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Abstract—Although deep learning (DL) has recently received
significant attention in accelerated MRI, recent studies suggest
that small perturbations may lead to large instabilities in DL-
based reconstructions. This has also highlighted concerns for
their utility in clinical settings. However, these works focus
on single-coil acquisitions, which are not practically relevant.
In this work, we investigate how small adversarial perturba-
tions affect multi-coil MRI reconstruction, particularly using
conventional non-DL methods. Our results indicate that for
multi-coil MRI reconstruction, conventional parallel imaging
and multi-coil compressed sensing (CS) methods also exhibit
considerable instabilities against small adversarial perturbations.
Moreover, for physics-guided DL reconstructions that utilize the
forward encoding operator explicitly, such small perturbations
predominantly target the linear data-consistency units. These
results suggest that at high acceleration rates, adversarial attacks
exploit the ill-conditioning of the forward encoding operator.

I. INTRODUCTION

Deep learning (DL) has recently emerged as a powerful
means for accelerated MRI reconstruction with improved
image quality especially at higher acceleration rates [1-6].
While DL methods have been similarly transformative in
multiple image processing and computer vision tasks, it is
well-understood that they may be susceptible to instabilities
arising from small adversarial perturbations, which lead to
no noticeable differences in input but significantly impact the
output, due to their non-linear nature [7-10]. These adversarial
perturbations were also recently shown [11] to affect several
DL methods for MRI reconstruction [1, 12-14]. Furthermore,
it was suggested that both researchers and FDA should be
cognizant of such issues for DL reconstructions used in MRI
[11]. Following this work, several studies explored adversarial
training strategies to improve the robustness of DL methods
for MRI reconstruction [15, 16].

However, all of these aforementioned works regarding
stability of DL reconstruction for MRI focused on single-
coil datasets, while in practice, almost exclusively multi-coil
MRI is used for acquisitions. Clinically, such datasets are
reconstructed using linear parallel imaging techniques [17—
19], and more recently using regularized methods, such as
compressed sensing [20]. However, the impact of adversarial
attacks on conventional multi-coil MRI reconstruction meth-
ods, especially the clinically used ones, remains not investi-

gated. Furthermore, most regularized reconstruction strategies,
including compressed sensing, as well as physics-guided DL
reconstruction, involve a linear data consistency operation,
which in itself may be susceptible to instabilities at high
acceleration rates in the multi-coil setting.

In this work, we investigated the effect of small adver-
sarial attacks on conventional multi-coil MRI reconstruction
strategies, focusing on linear parallel imaging, and compressed
sensing. Additionally, we also explored the behavior of such
attacks on physics-guided DL reconstructions based on al-
gorithm unrolling [21] to determine whether the non-linear
neural network or the linear data consistency operation was
more susceptible to perturbations. Our results indicate that
for highly-accelerated multi-coil MRI reconstruction, parallel
imaging and multi-coil compressed sensing are also suscepti-
ble to large instabilities from small adversarial perturbations.

II. METHODS
A. Background on Multi-Coil MRI Reconstruction

In most clinical MRI systems, multiple receiver coils are
used for data acquisition. Let Eg be the multi-coil encoding
operator that includes the coil sensitivity information as well
as the partial Fourier transform with sub-sampling pattern 2.
The multi-coil acquisition model is given as:

yo=Eqox+n 1)

where yq denotes the acquired multi-coil data, x denotes
the image of interest, and n is measurement noise. For i.i.d.
Gaussian noise, the maximum likelihood estimation leads to:

arg m)in||yg — Eox||2 = (E§Eq) 'Ef yq, (2

which forms the basis of the CG-SENSE formulation for
parallel imaging [18]. Alternatively, one can perform linear in-
terpolation in k-space using linear shift-invariant convolutional
kernels, which forms the basis of the GRAPPA formulation
[19].

Another line of work considers the regularized version of
(2), given via

arg mxin llya — Eox||3 + R(x), 3)



where the first quadratic term enforces data consistency with
acquired measurements, while R(-) is a regularizer. In con-
ventional strategies, R(-) is chosen as a Tikhonov-type term
[18] or the I; norm of transform domain coefficients [20]. In
physics-guided DL methods relying on algorithm unrolling,
the non-linear representation associated with such a regularizer
is learned implicitly through neural networks.

B. Adversarial Attacks on Multi-Coil Reconstruction

As described previously, most multi-coil reconstruction al-
gorithms utilize a form of data consistency with the acquired
data yq. For the aforementioned methods, including CG-
SENSE, compressed sensing and physics-guided DL recon-
struction, the consistency is enforced through Eg yq. This is
referred to as the zero-filled image, which will be denoted as

zo = Efya. 4)

Therefore, we will consider multi-coil reconstruction algo-
rithms f(-) as taking zq as input. We will utilize an [, attack
on the zero-filled image. The adversarial attack is performed
on the zero-filled image instead of the fully-sampled image as
done in [11], because the latter is not practical. First, one does
not have access to fully-sampled images to generate a practical
attack. Furthermore, in multi-coil MRI, the encoding operator
is not known exactly, but estimated via the estimation of coil
sensitivities [18]. Finally, the attack is performed in image
space instead of the acquisition k-space, since it is difficult to
define an [ -perturbation in k-space due to the varying signal
magnitudes between central and outer k-space.

The [, attack is a small additive perturbation r that satisfies
[|lr]loc < €, where € is a small scalar. The impact of this an
attack is evaluated by how much f(zq + r) deviates from
f(zq). In our study, the fast gradient sign method (FGSM)
was used to generate the perturbation via [7] :

r=e¢- Sign(VZQl(f(ZQ)7 X)) 4)

where sign(-) takes sign of inputs, V,,, denotes the gradient
respect to zq. I(-) denotes the loss function. For the multi-
coil reconstructions discussed in this study, [(-) was chosen as
the MSE loss. The scalar € is set to ||zq||e/255 to ensure a
sufficiently small perturbation level that causes no noticeable
visual differences between zq and zq + r.

C. Experimental Setup

Several experiments were performed to assess the stability
of multi-coil MRI reconstruction methods to small adversarial
perturbations, using both uniform and random undersampling:

Image-domain based linear parallel imaging. CG-SENSE
was used as the clinically relevant image-domain linear paral-
lel imaging approach [18]. In order to implement CG-SENSE
for f(-), the CG algorithm was unrolled for 10 conjugate
gradient steps, in order to obtain V,,/(f(zq),x) via backprop-
agation (Fig.1). Separate adversarial attacks were generated
for uniform and random undersampling patterns. Additionally,
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Fig. 1. Generation of FGSM perturbations for multi-coil MRI data using
CG-SENSE reconstruction. CG-SENSE is unrolled for 10 steps. The gradient
with respect to the input for FGSM is calculated using backpropagation
and the multi-coil encoding operator, which includes coil sensitivity and
undersampling pattern information.

CG-SENSE reconstructions were performed with different lev-
els of Tikhonov regularization to study the effect of changing
the condition number of the inverted linear system.

k-space based linear parallel imaging. For uniform under-
sampling, the performance of GRAPPA against adversarial
attacks was also investigated. In order to do so, the I
attack generated for CG-SENSE in the image domain was
transformed into multi-coil k-space. As there are infinitely
many k-space perturbations on €2 that lead to the same r, the
minimum ¢ solution was picked:

v = (EqEd ) 'Eqr. (6)

5 x 4 linear convolutional Kkernels, calibrated on auto-
calibration signal (ACS) without perturbation, were used for
GRAPPA reconstruction [19].

Multi-coil compressed sensing. The stability of multi-coil
compressed sensing reconstruction was investigated using the
adversarial attack generated on the CG-SENSE algorithm for
random undersampling patterns. Weighted ¢; norm of the
Daubechies-4 wavelet transform was used as the regularizer
[20]. The objective function in (3) was solved using variable
splitting with quadratic penalty. The quadratic penalty and
soft-thresholding parameters were optimized heuristically for
optimal visible performance in the unperturbed setting.

Physics-guided DL reconstruction. Algorithm unrolling for
variable splitting with quadratic penalty algorithm was used for
physics-guided DL reconstruction [1-3] leading to two sub-
problems

u = argmin u/|xY — u||2 + R(u) 7
x() = (EJEq + uI) (20 + pu'?), ®)

where u(® and x(?) are an auxiliary variable and an image
estimate at the i iteration respectively, and p is a learnable
quadratic relaxation parameter. In this setup, the proximal
operation for the regularizer in (7) was implicitly implemented
using a convolutional neural network, which was based on a
ResNet [3]. The data consistency step in (8) was implemented



using the CG algorithm [2]. This unrolled network was trained
in a supervised manner using a normalized ¢;-{5 loss in k-
space [3] over 300 imaging slices, using Adam optimizer,
learning rate = 0.001, 100 epochs. FGSM perturbation was
generated accordingly with the same normalized ¢;-¢5 using
the full unrolled network.

D. Imaging Data

Multi-coil raw k-space data of knee and brain MRI scans
from the fastMRI database [22] were employed in this study.
Coronal-PD knee and FLAIR brain imaging were performed
on 3T systems (Magnetom Skyra; Siemens, Erlangen, Ger-
many) with a 15-channel knee coil and a 16-channel head
coil respectively. Our primary investigations for uniform and
random undersampling patterns used an acceleration rate (R)
of 4 with 24 lines of ACS data in the center of k-space.
Additionally, to test the effect of instabilities at more clini-
cally relevant acceleration rates, adversarial perturbations were
studied for uniform undersampling at R = 2 with 24 ACS
lines. For uniform undersampling, CG-SENSE, GRAPPA and
physics-guided DL were investigated, while for random un-
dersampling, CG-SENSE and multi-coil compressed sensing
were studied.

III. RESULTS

Figure 2 depicts the results of uniform undersampling
reconstructions at R = 4 using CG-SENSE and GRAPPA.
Without adversarial perturbations, both methods provided
stable reconstructions albeit with residual aliasing artifacts
due to the higher acceleration rate, with GRAPPA visibly
outperforming CG-SENSE. As expected, the additive small
adversarial perturbation led no visually noticeable differences
compared to the original fully-sampled or zero-filled images.
However, both CG-SENSE and GRAPPA failed under the
attack, with visible artifacts in both reconstruction results.

Figure 3 shows the reconstruction results of R = 4 random
undersampling using CG-SENSE and multi-coil compressed
sensing with similar observations. Without perturbation, both
methods successfully reconstruct the image, with compressed
sensing displaying lower reconstruction noise as expected.
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Fig. 2. Reconstruction results for R = 4 uniform undersampling with CG-
SENSE and GRAPPA. Without perturbation, both methods work as expected,
albeit with some artifacts due to the higher acceleration rate. The adversarial
perturbation leads to no visual differences compared at the input, while
causing both methods to fail at the output.
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Fig. 3. CG-SENSE and compressed sensing (CS) results for R = 4 random
undersampling. Without perturbations, both methods lead to good quality
reconstructions. With the small adversarial perturbation, both CG-SENSE and
CS fail with visible artifacts.

Adversarial perturbations caused no visual differences com-
pared to the fully-sampled reference and zero-filled images.
However, following this small adversarial perturbation, both
method failed with visible artifacts.

Figure 4 depicts the Tikhonov-regularized CG-SENSE re-
sults for R = 4 uniform undersampling with and without
the adversarial attack. With increasing regularization factor,
the Tikhonov-regularized CG-SENSE demonstrated improved
robustness against the attack. However, as expected, this led to
a failure to unalias the image with increasing regularization,
resulting in blurrier images.

Figure 5 shows reconstructions using physics-guided DL
reconstruction with R = 4 uniform undersampling. Physics-
guided DL successfully reconstructed the unperturbed image,
offering higher quality than the linear methods in Figure 2.
With the adversarial attacks, the DL reconstruction failed,
similar to the reports in [11] for single-coil data. To further
probe which part of the unrolled network is targeted by the
adversarial perturbation, its effect was explored using a single-
pass through the CNN regularizer and the data consistency
units. There is no major change when the attack is run through
the CNN regularizer, but the output shows major artifacts
when the attack is passed through the data-consistency units,
suggesting the end-to-end attack may target the linear data
consistency unit even if generated end-to-end.

Finally, Figure 6 depicts the reconstruction results of the
more clinically relevant acceleration of R = 2 uniform
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Fig. 4. Tikhonov-regularized CG-SENSE results for R = 4 uniform under-
sampling. Tikhonov-regularized CG-SENSE demonstrate improved robustness
against the attack with increasing regularization strength, albeit at the cost of
failing to dealias the image for higher p even without perturbations.
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Fig. 5. Reconstruction results for R = 4 uniform undersampling with physics-
guided DL reconstruction. The DL method successfully reconstructs the multi-
coil MRI data without perturbation, but fails under the attack. The single-pass
results show that the CNN regularizer has minor changes under the attach,
while the linear data consistency unit has been more substantially impacted
by the attack.

undersampling, using CG-SENSE and GRAPPA. Unlike the
results at R = 4, both CG-SENSE and GRAPPA are robust to
adversarial attacks at this rate, with only minor differences in
the results with and without perturbation. This suggests that
the adversarial attacks for conventional algorithms primarily
affect the reconstruction when the forward encoding operator
is highly ill-conditioned, which depends both on the acceler-
ation rate and coil configuratoin.

IV. DISCUSSION AND CONCLUSIONS

In this work, we investigated the effect of small adversarial
perturbation on multi-coil MRI reconstruction strategies, in-
cluding clinically used parallel imaging methods. Uniform and
random undersampling patterns were investigated on multi-
coil knee and brain MRI data. The generated additive pertur-
bations lead no visual differences compared to the original
image, while causing significant reconstruction failures for
all tested methods at high acceleration rates. Our results
demonstrate that for multi-coil MRI datasets, conventional re-
construction strategies, such as parallel imaging and multi-coil
compressed sensing are also susceptible to large instabilities
from small additive adversarial perturbations. For physics-
guided DL reconstruction that utilize the forward encoding
operator explicitly, our results suggest that adversarial attacks
predominantly affect the linear data consistency units.

Ill-conditioning of the multi-coil encoding operator is a
well-discussed topic for CG-SENSE in non-Cartesian acquisi-
tions, often leading to an early stopping criterion in practice
[23]. For multi-coil MRI encoding operators, the condition
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Fig. 6. CG-SENSE and GRAPPA reconstructions for the more clinically
relevant R = 2 uniform undersampling. Both methods provide high-quality
reconstruction with or without perturbations, with the adversarial perturbations
causing only minor differences, due to the improved conditioning of the multi-
coil encoding operator at this lower acceleration rate.

number depends on coil configuration and R, and is hard to
compute in general. However, our results suggest that adver-
sarial attacks enable a method to exploit this ill-conditioning.
These observations are further supported by the results at
R = 2 for parallel imaging compared to R = 4. At the more
clinically used rate of 2, both CG-SENSE and GRAPPA are
robust to the small adversarial perturbations, suggesting Eg, is
well-conditioned at this rate. At the higher rate of 4, the multi-
coil encoding operator is more ill-conditioned as expected,
which is exploited by the adversarial attack.

In a similar manner, higher degree of Tikhonov regulariza-
tion, which helps control the ill-conditioning of the inverted
linear system, reduces the effect of the adversarial attacks,
albeit at the cost of worse reconstruction performance. How-
ever, for regularized reconstructions that also invert a penalized
linear system as in (8), this suggests a higher p value is
desirable. Especially given that several local minima exist for
a typical DL training optimization landscape [24, 25], it may
be desirable to pick a solution with higher ;1 value to help
stabilize the reconstruction further. Further work is warranted
to test the feasibility of this approach in practice.

Finally, while the instability of DL reconstruction methods
for MRI has generated significant interest, it is worthwhile to
interpret these in the broader context, especially for multi-coil
MRI datasets, where even conventional linear strategies exhibit
instabilities at higher acceleration rates.
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