

1 **Chirality Nano-Sensor with Direct Electric Readout by Coupling of**
2 **Nanofloret Localized Plasmons with Electronic Transport**

3 **Amir Ziv^a, Omer Shoseyov^a, Prajith Karadan^b, Brian P. Bloom^c, Sharone Goldring^a,**
4 **Tzuriel S. Metzger^a, Shira Yochelis^a, David H. Waldeck^c, Roie Yerushalmi^{b*}, and Yossi**
5 **Paltiel^{a*}**

7 a) Department of Applied Physics, The Hebrew University, Jerusalem, 9190401

8 b) Institute of Chemistry, The Hebrew University, Jerusalem, 9290401.

9 c) Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

10

11 **ABSTRACT:** The detection of enantiopurity for small sample quantities is crucial, particularly in
12 the pharmaceutical industry; however, existing methodologies rely on specific chiral recognition
13 elements, or complex optical systems limiting its utility. A nanoscale chirality sensor, for
14 continuously monitoring molecular chirality using an electric circuit readout, is presented. This
15 device design represents an alternative real-time scalable approach for chiral recognition of small
16 quantity samples (less than 10^3 adsorbed molecules). The active device component relies on a gold
17 nanofloret hybrid structure, i.e., a high aspect ratio semiconductor-metal hybrid nanosystem in
18 which a SiGe nanowire tip is selectively decorated with gold metallic cap. The tip mechanically
19 touches a counter electrode to generate a nanojunction, and, upon exposure to molecules, a metal-
20 molecule-metal junction is formed. Adsorption of chiral molecules at the gold tip induces chirality
21 in the localized plasmonic resonance at the electrode-tip junction and manifests in an
22 enantiospecific current response.

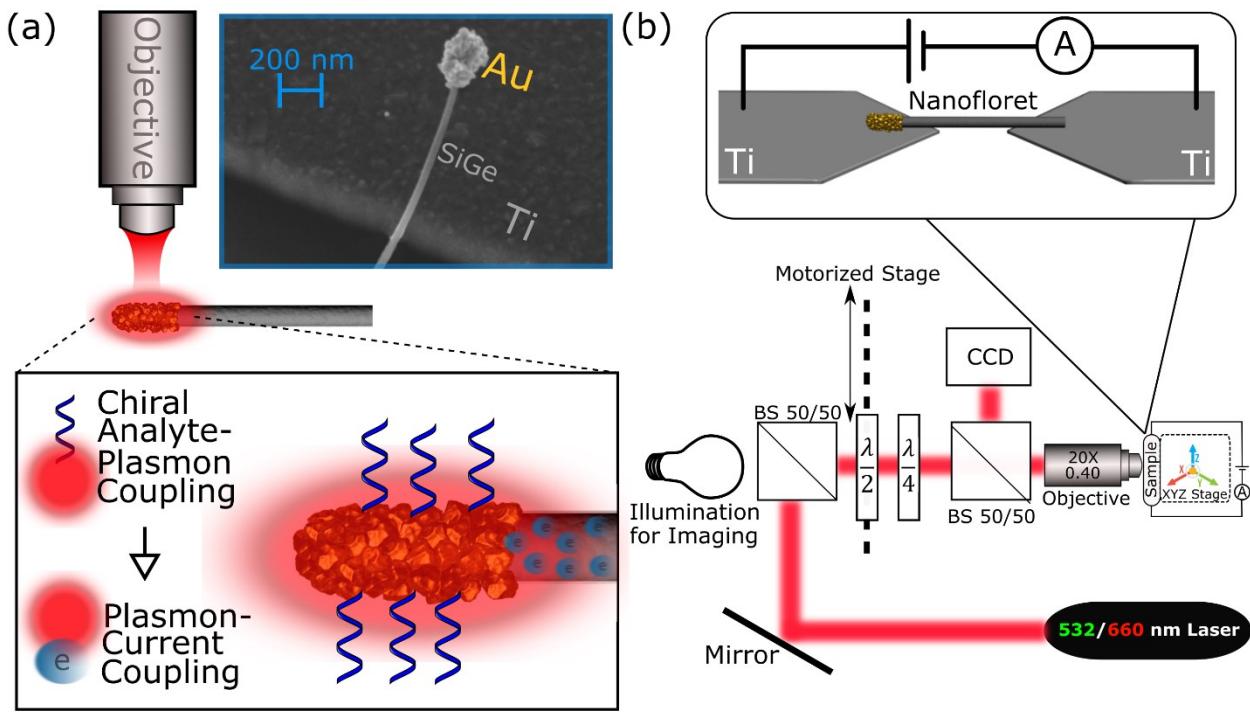
23 **Keywords:** chirality sensing, nanosensor, nanowires, localized plasmon, plasmon-molecular
24 coupling

25 Many of the biomolecular building blocks of living organisms possess a specific chirality; e.g.
26 sugars are dextrorotatory and proteins and amino acids are levorotatory.¹ The ubiquitous nature of
27 chirality in biological processes often necessitates enantiomeric specificity for desired
28 functionality and preventing adverse effects.² As such, the determination of chiral purity is of
29 paramount importance for drug development,³ as well as in the food⁴ and agriculture industry,⁵
30 and even in astrobiology.⁶ State of the art methods for probing enantiopurity can typically be
31 divided into four main categories: chiroptical methods, which involve the direct interaction of light
32 with the substance to be characterized,⁷ chiral chromatography, NMR of a mixture of enantiomers
33 upon reaction with a chiral derivatizing agent, and device-based sensors.

34 Chiroptical methods, such as electronic circular dichroism (ECD),⁸ is based on the different
35 excitation of an electron from a molecular ground state to an excited state under left and right
36 circularly polarized electromagnetic radiation (LCP and RCP respectively). The ECD signal can
37 be related to the structure of the molecule.^{9,10} Vibrational circular dichroism (VCD),¹¹ and optical
38 rotary dispersion¹² are also commonly employed for determining enantiomeric excess; however
39 the measurement typically requires large and complex optical setups.¹³⁻¹⁵ By employing a chiral
40 reagent to create diastereomeric adducts the enantiomeric difference can be detected by analyzing
41 for the different diastereomers. This principle can be employed in both NMR¹⁶ and high
42 performance liquid chromatography¹⁷ (HPLC). Alternatively, chiral chromatography can separate
43 enantiomers through enantioselective interactions of the analyte with a chiral stationary phase;
44 typically cyclodextrin is employed because it is cheap and binds to a large variety of molecules.
45 Despite the general applicability of chromatography, the experimental history of the column can
46 cause memory effects which impact resolution [J. Chromatogr. A, 2002, 945, 139-146. J.
47 Chromatogr. A, 2011, 1218, 6302-6307.] and thus require experiments to assess and condition

48 the column. Chiral sensing with a device often requires a chiral recognition element which
49 functions as a mediator between the chiral analyte and the device. As such, the specificity of the
50 sensor must be tailored to each individual analyte of interest. Examples for device based sensors
51 include electrochemical sensors,^{18,19} gravimetric-mass sensors,²⁰ field-effect,^{21,22} chemiresistors,²³
52 chemocapacitors,²⁴ and surface plasmon based sensors.²⁵⁻²⁷ It is highly desirable to combine the
53 favorable attributes of chiroptical based methods, universally applicable to all analytes, with the
54 compactness and real-time based response of a sensor device. In this study, a chirality sensor is
55 fabricated in which the adsorption of a chiral molecule induces a change in the localized surface
56 plasmon response of a gold nanofloret (Au-NF) and creates an electrical response through a
57 nanojunction.²⁸

58 Localized surface plasmon resonance (LSPR) arises from the coherent oscillation of
59 conduction electrons in a metallic nanoparticle with dimensions smaller than the illumination
60 wavelength. The LSPR is characterized by an enhancement of the electromagnetic field and
61 confinement to the nanoparticle dimensions. Previous studies have shown that coating a metallic
62 nanoparticle with chiral molecules enhances the electronic circular dichroism signal, and it induces
63 chirality on the LSPR mode.²⁹⁻³² This work shows that the integration of a chiral plasmonic
64 metastructure with an electrode can be used to generate a chiroptical response that can be translated
65 directly into an electrical signal readout.³³


66 The device reported herein utilizes the change in LSPR, upon adsorption of chiral analytes, to
67 generate an enantiospecific current response. The device is fabricated by suspending a self-formed
68 hybrid Au-NF, consisting of a gold nanocap at the tip of a high aspect ratio semiconducting SiGe
69 nanowire (NW), between two metallic contacts. The Au-NF synthesis and device fabrication
70 combines bottom-up synthesis and standard photolithography methods, which have been described

71 in detail elsewhere.^{28,34,35} The detection scheme is illustrated in Figure 1a, and the inset shows an
72 SEM image of the Au-NF consisting of the SiGe NW and a metallic Au tip in contact with a
73 macroscopic Ti metal pad. Upon illumination, the LSPR of the gold nanocap which is coupled to
74 the SiGe NW modulates the current flow through the nanojunction. Previous studies³⁶ have
75 compared experimental and simulation results to show that the LSPR mode arises from the unique
76 metastructure of the gold cap, comprising a cluster of gold nanoparticles separated by a GeOx
77 dielectric layer. A tunneling barrier exists between the gold cap and the SiGe semiconductor, and
78 the excitation of the LSPR on the Au modulates the current flow through the barrier. The device
79 sensitivity is determined by the LSPR and is spectrally broad, extending to the short-wave infrared
80 spectral region, as we previously reported.³⁶

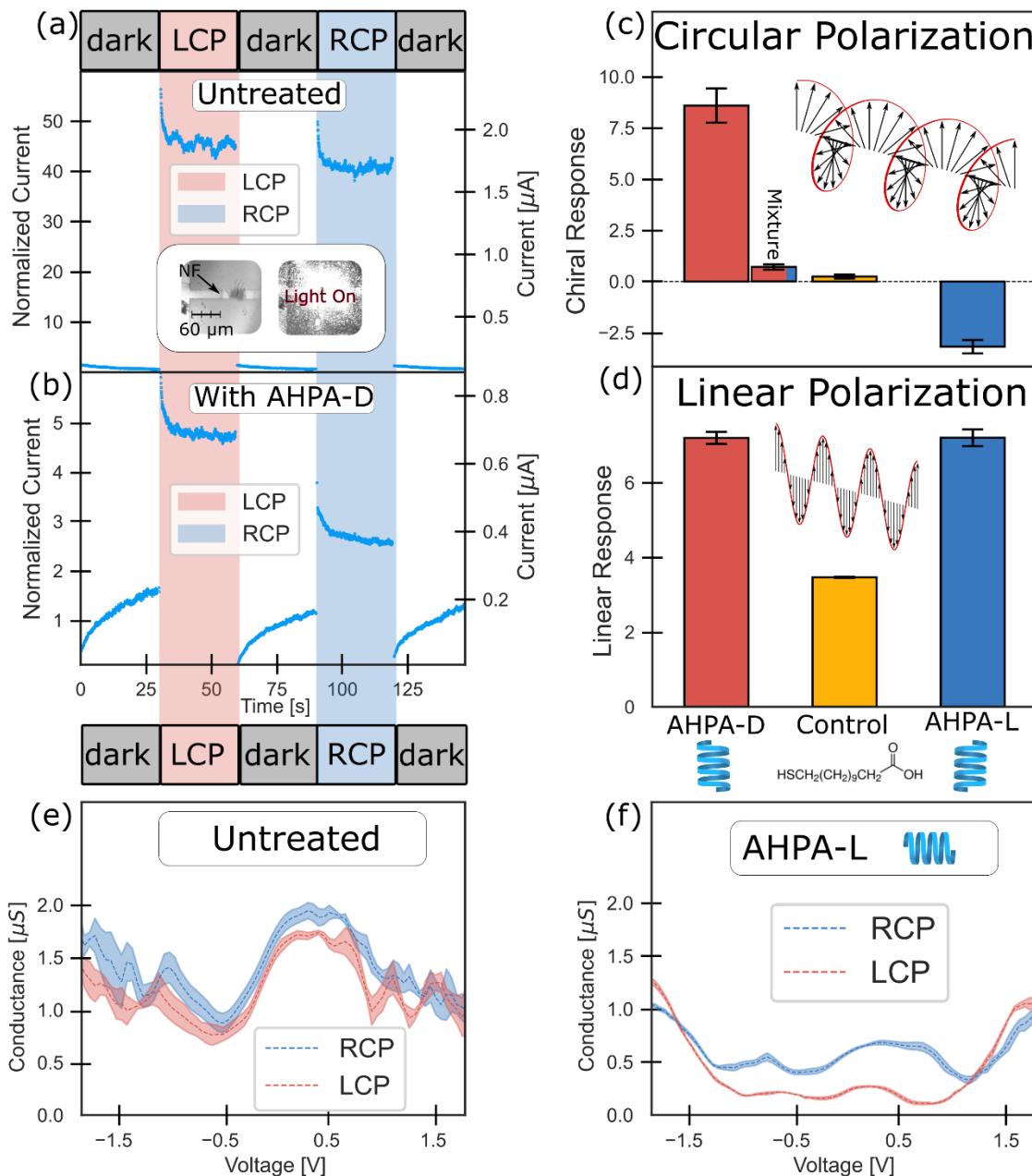
81 The sensitivity to chiral molecules manifests when the molecules are introduced to the system
82 and they adsorb on the Au tip near the mechanical junction.³⁴ The adsorbed molecules imprint
83 chirality onto the LSPR of the Au nanocap;³⁷ and because the LSPR response is coupled to the
84 current through the tunneling barrier³⁶ an enantiospecific current response manifests. The cap
85 surface area is on the order of 10^{-9} cm². By assuming a maximum density of 10^{12} molecules/cm²
86 adsorbed on gold, it is estimated that less than 10^3 molecules are adsorbed for a full coverage
87 monolayer formed on the gold cap in each Au-NF junction. The chiral molecules are linked to the
88 gold tip via thiol linkers. The angle of adsorption could differ between molecules in an
89 inhomogeneous manner, however their chirality is the same for all angles and the gold is grained,
90 thus, we expect that the chiral imprinting effect is similar and does not depend too strongly on the
91 adsorption angle.

92 Figure 1b shows the experimental scheme used for sensing. A voltage bias is applied across
93 the suspended Au-NF and the electrical current through the device is measured, while circularly

94 polarized laser illumination is focused on the sample with a microscope objective. A CCD camera
 95 is used to align the Au-NF junction under the focused spot. Circular polarization is achieved by
 96 using a quarter waveplate and alternation between LCP and RCP is achieved by rotating a half
 97 waveplate on a motorized stage. Special care was taken to ensure a high degree of circular
 98 polarization (see section 6 in the SI for further details) because the high aspect ratio NWs are
 99 susceptible to orientation effects from linearly polarized light³⁸ and deviations in circular
 100 polarization may bias the device response. Note that the confinement and enhancement of the
 101 electromagnetic field is achieved because of the LSPR at the NF gold nanocap and is not associated
 102 with focusing by the objective lens. An objective lens with a relatively low numerical aperture (0.4
 103 NA) was selected since using higher NA lens may result in changes of the light polarization
 104 state.^{39,40} A constant voltage of 1V was applied and the current was measured as a function of time
 105 with a time resolution of 50 ms, while alternating between RCP and LCP polarizations for periods
 106 of 30 seconds.

108 **Figure 1.** Illustration of the device measurement scheme a) Au-NF junction is illuminated with
109 focused continuous wave laser radiation. The chiral substance is coupled to the localized surface
110 plasmon, which is in turn coupled to the current that passes through the Au-NF. Inset: SEM image
111 of the Au-NF device, a semiconducting (SiGe) nanowire with a gold nanocap at its tip is suspended
112 on a Ti macro-contact. The cap surface area is $\sim 10^{-9} \text{ cm}^2$. b) Top: schematic of the chirality sensor.
113 The Au-NF is suspended between two Ti contacts which are connected to a voltage source and an
114 ammeter. The sensor is placed on an XYZ stage to allow alignment under the focused laser beam.
115 The beam is focused by a microscope objective and passed through a quarter waveplate to
116 generate circular polarization. The polarization is changed between left-circularly polarized light
117 and right-circularly polarized light by a half waveplate positioned on a motorized stage. The
118 sensor was monitored using a CCD camera.

119 Because the shape and morphology of the NF gold cap is non-symmetric, it is not expected to
120 be symmetric under a mirror reflection; hence, it possesses some degree of chirality. In addition,
121 chiral metastructures can have strong optical activity^{29,33} and even the LSPR of individual metallic
122 nanoparticles can display some optical activity signal because of shape imperfections and crystal
123 structure changes.²⁹ Thus, the Au-NF chirality sensor behaves differently under left and right
124 circular polarizations prior to addition of a chiral analyte. To account for the non-zero signal
125 response, the device is measured before and after exposure to the chiral analyte. Adsorption of the
126 chiral analyte is confirmed by comparing the I-V curves, collected without illumination, before
127 and after the exposure to the analyte. Note that the analyte adsorption changes the conductance
128 gap of the junction, further indicating molecular adsorption; Figure S3 shows an example of a
129 measurement in which an energy gap is formed.³⁴ This feature of the Au-NF device, acting as a
130 nanogap device for electronic detection of molecules trapped at the Au-tip-Ti electrode gap was
131 previously demonstrated (see references 34 and 35 for a more thorough analysis of this
132 phenomenon). Further validation of the adsorption of a chiral analyte on the Au-NF was achieved
133 by using CdSe quantum dots (QDs) as markers and confirmed using fluorescence microscopy (See
134 Figure S1).

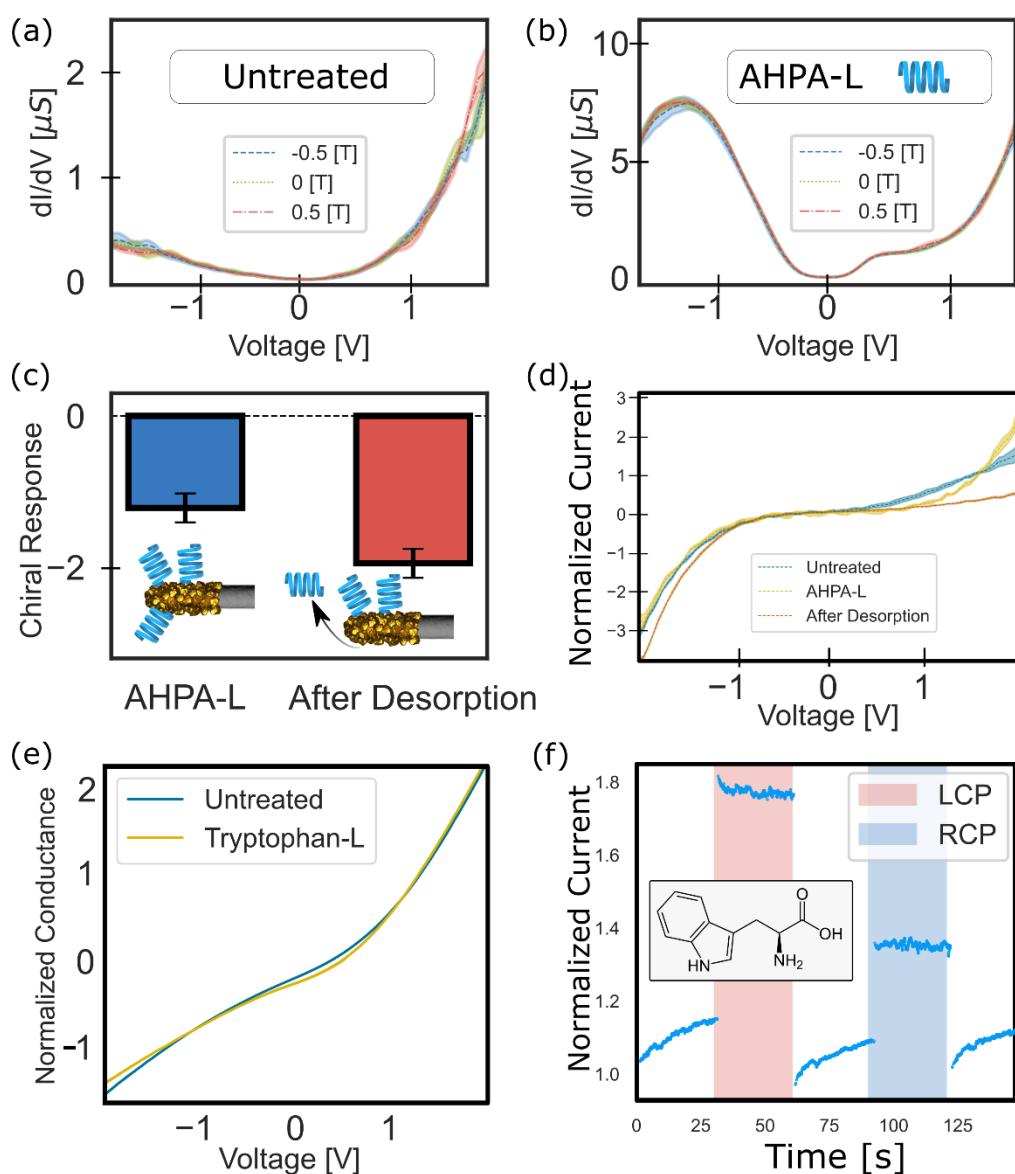

135 The effect of chiral molecule adsorption on the device at a 1V bias is demonstrated in Figure
136 2. Current-voltage (I-V) measurements showed gap formation following the introduction of an
137 alpha-helix polyalanine (AHPA) solution, indicative of monolayer formation at the Au-cap-Ti
138 electrode gap. Prior to introduction of chiral molecules, illumination of the device with 532 nm
139 LCP (red) and RCP (blue) light generates an intrinsic chiral response from the device (Figure 2a).
140 When the device structure is exposed to AHPA solution, an asymmetry in the polarized excitation
141 is obtained and it depends on the handedness of the AHPA. Figure 2b shows the photoresponse
142 after introducing AHPA-D molecules, where a change in photocurrent under different circular
143 polarizations is observed, due to molecular adsorption. The relatively long stabilization times arise
144 because the NF junctions were not passivated and thus surface states change upon molecular
145 adsorption. Figure 2c shows that the difference in polarization dependent excitation (LCP – RCP)
146 is positive for AHPA-D (red) and negative for AHPA-L (blue); see section 2 in the SI for a
147 complete description of the calculation details. Control experiments using an achiral molecule,
148 mercaptododecanoic acid (yellow), showed a negligible response. Studies using a mixture of both
149 AHPA-D and AHPA-L enantiomers, with a small enantiomeric excess of AHPA-D (2.5 %), was
150 also explored. Figure 2C shows that chiral response decreases, compared to the pure AHPA-D
151 sample, and is in good agreement with CD measurements performed on the same solutions (see
152 section 7 in the SI).

153 The measurement procedure was repeated with linearly polarized light illumination oriented
154 parallel and perpendicular to the Au-NF's long axis. While a different photoresponse for the
155 parallel and perpendicular illuminations is expected, a chiral molecule-dependent response is not
156 expected since linear polarization is simply a superposition of left and right circular polarizations.
157 Indeed, for both AHPA chiralities the same linear response is measured. (Figure 2d). In the linear

158 polarization measurement mode, both AHPA-L and AHPA-D showed a non-zero relative response
159 (see section 2 in the SI for a complete definition of the relative response), with the same sign and
160 magnitude for the two enantiomers. The specific chirality response is attributed to an induced
161 chirality effect²⁹ arising from adsorption of the chiral molecules at the NF gold nanocap.⁴¹ Because
162 the device response using linear polarization relates to the density and coverage of adsorbed
163 molecules on the Au-NF, the absolute magnitude of the response can be used as a control. For
164 instance, a similar response for AHPA-D and AHPA-L under linear polarization indicates that the
165 different response obtained for the circular polarization is not associated with changes in the
166 molecular density at the Au-NF surface.

167 By varying the applied bias during photoexcitation, the photoconductance as a function of the
168 voltage applied across the junction was used to probe for molecules. The NF nanojunction device
169 is sensitive to the presence, and chirality, of molecules trapped between the gold nanocap and the
170 counter electrode.^{34,42} The change in tunneling current upon formation of a molecular junction with
171 the analyte molecules can thus be used for recognition purposes, similar to previous reports.⁴² It is
172 important to emphasize that the tunneling spectra are used here solely as an indicator for the
173 adsorption process. To demonstrate this concept, voltage sweeps between -2V to 2V were acquired
174 for three cases: no illumination, LCP illumination, and RCP illumination. The procedure was
175 repeated many times to account for long-term drift in the device. The conductance of the Au-NF
176 chirality sensor without illumination before and after exposure to AHPA-L solution is shown in
177 Figure S3. As described before, molecular adsorption resulted in the formation of an energy gap.
178 The gap is formed as a result of the tunneling spectroscopy of the molecules present between the
179 gold nanocap and the counter electrode. Figures 2e and 2f show the conductance measured under
180 LCP (red) and RCP (blue) illumination before and after exposure to AHPA-L, respectively. Only

181 minor differences in the conductance are observed before exposure to AHPA-L, however a distinct
 182 change is obtained when chiral molecules are introduced to the junction.

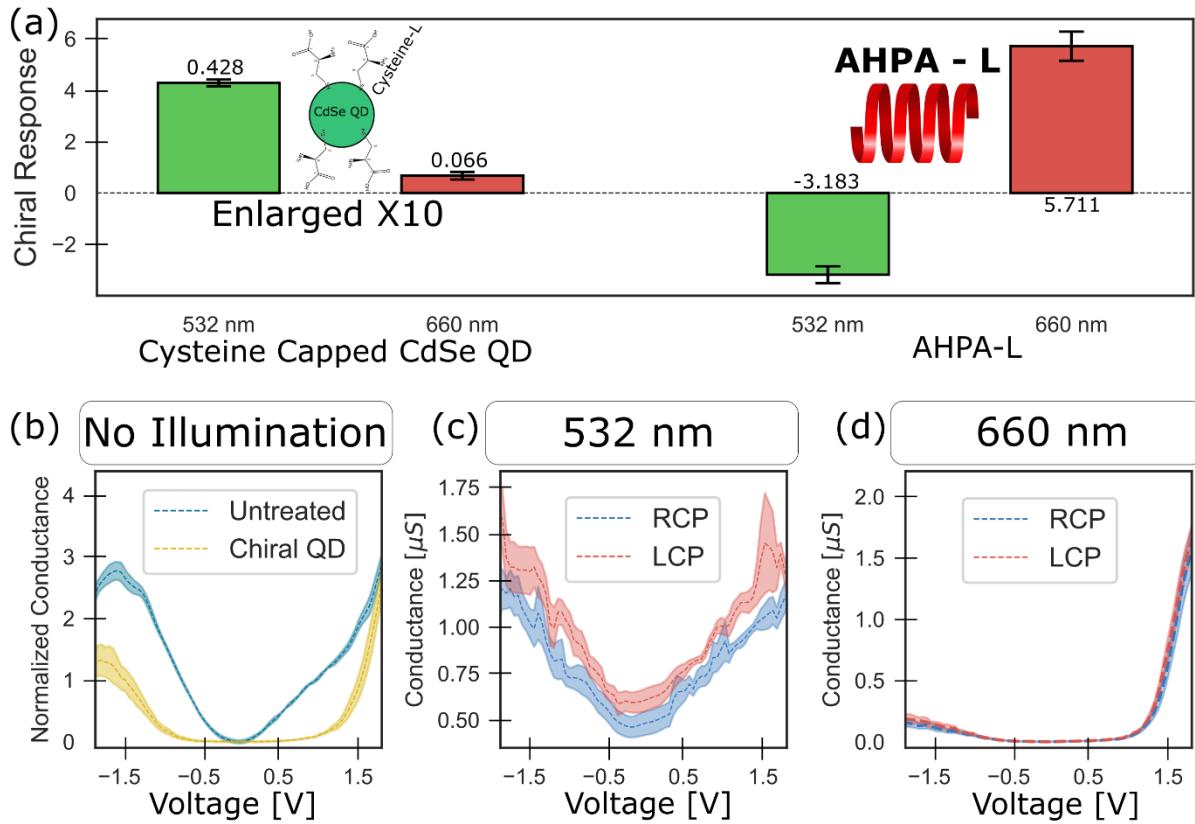


183
 184 **Figure 2.** Measurements of the Au-NF chirality sensor under a constant voltage. a) Current vs.
 185 time under a constant voltage of 1 Volt with different circular polarization illuminations and with
 186 no illumination, before molecules are dropcast. Inset: optical image of the Au-NF junction, with
 187 and without illumination. b) Current vs. time under a constant voltage with different circular
 polarization illuminations with AHPA-D. c) Circular Polarization bar chart and schematic. d) Linear
 Polarization bar chart and schematic. e) Conductance vs. Voltage for Untreated case. f) Conductance
 vs. Voltage for AHPA-L case.

188 polarization illuminations and with no illumination, after molecules are dropcast. c) The relative
189 chiral response for the two enantiomers of AHPA and a control molecule, mercaptododecanoic
190 acid, as well as a mixture with a 2.5 ee of AHPA-D d) Control experiment, measuring the response
191 for parallel and perpendicular orientation of linear polarization. e) Numerical first derivative as
192 a function of bias voltage before molecules are dropcast, showing a small difference between
193 polarizations. f) Numerical first derivative as a function of bias voltage after molecules are
194 dropcast, showing a clear difference between polarizations. The error in the dI/dV curves is the
195 standard error of the mean at each point, marked as shaded area.

196 To explore possible contributions from plasmonic effects to the device response, the system was
197 tested in the absence of chiral molecules in the conductance channel. Previous studies have shown
198 that molecular desorption can be induced by applying a high voltage bias through the device.⁴²
199 Notably, considering the local electric field, desorption induced by applied voltage, is directed to
200 molecules positioned at the molecular junction, leaving adsorbed molecules on the rest of NF gold
201 cap. The adsorption and desorption are reflected by clear changes in the I-V curves in Figure 3c;
202 where the change in shape of the current onset upon exposure to AHPA-L (yellow) is much more
203 pronounced prior to desorption (red). See Figure S4 for real-time probing of the desorption
204 process. Figure 3b shows that the tunneling current does not change significantly with an external
205 magnetic field. Because gold becomes magnetic upon adsorption of thiolated chiral molecules,⁵³
206 and chiral molecules can act as spin filters due to the CISS effect,⁵² one could expect differences
207 in current with magnetization of the bottom gold contact. However, for this study the response is
208 minimal. Figure 3d summarizes the magnitude of the chiral response before (blue) and after (red)
209 molecular desorption. Interestingly, an increase in chiral response is observed. Because desorption
210 of chiral molecules from the Au-NF should result in a slightly lower chiral induced LSPR, and
211 hence decrease in chiral response, some contributions from spin selective transport through the
212 molecule which act oppositely to chiral induced LSPR may be occurring. However, the primary
213 mechanism which governs the chirality sensing is rooted in chiral induced LSPR. To demonstrate
214 the universality of this technique, the chiral response of L-tryptophan was also measured. Unlike

215 AHPA, tryptophan is a smaller molecule and thus does not exhibit a chiral secondary structure.
 216 Consequently a smaller difference is seen in the $I(V)$ curves after molecular adsorption (Figure
 217 3e). As was the case for AHPA, the L-tryptophan response is larger for LCP than for RCP (Figure
 218 3f). The calculated response is smaller than for polyalanine (-0.39 ± 0.02) as may be expected
 219 due to the shorter molecular length


220

221 **Figure 3.** a) dI/dV as a function of voltage under two opposite magnetic fields and zero magnetic
222 field, showed negligible differences. b) The repeated experiment after AHPA-L is dropcast, show
223 no differences between the applied magnetic fields. c) the chiral response before and after
224 molecular desorption, showing that the chiral response remains d). $I(V)$ curves at the three stages
225 of the experiment, shown energy gap formation and disappearance of the energy gap after
226 desorption. e) $I(V)$ curves of L tryptophan before and after molecular adsorption. After adsorption
227 a small gap is formed. f) the chiral response for tryptophan with LCP and RCP excitation. The
228 response is large with LCP excitation.

229 To further study the device functionality for detecting chiral species, CdSe quantum dots
230 (QDs) capped with a chiral L-cysteine ligand were used to evaluate the effectiveness of the sensor
231 towards analytes with an optical absorption wavelength that coincides with the polarized light
232 wavelength. Figure S5 shows absorbance and CD spectra of the QDs capped with a chiral L-
233 cysteine ligand which confirm it is optically active.⁴³⁻⁴⁶ Figure 4a shows the chiral response
234 (calculated as described in section 2 of the SI) of the sensor after it is exposed to the L-cysteine-
235 CdSe QDs and illuminated with 532 nm (green) and 660 nm (red) light. The threshold for the onset
236 of the QDs absorption is around 600 nm, therefore, light absorption by the QDs is negligible for
237 illumination at wavelengths longer than 660 nm. A relatively small chiral response is obtained
238 with 532 nm illumination and a negligible response is observed for 660 nm illumination - similar
239 to the control experiments with achiral molecules. The wavelength dependent chiral response of
240 the QDs suggests that the resonant coupling between the photoexcited QDs and the LSPR, similar
241 to the mechanism of LSPR induced CD for chiral molecules,³¹ plays a dominant role in the sensing
242 mechanism. The chirality-dependent response for AHPA-L using the two illumination
243 wavelengths is shown on the right side of Figure 4a for comparison. The broadband plasmonic

244 resonance of the NF gold cap extends to the short wave IR spectral range (SWIR),³⁶ in agreement
245 with the observed chiral-sensitive response.

246 Illumination dependent conductance measurements for junctions with chiral QDs are shown in
247 Figures 4b-d. When chiral QDs (yellow) are introduced to an untreated sensor (blue) a large change
248 in the conductance is observed and is representative of the intrinsic bandgap of the QDs; see Figure
249 4b. The conductance measured using LCP (red) and RCP (blue) illumination show markedly
250 different behavior when excited with 532 nm (Figure 4c) and 660 nm (Figure 4d) light. For 532
251 nm excitation the energy gap is reduced, whereas for 660 nm excitation the conductance appears
252 similar in shape to the measurements made for the chiral QD in the dark. The different response
253 for the QD system at wavelengths below and above the QDs energy gap indicate that coupling
254 between the QD's excitation and the LSPR mode is the main mechanism responsible for the
255 measured chiral response. That is the response at 660 nm is similar to that for AHPA-L, where no
256 light adsorption of the analyte molecule is involved, and is attributed to chiral imprinting on the
257 NF gold nanocap LSPR [cite reference 37: Goldsmith PCCP (2006)]. Interestingly, the chiral
258 response of the AHPA-L molecules under 660 nm is opposite in sign to that found when using 532
259 nm light, and it is attributed to the bisignate shape of the optical activity,⁴⁷ similar to what has been
260 shown for other coupled LSPR systems.⁴⁸⁻⁵⁰

262 **Figure 4.** Comparison between the chiral response of L-cysteine capped CdSe QDs and AHPA-L
263 molecules. a) A relatively small chiral response exists for QDs only under 532 nm illumination
264 while a chiral response occurs for both 532 nm and 660 nm illumination of AHPA-L. b) Z-score
265 normalized conductance vs. voltage curves before and after the dropcasting of L-cysteine capped
266 CdSe QDs without illumination. c) Conductance vs voltage curves of L-cysteine capped QDs
267 measured using 532nm LCP and RCP illumination. d) Conductance vs voltage curves of L-cysteine
268 capped QDs measured using 660nm LCP and RCP illuminations.

269

270 Further control experiments were performed to assess the role of spin selective electron
271 transport. Previous studies have shown that charge transport through chiral media can be spin
272 selective⁵¹ and has since been termed chiral induced spin selectivity (CISS).⁵² Gold with chiral
273 molecules adsorbed on top may be magnetic,⁵³ and local magnetization can be imparted onto gold
274 nanoparticles by the gold-sulfur linkages.⁵⁴ To explore possible contributions from such
275 magnetization, Au-NF devices were studied without illumination under two opposite magnetic

276 fields and compared to zero magnetic field; (Figures 3a, b). The conductance measurements were
277 invariant under the magnetic fields studied for pristine devices as well as after introduction of
278 AHPA-L molecules, therefore, it is concluded that any effect of magnetization, if present, is
279 negligible.

280 In summary, the present study demonstrates a novel chirality detection concept obtained by the
281 coupling of a chiral plasmon response into an electrical current for detecting adsorbed chiral
282 species, and its implementation in an electrical readout device. The chiral induced LSPR in the
283 tunneling device is sensitive to the molecular chirality and provides information even for a small
284 number of molecules adsorbed at the nano-gap junction. The device design eliminates the need of
285 a chiral recognition element by sensing the chiral molecules' imprinting on the LSPR of the Au
286 nanofloret and its coupling with electrical sensing. Experiments showing the change in chiral
287 response with enantiomeric excess indicate the potential of the device for determining the
288 enantiopurity of solutions, upon calibration. It is important to note that the device can also be used
289 in a transient mode as was done in previous works³⁵ and can obviate the sensitivity to multilayer
290 chiral organization.⁵⁵ Moreover, fabrication of the device is scalable and does not require advanced
291 photolithography techniques or a complicated optical setup. The simplicity and generality of the
292 chirality sensing method presented here, along with its real-time sensing capabilities, is
293 advantageous for the sensing of enantiospecific materials, as well as for fundamental studies of
294 chiral molecules at low concentrations and quantities. Relying on Au-NF hybrid nanostructures as
295 the active sensing component, utilizing a bottom-up self-processing synthesis, and formation of
296 self-adjusting nano-gap junctions enables a facile fabrication methodology that may be further
297 utilized in the future to realize scalable and portable devices for real-time detection and chiral-
298 specific analysis.

299

300

301 ASSOCIATED CONTENT

302 **Supporting Information.** Additional experimental information and calculation description can
303 be found in the supporting information.

304 AUTHOR INFORMATION

305 **Corresponding Author**

306 *E-mail: roie.yerushalmi@mail.huji.ac.il

307 *E-mail: yossi.paltiel@mail.huji.ac.il

308 **Funding Sources**

309 D.H.W. acknowledges support from the United States National Science Foundation (CBET
310 1852588).

311 312 **ACKNOWLEDGMENT**

313 AZ would like to acknowledge the Israeli Ministry of Science, Technology and Space support.

314 REFERENCES

- 315 1. *Chirality in Natural and Applied Science*. Lough, W.J, Wainer I. W. (Blackwell, 2002).
- 316 2. Nguyen, L. A., He, H. & Pham-Huy, C. Chiral Drugs: An Overview. *Int J Biomed Sci* **2**, 85–
317 100 (2006).
- 318 3. Machida, Y. & Nishi, H. Chiral Purity in Drug Analysis. in *Encyclopedia of Analytical
319 Chemistry* (American Cancer Society, 2006). doi:10.1002/9780470027318.a1906.
- 320 4. Fanali, C., D’Orazio, G., Gentili, A. & Fanali, S. Analysis of Enantiomers in Products of Food
321 Interest. *Molecules* **24**, (2019).

322 5. Garrison, A. W., Schmitt-Kopplin, P. & Avants, J. K. Analysis of the Enantiomers of Chiral
323 Pesticides and Other Pollutants in Environmental Samples by Capillary Electrophoresis. in
324 *Capillary Electrophoresis: Methods and Protocols* (ed. Schmitt-Kopplin, P.) 157–170
325 (Humana Press, 2008). doi:10.1007/978-1-59745-376-9_8.

326 6. Hierlemann, A., Baltes, H. & Schurig, V. Search for extraterrestrial enantioenrichment by
327 using chemical microsensors. *Enantiomer* **6**, 129–139 (2001).

328 7. *Chiroptical Spectroscopy: Fundamentals and Applications*. (CRC Press, 2016).
329 doi:10.1201/9781315374888.

330 8. Berova, N., Nakanishi, K. & Woody, R. W. *Circular Dichroism: Principles and Applications*.
331 (John Wiley & Sons, 2000).

332 9. Grimme, S. D. A. Lightner and J. E. Hurst. Organic conformational analysis and
333 stereochemistry from circular dichroism spectroscopy. Wiley-VCH, Weinheim, 2000. 487 pp.
334 Price: US \$ 99.95. ISBN 0-471-35 405-8. *Magnetic Resonance in Chemistry* **40**, 380–380
335 (2002).

336 10. Superchi, S., Giorgio, E. & Rosini, C. Structural determinations by circular dichroism spectra
337 analysis using coupled oscillator methods: An update of the applications of the DeVoe
338 polarizability model. *Chirality* **16**, 422–451 (2004).

339 11. Holzwarth, G., Hsu, E. C., Mosher, H. S., Faulkner, T. R. & Moscowitz, A. Infrared circular
340 dichroism of carbon-hydrogen and carbon-deuterium stretching modes. Observations. *J. Am.*
341 *Chem. Soc.* **96**, 251–252 (1974).

342 12. Mislow, K. Optical Rotatory Dispersion. Applications to Organic Chemistry. *J. Am. Chem.*
343 *Soc.* **82**, 5769–5770 (1960).

344 13. Müller, T., Wiberg, K. B., Vaccaro, P. H., Cheeseman, J. R. & Frisch, M. J. Cavity ring-down
345 polarimetry (CRDP): theoretical and experimental characterization. *J. Opt. Soc. Am. B, JOSAB*
346 **19**, 125–141 (2002).

347 14. Bougas, L. *et al.* Chiral cavity ring down polarimetry: Chirality and magnetometry
348 measurements using signal reversals. *J. Chem. Phys.* **143**, 104202 (2015).

349 15. Sofikitis, D. *et al.* Evanescent-wave and ambient chiral sensing by signal-reversing cavity
350 ringdown polarimetry. *Nature* **514**, 76–79 (2014).

351 16. Schurig, V. Chiral shift reagents for NMR-spectroscopy. A simple and improved access to
352 lanthanide-tris-chelates of d-3-TFA-camphor. *Tetrahedron Letters* **13**, 3297–3300 (1972).

353 17. Tsutsui, H. *et al.* Chiral amines as reagents for HPLC-MS enantioseparation of chiral
354 carboxylic acids. *J Sep Sci* **35**, 1551–1559 (2012).

355 18. Zhu, G., Kingsford, O. J., Yi, Y. & Wong, K. Review—Recent Advances in Electrochemical
356 Chiral Recognition. *J. Electrochem. Soc.* **166**, H205 (2019).

357 19. Trojanowicz, M. & Kaniewska, M. Electrochemical Chiral Sensors and Biosensors.
358 *Electroanalysis* **21**, 229–238 (2009).

359 20. Ide, J., Nakamoto, T. & Moriizumi, T. Discrimination of aromatic optical isomers using
360 quartz-resonator sensors. *Sensors and Actuators A: Physical* **49**, 73–78 (1995).

361 21. L, T. *et al.* A sensitivity-enhanced field-effect chiral sensor. *Nat Mater* **7**, 412–417 (2008).

362 22. Bodenhöfer, K. *et al.* Chiral Discrimination in the Gas Phase Using Different Transducers:
363 Thickness Shear Mode Resonators and Reflectometric Interference Spectroscopy. *Anal. Chem.*
364 **69**, 3058–3068 (1997).

365 23. Severin, E. J., Sanner, R. D., Doleman, B. J. & Lewis, N. S. Differential Detection of
366 Enantiomeric Gaseous Analytes Using Carbon Black–Chiral Polymer Composite, Chemically
367 Sensitive Resistors. *Anal. Chem.* **70**, 1440–1443 (1998).

368 24. Zhang, S., Ding, J., Liu, Y., Kong, J. & Hofstetter, O. Development of a Highly
369 Enantioselective Capacitive Immunosensor for the Detection of α -Amino Acids. *Anal. Chem.*
370 **78**, 7592–7596 (2006).

371 25. Shahgaldian, P., Hegner, M. & Pieles, U. A Cyclodextrin Self-Assembled Monolayer (SAM)
372 Based Surface Plasmon Resonance (SPR) Sensor for Enantioselective Analysis of Thyroxine.
373 *J Incl Phenom Macrocycl Chem* **53**, 35–39 (2005).

374 26. Ben-Amram, Y., Riskin, M. & Willner, I. Selective and enantioselective analysis of mono-
375 and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-
376 functionalized Au nanoparticle composites. *Analyst* **135**, 2952–2959 (2010).

377 27. Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V. & Green, B. S. Chiral discrimination
378 using an immunosensor. *Nature Biotechnology* **17**, 371–374 (1999).

379 28. Hazut, O. *et al.* Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing
380 Synthesis. *J. Am. Chem. Soc.* **138**, 4079–4086 (2016).

381 29. Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and Chiroptical Effects in
382 Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook. *Advanced Materials*
383 **25**, 2517–2534 (2013).

384 30. Wang, X. & Tang, Z. Circular Dichroism Studies on Plasmonic Nanostructures. *Small* **13**,
385 1601115 (2017).

386 31. Lieberman, I., Shemer, G., Fried, T., Kosower, E. M. & Markovich, G. Plasmon-Resonance-
387 Enhanced Absorption and Circular Dichroism. *Angewandte Chemie International Edition* **47**,
388 4855–4857 (2008).

389 32. A. Paiva-Marques, W., Reyes Gómez, F., N. Oliveira, O. & Mejía-Salazar, J. R. Chiral
390 Plasmonics and Their Potential for Point-of-Care Biosensing Applications. *Sensors* **20**, 944
391 (2020).

392 33. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, J. Valentine. Circularly
393 polarized light detection with hot electrons in chiral plasmonic metamaterials. *Nature
394 Communications* **6**, 8379 (2015).

395 34. Ziv, A. *et al.* Self-formed nanogap junctions for electronic detection and characterization of
396 molecules and quantum dots. *RSC Adv.* **7**, 25861–25866 (2017).

397 35. Karadan, P. *et al.* Molecular Fingerprint Detection Using Portable Water-Compatible
398 Electronic Tunneling Spectroscopy Device. *Advanced Materials Interfaces* **n/a**, 2000605.

399 36. Ziv, A. *et al.* Broad-band high-gain room temperature photodetectors using semiconductor–
400 metal nanofloret hybrids with wide plasmonic response. *Nanoscale* **11**, 6368–6376 (2019).

401 37. Goldsmith, M.-R. *et al.* The chiroptical signature of achiral metal clusters induced by
402 dissymmetric adsorbates. *Phys. Chem. Chem. Phys.* **8**, 63–67 (2006).

403 38. Zhou, Y. *et al.* Flexible Linearly Polarized Photodetectors Based on All-Inorganic Perovskite
404 CsPbI₃ Nanowires. *Advanced Optical Materials* **6**, 1800679 (2018).

405 39. Bahlmann, K. & Hell, S. W. Depolarization by high aperture focusing. *Appl. Phys. Lett.* **77**,
406 612–614 (2000).

407 40. Lekner, J. Polarization of tightly focused laser beams. *J. Opt. A: Pure Appl. Opt.* **5**, 6–14
408 (2002).

409 41. Bezen, L. *et al.* Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to
410 Random Plasmonic Structures. *Langmuir* **34**, 3076–3081 (2018).

411 42. Karadan, P. *et al.* Molecular Fingerprint Detection Using Portable Water-Compatible
412 Electronic Tunneling Spectroscopy Device. *Advanced Materials Interfaces* **n/a**, 2000605.

413 43. Bloom, B. P., Graff, B. M., Ghosh, S., Beratan, D. N. & Waldeck, D. H. Chirality Control of
414 Electron Transfer in Quantum Dot Assemblies. *J. Am. Chem. Soc.* **139**, 9038–9043 (2017).

415 44. Ben-Moshe, A., Teitelboim, A., Oron, D. & Markovich, G. Probing the Interaction of Quantum
416 Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy. *Nano Lett.* **16**,
417 7467–7473 (2016).

418 45. Tohgha, U., Varga, K. & Balaz, M. Achiral CdSe quantum dots exhibit optical activity in the
419 visible region upon post-synthetic ligand exchange with D- or L-cysteine. *Chem. Commun.*
420 **49**, 1844–1846 (2013).

421 46. Al-Bustami, H. *et al.* Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. *Nano*
422 *Lett.* **20**, 8675–8681 (2020).

423 47. Stephens, P. J. & Harada, N. ECD cotton effect approximated by the Gaussian curve and other
424 methods. *Chirality* **22**, 229–233 (2010).

425 48. Guerrero-Martínez, A. *et al.* Intense Optical Activity from Three-Dimensional Chiral Ordering
426 of Plasmonic Nanoantennas. *Angewandte Chemie International Edition* **50**, 5499–5503
427 (2011).

428 49. Auguié, B., Alonso-Gómez, J. L., Guerrero-Martínez, A. & Liz-Marzán, L. M. Fingers
429 Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. *J. Phys. Chem. Lett.* **2**,
430 846–851 (2011).

431 50. Fan, Z. & Govorov, A. O. Plasmonic Circular Dichroism of Chiral Metal Nanoparticle
432 Assemblies. *Nano Lett.* **10**, 2580–2587 (2010).

433 51. Wei, J. J. *et al.* Molecular Chirality and Charge Transfer through Self-Assembled Scaffold
434 Monolayers. *J. Phys. Chem. B* **110**, 1301–1308 (2006).

435 52. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. *Nat Rev
436 Chem* **3**, 250–260 (2019).

437 53. Al-Bustami, H. *et al.* Single Nanoparticle Magnetic Spin Memristor. *Small* **14**, 1801249
438 (2018).

439 54. Crespo, P. *et al.* Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped
440 Gold Nanoparticles. *Phys. Rev. Lett.* **93**, 087204 (2004).

441 55. Ha, N. T. N. *et al.* Charge-Ordered α -Helical Polypeptide Monolayers on Au(111). *J. Phys.
442 Chem. C* **124**, 5734–5739 (2020).

443