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SUMMARY

As rates of urbanization and climatic change soar, decision-makers are increasingly challenged to provide
innovative solutions that simultaneously address climate-change impacts and risks and inclusively ensure
quality of life for urban residents. Cities have turned to nature-based solutions to help address these chal-
lenges. Nature-based solutions, through the provision of ecosystem services, can yield numerous benefits
for people and address multiple challenges simultaneously. Yet, efforts to mainstream nature-based solu-
tions are impaired by the complexity of the interacting social, ecological, and technological dimensions of
urban systems. This complexity must be understood and managed to ensure ecosystem-service provision-
ing is effective, equitable, and resilient. Here, we provide a social-ecological-technological system (SETS)
framework that builds on decades of urban ecosystem services research to better understand four core chal-
lenges associated with urban nature-based solutions: multi-functionality, systemic valuation, scale
mismatch of ecosystem services, and inequity and injustice. The framework illustrates the importance of
coordinating natural, technological, and socio-economic systems when designing, planning, and managing
urban nature-based solutions to enable optimal social-ecological outcomes.
INTRODUCTION

Urban areas globally are already home to 4.2 billion people in

need of critical urban services to support urban livability and live-

lihoods. Further population growth challenges cities’ ability to
One Earth 5,
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provide fundamental urban services that are equitably available

to all. Urbanization differentially amplifies vulnerability and expo-

sure to the hazards of climate change, and together urbanization

patterns and climate change drive increasing urban risk and im-

pacts.1 Transforming cities and settlements to reduce these
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risks, meet the Sustainable Development Goals (SDGs)2, build

climate resilience, and provide sustainable living spaces for cur-

rent urban populations and the additional 2.5 billion people ex-

pected to inhabit cities by 2050 will require significant upscaling

of investment into diverse urban infrastructure.1,3,4

Conventional infrastructure design for the provision of urban

services remains largely dominated by centralized gray infra-

structure and technological efficiency.5–7 Gray infrastructure—

designed as fail-safe—is often at risk of failure due to age and

a lack of adaptive capacity during increasingly frequent and

extreme weather-related events.8,9 To help overcome this infra-

structure challenge, there is renewed interest in reconnecting,

restoring, and designing nature into the built environment to pro-

vide a wide suite of benefits for urban residents, infrastructure,

and economies,10,11 which include climate-change regulation,

local food production, recreation, human health, and many other

benefits. Indeed, the International Panel on Climate Change

(IPCC)1,12, the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services (IPBES)13, the World Eco-

nomic Forum10, andmany other recent reports from international

bodies have emphasized the importance of such an approach

and encourage the implementation of nature-based solutions

around the world.

Ecosystem services have become an important framework for

designing nature-based solutions that can mitigate the short-

comings of traditional infrastructure.14,15 Ecosystem services

have been defined in many ways but are fundamentally the ben-

efits people and cities receive from ecosystems16–18 and na-

ture’s contributions to people.13,19 More recently, ecosystems

in cities have been framed, acknowledged, and invested in as

critical urban ecological infrastructure (UEI).7 UEI, which com-

prises all ecological structures and functions including green

(terrestrial vegetation), blue (aquatic systems), turquoise (wet-

lands), and brown (vacant, unvegetated) ecological infrastruc-

ture, has a powerful role, along with more traditional gray infra-

structure, in improving lives in cities through its potential to

supply ecosystem services.7 We note that green infrastructure

is a widely used term and hasmany definitions. Green infrastruc-

ture can be considered a subset of UEI and often incorporates

ecological and built-engineered infrastructure components that

provide social, ecological, and technological functions and ben-

efits.20 Urban nature-based solutions have emerged as a framing

to leverage UEI.21,22 Globally, enhancing ecosystems within cit-

ies is touted as a win-win solution for advancing sustainability

and resilience.2,12,23,24

Despite the growing recognition of the importance of

ecosystem services in the design of nature-based solutions,

research and practice rarely use a systems approach to under-

stand the contextual factors25–27 that affect the production, de-

mand, and management of ecosystem services. Multiple review

and perspective articles have pointed out the challenges of

mainstreaming nature-based solutions and the need for more

systemic understanding and management of their social-,

ecological-, and technological-infrastructure dimensions.11,27–29

Ecosystem services and their benefits emerge as outcomes of

dynamic interactions among components and dimensions of ur-

ban systems—including people, nature, technology, infrastruc-

ture, economies, politics, justice, and institutions.30 As complex

adaptive systems,31,32 cities and urban regions are dynamic,
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highly connected (both within and between cities)33, and full of

contested spaces, including UEI. Studying, planning, or manag-

ing dimensions of urban ecosystems in isolation fundamentally

neglects critical system interactions that influence ecosystem

service production across multiple scales. It is only by working

with this complexity that can we hope to achieve the ambitious

goals we have for urban nature to help meet SDG targets and

deliver the services we need.

For example, urban vegetation, such as street trees, require

local management to provide cooling through shading and

evapotranspiration with regional-scale impacts on the urban

heat island and local-scale impacts that reduce heat stress to in-

dividuals.34–36 Social, ecological, and technological infrastruc-

ture all interact to drive the cooling potential of trees and climate

regulation across scales.27,37 From a social perspective, land

managers and environmental stewards enhance the efficacy of

street trees in providing local cooling.38 Young trees require irri-

gation,34,39 and this requires both infrastructure and labor.

Ecological impacts of non-native species in the system, for

example through insect herbivory, can limit cooling potential.

Transpiration—one of the most important ecological functions

of urban trees—differs by climatic region, species, and leaf

area,40–42 and water-stressed trees may exhibit reduced cooling

effects and transpirationwhen these processes aremost desired

during hot summer days.36,43–45 The cooling effects of trees are

dependent uponmicroclimate related to factors such as planting

density, height, canopy area, and shade provision36,46 and the

influence of tall buildings that can shade vegetation, in turn

reducing photosynthetic activity and evaporative cooling.39,43

At the same time, trees that shade buildings can reduce building

heat loads and energy consumption for air conditioning,47,48

underlining the importance of urban infrastructure to cooling

benefits. Ensuring that street tree benefits are maximized re-

quires managing the social, ecological, and technological di-

mensions of street tree functioning. In the absence of a more ho-

listic and systems-oriented approach to planning, designing,

and managing UEI, we will not be able to supply critical

ecosystem services effectively and sustainably over time.

In this perspective, we provide an interdisciplinary social-

ecological-technological system (SETS) framework to under-

stand and guide research and practice on nature-based solu-

tions and urban ecosystem services to more explicitly integrate

the many social, ecological, and technological factors that affect

them.Weoffer testable hypotheses to accelerate future research

with this system framing. Further, underlining the need for more

holistic system approaches, we identify four cross-cutting chal-

lenges for managing, designing, and planning ecosystem ser-

vices in the context of complex urban-systems dynamics. These

challenges include (1) assessing the multi-functionality of eco-

systems and their services and how to then maximize synergies

and limit tradeoffs; (2) improving the valuation and potential sub-

stitutability of diverse services; (3) recognizing the importance of

a spatial and temporal scale in the delivery and management of

ecosystem services; and (4) including an explicit focus on equity

and justice in the delivery and provision of services. Adequately

addressing such core challenges requires more integrated sys-

tems approaches to improve the ability of ecosystems to provide

ecosystem services and nature-based solutions for expanding

challenges of urbanization and climate change.
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URBAN ECOSYSTEM SRVICES CHALLENGES

Multi-functional challenges
Ecosystems perform multiple functions and thus provide ‘‘bun-

dles’’ of multiple ecosystem services simultaneously.,49–51 How-

ever, trade-offs may arise among different ecosystem services

because not all co-benefits can be maximized at the same

time, and disservices may be generated under certain sce-

narios.25,52,53 Management choices to maximize individual so-

cial, ecological, or technological dimensions can modify the

ecosystem services bundle by impacting the quantity, quality,

or spatial and temporal distribution of benefits.49,54 Yet, analyses

of trade-offs and synergies have been mostly centered on the

ecological dimensions of productive landscapes (e.g., agricul-

ture) exploring trade-offs between provisioning and regulating

functions.55,56 These analyses often do not account for trade-

offs and synergies associated with the services from other ur-

ban-system components important to the production of that

service. For example, urban food production and the many co-

benefits provided by urban gardens may be better accounted

for by acknowledging the supporting social and physical infra-

structure necessary to maintain food production and urban

gardens. Thus, accounting for the many ecosystem-service syn-

ergies and trade-offs is challenged by lack of a systems ap-

proaches needed to improve management and effectiveness.

Valuation challenges
Ecosystems offer a variety of benefits that can be captured in

diverse ways, including economic valuation in monetary57 or

other terms, assessment of their biophysical capacity to provide

services, or understanding of their socio-cultural values.18,58,59

Valuation studies often focus on built infrastructure solutions,

with less consideration of the value of urban ecosystem ser-

vices.37 For example, the cost and efficiency of stormwater

management may vary depending on support from green

infrastructure (e.g., wetlands), gray infrastructure (e.g., pipes,

water-storage facilities), and hybrid approaches (e.g., bio-

swales).60–62 Urban wetlands can capture stormwater and pro-

vide habitat and recreation areas.63,64 Green roofs contribute

to both stormwater regulation and native bird habitats, but the

quality of a rooftop habitat may not be valued similarly to a bird

habitat in a wetland. Without improved understanding of the

diverse values and substitutability of natural and human-made

capital, decision-makers will continue to struggle to incorporate

nature-based solutions into cost-benefit-driven decision-mak-

ing. Additionally, substitutability studies often evaluate trade-

offs between cost and efficacy but often only within single social,

ecological, or technological dimensions, missing the opportunity

to more comprehensively understand substitutability of services

across system dimensions.

Scale challenges
The production of urban ecosystem services is dependent on the

structure and function of multiple systems—social, governance,

ecological, and infrastructural systems—and relationships be-

tween systems across spatial and temporal scales. However,

mismatches in the spatial scale at which services are supplied,

delivered, and needed can reduce the benefits received and

impair effectiveness of ecosystem-services management.65–68
For example, if green roofs, which provide local cooling, are

not extensively implemented in high heat exposure neighbor-

hoods, then local cooling benefits may be minimal. Further,

some services are only supplied at particular points in time.25

TThe heat-mitigation services provided by urban deciduous

trees—providing shade during warm summer months—follow

the seasonal demand for cooling. Food production in urban gar-

dens also varies seasonally, with higher production in summers

and low to no production in winter months, yet food demands

remain constant year-round.Without accounting for the variation

in ecosystem services supply and demand at different scales, it

will be difficult to ensure that ecosystem services are produced

where and when residents need them. Understanding how

different systems dimensions interact with scale mismatches

can help to support and maximize the effectiveness of

ecosystem services across time and space.

Equity and justice challenges
Ecosystem services and their benefits are not distributed

equally, equitably, or in a just way.69–71 Urban physical form

and the structure of social systems often drive inequitable ac-

cess, management, and distribution of ecosystem services,72–74

create legacies, and perpetuate environmental injustices.75

While a substantial amount of research has investigated the ben-

efits urban residents receive from ecosystem functions and ser-

vices,27,29,76 more attention needs to be paid to ensuring the

equitable and fair access and distribution of those benefits.77

Social- and environmental-justice issues remain a persistent

problem in cities such that low-income, minority, and immigrant

communities have less access to and availability of services,

including ecosystem services.78,79 This has been strikingly

demonstrated in Phoenix (AZ, USA), where the benefits of cool-

ing from large shade trees are primarily experienced by wealthy

residents.80,81 Green infrastructure placement for pluvial flood

management revealed greater preparedness in wealthy, White

neighborhoods and greater vulnerability in poorer neighbor-

hoods with a larger minoritized population in Atlanta (GA, USA),

compared with Phoenix and Portland (OR, USA).82 As invest-

ments in green infrastructure and other nature-based solutions

for urban climate resilience scale up in cities around the world,

planning and management must not only recognize potential

negative impacts of these strategies but ensure that they do

not reinforce the systemic and all-too-common status quo of

disproportionate access and benefits in low-income and minori-

tized communities.75 For example, gentrification that includes

green infrastructure investments may increase attractiveness

of neighborhoods, leading to higher property values that force

low-income residents to move and may perversely increase

exposure of vulnerable populations to the hazards that nature-

based solutions seek to manage.83–85 More work is necessary

to scrutinize differences among preferences, who will benefit

and who will not, and how green infrastructure investments

may drive other unintended negative consequences.83,86

CITIES AS SETS

To address the previously discussed cross-cutting challenges

multi-functionality, scale, substitutability, and equityfor manag-

ing anddesigning nature-based solutionsmaximizing ecosystem
One Earth 5, May 20, 2022 507



Figure 1. The social-ecological-
technological systems (SETS) conceptual
framework
The SETS conceptual framework focusing on link-
ages among broadly defined social, ecological, and
technological dimensions of complex systems
adapted from Depietri and McPhearson91 and
concepts from Grimm et al.60 and McPhearson
et al.93,95,96
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services, we provide a more comprehensive conceptual SETS

framework for understanding the production and management

of ecosystem services and their benefits in diverse cities. In the

SETS conceptual framework for ecosystem services, ecosystem

services are not simply a product of ecosystem structure and

function, as they are often defined.18,87 Rather, ecosystem ser-

vices are deeply embedded in local and regional contexts25,24

and are generated by the combined structure and function of in-

teracting social, ecological, and technological dimensions in

each city,88,89 along with their connected peri-urban and rural

systems.60,90–92 Social dimensions of ecosystem services may

include management, planning, policy, finance, institutional ca-

pacity, stewardship, human labor, perceptions, values, and cul-

tural norms. Ecological dimensions may include climate,

weather, biodiversity, species traits, ecosystem structure

and function, and community-scale interactions that affect

ecological functioning. Technological-infrastructure dimensions

can include physical components (e.g., dams, levees, pipes, cul-

verts), weather sensors, engineered basins, structural support,

automated systems, irrigation, and construction material.

Furthermore, urban ecosystems are complex systems charac-

terized by irreducible uncertainty, emergent properties, and non-

linear behavior that can respond to and learn from changing con-

ditions. Framing cities as complex SETS93 provides a conceptual

foundation for examining how SETS dimensions interact and

affect their individual and collective contributions to ecosystem
508 One Earth 5, May 20, 2022
services.18,60 The SETS framework explic-

itly acknowledges the interactions and in-

terdependencies among social-cultural-

economic-governance systems (social),

climate-biophysical-ecological systems

(ecological), and technological-engi-

neered-infrastructural systems (i.e., the

built or technological environment;

Figure 1).9,30,88,89,94 With ties to different

sectors of urban planning and overall

governance, the SETS framework pro-

vides opportunities for further mainstream-

ing ecosystem services in urban develop-

ment. Ecosystem services may serve as a

tool for coordinating the emergent out-

comes of SETS interactions, making

ecosystem complexity more manageable

by overcoming sectoral fragmentation

and siloed urban sustainability efforts

across sectors.

We apply the SETS framework to urban

ecosystems services, building upon

emerging literature that describes how
diverse urban dimensions influence supply and demand for

ecosystem services.25,26,97 We assert that using the SETS

framework will broaden research and practice on ecosystem

services., A SETS conceptual framework is important to

advancing a systems theory for cities,93 one that bridgesmultiple

disciplines and can be applied in any local or regional context.

Applying the SETS framework to ecosystem services highlights

the benefits people derive from the interdependent interactions

of coupled social, ecological, and technological structures and

functions. Advancing beyond the traditional ecosystem services

cascade,98,99 Millennium Ecosystem Assessment, and IPBES

models of ecosystem services provisioning, the integrated

SETS framework incorporates often-neglected dimensions

important to ecosystem service provisioning in cities. For

example, the SETS framework acknowledges infrastructure,

technology, and institutions that are increasingly recognized in

the literature as critical to maintaining, managing, and designing

ecosystem services but have not been adequately or explicitly

included in other definitions and frameworks for ecosystem

services.18,20,72,95,100,101

With the SETS framework, it is possible to compare individual,

coupled, and fully interacting social, ecological, and technolog-

ical contributions to ecosystem service provisioning designed

to improve urban sustainability, resilience, and equity. We hy-

pothesize that all ecosystem services are fundamentally influ-

enced by the interaction of all SETS dimensions, whether or



Figure 2. A SETS approach to ecosystem
services
Multiple ecosystem services examples illustrate
how different and interacting SETS dimensions
affect the production and supply of each
ecosystem service and often do so with propor-
tional inputs from S, E, or T dimensions. Blue at the
left point represents 100% S, green at the apex
represents 100% E, orange at the right point rep-
resents 100% T, and color gradations between
them represent gradients of S, E, and T interactions.
Black shapes illustrate hypothetical contributions of
social, ecological, and technological dimensions
that affect each service—food production, urban
heat-island (UHI) reduction, stormwater absorption,
carbon storage, recreation—as discussed in the
text. The gray shapes illustrate hypotheses of
additional key services for climate-change adap-
tation and mitigation—coastal flood protection, air-
pollution removal, carbon storage—and to illustrate
how the framework can be used to examine other
ecosystem services or specific nature-based solu-
tions. The relative location along the S, E, and T
axes represent potential hypotheses to be tested
within and among different cities and urban con-
texts, as SETS dimensions, interactions, and pro-
portional contributionsmay be similar in some cities
and very different in others.
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not this is explicitly recognized. We further hypothesize that the

social, ecological, and technological dimensions contribute var-

iably to ecosystem services provisioning, such that some system

dimensions play a larger role, and that the relative contributions

shift in time and space. Understanding when, where, and why

relative contributions change and how to ensure that all dimen-

sions are part of planning and management is important to the

production of and/or management for ecosystem services.

Through empirical examples reviewed from recent literature,

we highlight the spectrum of how and which SETS dimensions

contribute to the production and delivery of ecosystem services

(Figure 2) and examine challenges by providing case studies

from traditional ecosystem service categories—provisioning,

regulating, and cultural services—to illustrate the proportional

nature of SETS interactions affecting management and produc-

tion of ecosystem services (Figures 2 and 3). We suggest that

applying the SETS framework to ecosystem services has the po-

tential to improve the integration of ecosystem services into de-

cision-making and management to improve outcomes that meet

normative goals.

ADDRESSING MULTI-FUNCTIONAL ECOSYSTEM
SERVICES

The SETS framework provides a way to consider potential trade-

offs or synergies of service production supported by multiple
SETS dimensions.27 In particular, the

SETS framework allows us to map the

implications of these trade-offs more

broadly, including for cultural ecosystem

services, by adding social and technolog-

ical considerations. We offer the example

of urban farms and gardens here to illus-

trate trade-off considerations that emerge
when applying the SETS framework. For example, provisioning

in urban farms and gardens has been well studied in urban

ecosystem services research.102–104 Yet, we argue the SETS

framework can bring a more holistic understanding of key social,

ecological, and technological drivers of food supply and burdens

and hazards associated with urban gardens as a nature-based

solution to inequality in food access. Urban garden ecosystems

provide food for local families and communities and offer co-

benefits, such as habitat for pollinators, space for community

gatherings, and cooler microclimates, often touted as a solution

to ‘‘food deserts’’ and nutritional inequality.95 However, urban

gardens may also increase water, fertilizer, and pesticide use

and exclude other uses and users of the land area they occupy.

Examined through the full suite of SETS dimensions (Figure 3),

urban food production, along with its many co-benefits, is

dependent on sufficient land for cultivation,105–107 pest regula-

tion, pollination, safe, and nutrient rich soils.108 Yet, at the

same time, the social and institutional characteristics governing

the stewardship and management of the garden are essential

to food production.102 For example, lack of local knowledge

about community gardening programs and environmental bene-

fits can lead to abandonment and failure of urban gardens, as

was shown in Phoenix.109 Governance, decision-making capac-

ity, property rights, and division of labor are important indicators

of food provisioning and the perceived value of services in urban

gardens.103,104,110 In Barcelona, Spain, for example, bottom-up
One Earth 5, May 20, 2022 509



Figure 3. SETS dimensions of four example ecosystem services
Four ecosystem services, food production, stormwater absroption, climate regulation, and recreation, are described with respect to their interacting social,
ecological, and technological dimensions that drive the production of urban ecosystem services and, ultimately, human benefit.
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social movements led to policy shifts to legalize allotment gar-

dens during the economic downturn.62 In addition to ecosystem

stewardship and management, diverse forms of collective and

traditional knowledge are important to choices of cultivars and

the productivity of the harvest.102,111

Physical infrastructure, such as raised beds, compost bins,

benches, bathrooms, tool sheds, and irrigation, are technolog-

ical and infrastructure dimensions essential to productive food

provisioning. While the physical infrastructure makes food provi-

sioning feasible, features such as roads and paths provide

accessibility that is important to a suite of co-benefits, including

developing a shared sense of community and land steward-

ship.105,112 Finally, the distribution and delivery of produce is

necessary to ensure that people receive and have access to

the benefits provided by food production from urban and peri-ur-

ban gardens.107 The resulting synergies from considering all

SETS dimensions in the management of food production can

lead to more equitable distribution of ecosystem services, ben-

efits, and co-benefits by linking decisions that, on the surface,

belong to a given social, ecological, and technological compo-

nent yet have interdependent consequences. For example,

changes to zoning might seem like a technocratic question,

but the outcomes of zoning can affect the ability of people to

grow their own food and enjoy the associated benefits of

gardening, such as social cohesion. Likewise, reuse of industrial

brownfields may seem like an expedient solution for reclaiming

vacant land but can expose gardeners to high concentrations

of toxic chemicals.113 An explicit SETS approach may allow

managers to better maximize food production, along with

bundled co-benefits, and identify potential trade-offs and bur-

dens. Since there are inherent winners and losers in different

infrastructure pathways, SETS also provides a way of illumi-

nating who that might be.30 We hypothesize that the success

of urban gardens will depend primarily on social dimensions, in

terms of knowledge, relations, commitment, and land rights,

and ecological dimensions like soil quality, floral and faunal com-

munities, and adequate space, while less critical are technical di-

mensions, such as automated irrigation systems and fencing,

that can enhance the provision of services but are not as essen-

tial, though this is likely to vary significantly in different urban con-

texts (hypothesis visualized in Figure 2). Transdisciplinary

research will be needed to elucidate the relative roles of such di-

mensions and processes across diverse SETS contexts in order

to improve decisions on best management practices to restore

and scale the production of ecosystem services from different

urban ecosystems, such as urban gardens.114

ADDRESSING SUBSTITUTABILITY AND VALUATION

The concept of substitutability evaluates trade-offs between

cost and efficacy across SETS dimensions that provide and

deliver ecosystem services. Thus, an explicit SETS approach

to the valuation of ecosystem services is needed to better under-

stand the full suite of investment costs to maintain ecosystem

services benefits, equity implications, and the critical role of peo-

ple in long-term management and stewardship of ecosystem

services.

For example, climate change exacerbates existing shortfalls in

stormwater management in many cities.115 The increasing inten-
sity, frequency, and duration of precipitation in urban locations

exacerbates pluvial and fluvial flooding.116Widespread adoption

of mixed ‘‘gray’’ and ‘‘green’’ stormwater management practices

by many cities also serve as critical sources of ecosystem ser-

vices.117 These include short- to long-term retention of surface

water from precipitation. Rain gardens, bioswales, bioretention

ponds, constructed wetlands, and green roofs are examples of

engineered infrastructure in designed ecosystems as hybrid

ecological-technological solutions in diverse cities.91,118–122

UEI investments for stormwater management in the US are a

result of social-institutional directives, including water quality

and stormwater codes, US Environmental Protection Agency

grants and memoranda,123 advocacy by watershed manage-

ment non-governmental organizations, and incentives for private

landowners or developers.124 These initiatives have resulted in

the uneven distribution of UEI within some cities, leading to ineq-

uities and environmental injustice issues.82,125 UEI also requires

active human stewardship to realize the benefits.125, For

example, the installation of bioswales in Baltimore (MD, USA)

was not well received in some neighborhoods, where trash accu-

mulated and reduced the designed ecosystem services and

stormwater infiltration benefits.125

While using UEI is a complementary approach to gray infra-

structure (e.g., piped sewer systems) that help cities manage

stormwater and water quality, the services provided by, for

example, green infrastructure are unlikely to fully substitute for

the services provided by gray infrastructure even when the UEI

is intentionally designed, especially under increasingly variable

conditions. Bioswales, retention basins, and other hybrid types

of UEI interventions should combine social, ecological, and tech-

nological approaches from initial design, to building and con-

struction, to management and stewardship, since all affect the

ecosystem service benefits and value of stormwater manage-

ment. The SETS framework allows for articulating and testing hy-

potheses such as the following: in low- to medium-density urban

neighborhoods, retention capacity of engineered infrastructure

and ecological functioning of soils and vegetation are primary

factors in maximizing stormwater management capacity in bio-

swales, while human management, maintenance, and local

stewardship will have less impact on stormwater management

benefits (hypothesis visualized in Figure 2). In more dense urban

neighborhoods, we hypothesize that local stewardship andman-

agement will become indispensable in maximizing stormwater

retention and infiltration benefits. We encourage testing of these

hypotheses. We also suggest that the arguments discussed

should be considered when assessing the substitutability and

value of ecosystem services and when testing hypotheses

generated by the SETS framework in different urban contexts.

ADDRESSING SCALE MISMATCHES OF ECOSYSTEM
SERVICES

Systems approaches accounting for all SETS dimensions are

needed to address the multiple temporal- and spatial-scale mis-

matches that can occur such as need mismatches, in which

particular ecosystem service are not spatially produced where

they are needed or where production is temporlly out of sync

with demand.97,126 Ensuring sustainable management and sup-

ply of ecosystem services requires further working across
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scales, aligning local-scale provisions with regional-scale pro-

duction, transport, and delivery mechanisms all along the

ecosystem service supply chain.

For example, addressing the multi-scalar nature of urban

ecosystem services is essential when planning and managing

the cooling impacts of urban vegetation and infrastructure to

reduce urban heat island effects and heat stress in cities. Green

infrastructure, as well as legislation and ecological-technological

innovations, are required to address climate regulation at local

and regional scales. Cities like Paris and NewYork have adopted

regional legislation requiring new buildings to include solar or

green roofs to meet climate mitigation, adaptation, and resil-

ience goals for decreasing heat exposure. Retrofitting buildings

to transform conventional roofs to green roofs has been shown

to potentially lower mean surface temperatures in New York

up to 0.8�C,127 with even greater surface temperature reduction

at the scale of individual buildings. Further, future climatemodels

incorporating urban expansion show that wholesale adoption of

green roofs could significantly reducewarming at regional scales

in the 21st century.128

Green roofs are an example of hybrid green infrastructure

where attention to the ecological and technological dimensions,

as well as planning, policy, and management, are equally

needed to realize cooling benefits. If green roofs are used for

food production, then social dimensions are important. For

example, not only human management and stewardship but

also institutional capacity and commitments, potential markets,

and business transactions that occur at different spatial and or-

ganization scales ensure that desired ecosystem services are

provided to beneficiaries over time. Further, local policies that

can incentivize construction, mobilization of finance to provide

upfront implementation, and building or even larger community

buy-in could all be essential to supply of services from this

type of green infrastructure. Ecological dimensions operate at

local scales, including the need for quality soil, adequate organic

matter, healthy soil microbes, species assemblages that support

healthy ecological communities, and species traits that are

locally adapted to environmental conditions.

Beyond increasing local cooling through evapotranspiration,

thermal insulation, and shading, green roofs can increase

longevity of roof structures in temperate climates and reduce

overall costs.129,130 In addition, green roofs, such as the Brook-

lyn Grange rooftop farms in New York, provide multiple co-ben-

efits like habitat and green-space connectivity to support biodi-

versity, as well as opportunities for recreation, education, and

social events. Even if co-benefits are ignored, achieving

maximum cooling by green roofs to reduce surface and ambient

temperatures requires ongoing human intervention and infra-

structure, such as irrigation during hot, dry summer periods. To

reflect the importance of scale, the SETS framework allows for

testing hypotheses, such as the following: local cooling by a

particular green roof is driven largely by ecological functioning

of vegetation and soil ecosystems and the building morphology

(e.g., height and organization of nearby buildings), whereas city-

wide cooling benefits by green roofs will rely not only on ecolog-

ical functioning but also on citywide incentives and regulations to

ensure broad adoption of this cooling strategy (hypothesis visu-

alized in Figure 2). The need to focus attention and energy

on social, ecological, and/or technological dimensions will also
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change over time. Thus, we hypothesize that technical infra-

structure, such as engineering specifications of roofs and instal-

lation of irrigation systems, are important for initial green roof

installation and establishment of cooling benefits, while social

systems, such as stewardship and government incentives,

become more important over time to maintain and maximize

the cooling efficacy and ecological functioning of green roofs.

The SETS framework can help ensure multiple dimensions are

taken into account, for example, acknowledging that strong gov-

ernment incentives and thus the role of governance can be crit-

ical to using green infrastructure as a nature-based solution for

urban cooling and related urban climate change adaptation

(Figure 3). Green roofs and other urban vegetation for cooling

are not a silver-bullet solution to reducing heat risk for the whole

city nor are they one-size-fits-all-cities solutions, but they can be

important tools for addressing urban heat together with air con-

ditioning, cooling centers, painting roofs white to improve reflec-

tivity, and alternative shade structures.128

ADDRESSING INEQUITY AND INJUSTICE

Historical legacies of past planning and policies have created in-

tersecting inequities and injustices131,132 that create further bar-

riers for equitable investment in nature-based solutions and the

ecosystem services they provide. We suggest that the SETS

framework can be a conceptual foundation to explicitly acknowl-

edge and address existing structural barriers to fairer nature-

based-solutions investments. The SETS framework can help to

investigate questions and understand how investments in UEI

and nature-based solutions contribute to gentrification, along

with rezoning, new development, lack of affordable housing,

and other challenges that marginalized communities face. It

can also be an approach for investigating procedural justice is-

sues and articulating more inclusive approaches that integrate

diverse values, norms, knowledge systems, and traditions into

planning and decision-making. For example, city residents do

not value ecosystem services uniformly.133,134 Tree-planting

campaigns in New York City (NY, USA) revealed that some res-

idents pursue and request trees, while others cut them down

or otherwise block city tree-planting efforts.38 With a SETS

perspective, transdisciplinary scholars and practitioners can

consider how human values, perceptions, and actions are as

important as, or in some cases even more important than,

ecological functioning to realizing ecosystem service benefits.

Further research is still needed to explore the way technology

and social norms interact to mediate the production of and ac-

cess to ecosystem service benefits. Additionally, more research

is needed to appreciate the role that human labor and steward-

ship play in the co-production of ecosystem services.135,136 For

example, understanding what actors, institutions, and actions

are best relied on to improve a just and fair provision of

ecosystem services is important and can provide a process for

the inclusion of diverse voices in decision-making.

Recreation—a mixture of many cultural ecosystem services—

relies on ecological structure but is significantly enhanced by the

addition of social and technological dimensions to ensure equi-

table access (Figure 3).55 For example, green roofs are often on

private properties, limiting wider public and equitable access for

recreation, or lack of building elevators for rooftop access for
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thosewith physical disabilities. UEI, including a broad array of ur-

ban parks, vegetated rooftops, canopy cover by trees, wetlands,

natural areas, and a diversity of vegetation and wildlife, is key to

creating a vibrant space for recreation, yet we suggest that this

ecosystem service provisioning is driven by a comprehensive

suite of social, ecological, and technological dimensions

(Figure 2). Thus, we hypothesize that the social, infrastructural,

and technological amenities together are primary determinants

of physical activity and frequency of use of urban ecosystems

for recreation.137,138 In particular, public access designed for

those with disabilities, park maintenance, free Wi-Fi, activity

and event programming, and awareness campaigns improve

the frequency of use and physical activities in outdoor urban

green spaces.139,140 Likewise, physical activity is improved

with access to physical infrastructure within the green space,

such as walking paths, recreation facilities, well-maintained

fitness equipment, bike racks, barbeque areas, water amenities,

and public art.141–143 Improving equitable and fair access to rec-

reation, like other ecosystem services, depends on planning,

managing, and designing for the inclusion and interaction of so-

cial, ecological, and technological dimensions.

IMPROVING URBAN RESILIENCE WITH SETS

The SETS framework brings forward a systems perspective that

considers the reality of cities as complex systems. Here, we pro-

vide a SETS framework for ecosystem services that highlights

the diversity of innovative ecosystem- and technological-based

infrastructure strategies to produce multiple urban services for

incorporation into urban planning, management, and design.

This framework moves beyond the traditional definition of

ecosystem services production as a product of ecological phe-

nomena, or even social-ecological system dynamics. The frame-

work acknowledges that for ecosystem services to provide ben-

efits to human well-being, they need technological and

infrastructure support, as well as social institutions and gover-

nance systems, to ensure that benefits accrue to people and

accrue equitably. Taking this approach will require future

research to examine how individual ecosystem services vary in

the individual contribution and interactions of SETS dimensions

across contexts within and among cities. Though we emphasize

the SETS conceptual framework applied to urban systems, we

hypothesize that ecosystem services are produced and supplied

by SETS in all landscapes. The primary differences may be how

much social-, ecological-, and technological-system dimensions

contribute proportionally to the supply of a given service or

bundle of services.

Inmoving from concept to practice, a systems approach to the

management and planning of ecosystem services in urban areas

is critical to meet the multiple goals of achieving urban livability,

justice, and resilience to stresses and shocks. Nature-based

solutions and ecosystem services in cities, such as access

to reliable clean water and local strategies to reduce flooding,

are receiving increasing attention and investment as essential

ecological infrastructure to build resilience in the face of

increasingly intense extreme events and non-climatic chronic

hazards.37,116,144–146 Resilience of urban SETSmay be improved

by providing multiple ecosystem services, offering redundancy

in multiple functions, and incorporating flexibility to address un-
certain future conditions that solely gray (hard) infrastructure so-

lutions do not allow.60,147 To achieve these normative goals, the

SETS approach can be a boundary object in a transdisciplinary

engagement that will be critical to allow for the exchange of

diverse knowledge perspectives among researchers, practi-

tioners, and community members and to promote the develop-

ment of new and shared solutions.96,109,148 We argue that the

SETS framework for understanding and managing ecosystem

services will create opportunities for new innovations to improve

urban resilience.

Still, active efforts to further develop the SETS application to

ecosystem services are needed. For example, there is a wide

range of disciplines and perspectives that can be included (or

not) within each S, E, and T dimension, and they may not all be

well represented within any given SETS analysis. We encourage

developing opportunities to explore ecosystem services from

multiple disciplinary perspectives such as within and across ur-

ban planning, urban ecology, urban design, landscape architec-

ture, arts and humanities, climate adaptation, and more. The

complexity of urban systems may make it difficult to isolate

distinct drivers and impacts on ecosystem service provisioning.

The SETS framework can help to ensure that multiple dimen-

sions—and even multiple disciplines—are included in SETS

research and practice, regardless of the disciplinary starting

point. Although SETS literature is expanding,149,150 more work

is needed to integrate SETS with other integrative approaches,

such as in sustainability science to explore synergies and

trade-offs of maximizing benefits for people, the environment,

and financial budgets. It will also be helpful to develop compar-

ative research to examine the reliability and resilience

of the social, ecological, and technological dimensions of

ecosystem service provisioning to advance research on the resil-

ience of ecosystem services. For example, while the reliability of

engineered gray infrastructure is strictly quantified using trans-

parent protocols, the reliability of ecological dimensions of green

stormwater infrastructure and green roofs for producing services

is not clearly defined, complicating analysis of substitutability.

Further research is also needed to engage in transdisciplinary

learning processes among practitioners, researchers, and com-

munity members to co-develop new knowledge and manage-

ment strategies for ecosystem services to better address equity

and justice issues. This integration is an important component of

efforts to improve the delivery of ecosystem services in cities

across the world.

Finally, the ability to continue to produce services over time in

complex urban environments depends on answers to diverse

questions. For example, how are ecosystem services co-pro-

duced by the combination of social, ecological, and technolog-

ical processes? How are the benefits of ecosystem services

distributed across neighborhood, city, and regional scales?

Are ecosystem services produced and supplied at the location

and scale at which they are needed? Who benefits from urban

ecosystem services? What key drivers in cities maintain, or

hinder, our ability to benefit from ecosystem services in the

long run? How important are management and stewardship for

ecosystem services production? Are ecosystem services resil-

ient over time to multiple types of disturbances and extreme

events? These and other questions may determine the ability

to manage SETS in ways that can continue to produce services
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over time and underline the need to better understand how mul-

tiple interacting social, ecological, and technological dimensions

shape the production, distribution, and consumption of urban

ecosystem services. Given the inherent complexity of these in-

teracting dimensions in urban systems, an interdisciplinary,

and even transdisciplinary, systems approach, in which re-

searchers work closely with urban planners and diverse commu-

nity members, is key to understanding what, how, and for whom

ecosystem services are produced. The SETS framing of

ecosystem services is thus argued as necessary to understand

how the interactions of multiple dimensions of urban systems

across spatial and temporal scales can together advance resil-

ience agendas.

Given the urgency of issues we collectively face to address

climate challenges and improve social equity in access to urban

services in ways that improve livability, sustainability, and resil-

ience, taking the SETS nature of ecosystem services into ac-

count must move from concept to practice with explicit engage-

ment of diverse urban stakeholders. The SETS framing can open

up innovative planning, design, and implementation of nature-

based solutions through SETS analysis and management of

UEI to address current and future resilience challenges more

comprehensively.
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