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ARTICLE INFO ABSTRACT

Keywords: Delivery of compounds to the brain is critical for the development of effective treatment therapies of multiple
Blood-brain barrier central nervous system diseases. Recently a novel insect-based brain uptake model was published utilizing a
Cheminformatics locust brain ex vivo system. The goal of our study was to develop a priori, in silico cheminformatic models to
g:ngining describe brain uptake in this insect model, as well as evaluate the predictive ability. The machine learning
QSPR program Orange® was used to evaluate several machine learning (ML) models on a published data set of 25

known drugs, with in vitro data generated by a single laboratory group to reduce inherent inter-laboratory
variability. The ML models included in this study were linear regression (LR), support vector machines (SVN),
k-nearest neighbor (kNN) and neural nets (NN). The quantitative structure-property relationship models were
able to correlate experimental logCtot (concentration of compound in brain) and predicted brain uptake of 2 >
0.5, with the descriptors log(P*MW~"%) and hydrogen bond donor used in LR, SVN and KNN, while log
(P*MW’O‘S) and total polar surface area (TPSA) descriptors used in the NN models. Our results indicate that the
locust insect model is amenable to data mining chemoinformatics and in silico model development in CNS drug

discovery pipelines.

Drug delivery to the brain is a bottleneck for the development of
therapies due to the presence of the blood-brain barrier (BBB).! The BBB
is a microvascular unit which is comprised of vascular endothelial cells,
pericytes, astrocytes and neuronal innervation.” Due to the presence of
tight junctions between the endothelial cells, along with other processes
such as efflux pumps (ABC cassette transporters including p-glycopro-
tein (PGP)), this selectively permeable system allows only certain
compounds/xenobiotics with appropriate chemical properties to be able
to distribute into the central nervous system (CNS) space, and contrib-
utes to a high failure rate in drug development of CNS drugs.’™

Several techniques have been developed to determine uptake of
compounds into the brain, including both in vitro and in vivo models.*
Classical in vitro techniques include the use of other types of cells that
express tight junctional proteins, including the kidney cell lines.” In vivo
models include the determination of the log([Brain]/[Blood]) or logBB,
where the drug is usually administered via an LP. or tail vein L.V. in-
jection and the brain removed usually after an hour to determine drug
levels. Alternatively, a more technically advanced determination of the
permeability-surface area product (PS) as measure of the passive drug
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permeability across the BBB, after in vivo drug perfusion via cardiac or
carotid artery delivery.®” Due to the technical skill and analytical tools
needed for their performance, these in vivo models can be a bottleneck in
the compound characterization stage of the drug development pipeline.

Andersson et al. described a novel brain uptake model utilizing an ex
vivo insect brain, isolated from desert locusts (Schistocerca gregaria).8
The insect brain mimics the mammalian BBB with tight junctions found
in perineural glia protecting the brain.” An added benefit of using ex vivo
insect brain is the lack of capillaries which could confound brain uptake
determinations.®

Both in vitro and in vivo animal models have been used to develop
predictive in silico models that can be applied to the early stages of drug
discovery to filter compound databases, but to date no machine learning
cheminformatic models have been developed for compound uptake in
insect brain. These in silico quantitative structure property relationship
(QSPR) studies can be used in concert with these insect models on larger
compound numbers, allowing for refinement in mammalian systems of
lead compounds, depending on a company’s specific workflow. The goal
of this work was to utilize cheminformatic strategies to develop initial
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Fig. 1. Chemoinformatic workflow diagram utilized in Orange® data mining software version 3.24.1. Each widget is linked in a workflow for model development
and testing. Abbreviations are: support vector machines (SVM); k-nearest neighbor (kNN).

data models that could be used a priori to screen compound libraries
virtually and select a pool of candidates with higher propensity to reach
the brain in CNS drug discovery programs.

We developed a database from compounds reported earlier with
uptake into locust brain (N = 25).% The chemical structures were ob-
tained from PubChem as structure data file (SDF) files, combed into a
single SDF, and imported into InstantJChem v. 16.8.15.0 (www.chem-
axon). InstantJChem is a cheminformatics suite that can estimate
physicochemical properties of each chemical compound. For the
cheminformatics analysis, we utilized the machine learning (ML) soft-
ware suite Orange® v 3.24. (orange.biolab.si). Orange® is a widget-
based system where workflows can be designed to suit specific ML
needs of the user. Fig. 1 shows the workflow developed for this study.

The data sets obtained from the literature were reported from ex-
periments where the drug exposures were a constant 10 pM to the ex vivo
insect brain, and was presented as Cio, which we converted to logCrot,
since this allows for smoothing of biological data. The logC value was
used as the target (y) variable in the Orange® software. We chose to use
this value as described by Andersson et al, due to the high degree of
correlation between the ex vivo model of 10 pM compound with
mammalian permeability-surface values (logPS),m and the published 2
of 0.85 supported this dataset as correlative for mimicking mammalian
brain uptake.® The physicochemical properties determined with
InstantJChem were kept as features (x;).

Based on previous reports by Liu et al., which described the devel-
opment of computational approaches to brain uptake in mammals,'' we
additionally calculated the log(D*MW’O'S), and log(P*MW’O'S)

parameters. The database was split into a training set and a test set
randomly, 72:28%, or 18 training and 7 test set compounds using the
DATASAMPLER utility, and all compounds were considered inliers due
to the small sample size. Although the initial dataset contained known p-
glycoprotein (PGP) substrates,® we did not separate these into subsets,
due to the small number of compounds in our set, as well as our goal of
evaluation these for development of an a priori BBB in silico filter, i.e.
used to screen libraries without prior knowledge of PGP transporter
preference. Additionally, it is suggested that at the test concentration of
compounds at 10 pM, the PGP transporters may be saturated in the lo-
cust system, which could account for a passive permeability apparent
state.’

Four ML systems were tested, including support vector machines
(SVM), neural network (NN), k-nearest neighbor (kNN) and multiple
linear regression (LR). To identify and rank important descriptors, the
RANK utility with the regression correlation value (r) was used, which
identified clogP (where P is ratio octanol/water separation), clogD (logP
at a pH of 7.4), log(D*MW’O'S), and log(P*MW’O's), hydrogen bond
donors, total polar surface area (TPSA) as the top parameters. With only
18 compounds in the training set, we set our upper limit to the number
of variables to < 4 descriptors, to prevent overfitting of the data.'>!> We
opted to focus on the minimum number of descriptors, after which no
discernable improvement could be seen in the training set regression
value (r%), when additional descriptors were added. Additionally, due to
the relationship between clogP and clogD where clogD = clogP + pKa at
pH 7.4, we opted to not combine these two parameters in a single model,
due to a duplication of properties. Table 1 shows the training data set
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Table 3

Cross-validation (qz) of machine learning models.
Cross-validated regression Log logP logDMW  HBDONOR  logD TPSA Log Log logP logP
@ @P*MW %) (P*MW—05) @MW —%5)

HB DONOR TSPA HB DONOR TPSA

KNN 0.5 0.476 —0.024 0.423 —0.052 0.688 0.718 0.666 0.725 0.666
SVM 0.354 0.326 0.233 0.178 0.149 —0.636 0.639 0.549 0.62 0.549
NN 0.429 0.386 0.185 0.41 0.153 0.686 0.688 0.704 0.68 0.689
LR 0.39 0.347 0.237 0.286 0.177 —0.38 0.622 0.475 0.618 0.467

with the calculated parameters, and Table 2 shows the training set data.

A main advantage of using Orange® ML, is that several machine
learner algorithms can be tested at the same time (see Fig. 1). Using 10-
fold cross-validation, we used the training set of 18 compounds to
develop the models, with results of the cross-validation regression value
(qz) shown in Table 3. The method of cross-validation generates a model
on the training set, and removes one compound at a time, and predicts
that compound’s biological parameter being investigated, which in this
case is 10gCior. The cross validated q2 values > 0.3 were generally
regarded as significant for quantitative structure-activity relationship
(QSAR) models,'*!° although recent literature suggests that q2 > 0.5 be
considered a more significant cut-off value to evaluate the robustness of
a computational QSPR models.'%!?

Based on this last literature criterion, for a single variable correlating
experimental brain uptake (logCi,) with molecular descriptors, the
TPSA resulted in q2 values > 0.5, for only the KNN and NN models, while
SVN and LR showed negative or no correlation. This result led us to
include a combination of at least two descriptors to improve model
development. We found that the combination of log(P*MW’O'S) with HB
DONOR or TPSA, and logP with HB DONOR and TPSA led to favorable
@ > 0.5 ML models (Table 3). Interestingly, the use of logD did not lead
to any improved model outcomes, as has been shown with mammalian
in silico filters,'” and in most cases impacted the model development
negatively, i.e. reduced the cross validated g2 score. The observation
that logD does not improve the QSPR models could possibly be linked to
differences between this insect model versus mammalian systems. In
insects, the glia forms the tight junctions and there is a lack of circula-
tory micro-vessels, corroborating the observation that logP (lip-
ophilicity) may be more important than logD (lipophilicity at pH 7.4).
For the purpose of modeling BBB permeability, these findings would
suggest that possible use of a logP-based predictive model to be more
beneficial when an insect/locust in vivo model will be used as lower level
screening validation, while a logD-based filter more suited when a
mammalian models will be used downstream.

To further validate the performance of the models, we used the
prepared test set of seven compounds and used the developed ML models
to predict brain uptake (predicted logCyo). Fig. 2 shows the correlation
plots of the results from the (A) training set correlations; (B) test set
correlations, as well as the residual plots of the (C) training set pre-
dictions and (D) test set predictions. Table 4 shows the resulting corre-
lation linear regression r2 for each of the models, and Tables 5 and 6
show the predicted values for brain uptake generated by the different
ML models. Interestingly, for the training set, the NN showed the highest
correlation, with an r? of 0.9, but performed worse on the test set, with
an r? of 0.8 as compared to the rest of the models. This difference is likely
due to the small number of compounds used in this study and at the time
that additional data sets become available in the literature, refinement
of the current data models will be possible.

Andersson et al. showed that the grasshopper brain model can be
used as an ex vivo platform in identifying BBB permeable compounds in

mammals.® As part of the validation process, the group correlated the
logCtot from the locust model with the Permeability-Surface area (PS)
parameter previously published in a mammalian system.'® The logPS
method uses an in situ perfusion method, correlating permeability as
linear uptake over a min, and although intensive, is considered a true
representative parameter for BBB permeability, in contrast to logBB
([brain]/[plasma]) which is in general determined at a 30 min or 1 h
timepoint.'® To explore the use of the ML models in predicting or clas-
sifying compounds as BBB permeable in mammals, the correlation of
logPS in mice with the logCtot in locust was repeated from the published
study, and we found to corroborate the published finding of r? of 0.87
(Fig. 3; Table 7). Extending this correlation to the predicted logCtot
values from Table 5, we found all of the ML models predicted logCtot
were correlating well with logPS, with regression coefficients of 0.86
(SVN), 0.86 (LR), 0.82 (NN) and 0.84 (kNN). These findings support the
use of computational models together with insect ex vivo brain models to
augment discovery pipelines as possible pre-murine/rat seeing
toolset.>1°

A limitation of the current study is the size of the insect data set
published.® To gain some insight into the use of the models in clustering
compounds into a mammalian BBB permeable (BBB + ), versus excluded
(BBB-), we evaluated the performance of these insect ML models on
classifying an external dataset of compounds consisting of 479 BBB- and
1429 BBB + compounds. We labeled the external test compounds for the
classification as BBB + and BBB-, which for our evaluation, was BBB + as
logBB > 0, and BBB- as logBB < 0, keeping with the convention of the
published set.!” We found that for the BBB- compounds in the external
set, the kNN model performed the best, with correctly classifying 78% of
the BBB- compounds, while the other ML models performed poorer, with
NN 45%, LR 40% and SVN 37% successful classification as BBB- com-
pounds. The ML models performed on average better on classifying BBB
+ compounds, with kNN 68%, NN 89%, LR 93% and SVN 93% correct
classification of BBB + compounds.

Furthermore, the ML models were used to predict locust brain uptake
of clozapine, a CNS therapeutic which was not included in the original
locust dataset (Tab. 1 and 2) but was recently evaluated by the group of
Hellman et al. in locust ex vivo model,'® with our predicted ML model
logCtot to range between 0.8 and 1.1. The logPS of clozapine is —1.73
mL/g/s in mice,'® thus corroborating the insect locust model use for
evaluating BBB permeability as part of a drug discovery pipeline to-
wards mammalian systems. Taken together, the insect ML models will
likely require additional parameterization as larger datasets become
available for effective mammalian BBB permeability prediction, since
these models performed well at classifying BBB permeable compounds,
but fared worse at identifying compounds likely to be excluded from the
BBB. Additionally, since PGP substrates were included in our ML model
training, further dividing the training datasets would likely improve the
predictive and classifier aspects of the models.'®

In conclusion, we used cheminformatic-based machine learning to
develop models for a small set of compounds for brain uptake in an ex
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Table 4
Results from the ML training and test set correlating experimental brain uptake
(logCor) with predicted values.

Training SVN LR KNN NN
Set
r? 0.7122 0.7124 0.7871 0.9109
Equation Y = 0.6333*X Y =0.7124*X Y = 0.7598*X Y = 0.8775*X
+ 0.2565 + 0.1462 + 0.1259 + 0.06194
Test Set SVN LR KNN NN
r? 0.9078 0.9072 0.9058 0.8624
Equation Y = 0.8520*X Y = 0.9602*X Y = 0.9961*X Y = 0.9919*X
+ 0.2737 + 0.1673 + 0.3031 + 0.02604
Table 5
Predicted brain uptake values (1ogCio) for the training set of compounds for each
of the ML models.
Descriptors used in model Log(P*MW-0.5)HBOND Log(P*MW-
development DONOR 0.5)TPSA
logCtot SVN LR KNN NN
Drug Experimental  Predicted
desipramine 1.041 1.073 1.061 1.103 1.200
dexamethasone  0.000 0.285 0.176 —-0.029 -0.234
bupropion 0.987 0.951 0.927 1.185 1.128
cyclosporin A 0.415 0.316 0.193 0.106 0.430
loperamide 0.792 1.225 1.230 1.059 0.869
fluoxetine 1.297 1.123 1.118 1.103 1.129
propranolol 0.909 0.648 0.585 0.899 1.015
amitriptyline 1.176 1.417 1.450 1.054 1.239
ranitidine —0.699 0.315 0.217 —0.029 —0.341
cetirizine 0.342 0.442 0.366 0.298 0.436
atenolol —0.699 0.047 —0.086 —0.231 —0.363
norfloxacin —0.097 —-0.074 —0.212 —0.082 0.017
trazodone 0.964 1.064 1.060 1.119 1.022
caffeine 0.740 0.344 0.265 —0.082 0.357
carbamazepine 1.204 0.849 0.815 1.092 0.991
digoxin —0.097 —0.084 —0.256 —-0.181 -0.112
paroxetine 1.398 0.912 0.884 1.119 1.048
lincomycin —0.523 —0.441 —0.642 —0.283 —0.685
Table 6

Results from the ML test set correlating experimental brain uptake (logCi) with

predicted values.

Descriptors Log(P*MW ~*°)HBOND Log
used in model DONOR @®*MW %)
development TPSA
logCtot SVN LR KNN NN
Drug Experimental  Predicted
methotrexate —0.699 —0.431 —0.631 —0.283 —0.807
warfarin 0.672 0.833 0.797 1.092 0.605
citalopram 0.663 1.196 1.206 1.093 1.035
haloperidol 1.127 1.010 0.992 1.185 1.003
risperidone 0.914 0.956 0.941 1.119 0.587
quinidine 0.505 0.784 0.743 1.092 0.911
cimetidine —0.398 —0.058 —0.203 —0.404 —0.390

vivo insect model. These in silico database filtering models can support
virtual screening in drug discovery for CNS diseases, including Alz-
heimer’s disease, Parkinson’s disease, stroke and brain-associated can-
cers. The gap in our study is the size of the published data set, for which
improvement of the current models will occur when larger datasets in
the locust model become available for additional data modeling and
gaining further insight into correlating locust BBB ex vivo models with
mammalian BBB models.
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Fig. 3. Correlation of the Permeability-surface area (PS) in mammal as measure
of brain uptake with locust logCtot. The ML model prediction of logCtot was
correlated to logPS as described. LogCtot experimental is also shown as
benchmark. The regression coefficient (r?) for the different ML models were
> 0.8,

Table 7

Permeability-Surface Area (logPS) of compounds from mammalian studies.®'""

Compound logCtot logPS (mL/g/min)
amitriptyline 1.18 —0.66
bupropion 0.99 -1.52
carbamazepine 1.20 -1.26
cetirizine 0.34 —3.72
cimetidine —0.40 —-4.1
citalopram 0.66 -1.99
digoxin —0.10 —4.55
fluoxetine 1.30 -1.2
haloperidol 1.13 —1.46
loperamide 0.79 -1.7
propranolol 0.91 —2.15
quinidine 0.51 —-2.11
risperidone 0.91 -1.8
trazodone 0.96 -1.5
warfarin 0.67 -2.1
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