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ABSTRACT

3D MRI encodes volumetric information, typically offering
improved contiguous coverage and resolution than 2D MRI.
However, 3D MRI data acquisition is lengthy, and requires
accelerated imaging techniques. Deep learning methods have
recently emerged as a powerful strategy for MRI reconstruc-
tion. Among such methods, unrolled networks have proven
powerful with their ability to incorporate the forward encod-
ing operator directly. These methods are largely applied in
a 2D setting, but 3D processing has the potential to further
improve reconstruction quality for volumetric imaging by
capturing multi-dimensional interactions. Nevertheless, im-
plementing 3D unrolled networks is challenging because of
memory limitations on GPUs, as well as the lack of large
databases of 3D k-space data. To tackle both of these is-
sues, we propose a data augmentation strategy that generates
smaller sub-volumes from large volumetric datasets. Sub-
sequently, these augmented datasets are used to train a 3D
unrolled network, and compared to their 2D counterpart.
The results show that our 3D processing provides improved
reconstruction results on volumetric data than 2D processing.

Index Terms— 3D processing, deep learning, network
training, algorithm unrolling, MRI

1. INTRODUCTION

In several clinical applications, 3D magnetic resonance imag-
ing (MRI) provides extensive contiguous coverage, higher
signal-to-noise ratio (SNR) and improved spatial resolution
to generate improved depiction of small structures by mul-
tiplanar reformatting [1, 2]. Nevertheless, long acquisition
times hinder the utility of 3D MRI in clinical workflows [3].
One solution is to reduce the scan time of such acquisitions by
applying accelerated imaging techniques, where sub-sampled
data are reconstructed with additional information. Numer-
ous accelerated MRI methods have been proposed, including
parallel imaging [4, 5] that utilizes redundant information
from receiver coils, and compressed sensing that uses the
compressibility of MR images.

Deep learning (DL) methods have recently emerged as
an efficient strategy for accelerated MRI reconstruction [6—

14]. Among the proposed DL methods, physics-guided (PG)
approaches are a category that successfully produce high-
quality reconstructions of undersampled MRI data, while
incorporating the physics of the MRI acquisition via the
explicit use of the forward encoding operator. In unrolled
networks [12], conventional iterative algorithms for solving a
regularized least squares objective function, which alternate
between enforcing data consistency (DC) and performing a
proximal operation based on the regularizer, are unrolled for
a fixed number of iterations. The DC unit is solved using
standard linear methods, while the regularization units are
implemented via neural networks most of which are based on
2D convolutions [6, 7, 10-12].

When applying unrolled networks to 3D MRI reconstruc-
tion, a common strategy is to divide the volumetric MRI data
to 2D slices, which are then processed by unrolled networks
with 2D convolutions. Nevertheless, for volumetric 3D imag-
ing, 3D processing may further improve reconstruction re-
sults compared to 2D processing due to its ability to capture
multi-dimensional interactions [15]. Some approaches using
3D convolutional kernels have been proposed, which either
apply specialized training tools [9] or simplify the data con-
sistency approach [13]. However, it remains challenging to
train unrolled networks with 3D processing. Large volumet-
ric MRI data is hard to handle in GPUs due to the memory
limitations. On the other hand, the scarcity of 3D raw k-space
datasets may cause overfitting problem during the training of
the network.

In this study, we tackle these two issues by generating
multiple 3D slabs of smaller size from the full 3D Cartesian
MRI volume as a means of data augmentation. Results on
3D knee MRI data [16] show that our 3D processing provides
improved performance compared to 2D processing on data
with high acceleration rates, due to its ability to capture multi-
dimensional information.

2. MATERIALS AND METHODS

2.1. Unrolled Networks for MRI reconstruction

The inverse problem for accelerated MRI reconstruction can
be formulated as a regularized least-squares problem:
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Fig. 1: Schematic of the supervised training paradigm for an un-
rolled MRI reconstruction network. In the unrolled network, each
unrolled unit contains a regularizer (R), which is implicitly solved
via a neural network, and a data consistency (DC) component solved
by linear methods.

argm}inHyQ — Eox||3 + R(x), (1)

where x is the image of interest, yq is the acquired mea-
surements with sub-sampling pattern 2, Eq : CM — CF
is the multi-coil encoding operator containing coil sensitivi-
ties and partial Fourier matrix sampling, and R(+) is a regu-
larizer. Thus, the first quadratic term in the objective func-
tion enforces DC, while the second term is for regularization.
Conventionally, when using an explicit regularizer, this is typ-
ically solved via an iterative algorithm [17].

Variable splitting with quadratic penalty (VSQP) [17] is
an iterative algorithm commonly used to solve such inverse
problem. In VSQP, an auxiliary variable z is introduced to
decouple the DC and the regularizer. The inverse problem in
(1) is then transformed to

argmin [yo — Eox[3 + plx — 2l + R(x). @)

where i is the penalty parameter. This is solved by alternating
minimization over z and x as

z() = arg mzin | xCY — 2|2 + R(z) (3a)

x) = argmin|lyo — Box|3 + ulx—z0[3  (3b)

where z() is an intermediate output and x(¥) is the desired
image at iteration i.

In algorithm unrolling [12], such conventional iterative al-
gorithms are unrolled for a fixed number of iterations. Each
iteration contains a regularizer unit, which is solved with neu-
ral networks, and a DC which can be solved with standard
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Fig. 2: The proposed data augmentation strategy for generating
small sub-volumes from volumetric datasets. IFFT is applied in
the fully sampled (k) direction, and the resulting hybrid image-
frequency volume is divided into multiple sub-volumes.

techniques such as the conjugate gradient (CG) method [7].
Figure 1 shows the training process, where the unrolled net-
work is trained end-to-end in a supervised manner by mini-
mizing the loss defined as
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where N is the number of samples in the training database,
L(-,) is a loss function, y’. is the fully-sampled k-space for
subject i, f(yh, EY; 0) is the output of the unrolled network
for sub-sampled k-space data y{, with the network being pa-
rameterized by 6, and E{ ,, is the fully-sampled encoding op-
erator that transforms network output to k-space.

2.2. 3D MRI Data and Database Augmentation

Unrolled networks are mostly implemented with 2D convo-
lutions [6, 7, 10-12]. A common strategy to apply unrolled
networks in 3D Cartesian MRI reconstruction is to divide the
volumetric data into 2D slices by taking the inverse Fourier
transform along the fully-sampled readout direction, which
are then reconstructed with 2D processing. Recently, 3D ker-
nels have also been used in some studies, either through spe-
cialized training tools [9] or simplified DC approaches [13].
However, it remains challenging to train unrolled networks
with 3D processing due to both memory constraints of GPUs
and the lack of availability of large databases of 3D data, even
though 3D processing has the potential to offer improved re-
construction quality compared to its 2D counterpart.

We tackle these two issues by applying a data augmen-
tation strategy to generate multiple 3D slabs of smaller size
from the full 3D volume. An overview of this data augmenta-
tion strategy for the generation of the sub-volumes is summa-
rized in Figure 2. First, the inverse Fourier transform of the
acquired undersampled k-space data is taken along the fully-
sampled frequency encoding (k,) direction. Then, the hybrid
image-frequency volume is divided into smaller, potentially
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Fig. 3: A representative test slice from reconstructions using 2D
and 3D unrolled networks for an acceleration rate of 8. The red
arrow shows a residual aliasing artifact present in the 2D processed
reconstruction, which is removed with 3D processing.

overlapping, 3D slabs in this direction, which are then trans-
formed back to k-space. This approach enables the genera-
tion of 310 smaller 3D slabs from as few as 10 subjects out
of a database of 20 fully-sampled 3D knee MRI datasets [16].
In addition to augmenting the training database to have more
training samples, the use of the smaller slabs also leads to a
lower GPU memory footprint, which facilitates the training
of unrolled networks with standard methods.

2.3. Experiments and Evaluation

Our proposed data augmentation and training strategy was
tested by retrospectively undersampling the fully-sampled k-
space in the ky-k. plane for 3D knee MRI data from the
database in [16]. The database consisted of 20 subjects, who
were scanned at 3T (8-channel coil array) with FOV = 160 x
160 x 154 mm?3, resolution = 0.5 x 0.5 x 0.6 mm?, matrix
size = 320 x 320 x 256. The undersampling was performed
at acceleration rates 8 and 12 with ACS = 32 x 32 using a
sheared uniform undersampling pattern in k, -k [18].

The 3D unrolled network consisted of 5 unrolled blocks,
each including a 3D ResNet [14] architecture comprising 5
residual blocks with 3 x 3 x 3 convolutional kernels for the
regularizer unit. The data consistency problem was solved
using a conjugate gradient approach that was unrolled for 5
iterations [7]. The 3D approach was compared to a 2D un-
rolled network, which was designed in the same way, except
for using 2D convolutions with 3 x 3 kernels and 15 residual
blocks in the ResNet instead of 3D convolutions, which led
to the same number of trainable parameters. The 3D network
was trained using 310 small slabs while the 2D network was
trained using 310 slices generated from the volumetric data.
Both networks are trained end-to-end minimizing the normal-
ized ¢1-f5 loss [11, 19] defined as
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Both the 3D and 2D unrolled networks were trained for
100 epochs with a learning rate of 5 x 10~*. Testing for 3D
processing was performed on 10 different subjects from [16].
The reconstructions were quantitatively evaluated using nor-
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Fig. 4: Two representative test slices from reconstructions using 2D
and 3D unrolled networks for an acceleration rate of 12. Red arrows
indicate cases where 3D processing reduces residual artifacts (top
row) and preserves fine details (bottom row).

malized mean square error (NMSE) and structural similarity
index (SSIM).

3. RESULTS

Figure 3 shows reconstruction results on a representative test
slice with acceleration rate 8. 2D processing suffers from
residual artifacts caused by undersampling (red arrow), while
3D processing removes such artifacts. Same observations ap-
ply to Figure 4, which shows testing results for acceleration
rate 12. Artifacts shown by the red arrows in 2D processing
are successfully removed in 3D processing. Furthermore, 3D
processing provides improved details compared to 2D pro-
cessing.

Table 1 displays the quantitative evaluation of the recon-
struction methods, where the proposed 3D processing leads
to higher SSIM and lower NMSE, indicating that the way 3D
processing captures multi-dimensional interactions compared

Table 1: Median and interquartile ranges [25%-75" percentile] of
SSIM and NMSE metrics on the 3D knee MRI test dataset at accel-
eration rates (R) of 8 and 12.

Quantitative Metric

2D Unrolled

3D Unrolled

Network Network

SSIM (R=8) 0.8280 0.8381
[0.7656, 0.8690] [0.7782, 0.8725]

NMSE (R=8) 0.0140 0.0138
[0.0120, 0.0178] [0.0119, 0.0170]

SSIM (R=12) 0.8072 0.8277
[0.7401, 0.8503] [0.7653, 0.8633]

NMSE (R=12) 0.0169 0.0164

[0.0149, 0.0208]

[0.0144, 0.0196]




to 2D processing further benefit the reconstruction quality.

4. DISCUSSION AND CONCLUSION

Unrolled deep neural networks have shown great promise in
improving accelerated MRI reconstruction. However, most
of these networks are applied with 2D processing. To ap-
ply unrolled networks for 3D MRI reconstruction, a common
strategy is to divide the volumetric MRI data to 2D slices,
which are then processed with 2D convolutions, which nev-
ertheless loses multi-dimensional interactions. On the other
hand, directly training 3D unrolled networks with 3D raw
k-space data faces problems due to the lack of availability
of large databases of 3D datasets and GPU memory limita-
tions. In this work, we proposed a data augmentation strategy
for 3D processing that enables efficient training of 3D un-
rolled networks for volumetric MRI reconstruction. Our pro-
posed data augmentation strategy generated smaller 3D sub-
volumes from large Cartesian volumetric acquisitions, which
helped tackle both these challenges without needing advanced
training strategies [9]. Our results show that the 3D unrolled
networks have the potential to improve MRI reconstruction at
high acceleration rates by capturing multi-dimensional inter-
actions.
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