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ABSTRACT

Physics-guided deep learning (PG-DL) reconstruction has
emerged as a powerful strategy for accelerated MRI. How-
ever, adopting PG-DL on 3D non-Cartesian MRI remains a
challenge due to GPU hardware limitations. In this paper,
we utilize multiple memory-efficient techniques to accom-
plish PG-DL on large-scale 3D kooshball coronary MRI. We
first leverage a recently proposed approach to keep only one
unrolled step on GPUs. We then utilize a Toeplitz approach
to represent the multi-coil encoding operator. Subsequently,
we distribute the most memory-consuming data consistency
operations into multiple GPUs, enabling conjugate gradient
iterations without necessitating coil compression. Finally, we
employ mixed-precision training to further reduce memory
consumption.The combination of these methods enable train-
ing of high-quality PG-DL reconstruction for 3D kooshball
trajectories, and our results show reconstruction improvement
compared to existing strategies.

Index Terms— accelerated imaging, non-Cartesian MRI,
deep learning, GPU, implementation

1. INTRODUCTION

Non-Cartesian MRI trajectories offer more efficient coverage
of k-space, higher motion robustness, and less visually appar-
ent aliasing artifacts when compared to Cartesian sampling
[1]. In particular, 3D non-Cartesian trajectories, including
kooshball [2] and 3D cones [3], can be used for efficient volu-
metric coverage, and have found use in multiple applications
[4, 5]. Such acquisitions are conventionally reconstructed us-
ing parallel imaging [6] or compressed sensing [4, 7, 8].

Physics-guided deep learning (PG-DL) reconstruction has
emerged as a powerful alternative for accelerated MRI [9–
12]. In PG-DL, the multi-coil inverse problem is solved by
unrolling a conventional optimization algorithm, alternating
between a regularizer and data consistency (DC) term, for

a fixed number of iterations [13]. PG-DL has been shown
to have excellent performance and improved robustness com-
pared to data-driven DL approaches [9–11]. The performance
of PG-DL depends on several architectural components, in-
cluding the depth of the neural network that implicitly per-
forms the regularization [13], a sufficient number of unrolled
iterations, and the implementation of the linear DC unit, for
instance via unrolling of conjugate gradient (CG) itself [10].
These in turn translate to higher memory requirements, and
insufficient GPU memory ends up being the major limitation
for training of PG-DL methods [14].

This issue becomes even more challenging in the case of
non-Cartesian MRI, since the non-Cartesian encoding oper-
ator require memory-consuming gridding operations on an
over-sampled grid, with a factor up to 2-fold along each di-
mension [15]. This is reflected in the existing DL reconstruc-
tion methods for non-Cartesian MRI, where majority of stud-
ies concentrate on data-driven networks [16, 17], or PG-DL
at low-resolutions [18] or with simulated 2D single coil data
[19]. In particular, PG-DL reconstruction of high-resolution
3D non-Cartesian datasets has remained elusive.

In this study, we build on recent developments to en-
able distributed memory-efficient learning (MEL) for high-
resolution 3D non-Cartesian acquisitions. We combine the
MEL idea proposed in [14] with the Toeplitz method for non-
Cartesian trajectories [20, 21] that allows the solution of the
DC problem without memory-consuming gridding-regridding
operations. This enables us to distribute the learning task over
multiple GPUs to accommodate a DC unit using all coils and
sufficient iterations in CG, as well as a deep CNN regular-
izer. Finally, to further extend the network depth, we employ
mixed-precision training for lowering memory usage without
a substantial loss in accuracy [22]. The proposed method
is trained and tested on 3D kooshball coronary MRI at dif-
ferent undersampling rates, and compared to conventional
reconstructions. Our results suggest PG-DL is a potentially
powerful tool for accelerating 3D non-Cartesian MRI.



Fig. 1: (a) Distributed MEL using 4 GPUs. The data consistency (DC) unit is distributed using 3 GPUs, while the CNN
regularizer is processed with an individual GPU. (b) MEL for PG-DL [14]. A single unrolled step will be allocated on device.
Intermediate data are saved (checkpoingting) on the host memory during forward propagation. Backpropagation gradients are
computed using preserved intermediate data, and accumulated through unrolled steps.

2. METHODS

2.1. 3D Kooshball Coronary MRI Data

Nine 3D non-Cartesian coronary MRI datasets were acquired
on a Siemens Magnetom Aera 1.5T scanner using an ECG
triggered T2-prepared, fatsaturated, navigator-gated proto-
type bSSFP sequence, with relevant parameters: resolution =
1.15×1.15×1.15 mm3, matrix size = 384×384×384, FOV
= 440 × 440 × 440mm3 with 2-fold readout oversampling.
A total of 12320 radial projections (sub-Nyquist rate of 5)
were acquired in 385 heartbeats with the spiral phyllotaxis
pattern [23] with one interleaf of 32 projections per heartbeat.
Number of coils in these datasets were between 20 and 30.

2.2. Physics-Guided Deep-Learning Reconstruction

PG-DL solves the objective function of a regularized multi-
coil reconstruction model

argmin
x
||y −Ex||22 +R(x), (1)

where E is the multi-coil encoding operator, x is the image to
be reconstructed, y is the acquired k-space data, and R(·) is
a regularization term. Optimization techniques such as vari-
able splitting with quadratic penalty [9, 10, 12] can be used to
solve this objective function via

z(i) = argmin
z

µ||x(i−1) − z||
2

2 +R(z) (2)

x(i) = argmin
x
||y −Ex||22 + µ||x− z(i)||

2

2

= (EHE+ µI)−1(EHy + µz(i)) (3)

where µ is a trainable scalar, (2) is implicitly solved with a
neural network, and the DC term in (3) is solved using the
conjugate gradient (CG) method [10].

2.3. Proposed Efficient Learning Strategies for Large-
scale 3D Non-Cartesian MRI

2.3.1. Toeplitz Method for the DC Term

Since the DC term in (3) requires the calculation of EHy
only once, but necessitates repeated application of EHE
throughout iterations, it is desirable to avoid using gridding-
regridding operations to implement the latter. To this end, a
Toeplitz method can be used to efficiently represent EHE as
[20, 21]:

EHE = SHZHFHMFZS (4)

where S denotes the coil sensitivities, Z denotes zero-padding
in image domain into double the matrix size along each di-
mension, ZH is cropping to the original FOV, F is the Carte-
sian FFT over this enlarged FOV. The trajectory-dependent
operator M is obtained by running an impulse through EHE
with or without appropriate density compensation weights for
the given trajectory [21]. Note that this Toeplitz method per-
forms non-Cartesian gridding-regridding operations by point-
wise multiplications and other fast operators instead, which is
extremely beneficial to reduce memory consumption during
backpropagation.



2.3.2. Memory-Efficient Learning

In the MEL scheme for PG-DL [14], intermediate outputs
from each unrolled step are preserved on the host memory
during forward propagation (referred to as checkpointing in
[14]), and backpropagation gradients are computed one-by-
one through all the unrolled steps, using the preserved inter-
mediate data and gradients from the previous unroll (Fig. 1b).
Conceptually, this strategy supports an unlimited amount of
unrolled steps. The only drawback is that it requires addi-
tional data transferring between devices and the host, leading
to trade-offs between GPU memory and processing speed.

2.3.3. Distributed Processing

Note MEL [14] assumes a single unrolled step is able to be fit
into memory. However, this may still be difficult in the case of
multi-coil 3D non-Cartesian MRI, especially for the DC units.
Instead of compromising on data quality or network depth,
we propose to use distributed learning (Fig. 1a). Noting that
(4) is separable across the coil sensitivity profiles S, and that
M depends only on the trajectory, it is feasible to distribute
EHE into different devices, where each device handles part
of EHE corresponding to a subset of S. In this work we
utilize three GPUs for the DC unit. One among the three is
chosen as the base device, which is responsible for the overall
CG steps, as well as part of the EHE operation with≤ 6 coils.
The rest of the coils are evenly distributed on the other two
GPUs, which only handle EHE operation, and transfer the
results to the base device. To maximize the CNN regularizer
depth, an individual GPU is allocated to process this CNN
unit. Both forward and backpropagations are distributed in
the same manner.

2.3.4. Mixed Precision Processing

Although distributed MEL further reduces memory occupa-
tion on a single device, our experiments suggest that these
efforts are still not enough to support a 3D CNN of sufficient
depth. Thus we further exploit mixed-precision processing in
CNN training, where majority of the computations in CNN,
such as convolutions are processed in half-precision (float16
and complex32). This leads to approximately 50% less mem-
ory consumption without a noticeable loss on accuracy [22].

3. EXPERIMENTS AND RESULTS

3.1. Implementation Details

Prior to any processing, 40% of oversampling was removed
to reduce the matrix size to 224 × 224 × 224. The datasets
were retrospectively further undersampled by rates (R) of 4,
5 and 6. For all undersampling patterns, M is obtained by
gridding density compensation weights [24] using Kaiser-
Bessel NUFFT [25] with an oversampling ratio 2. EHE

Fig. 2: Memory consumption of (a) data consistency (DC)
unit handling different number of coils under 5 and 10 CG it-
erations; (b) CNN (ResNet) regularizer, using different num-
ber of residual blocks under single and mixed-precision.

operations are density-compensated for maximum conver-
gence rate in CG [21]. Training labels were generated using
the CG-SENSE reconstruction of the acquired fully-sampled
data. Coil maps were estimated from central 20 × 20 × 20
Nyquist rate-sampled region of k-space. 6 datasets were
used for training and 3 for testing. All implementations used
Pytorch 1.9, with APEX 0.1.0 for mixed-precision process-
ing, on 4 NVIDIA A100 GPUs (40GB memory each). 10
unrolled steps were used in the PG-DL network. Linear data-
consistency was solved using 9 CG iterations. The ResNet in
[12] is employed as the CNN regularizer, but with 3D convo-
lutions accordingly for 3D kooshball data. Adam optimizer
with learning rate of 3 · 10−3 was used for network training.
Training with 100 epochs took around 28 hours.

3.2. Memory Consumption

Fig. 2a depicts the single GPU memory occupation of a data-
consistency unit with different amounts of coils and CG iter-
ations. In PG-DL, the CG iteration is commonly chosen be-
tween 5 to 10. Fig.2b presents the single GPU memory occu-
pation of a CNN (ResNet) regularizer using different number
of residual blocks. Using single-precision, an A100 GPU sup-
ports up to 4 residual blocks in 3D ResNet, which is far from
sufficient depth. By using mixed-precision, this limit has been
pushed to up to 14 residual blocks. These results suggest that
even using highly compressed coils, MEL alone still cannot
support a reasonable PG-DL for such large-scaled kooshball
data. Using distributed learning and mixed-precision tech-
niques enable PG-DL to have sufficient number of CG itera-
tions and CNN depth.

3.3. PG-DL Reconstruction Results

Fig. 3 and 4 show reconstruction results for retrospec-
tive undersampling rate of 6 (30-fold sub-Nyquist acceler-
ation), using CG-SENSE, Tikhonov-regularized CG-SENSE,
compressed sensing using `1 regularization of Daubechies4
wavelets, and PG-DL, along with the fully sampled refer-
ence images. For all rates, CG-SENSE suffers from noise
amplification and artifacts, which are reduced with Tikhonov



Fig. 3: Representative coronal slices of 3D kooshball coro-
nary MRI at a retrospective acceleration rate of 6 (sub-
Nyquist rate of 30). CG-SENSE suffers from noise ampli-
fication, which is reduced by Tikhonov regularization. Com-
pressed sensing further improves image quality. PG-DL vis-
ibly outperforms other approaches in terms of noise and arti-
facts removal.

regularization. Compressed sensing further improves image
quality, but still shows residual streaking artifacts. PG-DL
outperforms other approaches in terms of noise reduction and
artifact removal, with recovery of fine structures, such as the
coronary arteries.

4. CONCLUSIONS

In this work, we enabled PG-DL reconstruction for high-
resolution 3D large-scale non-Cartesian coronary MRI. This
is achieved by utilizing multiple memory-efficient techniques.
Our results suggest PG-DL can offer promising image quality
in 3D coronary MRI, compared to conventional reconstruc-
tion approaches, which are susceptible to noise and resid-
ual artifacts. In turn, this may facilitate the use of highly-
undersampled 3D non-Cartesian acquisitions in different
applications.
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Fig. 4: Representative axial slices of 3D kooshball coronary
MRI at R = 6. PG-DL visibly outperforms alternative meth-
ods, providing a clear delineation of the left coronary arteries.

References

[1] K. L. Wright, J. I. Hamilton, et al., “Non-Cartesian par-
allel imaging reconstruction,” J Magn Reson Imaging,
vol. 40, no. 5, pp. 1022–1040, Nov 2014.

[2] C. Stehning, P. Börnert, et al., “Fast isotropic volumetric
coronary MR angiography using free-breathing 3D ra-
dial balanced FFE acquisition,” Magn Reson Med, vol.
52, no. 1, pp. 197–203, Jul 2004.

[3] P. T. Gurney, B. A. Hargreaves, and D. G. Nishimura,
“Design and analysis of a practical 3D cones trajectory,”
Magn Reson Med, vol. 55, pp. 575–582, Mar 2006.

[4] L. Feng, R. Grimm, et al., “Golden-angle radial sparse
parallel MRI: combination of compressed sensing, par-
allel imaging, and golden-angle radial sampling for fast
and flexible dynamic volumetric MRI,” Magn Reson
Med, vol. 72, no. 3, pp. 707–717, Sep 2014.

[5] A. V. Barger, W. F. Block, et al., “Time-resolved
contrast-enhanced imaging with isotropic resolution and
broad coverage using an undersampled 3D projection
trajectory,” Magn Reson Med, vol. 48, no. 2, pp. 297–
305, Aug 2002.

[6] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boe-
siger, “Advances in sensitivity encoding with arbitrary
k-space trajectories,” Magn Reson Med, vol. 46, no. 4,
pp. 638–651, Oct 2001.
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