∫

0

[

ℓd(tI + X+Y
2 ) − 1

2ℓd((tI + X)(tI + Y ))
]

dμ(t),

which may be written in terms of the S-Divergence as
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∆f (X, Y ) = cδ2
S(X, Y ) +

∞
∫

0

δ2
S(tI + X, tI + Y )dμ(t). (3.5)

Since c ≥ 0, it follows from (3.5) that ∆f is a non-negatively weighted sum of squared 

distances, therefore ∆
1/2
f satisfies the triangle inequality, completing the proof. �

Corollary 3.3. Let α ∈ (0, 1). Then, QJSD1/2
α is a metric.

Proof. For 0 < α < 1 and x > 0, we use the integral representation introduced in [23]:

xα =
α sin(απ)

π

∞
∫

0

log
(

t+x
t

)

tα−1dt, (3.6)

which is an instance of (3.3). Now, Theorem 3.1 immediately yields the corollary. �

While Corollary 3.3 holds for α ∈ (0, 1), a slightly different integral representation 

allows us to also obtain the following result:

Corollary 3.4. Let α ∈ (1, 2). Then, QJSD1/2
α is a metric.

Proof. The key idea is to use the following integral representation (for 1 < α < 2):

xα =
|α sin(απ)|

π

∞
∫

0

(tx − log(1 + tx))t−α−1dt, (3.7)

which was also noted in [23]; notice that this representation is not captured by (3.3). 

Using (3.7) and arguing as for Theorem 3.1, the proof readily follows. �

Observing that limα→1+ QJSDα = QJSD, we obtain a proof for Conjecture 1.1.

Corollary 3.5. QJSD1/2 is a metric on Pd.

3.1. Generalizing Corollary 3.4

The reader has perhaps already realized that the argument used to prove Corollary 3.4

also holds for convex functions on (0, ∞) that admit the representation
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f(x) = a + bx − c log x +

∞
∫

0

(tx − log(1 + tx))dμ(t), (3.8)

where a, b ∈ R, c ≥ 0, and μ is a nonnegative measure. Then we have the following:

Theorem 3.6. Let f(x) be given by (3.8), and define the Jensen divergence

∆f (X, Y ) := 1
2 tr f(X) + 1

2 tr f(Y ) − tr f
(

X+Y
2

)

. (3.9)

Then, ∆1/2 is a distance function on Pd.

4. The Jensen-Shannon α-Tsallis relative entropy

This section addresses a question posed by a referee of an earlier version. They re-

marked that the channel capacity interpretation of the Jensen-Shannon Tsallis relative 

entropy (4.2) makes its corresponding metric property more valuable than that of QJSDα. 

However, as shown below, this property easily follows from that of QJSDα.

Consider the α-Tsallis relative entropy

Sα(X, Y ) :=
α tr X + (1 − α) tr Y − tr XαY 1−α

1 − α
, α ∈ (0, ∞) \ {1}.

The “centroid” of its symmetrization reduces to a power-mean; more precisely,

argmin
Z∈Pd

Sα(X, Z) + Sα(Y, Z) =
(

Xα+Y α

2

)1/α
. (4.1)

Using (4.1), we arrive at the main result of this section.

Theorem 4.1. Let the Jensen-Shannon α-Tsallis divergence be defined as

∆α(X, Y ) := Sα(X, M) + Sα(Y, M)

= 1
1−α

(

α tr(X + Y ) + 2(1 − α) tr Z − tr(Z1−α(Xα + Y α))
)

,
(4.2)

where M denotes the rhs of (4.1). Then, for α ≥ 1
2 , ∆

1/2
α is a metric.

Proof. We prove this metricity by reducing it to Corollaries 3.3 and 3.4. To that end, 

write A = Xα and Bα, and t = 1/α. Then, we see that

∆α(X, Y ) = 1
1−α

(

α tr(At + Bt) − 2α tr
(

A+B
2

)t
)

. (4.3)
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For α ∈ [ 1
2 , 1), we have t ∈ (1, 2], whereby we can apply Corollary 3.4 to deduce metricity 

of ∆
1/2
α . For the case α > 1, we have t < 1, and also 1 − α < 0. In this case, we can 

apply Corollary 3.3 to obtain metricity of ∆
1/2
α . �

Remark 4.2. Similarly, one could consider Jensen-Shannon versions of Rényi relative 

entropies such as the Petz-Rényi relative entropy [18] and the sandwiched Rényi relative 

entropy [15]; we defer such a discussion to the future.

5. Divergences and Pick functions

We briefly remark below on the deeper connection that motivates our choice (3.3). 

This connection also provides a valuable converse, namely, conditions under which such 

a representation holds for a given function.

In particular, in [20, Theorem 2.1] it was shown that if xf ′(x) has an analytic extension 

whose restriction to the upper half plane is a Pick function [9] and xf ′(x) is bounded, 

then f admits the representation (valid for x > 0):

f(x) = a + bx + c log x +
d

x
+

∞
∫

0

[

log
(t + x)

(1 + t)
− log x

1 + t2

]

dμ(t), (5.1)

with a, c ∈ R, b, d ≥ 0, and the nonnegative measure μ satisfies 
∫

∞

0
t/(1 + t2)dμ(t) < ∞. 

Moreover, if in addition f ′ ≥ 0, then (see [20, Thm. 4.2])

f(x) = a + bx + c log x +

∞
∫

0

log
t + x

1 + t
dμ(t), (5.2)

with a ∈ R, b, c ≥ 0 and 
∫

∞

0
(1 +t2)−1dμ(t) < ∞; this form is what motivates our slightly 

more general choice (3.3).

6. Quantum Jensen-Rényi divergence

Recall that the Quantum Rényi Entropy is defined as

Hα(X) :=
1

1 − α
log

tr(Xα)

tr(X)
, α ≥ 0, α �= 1. (6.1)

Observe that (6.1) is concave for α ∈ (0, 1); thus, for such α we can define the Quantum 

Jensen-Rényi Divergence as:

QJRDα := Hα

(

X+Y
2

)

− 1
2Hα(X) − 1

2Hα(Y ). (6.2)

Proving that QJRDα is the square of a metric (Theorem 6.3) turns out to be harder 

than analyzing QJSDα. Indeed, QJRDα is not directly amenable to the Pick function 
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technique developed above, and it requires a more intricate argument that uses two 

more ingredients: complete monotonicity and the relation between conditionally negative 

definite matrices and metrics.

Definition 6.1 (Complete monotonicity). A function F : (0, ∞) → R is called completely 

monotonic (CM) if (−1)kF (k)(x) ≥ 0, for k ≥ 0. Bernstein’s theorem (see e.g., [27, 

Thm. 6.13]) shows that such an F can be written as

F (x) =

∞
∫

0

e−txdν(t), (6.3)

for a nonnegative measure ν on [0, ∞).

Definition 6.2 (CND). X ∈ Hd is conditionally negative definite (cnd) if

v∗Xv ≤ 0, for all v ∈ C
d s.t. v∗1 = 0. (6.4)

Theorem 6.3. QJRD1/2
α is a metric on HPD matrices for α ∈ (0, 1).

Proof. Without loss of generality we may assume that tr(X) = 1. Introduce now the 

shorthand dxy = tr
(

X+Y
2

)α
, dx = dxx; define dxz, dyz, and dy, dz similarly. Then, by 

Theorems 3.1 and A.1 it follows that the matrix

D =

⎡

⎣

0 2dxy − dx − dy 2dxz − dx − dz

2dxy − dx − dy 0 2dyz − dy − dz

2dxz − dx − dz 2dyz − dy − dz 0

⎤

⎦ ,

is cnd. It is also known that (see e.g., [2, Thm. 4.4.2]) that if an elementwise nonnegative 

matrix [mij ] is cnd, and F is a CM function, then [F (mij)] is positive definite. Let 

θ = [dx, dy, dz]T ; then, M = θ1
T + 1θT + D is also cnd, and so is 2t11

T + M for all 

t ≥ 0. Thus, using the CM function F (s) = 2/s on M we see that

M ′ =

⎡

⎢

⎣

1
t+dx

1
t+dxy

1
t+dxz

1
t+dxy

1
t+dy

1
t+dyz

1
t+dxz

1
t+dyz

1
t+dz

⎤

⎥

⎦

 0. (6.5)

Using η = 1
2 [t + dx, t + dy, t + dz]T , we construct η1

T + 1ηT − M ′, which is clearly cnd. 

Explicitly, this matrix is given by (we suppress symmetric entries via ∗ for brevity):

⎡

⎢

⎣

0 1
2

(

1
t+dx

+ 1
t+dy

)

− 1
t+dxy

1
2

(

1
t+dx

+ 1
t+dz

)

− 1
t+dxz

∗ 0 1
2

(

1
t+dy

+ 1
t+dz

)

− 1
t+dyz

∗ ∗ 0

⎤

⎥

⎦
.
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Since dx = tr(Xα) is concave for α ∈ (0, 1), it follows that 1/(t + dx) is convex, whereby

1

2

( 1

t + dx
+

1

t + dy

)

− 1

t + dxy
≥ 0.

Thus, we can invoke Theorem A.1 again to conclude that

1

2

( 1

t + dx
+

1

t + dy

)

− 1

t + dxy
=: δ2

t (X, Y ), (6.6)

where δt is a distance metric. Next, recall the following integral representation

log x = −
∞

∫

0

( 1

t + x
− t

1 + t2

)

dt, (6.7)

which can be obtained for instance by first writing (log x)2 using (5.1) and then differ-

entiating [20]. Integrating (6.6) using representation (6.7) we can finally write

QJRDα(X, Y ) =

∞
∫

0

δ2
t (X, Y )dt,

which proves that QJRD1/2
α is a metric. �

6.1. Other extensions

The above proof actually also shows that if dxy = h 
(

X+Y
2

)

where h(X) is concave 

and ∆h(X, Y ) = dx,y − 1
2dx − 1

2dy is the square of a metric, then

∆F (X, Y ) := 1
2F (dx) + 1

2F (dy) − F (dxy),

is the square of a metric. Indeed, if h is concave, then e−th is convex for t ≥ 0. Thus, 

for a CM function F the map F (h(X)) is convex, whence ∆F (X, Y ) ≥ 0. The triangle 

inequality follows from a construction analogous to (6.5). We omit details for brevity.

7. Conclusions

In this paper, we identified sufficient conditions based on Pick-Nevanlinna integral 

representations for ensuring that the corresponding (quantum) Jensen divergence is the 

square of a metric. At this point, it is natural to consider the following (likely harder) 

task as an open problem:

Problem 7.1. Identify conditions that are both necessary and sufficient for a given (quan-

tum) Jensen divergence to be the square of a metric.
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Appendix A. Distances and 3 × 3 cnd matrices⋆

In this section, we summarize the equivalence between 3 × 3 cnd matrices and cor-

responding distance metrics. This material is classical, but we include our proofs for 

keeping the description self-contained. Indeed, squared distances are intimately related 

with cnd matrices. The following theorem summarizes this connection.

Theorem A.1. Let D be a 3 × 3 symmetric positive definite matrix that is elementwise 

nonnegative; we write explicitly

D =

⎡

⎣

d2
x d2

xy d2
xz

d2
xy d2

y d2
yz

d2
xz d2

yz d2
z

⎤

⎦ .

Let θ = 1
2 [d2

x, d2
y, d2

z]T and define M = θ1
T + 1θT − D. Then for the statements

(i) D is positive definite;

(ii) M is cnd and nonnegative; and

(iii) d2(x, y) is a squared metric,

the following claims hold: (i) =⇒ (ii) ⇐⇒ (iii).

Proof. (i) =⇒ (ii): Immediate, as xT Mx = −xT Dx ≤ 0 for any x ∈ R
3 such that 

xT
1 = 0.

(ii) =⇒ (iii): First, consider nonnegativty. It suffices to discuss α; the others follow 

similarly.

α = 1
2 (d2

x + d2
y) − d2

xy ≥ 0 ⇔ d2
xy ≤ 1

2 (d2
x + d2

y).

But D is psd, whereby d4
xy ≤ d2

xd2
y.
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What remains to show is that

M =

[

0 α β
α 0 γ
β γ 0

]

is cnd,

where α, β, γ are shorthand for the actual entries of M . For the vector x = [−s − t, s, t], 

we have

−1
2xT Mx = αs2 + st(α + β − γ) + βt2 ≥ 0. (A.1)

From this inequality we need to deduce that

α1/2 ≤ β1/2 + γ1/2, (A.2)

β1/2 ≤ α1/2 + γ1/2, (A.3)

γ1/2 ≤ α1/2 + β1/2. (A.4)

Assume without loss of generality that γ is the largest. Then, if we can prove that 

γ1/2 ≤ α1/2 +β1/2, the other inequalities follow immediately since α, β ≥ 0. To that end, 

we can equivalently show that

γ ≤ α + β + 2
√

αβ ⇔ α + β − γ ≥ −2
√

αβ. (A.5)

Let us see how to deduce (A.5) from (A.1), which says that

(α + β − γ)st ≥ −s2α − t2β. (A.6)

In particular, let s2 =
√

β/
√

α and t2 =
√

α/
√

β; this yields st = 1 and s2α + t2β =

2
√

αβ, so that (A.6) reduces to the desired inequality (A.4).

(iii) =⇒ (ii): Let x = [−s − t, s, t] as before. We wish to show that xT Mx ≤ 0; we 

split this task into two subcases: (a) st < 0, and (b) st > 0.

Case (a). Let α, β, γ be squared distances as before, with γ that largest. Then, from 

inequality (A.4) it follows that

γ1/2 ≥ |α1/2 − β1/2| =⇒ γ ≥ α + β − 2
√

αβ. (A.7)

The only way to violate cnd property of M is to choose s and t such that xT Mx ≥ 0, or 

equivalently to show that

s2α + t2β + st(α + β − γ) ≤ 0. (A.8)

Since st < 0, (A.8) turns into
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α + β − γ ≥ θα +
1

θ
β ≥ 2

√

αβ.

That is, to break the cnd property of M we need to have

α + β − 2
√

αβ ≥ γ,

which contradicts (A.7).

Case (b). If st > 0, then from (A.4) it follows that

(α + β − γ)st ≥ −2st
√

αβ = −2
√

s2αt2β ≥ −s2α − t2β.

But this inequality can not contradict the cnd property, as it is just inequality (A.6)

analyzed above. Thus, in both cases, we obtain that M must be cnd. �
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