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A B S T R A C T   

Delivery of compounds to the brain is critical for the development of effective treatment therapies of multiple 
central nervous system diseases. Recently a novel insect-based brain uptake model was published utilizing a 
locust brain ex vivo system. The goal of our study was to develop a priori, in silico cheminformatic models to 
describe brain uptake in this insect model, as well as evaluate the predictive ability. The machine learning 
program Orange® was used to evaluate several machine learning (ML) models on a published data set of 25 
known drugs, with in vitro data generated by a single laboratory group to reduce inherent inter-laboratory 
variability. The ML models included in this study were linear regression (LR), support vector machines (SVN), 
k-nearest neighbor (kNN) and neural nets (NN). The quantitative structure–property relationship models were 
able to correlate experimental logCtot (concentration of compound in brain) and predicted brain uptake of r2 >

0.5, with the descriptors log(P*MW−0.5) and hydrogen bond donor used in LR, SVN and KNN, while log 
(P*MW−0.5) and total polar surface area (TPSA) descriptors used in the NN models. Our results indicate that the 
locust insect model is amenable to data mining chemoinformatics and in silico model development in CNS drug 
discovery pipelines.   

Drug delivery to the brain is a bottleneck for the development of 
therapies due to the presence of the blood–brain barrier (BBB).1 The BBB 
is a microvascular unit which is comprised of vascular endothelial cells, 
pericytes, astrocytes and neuronal innervation.2 Due to the presence of 
tight junctions between the endothelial cells, along with other processes 
such as efflux pumps (ABC cassette transporters including p-glycopro
tein (PGP)), this selectively permeable system allows only certain 
compounds/xenobiotics with appropriate chemical properties to be able 
to distribute into the central nervous system (CNS) space, and contrib
utes to a high failure rate in drug development of CNS drugs.1–3 

Several techniques have been developed to determine uptake of 
compounds into the brain, including both in vitro and in vivo models.4 

Classical in vitro techniques include the use of other types of cells that 
express tight junctional proteins, including the kidney cell lines.5 In vivo 
models include the determination of the log([Brain]/[Blood]) or logBB, 
where the drug is usually administered via an I.P. or tail vein I.V. in
jection and the brain removed usually after an hour to determine drug 
levels. Alternatively, a more technically advanced determination of the 
permeability-surface area product (PS) as measure of the passive drug 

permeability across the BBB, after in vivo drug perfusion via cardiac or 
carotid artery delivery.6,7 Due to the technical skill and analytical tools 
needed for their performance, these in vivo models can be a bottleneck in 
the compound characterization stage of the drug development pipeline. 

Andersson et al. described a novel brain uptake model utilizing an ex 
vivo insect brain, isolated from desert locusts (Schistocerca gregaria).8 

The insect brain mimics the mammalian BBB with tight junctions found 
in perineural glia protecting the brain.9 An added benefit of using ex vivo 
insect brain is the lack of capillaries which could confound brain uptake 
determinations.8 

Both in vitro and in vivo animal models have been used to develop 
predictive in silico models that can be applied to the early stages of drug 
discovery to filter compound databases, but to date no machine learning 
cheminformatic models have been developed for compound uptake in 
insect brain. These in silico quantitative structure property relationship 
(QSPR) studies can be used in concert with these insect models on larger 
compound numbers, allowing for refinement in mammalian systems of 
lead compounds, depending on a company’s specific workflow. The goal 
of this work was to utilize cheminformatic strategies to develop initial 
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data models that could be used a priori to screen compound libraries 
virtually and select a pool of candidates with higher propensity to reach 
the brain in CNS drug discovery programs. 

We developed a database from compounds reported earlier with 
uptake into locust brain (N = 25).8 The chemical structures were ob
tained from PubChem as structure data file (SDF) files, combed into a 
single SDF, and imported into InstantJChem v. 16.8.15.0 (www.chem
axon). InstantJChem is a cheminformatics suite that can estimate 
physicochemical properties of each chemical compound. For the 
cheminformatics analysis, we utilized the machine learning (ML) soft
ware suite Orange® v 3.24. (orange.biolab.si). Orange® is a widget- 
based system where workflows can be designed to suit specific ML 
needs of the user. Fig. 1 shows the workflow developed for this study. 

The data sets obtained from the literature were reported from ex
periments where the drug exposures were a constant 10 μM to the ex vivo 
insect brain, and was presented as Ctot, which we converted to logCtot, 
since this allows for smoothing of biological data. The logCtot value was 
used as the target (y) variable in the Orange® software. We chose to use 
this value as described by Andersson et al, due to the high degree of 
correlation between the ex vivo model of 10 μM compound with 
mammalian permeability-surface values (logPS),10 and the published r2 

of 0.85 supported this dataset as correlative for mimicking mammalian 
brain uptake.8 The physicochemical properties determined with 
InstantJChem were kept as features (xn). 

Based on previous reports by Liu et al., which described the devel
opment of computational approaches to brain uptake in mammals,11 we 
additionally calculated the log(D*MW−0.5), and log(P*MW−0.5) 

parameters. The database was split into a training set and a test set 
randomly, 72:28%, or 18 training and 7 test set compounds using the 
DATASAMPLER utility, and all compounds were considered inliers due 
to the small sample size. Although the initial dataset contained known p- 
glycoprotein (PGP) substrates,8 we did not separate these into subsets, 
due to the small number of compounds in our set, as well as our goal of 
evaluation these for development of an a priori BBB in silico filter, i.e. 
used to screen libraries without prior knowledge of PGP transporter 
preference. Additionally, it is suggested that at the test concentration of 
compounds at 10 μM, the PGP transporters may be saturated in the lo
cust system, which could account for a passive permeability apparent 
state.8 

Four ML systems were tested, including support vector machines 
(SVM), neural network (NN), k-nearest neighbor (kNN) and multiple 
linear regression (LR). To identify and rank important descriptors, the 
RANK utility with the regression correlation value (r) was used, which 
identified clogP (where P is ratio octanol/water separation), clogD (logP 
at a pH of 7.4), log(D*MW−0.5), and log(P*MW−0.5), hydrogen bond 
donors, total polar surface area (TPSA) as the top parameters. With only 
18 compounds in the training set, we set our upper limit to the number 
of variables to ≤ 4 descriptors, to prevent overfitting of the data.12,13 We 
opted to focus on the minimum number of descriptors, after which no 
discernable improvement could be seen in the training set regression 
value (r2), when additional descriptors were added. Additionally, due to 
the relationship between clogP and clogD where clogD = clogP + pKa at 
pH 7.4, we opted to not combine these two parameters in a single model, 
due to a duplication of properties. Table 1 shows the training data set 

Fig. 1. Chemoinformatic workflow diagram utilized in Orange® data mining software version 3.24.1. Each widget is linked in a workflow for model development 
and testing. Abbreviations are: support vector machines (SVM); k-nearest neighbor (kNN). 
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with the calculated parameters, and Table 2 shows the training set data. 
A main advantage of using Orange® ML, is that several machine 

learner algorithms can be tested at the same time (see Fig. 1). Using 10- 
fold cross-validation, we used the training set of 18 compounds to 
develop the models, with results of the cross-validation regression value 
(q2) shown in Table 3. The method of cross-validation generates a model 
on the training set, and removes one compound at a time, and predicts 
that compound’s biological parameter being investigated, which in this 
case is logCtot. The cross validated q2 values > 0.3 were generally 
regarded as significant for quantitative structure–activity relationship 
(QSAR) models,14,15 although recent literature suggests that q2 > 0.5 be 
considered a more significant cut-off value to evaluate the robustness of 
a computational QSPR models.12,13 

Based on this last literature criterion, for a single variable correlating 
experimental brain uptake (logCtot) with molecular descriptors, the 
TPSA resulted in q2 values > 0.5, for only the KNN and NN models, while 
SVN and LR showed negative or no correlation. This result led us to 
include a combination of at least two descriptors to improve model 
development. We found that the combination of log(P*MW−0.5) with HB 
DONOR or TPSA, and logP with HB DONOR and TPSA led to favorable 
q2 > 0.5 ML models (Table 3). Interestingly, the use of logD did not lead 
to any improved model outcomes, as has been shown with mammalian 
in silico filters,10 and in most cases impacted the model development 
negatively, i.e. reduced the cross validated q2 score. The observation 
that logD does not improve the QSPR models could possibly be linked to 
differences between this insect model versus mammalian systems. In 
insects, the glia forms the tight junctions and there is a lack of circula
tory micro-vessels, corroborating the observation that logP (lip
ophilicity) may be more important than logD (lipophilicity at pH 7.4). 
For the purpose of modeling BBB permeability, these findings would 
suggest that possible use of a logP-based predictive model to be more 
beneficial when an insect/locust in vivo model will be used as lower level 
screening validation, while a logD-based filter more suited when a 
mammalian models will be used downstream. 

To further validate the performance of the models, we used the 
prepared test set of seven compounds and used the developed ML models 
to predict brain uptake (predicted logCtot). Fig. 2 shows the correlation 
plots of the results from the (A) training set correlations; (B) test set 
correlations, as well as the residual plots of the (C) training set pre
dictions and (D) test set predictions. Table 4 shows the resulting corre
lation linear regression r2 for each of the models, and Tables 5 and 6 
show the predicted values for brain uptake generated by the different 
ML models. Interestingly, for the training set, the NN showed the highest 
correlation, with an r2 of 0.9, but performed worse on the test set, with 
an r2 of 0.8 as compared to the rest of the models. This difference is likely 
due to the small number of compounds used in this study and at the time 
that additional data sets become available in the literature, refinement 
of the current data models will be possible. 

Andersson et al. showed that the grasshopper brain model can be 
used as an ex vivo platform in identifying BBB permeable compounds in 

mammals.8 As part of the validation process, the group correlated the 
logCtot from the locust model with the Permeability-Surface area (PS) 
parameter previously published in a mammalian system.10 The logPS 
method uses an in situ perfusion method, correlating permeability as 
linear uptake over a min, and although intensive, is considered a true 
representative parameter for BBB permeability, in contrast to logBB 
([brain]/[plasma]) which is in general determined at a 30 min or 1 h 
timepoint.16 To explore the use of the ML models in predicting or clas
sifying compounds as BBB permeable in mammals, the correlation of 
logPS in mice with the logCtot in locust was repeated from the published 
study, and we found to corroborate the published finding of r2 of 0.87 
(Fig. 3; Table 7). Extending this correlation to the predicted logCtot 
values from Table 5, we found all of the ML models predicted logCtot 
were correlating well with logPS, with regression coefficients of 0.86 
(SVN), 0.86 (LR), 0.82 (NN) and 0.84 (kNN). These findings support the 
use of computational models together with insect ex vivo brain models to 
augment discovery pipelines as possible pre-murine/rat seeing 
toolset.8,10 

A limitation of the current study is the size of the insect data set 
published.8 To gain some insight into the use of the models in clustering 
compounds into a mammalian BBB permeable (BBB + ), versus excluded 
(BBB-), we evaluated the performance of these insect ML models on 
classifying an external dataset of compounds consisting of 479 BBB- and 
1429 BBB + compounds. We labeled the external test compounds for the 
classification as BBB + and BBB-, which for our evaluation, was BBB + as 
logBB > 0, and BBB- as logBB < 0, keeping with the convention of the 
published set.17 We found that for the BBB- compounds in the external 
set, the kNN model performed the best, with correctly classifying 78% of 
the BBB- compounds, while the other ML models performed poorer, with 
NN 45%, LR 40% and SVN 37% successful classification as BBB- com
pounds. The ML models performed on average better on classifying BBB 
+ compounds, with kNN 68%, NN 89%, LR 93% and SVN 93% correct 
classification of BBB + compounds. 

Furthermore, the ML models were used to predict locust brain uptake 
of clozapine, a CNS therapeutic which was not included in the original 
locust dataset (Tab. 1 and 2) but was recently evaluated by the group of 
Hellman et al. in locust ex vivo model,18 with our predicted ML model 
logCtot to range between 0.8 and 1.1. The logPS of clozapine is −1.73 
mL/g/s in mice,10 thus corroborating the insect locust model use for 
evaluating BBB permeability as part of a drug discovery pipeline to
wards mammalian systems. Taken together, the insect ML models will 
likely require additional parameterization as larger datasets become 
available for effective mammalian BBB permeability prediction, since 
these models performed well at classifying BBB permeable compounds, 
but fared worse at identifying compounds likely to be excluded from the 
BBB. Additionally, since PGP substrates were included in our ML model 
training, further dividing the training datasets would likely improve the 
predictive and classifier aspects of the models.18 

In conclusion, we used cheminformatic-based machine learning to 
develop models for a small set of compounds for brain uptake in an ex 

Table 3 
Cross-validation (q2) of machine learning models.  

Cross-validated regression 
(q2) 

Log 
(P*MW¡0.5) 

logP logDMW HB DONOR logD TPSA Log 
(P*MW¡0.5) 

Log 
(P*MW¡0.5) 

logP logP        

HB DONOR TSPA HB DONOR TPSA 
KNN  0.5  0.476 −0.024  0.423 −0.052  0.688 0.718 0.666 0.725 0.666 
SVM  0.354  0.326 0.233  0.178 0.149  −0.636 0.639 0.549 0.62 0.549 
NN  0.429  0.386 0.185  0.41 0.153  0.686 0.688 0.704 0.68 0.689 
LR  0.39  0.347 0.237  0.286 0.177  −0.38 0.622 0.475 0.618 0.467  
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Fig. 2. Results from the ML training and test set correlating experimental brain uptake (logCtot) with predicted values. Results from the A) training set correlation, B) 
test set correlation, C) residual plots of the training, and D) residual plots of the test sets, for the SVN, LR, KNN and NN models. 
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vivo insect model. These in silico database filtering models can support 
virtual screening in drug discovery for CNS diseases, including Alz
heimer’s disease, Parkinson’s disease, stroke and brain-associated can
cers. The gap in our study is the size of the published data set, for which 
improvement of the current models will occur when larger datasets in 
the locust model become available for additional data modeling and 
gaining further insight into correlating locust BBB ex vivo models with 
mammalian BBB models. 
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