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Abstract:

Parallel imaging is the most clinically used acceleration technique for magnetic resonance imaging (MRI)
in part due to its easy inclusion into routine acquisitions. In k-space based parallel imaging reconstruction,
sub-sampled k-space data are interpolated using linear convolutions. At high acceleration rates these
methods have inherent noise amplification and reduced image quality. On the other hand, non-linear deep
learning methods provide improved image quality at high acceleration, but the availability of training
databases for different scans, as well as their interpretability hinder their adaptation. In this work, we present
an extension of Robust Artificial-neural-networks for k-space Interpolation (RAKI), called residual-RAKI
(rRAKI), which achieves scan-specific machine learning reconstruction using a hybrid linear and non-linear
methodology. In rRAKI, non-linear CNNs are trained jointly with a linear convolution implemented via a
skip connection. In effect, the linear part provides a baseline reconstruction, while the non-linear CNN that
runs in parallel provides further reduction of artifacts and noise arising from the linear part. The explicit
split between the linear and non-linear aspects of the reconstruction also help improve interpretability
compared to purely non-linear methods. Experiments were conducted on the publicly available fastMRI
datasets, as well as high-resolution anatomical imaging, with comparisons to GRAPPA and variants,
compressed sensing, RAKI, Scan Specific Artifact Reduction in K-space (SPARK) and the proposed
rRAKI. Additionally, highly-accelerated simultaneous multi-slice (SMS) functional MRI reconstructions
were also performed with comparisons to Read-out SENSE-GRAPPA, RAKI and the proposed rRAKI.
Our results show that the proposed rRAKI method substantially improves the image quality compared to
conventional parallel imaging, and offers sharper images compared to SPARK and {,-SPIRiT. Furthermore,
rRAKI shows improved preservation of time-varying dynamics than both parallel imaging and RAKI in

highly-accelerated SMS fMRI.
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Highlights

* A hybrid linear and non-linear deep learning reconstruction approach for parallel imaging is
proposed.

»  Improved image quality in highly accelerated MRI compared to conventional linear methods.
= Improved interpretability compared to purely non-linear deep learning methods.

= Improved preservation of temporal information in highly-accelerated SMS fMRI.



1 Introduction

Magnetic resonance imaging (MRI) remains one of the most important modalities for neuroimaging
(Bandettini, 2012; Leung et al., 2015), but it still faces challenges due to lengthy scan times. Parallel
imaging (PI) is frequently used in clinical MRI to reduce scan times. These methods utilize differences in
the profiles of multiple receiver coils to reconstruct undersampled data (Griswold et al., 2002; Pruessmann
et al., 1999; Sodickson and Manning, 1997). However PI methods inherently exhibit trade-offs between

acceleration rate and noise amplification (Aja-Fernandez et al., 2014).

Recently, machine learning techniques have received substantial interest for MRI reconstruction. Several
of these methods build on the regularized inverse problem from compressed sensing (Lustig et al., 2007),
and learn a machine learning-based regularizer (Aggarwal et al., 2018; Chen et al., 2018; Dar et al., 2020a;
Dar et al., 2020b; Eo et al., 2018; Hammernik et al., 2018; Han et al., 2018; Hosseini et al., 2020a; Mardani
et al., 2018; Qin et al., 2018; Quan et al., 2018; Schlemper et al., 2018; Wang et al., 2016; Yaman et al.,
2020a; Yang et al., 2018; Yang et al., 2016). Other data-driven approaches find a direct mapping from
undersampled data into a de-aliased image (Han et al., 2020; Lee et al., 2018; Zhu et al., 2018). However,
most of these methods rely on large training databases of fully-sampled data for training. Training on data
independent from reconstruction target may lead to potential risks, such as bringing unwarranted
information into reconstruction result or losing fine details, especially if the training databases do not
include sufficiently many examples with pathologies of interest (Knoll et al., 2019; Knoll et al., 2020a;

Muckley et al., 2020).

An alternate line of work considers scan-specific training. The first method of this nature, Robust Artificial-
neural-networks for k-space Interpolation (RAKI) uses convolutional neural networks (CNNs) trained from
ACS data for scan-specific k-space interpolation (Akgakaya et al., 2019). RAKI showed improvements in
image quality and noise reduction compared to conventional PI methods using linear k-space interpolation.
The scan-specific design allows RAKI to be employed when massive fully sampled training data are not

available, such as coronary MRI (Hosseini et al., 2020b) and highly accelerated simultaneous multi-



slice/multi-band (SMS/MB) MRI (Nencka et al., 2021; Zhang et al., 2019a; Zhang et al., 2018a). It has also
been applied to algorithms that rely on completion of locally low-rank k-space neighborhoods (Kim et al.,
2019), and in approaches that utilize the whole sub-sampled k-space for reconstruction (Zhang et al.,
2019d). However, while the reconstruction improvement is visually easy to identify in these methods, the
source of improvement from RAKI-type approaches is difficult to interpret. With the increasing importance
of interpretability in machine learning (Reyes et al., 2020; Vellido, 2020), it is important to develop

explainable methods that will aid in clinical translation for the RAKI framework.

In this paper, we propose residual RAKI (rRAKI) as a machine learning approach with improved
interpretability for k-space interpolation, combining the advantages of both linear PI and nonlinear machine
learning reconstructions. It uses a residual CNN (ResNet) architecture (He et al., 2016) with linear
convolutions on the skip connection. The linear skip connection implements a linear reconstruction similar
to GRAPPA, creating a baseline reconstruction. The multi-layered CNN compensates for the imperfections
arising from this linear component, such as noise amplification and residual artifacts. Both components are
trained on scan-specific ACS data concurrently. The performance of proposed rRAKI, is studied in T»-
weighted and FLAIR brain imaging from fastMRI database (Knoll et al., 2020b), high-resolution 3T and
7T anatomical imaging, as well as highly accelerated SMS/MB fMRI at 3T. Our results show rRAKI has
noticeable advantages in terms of both noise resilience and artifact removal over linear methods, such as

GRAPPA, as well as better interpretability and sharper images compared to RAKI.

2 Materials and Methods

2.1 Linear k-space Interpolation

GRAPPA is one of the most commonly used linear PI reconstruction approaches for multi-channel MRI
reconstruction. A set of linear shift-invariant convolution kernels are calibrated from Nyquist-rate sampled

auto calibration signal (ACS) data, to interpolate skipped data from adjacent sampled lines. Let s(k, £, 1)



denote an acquired data point in k-space location (k. , k) of the i coil, R be the acceleration rate, n. be the

number of coils, and for notational convenience, let
N(ky, ky) = {(kx — dxDky, ky, — Rdy,Aky, i ):dy € {—Dy,...,Dy},dy, € {=Dy, ...,D,}i € {1, ..., n}}(1)

denote a neighborhood around k-space location (4, k) across all coils that includes the sampled points for

integers D, and D, specifying the pre-determined kernel size. Let s‘N(kx’ky) be a column vector whose

entries are the corresponding k-space values of s(k;, &, ) for every pointin IV (kx, ky). Under this notation,

GRAPPA reconstruction can be expressed as:
S(kx, ky - mAky, l) = gm,ig]\l"(kx,ky)’ (2)

where g,,; are the linear convolution weights for estimating the m™ skipped line of coil 7, for 1 <m < R-1.
These convolution kernels, g.,; are estimated by solving a least squares problem prior to reconstruction

from the ACS region in k-space, where the ACS data are utilized as both regressor and regresand in Eq. (2)

2.2 Nonlinear RAKI Reconstruction

RAKI achieves scan-specific nonlinear k-space interpolation by replacing the linear convolution kernels
with several compact CNNs, each consisting of convolutions and nonlinear activations. CNNs in RAKI are
trained from ACS data in the similar fashion of GRAPPA. For processing, the complex k-space is mapped
to the real field, expanding the data to 2n. input channels in total. In RAKI, each channel has its assigned
CNN that generates R-1 k-space lines between sampled lines, while other possibilities of input-output
designs can still be considered for reduced computational load (Zhang et al., 2019b). Let V' be the same

neighborhood as the one in Eq. (1), only now defined over 2. real channels. Let
U(ky, ky,j) ={ (ks ky —mbky,j):m € {1,...,R — 1}} 3)

be the R-1 missing lines between two sampled positions, adjacent to (k, k) in channel j. Similarly, we

define §u( ey ) 1O be a column vector with its entries are elements s(a, f, ), where (a, 5, y) € ‘u(kx, ky,j )



RAKI estimates the missing lines in k-space from acquired lines using CNNs by:

SU(kykey.f) = Ji (§J\7(kx,ky)) , (4)

where f; (-) represents a CNN estimating the unacquired points in channel j based on the acquired data from
all channels. f; (-) was designed as a three-layered CNN in (Akg¢akaya et al., 2019). In practice, the CNN
architecture can be designed in various forms in an application-specific manner (Zhang et al., 2019b). Point-
wise nonlinearity, ReLU(x) = max(x, 0), is applied to all convolutional layers before the output layer. The

last layer only conducts convolution to generate the final estimate.

2.3 Proposed rRAKI Reconstruction

Fig. 1 depicts the residual network architecture used in rRAKI. Both the linear convolution component and
the CNN take the sampled lines as input. The outputs from both components are combined into the final
output, giving an estimation of all the skipped lines for a given channel, similar to RAKI. Let G;denote the
linear convolution component and F; denote the nonlinear CNN component of the rRAKI network for

channel j. Using this notation, the rRAKI reconstruction for a given channel j is summarized as:

Sultesens) = 61 (W) + 5 (St )
G;and F; are trained using ACS data, similar to (Akgakaya et al., 2019). rRAKI is designed so that G;
captures the linear reconstruction baseline, while F; reduces the residual artifacts and noise amplification
nonlinearly. Thus, the training, which is performed over the ACS region, aims to minimize the error for the

estimation that combines the G; and F; components, while also minimizing the error associated with the G;

ACS

ACS ACS ACS
Bt Dy — 4 D+ 1., B = Dk € [P+

component. Let y; € {’U(kx, ky,j): k,€e[—- .

ACS ACS
D,, — yT +Dy,+1,.., nyT — D,]} be the target points in the ACS region of channel j, where n£¢S and

— ACS
n;}cs specify the dimension of ACS along x and y axis, and let Ysgyrce € {N (kx, ky): k,€[- n"T + D,,

ACS ACS ACS ACS
ny ny ny ny
5 —Dx],kye[—T+Dy, _T+D3’+1""’_

néCS

Dyt 1,

— D, ]} be the source points



across all channels in the ACS region. Training of the rRAKI network is performed using the following

loss function:

;?’ieril”}’j - Gj(y source Yi) - F}(y source ei)'lz + A”Yj - Gj(y source Yi)”z (6)

where || - |2 is the /> norm, y; and 0 are the trainable weights in the G;and Fjnetworks respectively, and 4
is a weighting factor. Further implementation details are provided in Section 2.7. The reconstruction is then

performed using the learned parameters y; and 6);.

2.4 fastMRI Brain Dataset

Fully-sampled axial T (T.-weighted) and FLAIR datasets from the fastMRI database (Knoll et al., 2020b)
were employed. 300 slices of fully sampled data were retrospectively undersampled along phase-encode
direction at rate 4. Reconstructions using GRAPPA, Tikhonov-regularized GRAPPA, non-linear GRAPPA
(Changetal., 2012), {1 wavelet regularized SPIRIT (Lustig and Pauly, 2010), SPARK (Arefeen et al., 2022),
RAKI and rRAKI were performed. For displaying and assessment purposes, multi-coil images were
combined using root-of-sum-of-squares. SSIM, NRMSE, and blur metrics (Crété-Roffet et al., 2008) were
computed with respect to the reference. Normality of SSIM, NRMSE and blur metrics were assessed using
the Jarque-Bera test, prior to testing statistical differences in SSIM, NRMSE and blur metrics using paired

t-tests. P-values < 0.05 were considered significant.

2.5 Anatomical Imaging

Anatomical brain imaging was performed on a 3T Siemens Magnetom Prirma system and a 7T Siemens
Magnex Scientific (Siemens Healthcare, Erlangen, Germany) system using 32-channel receiver head coil-
arrays. The imaging protocols were approved by the local institutional review board, and written informed
consent was obtained from all participants before each examination for this HIPAA-compliant study. For
3T imaging, a Ti-weighted 3D-MPRAGE sequence was acquired in a healthy subject with the following

parameters: Field-of-view (FOV) = 224x224x179 mm?, resolution = 0.7x0.7x0.7 mm?®, matrix size =



320%320, TR/TE = 2400 ms/2.2 ms, flip angle = 8°, bandwidth = 210 Hz/pixel, inversion time = 1000 ms,
ACS lines = 40, with iPAT = 2 and 5. Furthermore, the R = 2 acquisition was also retrospectively
undersampled to R = 4 and 6 (Akgakaya et al., 2019). For 7T imaging, 3D-MPRAGE was acquired in a
healthy volunteer with the following parameters: FOV = 230x230x154 mm?, resolution = 0.6x0.6x0.6
mm?, TR/TE = 3100 ms/3.5 ms, flip angle = 6°, bandwidth = 140 Hz/pixel, inversion time = 1500 ms, ACS
lines = 40, with R = 3, 4, 5, 6. Additionally, two averages were acquired for R = 5 and 6 data to mitigate
the SNR loss from undersampling (Akcakaya et al., 2019). The k-space data were inverse Fourier
transformed along the slice direction for all datasets, and a central slice was processed. Reconstructions
were performed using GRAPPA, RAKI and rRAKI. All methods were calibrated or trained on the slice-
specific ACS region that was built-in to the acquisition. For display and evaluation, multi-coil images were
combined using root-of-sums-of-squares. Reconstruction quality was assessed qualitatively, since a fully-

sampled reference was not available in these acquisitions.

2.6 Simultaneous Multi-Slice fMRI

SMS/MB fMRI data was acquired on a 3T Siemens Magnetom Prisma (Siemens Healthcare, Erlangen,
Germany) scanner with a 32-channel receiver head coil-array. The Human Connectome Project protocol
(Van Essen et al., 2012) was used with SMS/MB factor = 8 and blipped-CAIPI encoding (Setsompop et al.,
2012) with a FOV/3 shift between adjacent multiband slices, resolution = 2x2x2 mm® and TE/TR =
37/1000ms, FOV =208x180x144 mm?®, flip angle = 52°, matrix size = 104x90, bandwidth = 2290 Hz/pixel.
Calibration data containing the individual slices was acquired integrated with and prior to the fMRI image
series at the same resolution. In order to test the potential of rRAKI at high SMS/MB acceleration rates, a

SMS/MB = 16 acceleration was retrospectively simulated using this acquisition. Specifically, each fMRI

acquisition contains nine slice groups of SMS/MB = 8 slices for a total of 72 slices, resulting in five

retrospective SMS/MB=16 slice groups for each subject. The methodology for simulating SMS/MB = 16

data from SMS/MB = § acquisition are further detailed in supplementary materials.



Reconstructions were performed using the proposed rRAKI, as well as linear parallel imaging via RO-
SENSE-GRAPPA (RSG) (Moeller et al., 2010) and RAKI as comparison. Readout concatenation (Moeller
et al., 2010) was used for all the reconstructions. In this method, for kernel calibration, individual
unaccelerated images are concatenated in image domain along the readout direction, and then transformed
into k-space via Fourier transform, where SMS/MB encoding can be viewed as acceleration in this
concatenated readout direction. The concatenated unaccelerated images are then used for estimating the
interpolation rule, e.g. linear convolutions in GRAPPA, in this extended space (Demirel et al., 2021;
Moeller et al., 2010). In order to reduce overfitting issues for the GRAPPA-type convolution from a single
calibration frame, additional calibration data was generated from the baseline SMS/MB = § reconstructions
from the first 8 time frames. In supplementary materials we provide a detailed description of the calibration
data generation for SMS/MB = 16 experiments in this study. For all tested methods, 8 calibration frames
were used for generating the interpolation kernels or CNNs. Additionally, this amount of calibration data
enables G; in rRAKI to be implemented as multi-layered linear convolutional network (Bell-Kligler et al.,
2019), which keeps the linearity while enabling multiple optimal solutions and avoiding issues with local
minima. Following the calibration stage, each individual time frame of the fMRI series were reconstructed
using the same convolutional kernel and/or CNN. For display and evaluation, multi-coil images were
combined using root-of-sums-of-squares. Due to the lack of fully-sampled data, reconstruction quality was
assessed visually for individual frames. Further quantitative evaluation was performed using temporal SNR
(TSNR), which measures the variation of image signal along time in a point-wise fashion. TSNR maps
were calculated as the mean of the image series over time divided by its standard deviation (Tabelow et al.,

2009).

2.7 Implementation Details

GRAPPA and RSG were implemented using MATLAB 2016a (MathWorks, USA). RAKI and rRAKI was
implemented using Tensorflow 1.7.0 and python 3.6.2, supported by CUDA 8.0 and CuDNN 7.0.5, on

Linux kernel 3.10.0. The Python environment was created under Anaconda 5.1.0. Adam (Kingma and Ba,



2015) was employed as the optimizer for network training. All programs were run on a server with two
Intel E5-2643 CPUs (6 cores each, 3.7 GHz), 256 GB memory and two NVIDIA Tesla V100 GPU (32 GB

memory each) with single precision.

For fastMRI dataset and anatomical imaging, the parameters of all non-machine learning reconstruction
methods were empirically tuned for best performance. In addition to visual assessment, numerical metrics
including SSIM and NRMSE were also considered in parameter tuning, when a reference image was
available. GRAPPA and Tikhonov regularized GRAPPA was implemented using a 5x4 kernel (Griswold
et al., 2002). An regularization factor of 0.05 was employed in Tikhonov regularized GRAPPA. £;-SPIRiT
used a 5x5 kernel, and L1 Daubechies-4 wavelet regularization. Regularized SPIRIT reconstruction was
solved iteratively using ADMM. For the CNNs in RAKI and nonlinear part of rRAKI, we express the
shape of convolution kernel used in layer 1 as w; = [b{, b, n; 1, representing a b*xb)" xn;_; xn,

convolution, where b{* and b}’ denote the sizes of convolution window along k. and k, directions

respectively, n; and n;,; denote the input and output channel number, respectively. Under this notation,

n, = 2n.since the CNN takes k-space data of 2 n. channels. The output layer always outputs R — 1 channels
for k-space estimation. In anatomical imaging, we employed the following hyper-parameters: w; = [5, 2,
32],wy, =11, 1, 8], w3 =[3, 2, R-1] for RAKI (Zhang et al., 2018a). rRAKI was implemented with a 5x2
linear convolution kernel, and its nonlinear part shared the same parameters as RAKI for all tested scenarios
for comparison purposes. A has been set to 1 for an equally weighting between linear and non-linear
components. Parameters of Adam optimizer were set as @ = 0.0003, 81 =0.9, £2=0.999, £ =10"2 . SPARK

was implemented as is suggested in (Arefeen et al., 2022).

For SMS/MB imaging, larger kernels were employed for RSG, RAKI and the proposed rRAKI due to the
readout-concatenated nature of k-space. Specifically, RSG applied an 11x10 kernel. RAKI employed 5-
layered CNNs with hyper-parameters: w; = [11, 10, 32], w, =[1, 1, 64], w3 =[3, 2, 32], w, =[1, 1, 64],

ws =[5, 4, R-1]. rRAKI employed a multi-layered linear convolution network that has similar structure as



F; but without nonlinear activations. Both G; and F; shared the same hyper-parameters as those were used

for RAKI, with A = 1. Parameters of Adam optimizer were set as @ =0.0003, 81 =0.9, f2=0.999, £ =1078,

3 Results

3.1 fastMRI Dataset

Fig. 2 and Fig. 3 depict representative reconstruction results of To-weighted and FLAIR data from fastMRI
database, respectively. £;-SPIRIiT, RAKI, SPARK and rRAKI show visible advantages over GRAPPA,
Tikhonov regularized GRAPPA and non-linear GRAPPA in terms of noise resilience. RAKI and rRAKI
exhibit similar image quality, while providing visibly sharper images with fine details compared to £;-
SPIRiT and SPARK. Note that £;-SPIRiT and SPARK exhibit more noise suppression albeit at the cost of
smoother looking images. Table 1 lists the mean and standard deviation of SSIM, NRMSE and blur metrics
for both T2-weighted and FLAIR datasets. For both T2-weighted and FLAIR datasets, all quantitative
metrics showed normality, allowing subsequent paired t-tests to be conducted. The results of the paired t-
tests are listed in supporting materials Table S1-S6 and summarized here. For both T2-weighted and FLAIR
imaging, RAKI, rRAKI and SPARK show no statistical difference in terms of SSIM and NRMSE, while
they are statistical different in terms of blur metrics, where SPARK had higher (worse) blur metrics than
RAKI and rRAKI, indicating image blurring that matches the visual assessments. RAKI, rRAKI and
SPARK outperform GRAPPA, Tikhonov-regularized GRAPPA, nonlinear GRAPPA and €;-SPIRiT in
terms of SSIM and NRMSE, with statistical significance. GRAPPA and Tikhonov-regularized GRAPPA
show no statistical difference in all metrics in T>-weighted imaging, while for FLAIR imaging Tikhonov-
regularized GRAPPA has statistically higher blur metrics value than GRAPPA. Similarly, nonlinear
GRAPPA has statistically higher blur metrics than GRAPPA in T,-weighted imaging, while it has
statistically better SSIM and NRMSE in FLAIR imaging. Nonlinear GRAPPA statistically outperforms
Tikhonov-regularized GRAPPA in terms of NRMSE in T,-weighted imaging, While Tikhonov-regularized
GRAPPA outperforms nonlinear GRAPPA in terms of SSIM and NRMSE in FLAIR imaging. £;-SPIRiT

outperforms GRAPPA, Tikhonov-regularized GRAPPA and nonlinear GRAPPA in terms of SSIM and



NRMSE for both T,-weighted and FLAIR imaging, but £;-SPIRiT also exhibits high blur metrics values

indicating visual blurring.

Computation times of GRAPPA, RAKI, SPARK and the proposed rRAKI are reportedin Supplementary
Material Figure S3. The pure linear nature of GRAPPA allows a fast reconstruction speed, taking
approximately a second to reconstruct the fastMRI brain image at rate 4. RAKI and rRAKI takes less than
20 seconds for the reconstruction. Owing to the use of a linear reconstruction baseline, rRAKI converges
in fewer epochs than RAKI. Note as detailed in Section 2.7, GRAPPA was implemented in MATLAB,

while the other methods were implemented using TensorFlow.

3.2 Anatomical Imaging

Fig. 4 depicts the results from the reconstruction of the 3T MPRAGE data using GRAPPA, RAKI, rRAKI,
for different acceleration rates, as well as the linear part G and the nonlinear part F (scaled by 3 for improved
visualization) of rRAKI. RAKI and rRAKI show minor advantages over GRAPPA in noise resilience below
rate 4. The advantage becomes more noticeable for acceleration rates of 5 and 6, where RAKI and rRAKI
have visually lower noise than GRAPPA. For rRAKI, the G part shows similar appearance to the GRAPPA
results, in accordance with the interpretable nature of the reconstruction. The noise amplification in the
linear G part is reduced using the non-linear F' part. The combination of these two components matches

RAKI in terms of noise resilience.

Similar observations apply to 7T MPRAGE data, the results of which are depicted in Fig. 5. For this dataset,
all tested approaches successfully remove aliasing artifacts for the rates shown. The linear part of rRAKI
and GRAPPA results present similar visual quality, followed by visible noise removal given by the
nonlinear F part of rRAKI. rRAKI matches RAKI in terms of noise resilience, and both of them show

visible advantage over GRAPPA, especially at rates 5 and 6, while rRAKI has improved interpretability.

Additional reconstruction results of 3T and 7T anatomical imaging are shown in supplementary Fig. S4 and

Fig. S5, including GRAPPA, Tikhonov-regularized GRAPPA, £;-SPIRiT, RAKI, SPARK and rRAKI



reconstructions at acceleration R = 6. Non-linear GRAPPA, £,-SPIRiT, RAKI, SPARK and rRAKI show
improved noise resilience compared to GRAPPA and Tikhonov-regularized GRAPPA. However, residual
aliasing is visible in £;-SPIRiT and SPARK. Non-linear GRAPPA, RAKI and rRAKI exhibit closer visual

quality.

3.3 Simultaneous Multi-Slice fMRI

Representative results for high rate SMS/MB reconstruction are presented in Fig. 6. Six representative slices
are displayed to demonstrate improved visualization. A display of all unaliased SMS/MB = 16 images are
provided in Supplementary Fig. S6 and S7. Although no fully-sampled reference exists in this setting, high-
quality SMS/MB = 8 reconstruction results with RSG are provided for baseline comparison. At SMS/MB
=16, RSG displays visible artifacts and reconstruction noise, which is reduced in RAKI and rRAKI. rRAKI

provides sharper results than RAKI, while reducing artifacts and noise amplification.

Representative TSNR maps are displayed in Fig. 7. For SMS/MB = 16, both RAKI and rRAKI demonstrate
increased TSNR compared to RSG. However, RAKI provides a visibly homogeneous TSNR compared to
the MBS reference, which suggests a loss of sensitivity to temporal dynamics due to suboptimal
generalizability. On the other hand, rRAKI shows slightly lower TSNR values compared to SMS/MB = 8

baseline, but the TSNR map from rRAKI preserves structural information.

4 Discussion

In this study, we proposed rRAKI, which combines a conventional linear reconstruction with a neural
network based nonlinear k-space reconstruction for improved image quality and interpretability.
Undersampled k-space is interpolated using linear convolutions as a baseline, while the nonlinear CNNs
further suppress the residual errors arising from this linear part. Such residual errors include g-factor noise

amplification (Robson et al., 2008), and calibration errors due to noise in the regressor and regressand



(Akgakaya et al., 2019; Chang et al., 2012). The proposed rRAKI has demonstrated noticeable improvement

in image quality in high rate anatomical and SMS/ MB imaging.

An important contribution of rRAKI is the ability to interrogate the components in the reconstruction, where
the linear component ensures that the unaliasing of signal is accurate, and the non-linear component
captures inhomogeneous noise amplification and other artifacts. The explicit separation of these artifacts,
as well as the inference of system conditioning are two features of the rRAKI algorithm that are useful in
determining performance for high acceleration. The proposed rRAKI strategy exhibited improved image
quality compared to conventional linear PI reconstruction in anatomical imaging at higher undersampling

factors, as well as in highly accelerated SMS/MB imaging.

One of the advantages of RAKI-type methods have been its scan-specific nature, allowing them to be used
in the absence of large training databases (Arefeen et al., 2022; Hosseini et al., 2020b; Kim et al., 2019;
Nencka et al., 2021; Zhang et al., 2019a; Zhang et al., 2018a). Recently, several other studies have aimed
to develop alternative scan-specific deep learning methods. In (Yaman et al., 2021a), physics-guided DL
reconstruction with algorithm unrolling was performed in a zero-shot manner building on self-supervised
learning methods (Yaman et al., 2020b; Yaman et al., 2021b). Another line of work that uses adversarial
models relying on deep image prior (Ulyanov et al., 2018) has also been proposed (Korkmaz et al., 2021),

showing interest in this growing area.

Several other works have also demonstrated noticeable gains by connecting linear and nonlinear methods
(Arefeen et al., 2022; Dar et al., 2021). In the context of database training, (Dar et al., 2021) takes
advantages of a hybrid linear and non-linear structure, leading to significant advantages over conventional
physics-guided model in terms of artifacts and noise reduction. In the context of scan-specific approaches,
SPARK trains a non-linear CNN minimizing the reconstruction error arising from a fixed baseline
reconstruction (Arefeen et al., 2022). In one of our preliminary studies for this work (Zhang et al., 2019a),a
fixed linear baseline was shown to lead to difficulty with convergence when fitting acquired k-space data

to the reconstruction residual, due to varying signal intensity in k-space. Thus, in this work, we adapted a



joint optimization of the linear and non-linear components for improved training. In (Arefeen et al., 2022),
the training issue with a fixed baseline has been resolved using a fine-tuned CNN and promising results. In
this work, without imposing any condition on the CNN, we performed several comparisons between rRAKI
and SPARK, and demonstrated the advantages of rRAKI in terms of both visual quality and numerical

metrics, especially related to image sharpness and recovery of fine details.

The explicit separation of the linear and non-linear components in rRAKI, along with the joint training of
these components, enables the training and testing to be performed on more similar signal energy levels
compared to RAKI. The linear component fits most of the signal energy in the ACS data, while the non-
linear CNN characterizes the residual. Using the shift-invariance of the linear component, this strategy
extends to the outer k-space, while the non-linear nature of CNN is empirically important to adaptively fit
such data. The non-linear component used in this study, consisting of ReLU after convolution without
biases, can be expressed as a multiplication of matrices, where the ReLU activations lead to signal-
dependent binary diagonal matrices (Ye et al., 2018). The signal dependency of this component empirically
enables an adaptive trade-off in regularization without the need for an explicit weighting parameter as in
earlier works for regularizing GRAPPA-type reconstructions (Weller et al., 2012), which is consistent with
how CNNs are able to work across different noise levels in denoising problems (Gnanasambandam and
Chan, 2020; Zhang et al., 2018b). Although the hybrid linear and non-linear design of rRAKI can lead to a

low calibration error during training, over-fitting may occur when rRAKI is trained with limited ACS data.

For SMS/MB = 16, a single calibration frame only has 129,000 k-space points that can be used for training,
whereas the network we employed has 730,120 parameters for each channel to be reconstructed. Thus, the
additional calibration data improved both the linear and combined reconstruction of rRAKI, by enabling

improved estimation of linear convolutions, as well as the use of a deep network.

For neuroimaging, mapping of resting-state networks into frequency-bands above 0.2Hz with high spatial
resolution is one of the needs for bridging the functional connectomics from fMRI and magnetic resonance

encephalography (MREG), (Hennig et al., 2007). Efforts on interrogating these connections have been



pursued with compressed sensing reconstructions for MB-EVI acquisition (Vakamudi et al., 2018) and fast
sequences such as line-scanning for laminar fMRI (Yu et al., 2014), since conventional acquisition and
undersampling strategies have been insufficient. rRAKI for fMRI demonstrate one potential approach to
maintain conventional acquisition methods, while improving both the quality of the reconstruction and the

temporal stability necessary for probing of such biological systems.

Our study has limitations. Regularization strength in Tikhonov regularized GRAPPA and the regularization
parameters in £1-SPIRIiT were empirically tuned in this study. This included both visual assessment, and
quantitative metrics such as SSIM and NRMSE when a reference image was available. For Tikhonov
regularized GRAPPA, a high regularization strength suppressed noise amplification but potentially led to
visible aliasing leftovers. Thus, in this case, we also included the reduction of aliasing artifacts in our visual
evaluation instead of noise suppression alone. Unlike the fastMRI experiments, quantitative evaluation with
respect to a reference were not provided for 3T and 7T anatomical imaging, as well as SMS fMRI, due to
the lack of fully-sampled reference data. In this study, we focused on a scan-specific approach, thus the
database learning methods were excluded from the comparison, For our implementations, hyperparameters
of the CNNs were empirically adjusted, similar to previous studies on RAKI-type methods (Arefeen et al.,
2022; Zhang et al., 2018a). Although we only focus on 1D Cartesian undersampling in this study, one may
perform rRAKI on other uniform sampling patterns, such as 2D PE acceleration in 3D Cartesian sampling,

by replacing Eq. (1) with a corresponding neighborhood selector.

5 Conclusion

In this study, we proposed a machine learning based k-space reconstruction approach, rRAKI, for enhanced
image quality and improved interpretability. The efficacy of rRAKI in reducing noise and residual artifacts
compared to conventional parallel imaging and RAKI was shown in both anatomical and functional

imaging.

Data and Code Availability Statements



Images of human volunteers were collected and analyzed in this manuscript. All scans were performed
according to procedures approved by the Internal Review Board of the University of Minnesota after
obtaining informed suitable written consents. Since this protocol was not defined as an open repository, the
data is not provided, to preserve the ethics and privacy issues of clinical data. The code will be publicly

accessible at: https://github.com/zczam/TRAKI.
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Figure 1. Schematic of the rRAKI network. The network takes undersampled k-space data from all coils
as input, and interpolates the k-space of a certain coil. It consists of two branches: the linear part G, which
provides a linear reconstruction baseline, and the nonlinear part F, which achieves nonlinear noise and
artifacts removal from G. G can be either a single convolution or a linear convolutional network. F is a
nonlinear CNN that consists of linear convolutions and nonlinear activations. rRAKI network outputs G +
F as the final reconstruction of the given channel. The outputs from G and F have R-1 channels

corresponding to R-1 skipped lines between two sampled phase-encoding positions.
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Figure 2. Representative reconstruction results of T2-weighted images from the fastMRI database at R = 4,
using GRAPPA, Tikhonov-regularized GRAPPA, non-linear GRAPPA, RAKI, SPARK and rRAKI. £;-
SPIRiT, RAKI, SPARK and rRAKI have reduced noise amplification compared to GRAPPA, Tikhonov-
regularized GRAPPA and non-linear GRAPPA. £;-SPIRiT and SPARK exhibit visual blurring and loss of
fine details. RAKI and rRAKI exhibit visibly similar image quality, and provide sharper images and
improved recovery of fine details compared to £;-SPIRiT and SPARK.
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Figure 3. Example results of FLAIR images from fastMRI database at R = 4, reconstructed using GRAPPA,
Tikhonov-regularized GRAPPA, non-linear GRAPPA, RAKI, SPARK and rRAKI. £;-SPIRiT, RAKI,
SPARK and rRAKI outperform GRAPPA, Tikhonov-regularized GRAPPA and non-linear GRAPPA in
terms of noise reduction. Blurring and loss of fine details are visible in £;-SPIRiT and SPARK. RAKI and
rRAKI demonstrate visibly similar image quality, while providing sharper images and improved recovery

of fine details compared to £;-SPIRiT and SPARK.



Figure 4. Reconstruction results for a 3T MPRAGE acquisition using GRAPPA, RAKI, and rRAKI, for

acceleration rates 4 to 6. For display purposes, the G component of rRAKI is filled with the acquired lines
at the acquired positions, while the F' component, which is the residual from G, has zeros in the acquired
positions. At rate 4, RAKI and rRAKI perform similarly to GRAPPA in terms of noise resilience. This
difference becomes more pronounced at higher rates 5 and 6. As expected, the linear portion (G) of rRAKI
matches the image quality of GRAPPA. Amplified noise can be observed in G under all tested rates, which

is subsequently reduced by F. Combined output from rRAKI matches the image quality of RAKI.



Rate 4
(1 avergage)

Rate 5
(2 avergage)

Rate 6
(2 avergage)

Figure 5. Reconstruction results for a 7T MPRAGE acquisition using GRAPPA, RAKI and rRAKI for
acceleration rates 4 to 6. G and F components of rRAKI are displayed as described in Fig. 4. At rate 4, there
are no noticeable differences between the three methods. Visible noise amplifications are observed in
GRAPPA at rates 5 and 6. At these rates, RAKI and rRAKI show improved noise resilience compared to
GRAPPA. Although the linear part (G) of rRAKI suffers from similar noise amplification to GRAPPA, the
non-linear part (F) successfully reduces the noise level, leading to an enhanced image quality that matches

RAKI.



Slice 3 Slice 2 Slice 1

Slice 4

Figure 6. Reconstruction results from simulated SMS/MB = 16 data using RSG, RAKI and rRAKI are
displayed for 4 representative slices out of 16. Due to the lack of fully sampled ground-truth data, the
conventional high-quality SMS/MB = 8 reconstructions from RSG are employed as a baseline reference. G
and F components of rRAKI are displayed as described in Fig. 4. At SMS/MB = 16, both RAKI and rRAKI
show noticeable improvements compared to RSG, including lower noise and fewer reconstruction artifacts.

However, RAKI suffers from visible blurring, which is ameliorated using rRAKI.
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Figure 7. TSNR maps corresponding to the slices in Figure 5. RSG results at SMS/MB = 8 are used as
baseline reference. At SMS/MB = 16, RAKI and rRAKI show higher TSNR values compared to RSG.
However, RAKI leads to a homogeneous TSNR map, with values greater than the SMS/MB = 8 reference,
indicating a risk of losing temporal dynamics. rRAKI outperforms RAKI by preserving more structural
information in its TSNR map, while showing anatomically similar albeit lower TSNR values to the

SMS/MB = 8 reference.



T>-Weighted FLAIR
SSIM NRMSE Blur Metrics SSIM NRMSE Blur Metrics
Reference N/A N/A 0.291 +0.0333 N/A N/A 0.288 +£0.0141
GRAPPA 0.868 £ 0.0611 0.110 +0.0241 0.244 + 0.0283 0.901+£0.0299  0.0814+0.0141 0.242+0.0142
Tikhonov GRAPPA 0.873 £ 0.0455 0.111+0.0211 0.248 +£0.0273 0.902 +0.0267  0.0815+0.0132 0.244 +£0.0146
Non-linear GRAPPA 0.871 £ 0.0764 0.107 £ 0.0288 0.251+0.0276 0.886 +£0.0450  0.0875+0.0201 0.243 £0.0170
£;-SPIRIT 0.891 £ 0.0395 0.101+£ 0.0179 0.337 +0.0432 0.909 +£0.0214  0.0766 = 0.0135 0.319+0.0176
RAKI 0.904+ 0.0380 0.0904 + 0.0161 0.278 £ 0.079 0.927 + 0.0205 0.0674 + 0.0121 0.271+0.0134
SPARK 0.909 + 0.0463 0.0893 + 0.0168 0.305+0.0334 0.926 +0.0223 0.0687 +0.0123 0.300 = 0.0172
rRAKI 0.901 £ 0.0446 0.0905 +0.0168 0.269 + 0.0257 0.928+ 0.0221 0.0679+ 0.0128 0.264 +0.0133

Table 1. Mean and standard deviations of SSIM, NRMSE and blur metrics of reconstruction methods tested on T,-weighted and FLAIR images from the fastMRI
database at R = 4. Statistical analyses show that machine learning-based approaches RAKI, SPARK and rRAKI improve on £;-SPIRiT GRAPPA and its variants for
all metrics. Furthermore, RAKI and rRAKI statistically improve on SPARK in terms of the blur metric, matching visual observations. There is no statistical difference

between RAKI, SPARK and rRAKI in terms of SSIM and NRMSE.
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