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Abstract

Estimation of heterogeneous causal effects – i.e., how effects of policies and treatments
vary across subjects – is a fundamental task in causal inference, playing a crucial role in
optimal treatment allocation, generalizability, subgroup effects, and more. Many flexible
methods for estimating conditional average treatment effects (CATEs) have been proposed
in recent years, but questions surrounding optimality have remained largely unanswered.
In particular, a minimax theory of optimality has yet to be developed, with the minimax
rate of convergence and construction of rate-optimal estimators remaining open problems.
In this paper we derive the minimax rate for CATE estimation, in a nonparametric model
where distributional components are Hölder-smooth, and present a new local polynomial
estimator, giving high-level conditions under which it is minimax optimal. More specifi-
cally, our minimax lower bound is derived via a localized version of the method of fuzzy
hypotheses, combining lower bound constructions for nonparametric regression and func-
tional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner,
based on a localized modification of higher-order influence function methods; it is shown
to be minimax optimal under a condition on how accurately the covariate distribution
is estimated. The minimax rate we find exhibits several interesting features, including
a non-standard elbow phenomenon and an unusual interpolation between nonparamet-
ric regression and functional estimation rates. The latter quantifies how the CATE, as
an estimand, can be viewed as a regression/functional hybrid. We conclude with some
discussion of a few remaining open problems.

Keywords: causal inference, functional estimation, higher order influence functions, nonpara-
metric regression, optimal rates of convergence.a
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1 Introduction

In this paper we consider estimating the difference in regression functions

τ(x) = E(Y | X = x,A = 1)− E(Y | X = x,A = 0) (1)

from an iid sample of observations of Z = (X,A, Y ). Let Y a denote the counterfactual outcome
that would have been observed under treatment level A = a. Then, under the assumptions of
consistency (i.e., Y = Y a if A = a), positivity (i.e., ǫ ≤ P(A = 1 | X) ≤ 1− ǫ with probability
one, for some ǫ > 0), and no unmeasured confounding (i.e., A ⊥⊥ Y a | X), the quantity τ(x)
also equals the conditional average treatment effect (CATE)

E(Y 1 − Y 0 | X = x).

The CATE τ(x) gives a more individualized picture of treatment effects compared to the
overall average treatment effect (ATE) E(Y 1 − Y 0), and plays a crucial role in many funda-
mental tasks in causal inference, including assessing effect heterogeneity, constructing optimal
treatment policies, generalizing treatment effects to new populations, finding subgroups with
enhanced effects, and more. Further, these tasks have far-reaching implications across the
sciences, from personalizing medicine to optimizing voter turnout.

The simplest approach to CATE estimation would be to assume a low-dimensional para-
metric model for the outcome regression E(Y | X,A); then maximum likelihood estimates
could be easily constructed, and under regularity conditions the resulting plug-in estimator
would be minimax optimal. However, when X has continuous components, it is typically
difficult to specify a correct parametric model, and under misspecification the previously de-
scribed approach could lead to substantial bias. This suggests the need for more flexible
methods. Early work in flexible CATE estimation employed semiparametric models, for ex-
ample partially linear models assuming τ(x) to be constant, or structural nested models in
which τ(x) followed some known parametric form, but leaving other parts of the distribution
unspecified [Robins, 1994, Robins et al., 1992, Robinson, 1988, van der Laan, 2006, van der
Laan and Robins, 2003, Vansteelandt and Joffe, 2014]. An important theme in this work is
that the CATE can be much more structured and simple than the rest of the data-generating
process. Specifically, the individual regression functions µa(x) = E(Y | X = x,A = a) for
each a = 0, 1 may be very complex (e.g., non-smooth or non-sparse), even when the difference
τ(x) = µ1(x)−µ0(x) is very smooth or sparse, or even constant or zero. We refer to Kennedy
[2020] for some recent discussion of this point.

More recently there has been increased emphasis on incorporating nonparametrics and
machine learning tools for CATE estimation. We briefly detail two especially relevant streams
of this recent literature, based on so-called DR-Learner and R-Learner methods, both of which
rely on doubly robust-style estimation. The DR-Learner is a model-free meta-algorithm first
proposed by van der Laan [2006] (Section 4.2), which essentially takes the components of the
classic doubly robust estimator of the ATE, and rather than averaging, instead regresses on
covariates. It has since been specialized to particular methods, e.g., cross-validated ensembles
[Luedtke and van der Laan, 2016], kernel [Fan et al., 2019, Lee et al., 2017, Zimmert and
Lechner, 2019] and series methods [Semenova and Chernozhukov, 2017], empirical risk mini-
mization [Foster and Syrgkanis, 2019], and linear smoothers [Kennedy, 2020]. On the other
hand, the R-Learner is a flexible adaptation of the double-residual regression method origi-
nally built for partially linear models [Robinson, 1988], with the first nonparametric version
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proposed by Robins et al. [2008] (Section 5.2) using series methods. The R-Learner has since
been adapted to RKHS regression [Nie and Wager, 2021], lasso [Chernozhukov et al., 2017,
Zhao et al., 2017], and local polynomials [Kennedy, 2020]. Many flexible non-doubly robust
methods have also been proposed in recent years, often based on inverse-weighting or direct
regression estimation [Athey and Imbens, 2016, Foster et al., 2011, Hahn et al., 2020, Imai
and Ratkovic, 2013, Künzel et al., 2019, Shalit et al., 2017, Wager and Athey, 2018].

Despite the wide variety of methods available for flexible CATE estimation, questions of
optimality have remained mostly unsolved. Gao and Han [2020] studied minimax optimality,
but in a specialized model where the propensity score has zero smoothness, and covariates are
non-random; this model does not reflect the kinds of assumptions typically used in practice,
e.g., in the papers cited in the previous paragraph. Some but not all of these papers derive
upper bounds on the error of their proposed CATE estimators; in the best case, these take the
form of an oracle error rate (which would remain even if the potential outcomes (Y 1−Y 0) were
observed and regressed on covariates), plus some contribution coming from having to estimate
nuisance functions (i.e., outcome regressions and propensity scores). The fastest rates we are
aware of come from Foster and Syrgkanis [2019] and Kennedy [2020]. Foster and Syrgkanis
[2019] studied global error rates, obtaining an oracle error plus sums of squared L4 errors
in all nuisance components. Kennedy [2020] studied pointwise error rates, giving two main
results; in the first, they obtain the oracle error plus a product of nuisance errors, while in
the second, they obtain a faster rate via undersmoothing (described in more detail in Section
3.3). However, since these are all upper bounds on the errors of particular procedures, it is
unknown whether these rates are optimal in any sense, and if they are not, how they might
be improved upon. In this paper we resolve these questions (via the minimax framework, in
a nonparametric model that allows components of the data-generating process to be infinite-
dimensional, yet smooth in the Hölder sense).

More specifically, in Section 3 we derive a lower bound on the minimax rate of CATE
estimation, indicating the best possible (worst-case) performance of any estimator, in a model
where the CATE, regression function, and propensity score are Hölder-smooth functions, with
the propensity score at least as smooth as the regression function. Our derivation uses an
adaptation of the method of fuzzy hypotheses, which is specially localized compared to the
constructions previously used for obtaining lower bounds in functional estimation and hypoth-
esis testing [Birgé and Massart, 1995, Ibragimov et al., 1987, Ingster et al., 2003, Nemirovski,
2000, Robins et al., 2009b, Tsybakov, 2009]. In Section 4, we confirm that our minimax lower
bound is tight (under some conditions), by proposing and analyzing a new local polynomial
R-Learner, using localized adaptations of higher order influence function methodology [Robins
et al., 2008, 2009a, 2017]. In addition to giving a new estimator that is provably optimal (under
some conditions, e.g., on how well the covariate density is estimated), our results also confirm
that previously proposed estimators were not generally optimal in this smooth nonparamet-
ric model. Our minimax rate also sheds light on the nature of the CATE as a statistical
quantity, showing how it acts as a regression/functional hybrid: for example, the rate interpo-
lates between nonparametric regression and functional estimation, depending on the relative
smoothness of the CATE and nuisance functions (outcome regression and propensity score).
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2 Setup & Notation

We consider an iid sample of n observations of Z = (X,A, Y ) from distribution P, where
X ∈ [0, 1]d denotes covariates, A ∈ {0, 1} a treatment or policy indicator, and Y ∈ R an
outcome of interest. We let F (x) denote the distribution function of the covariate X (with
density f(x) as needed), and let

π(x) = P(A = 1 | X = x)

µ(x) = E(Y | X = x)

denote the propensity score, and marginal outcome regression functions, respectively. We
sometimes omit arguments from functions to ease notation, e.g., note that τ = (µ− µ0)/π for
µa(x) = E(Y | X = x,A = a). We also index functions by a distribution P when needed, e.g.,
τ(x) under a particular distribution P is written τP (x); depending on context, no indexing
means the function is evaluated at the true P, e.g., τ(x) = τP(x).

Our goal is to study estimation of the CATE τ(x) = µ1(x)− µ0(x) at a point x0 ∈ (0, 1)d,
with error quantified by mean absolute error

E |τ̂(x0)− τ(x0)| .
As detailed in subsequent sections, we work in a nonparametric model P whose components
are infinite-dimensional functions but with some smoothness. We say a function is s-smooth if
it belongs to a Hölder class with index s, which we denote H(s); this essentially means it has
s− 1 bounded derivatives, and the highest order derivative is continuous. To be more precise,
let ⌊s⌋ denote the largest integer strictly smaller than s, and let Dα = ∂α

∂x
α1
1
...∂x

αd
d

denote the

partial derivative operator. Then the Hölder class H(s) contains all functions g : X → R that
are ⌊s⌋ times continuously differentiable, with derivatives up to order ⌊s⌋ bounded, i.e.,

|Dαg(x)| ≤ C

for all α = (α1, ..., αd) with
∑

j αj ≤ ⌊s⌋ and for all x ∈ X , and with ⌊s⌋-order derivatives
Hölder continuous, i.e., ∣∣∣Dβg(x)−Dβg(x′)

∣∣∣ ≤ C‖x− x′‖s−⌊s⌋

for all β = (β1, ..., βd) with
∑

j βj = ⌊s⌋ and for all x, x′ ∈ X , where for a vector v ∈ R
d

we let ‖v‖ denote the Euclidean norm. Sometimes Hölder classes are referenced by both the
smoothness s and constant C, as in H(s, C), but we focus our discussion on the smoothness s
and omit the constant.

We write the squared L2(Q) norm of a function as ‖g‖2Q =
∫
g(z)2 dQ(z). The sup-norm

is denoted by ‖f‖∞ = supz∈Z |f(z)|. For a matrix A we let ‖A‖ and ‖A‖2 denote the op-
erator/spectral and Frobenius norms, respectively, and let λmin(A) and λmax(A) denote the
minimum and maximum eigenvalues of A, respectively. We write an . bn if an ≤ Cbn for C
a positive constant independent of n, and an ≍ bn if an ≤ Cbn and bn ≤ Can (i.e., if an . bn
and bn . an). We write an ∼ bn to mean that an and bn are proportional, i.e., an = Cbn for
some C. We also use a ∨ b = max(a, b) and a ∧ b = min(a, b).

We use the shorthand Pn(f) = Pn{f(Z)} = 1
n

∑n
i=1 f(Zi) to write sample averages, and

similarly Un(f) = Un{f(Z1, Z2)} = 1
n(n−1)

∑
i 6=j f(Zi, Zj) for the U-statistic measure.
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3 Fundamental Limits

In this section we derive a lower bound on the minimax rate for CATE estimation. This result
has several crucial implications, both practical and theoretical. First, it gives a benchmark
for the best possible performance of any CATE estimator in the nonparametric model defined
in Theorem 1. In particular, if an estimator is shown to attain this benchmark, then one can
safely conclude the estimator cannot be improved, at least in terms of worst-case rates, with-
out adding assumptions; conversely, if the benchmark is not shown to be attained, then one
should continue searching for other better estimators (or better lower or upper risk bounds).
Second, a tight minimax lower bound is important in its own right as a measure of the funda-
mental limits of CATE estimation, illustrating precisely how difficult CATE estimation is in
a statistical sense. The main result of this section is given in Theorem 1 below. It is finally
proved and discussed in detail in Section 3.3.

Theorem 1. For x0 ∈ (0, 1), let P denote the model where:

1. dF (x) is known, satisfies
∫

1{‖x − x0‖ ≤ h/2} dF (x) ≍ hd, and has local support
{x ∈ R

d : dF (x) > 0, ‖x − x0‖ ≤ h/2} on a union of no more than k disjoint cubes all
with proportional volume, for h and k defined in Proposition 3,

2. π(x) is α-smooth, and ǫ ≤ π(x) ≤ 1− ǫ for some ǫ > 0,

3. µ(x) is β-smooth, with β ≤ α, and

4. τ(x) is γ-smooth.

Let s ≡ (α + β)/2. Then for n larger than a constant depending on (α, β, γ, d), the minimax
rate is lower bounded as

inf
τ̂

sup
P∈P

EP |τ̂(x0)− τP (x0)| &




n
−1/

(
1+ d

2γ
+ d

4s

)

if s < d/4
1+d/2γ

n
−1/

(
2+ d

γ

)

otherwise.

First we remark on some details about the model we consider. Crucially, Condition 4 al-
lows the CATE τ(x) to have its own smoothness γ, which is necessarily at least the regression
smoothness β, but can also be much larger, as described in the Introduction. In Condition
3 we also assume the propensity score is at least as smooth as the regression function, i.e.,
α ≥ β. This can be motivated by practical settings where the treatment process is more simple
or structured than the outcome process; for example, treatment may be based on relatively
simple human decision-making, whereas the outcome may be some complex physiological re-
sponse. One can also view this as a nonparametric analog of semiparametric models that
employ parametric assumptions on the treatment but not outcome processes [Tsiatis, 2006,
van der Laan and Robins, 2003]. Further, when α < β, we expect our proof techniques would
need to change substantially, and so leave this avenue to future work; this is detailed further
in the Discussion. Condition 1 of our model does not impose any smoothness on the covariate
distribution F , but ensures it is sufficiently dense and that sufficiently many samples are ob-
served near the target point x0. The condition would be satisfied whenever F has a density
bounded above and below away from zero, with support [0, 1]d, for example. We also note
that, although F is taken to be known in the model, of course the derived lower bound equally
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applies to larger models where F is unknown and needs to be estimated. We defer discussion
of the details of the overall minimax rate of Theorem 1 to Section 3.3, moving first to a proof
of the result.

The primary strategy in deriving minimax lower bounds is to construct distributions that
are similar enough that they are statistically indistinguishable, but for which the parameter
of interest is maximally separated; this implies no estimator can have error uniformly smaller
than this separation. More specifically, we derive our lower bound using a localized version
of the method of fuzzy hypotheses [Birgé and Massart, 1995, Ibragimov et al., 1987, Ingster
et al., 2003, Nemirovski, 2000, Robins et al., 2009b, Tsybakov, 2009]. In the classic Le Cam
two-point method, which can be used to derive minimax lower bounds for nonparametric re-
gression at a point [Tsybakov, 2009], it suffices to consider a pair of distributions that differ
locally; however, for nonlinear functional estimation, such pairs give bounds that are too loose.
One instead needs to construct pairs of mixture distributions, which can be viewed via a prior
over distributions in the model [Birgé and Massart, 1995, Robins et al., 2009b, Tsybakov,
2009]. Our construction combines these two approaches via a localized mixture, as will be
described in detail in the next subsection.

Remark 1. In what follows we focus on the lower bound in the low smoothness regime where
s < d/4

1+d/2γ . The n−1/(2+d/γ) lower bound for the high smoothness regime matches the classic
smooth nonparametric regression rate, and follows from a standard two-point argument, using
the same construction as in Section 2.5 of Tsybakov [2009].

The following lemma, adapted from Section 2.7.4 of Tsybakov [2009], provides the founda-
tion for the minimax lower bound result of this section.

Lemma 1 (Tsybakov [2009]). Let Pλ and Qλ denote distributions in P indexed by a vector
λ = (λ1, ..., λk), with n-fold products denoted by Pnλ and Qnλ, respectively. Let ̟ denote a prior
distribution over λ. If

H2

(∫
Pnλ d̟(λ),

∫
Qnλ d̟(λ)

)
≤ α < 2

and
|ψ(Pλ)− ψ(Qλ)| ≥ s > 0

for a functional ψ : P 7→ R and for all λ, then

inf
ψ̂

sup
P∈P

EP

{
ℓ
(∣∣∣ψ̂ − ψ(P )

∣∣∣
)}

≥ ℓ(s/2)

(
1−

√
α(1− α/4)

2

)

for any monotonic non-negative loss function ℓ.

Lemma 1 illuminates the three ingredients for deriving a minimax lower bound, and shows
how they interact. The ingredients are: (i) a pair of mixture distributions, (ii) the distance
between their n-fold products, which is ideally small, and (iii) the separation of the param-
eter of interest under the mixtures, which is ideally large. Finding the right minimax lower
bound requires balancing these three ingredients appropriately: with too much distance or not
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enough separation, the lower bound will be too loose. In the following subsections we describe
these three ingredients in detail.

3.1 Construction

In this subsection we detail the distributions Pλ and Qλ used to construct the minimax lower
bound. The main idea is to perturb the CATE with a bump at the point x0, and to also
perturb the propensity score and regression functions π and µ, but only locally near x0.

For our lower bound results, we work in the setting where Y is binary; this is mostly to ease
notation and calculations. Note however that this still yields a valid lower bound in the general
continuous Y case, since a lower bound in the strict submodel where Y is binary is also a lower
bound across the larger model P . Importantly, when Y is binary, the density p of an observa-
tion Z can be indexed via either the quadruple (f, π, µ0, µ1) for µa(x) = E(Y | X = x,A = a),
or (f, π, µ, τ); we make use of the latter parametrization. We first give the construction in the
definition below, and then go on to discuss the details.

Definition 1 (Distributions Pλ and Qλ). Let:

1. B : Rd → R denote a C∞ function with B(x) = 1 for x ∈ [−1/2, 1/2]d, and B(x) = 0
for x /∈ [−1, 1]d,

2. Ch(x0) denote the cube centered at x0 ∈ (0, 1)d with sides of length h ≤ 1/4,

3. (X1, ...,Xk) denote a partition of Ch(x0) into k cubes of equal size, with midpoints
(m1, ...,mk), so each cube Xj = Ch/k1/d(mj) has side length h/k1/d.

Then for λj ∈ {−1, 1} define the functions

τh(x) = hγB

(
x− x0
h

)

µλ(x) =
1

2
+ k−β/d

k∑

j=1

λjB

(
x−mj

h/k1/d

)

πλ(x) =
1

2
+ k−α/d

k∑

j=1

λjB

(
x−mj

h/k1/d

)

f(x) = 1(x ∈ Shk)
/{

1−
(
4d − 1

2d

)
hd
}

where Shk =
{⋃k

j=1 Ch/2k1/d(mj)
}⋃{

[0, 1]d \ C2h(x0)
}
. Finally take the distributions Pλ and

Qλ to be defined via the densities

pλ = (f, 1/2, µλ, τh)

qλ = (f, πλ, µλ, 0).

Figure 1 shows an illustration of our construction in the d = 1 case. As mentioned above,
the CATE is perturbed with a bump at x0 and the nuisance functions π and µ with bumps
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locally near x0. The regression function µ is perturbed under both Pλ and Qλ, since it is
less smooth than the propensity score in our model. The choices of the CATE mimic those
in the two-point proof of the lower bound for nonparametric regression at a point (see, e.g.,
Section 2.5 of Tsybakov [2009]), albeit with a particular flat-top bump function, while the
choices of nuisance functions π and µ are more similar to those in the lower bound for the
expected conditional covariance (cf. Section 4 of Robins et al. [2009b]). In this sense our
construction can be viewed as combining those for nonparametric regression and functional
estimation, similar to Shen et al. [2020]. In what follows we remark on some important details.

Remark 2. Section 3.2 of Shen et al. [2020] used a similar construction for deriving the minimax
lower bound for conditional variance estimation. Some important distinctions are: (i) they
focused on the univariate and low smoothness setting; (ii) in that problem there is only one
nuisance function, so the null can be a point rather than a mixture distribution; and (iii)
they use a different, arguably more complicated, approach to bound the distance between
distributions. Our work can thus be used to generalize such variance estimation results to
arbitrary dimension and smoothness.

x0 − h 2 x0 x0 + h 2

0
h

γ
0
.5

−
k

−
β

0
.5

0
.5

+
k

−
β

x0 − h 2 + h k x0 + h 2 − h k

(a) Null Pλ

x0 − h 2 x0 x0 + h 2

0
0
.5

−
k

−
β

0
.5

0
.5

+
k

−
α

x0 − h 2 + h k x0 + h 2 − h k

(b) Alternative Qλ

Figure 1: Minimax lower bound construction in d = 1 case. An example null density pλ is
displayed in panel (a) and an alternative density qλ in panel (b). The black, red, and blue
lines denote the CATE, outcome regression, and propensity score functions, respectively, and
the gray line denotes the support of the covariate density.

First we remark on the choice of CATE in the construction. As mentioned above, the
bump construction resembles that of the standard Le Cam lower bound for nonparametric
regression at a point, but differs in that we use a specialized bump function with a flat top.
Crucially, this choice ensures the CATE is constant and equal to hγ for all x in the cube Ch(x0)
centered at x0 with sides of length h, and and that it is equal to zero for all x /∈ C2h(x0), i.e.,
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outside the cube centered at x0 with side length 2h. It is straightforward to check that the
CATE function τh(x) is γ-smooth in this construction (see page 93 of Tsybakov [2009]).

Remark 3. One example of a bump function B satisfying the conditions above is

B(x) =





1 if |x| ≤ 1/2

exp
(

1

4x2−1

)

exp
(

1

4x2−1

)
+exp

(
1

2−4x2

) if |x| ∈ (1/2,
√
2/2)

0 if |x| ≥
√
2/2.

For the propensity score and regression functions, we similarly have

B

(
x−mj

h/k1/d

)
=

{
1 for x ∈ Ch/2k1/d(mj)

0 for x /∈ Ch/k1/d(mj)

i.e., each bump equals one on the half-h/k1/d cube around mj , and is identically zero outside
the main larger h/k1/d cube around mj . It is again straightforward to check that πλ(x) and
µλ(x) are α- and β-smooth, respectively.

The covariate density is chosen to be uniform, but on the set Shk that captures the middle

of all the nuisance bumps
{⋃k

j=1 Ch/2k1/d(mj)
}

, together with the space
{
[0, 1]d \ C2h(x0)

}

away from x0. Importantly, this choice ensures there is only mass where the nuisance bumps

B
(
x−mj

h/k1/d

)
are constant and non-zero (and where τh(x) = hγ), or else far away from x0, where

the densities are the same under Pλ and Qλ. Note that, as h → 0, the Lebesgue measure of
the set Shk tends to one, and the covariate density tends towards a standard uniform distri-
bution. It is also straightforward to check that this density satisfies the required denseness in
Condition 1 of Theorem 1.

The following proposition gives an expression for the densities under Pλ and Qλ, which is
important for deriving the relevant distances in the next subsection.

Proposition 1. The densities under Pλ and Qλ from Definition 1 are given by

pλ(z) = f(x)




1

4
+ (y − 1/2)k−β/d

k∑

j=1

λjB

(
x−mj

h/k1/d

)
+ (2a− 1)(2y − 1)

hγ

4
B

(
x− x0
h

)


qλ(z) = f(x)

[
1

4
+
{
(a− 1/2)k−α/d + (y − 1/2)k−β/d

} k∑

j=1

λjB

(
x−mj

h/k1/d

)

+ (2a− 1)(2y − 1)k−2s/d
k∑

j=1

B

(
x−mj

h/k1/d

)2
]

where s ≡ (α+ β)/2.

We note that the densities are both equal to 1/4 for all x /∈ C2h(x0) away from x0,

since B
(
x−mj

h/k1/d

)
= 0 for x /∈ Ch/k1/d(mj) and Ch/k1/d(mj) ⊆ Ch(x0) ⊆ C2h(x0), and since

B
(
x−x0
h

)
= 0 for x /∈ C2h(x0).
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3.2 Hellinger Distance

As mentioned previously, deriving a tight minimax lower bound requires carefully balancing the
distance between distributions in our construction. To this end, in this subsection we bound
the Hellinger distance between the n-fold product mixtures

∫
Pnλ d̟(λ) and

∫
Qnλ d̟(λ), for

̟ a uniform prior distribution, so that (λ1, ..., λk) are iid Rademachers.

In general these product densities can be complicated, making direct distance calculations
difficult. Fortunately the following lemma from Robins et al. [2009b] can be used to relate the
distance between the n-fold products to those of simpler posteriors over a single observation.

Lemma 2 (Robins et al. [2009b]). Let Pλ and Qλ denote distributions indexed by a vector
λ = (λ1, ..., λk), and let Z = ∪kj=1Zj denote a partition of the sample space. Assume:

1. Pλ(Zj) = Qλ(Zj) = pj for all λ, and

2. the conditional distributions 1ZjdPλ/pj and 1ZjdQλ/pj do not depend on λℓ for ℓ 6= j.

For a prior distribution ̟ over λ, let p =
∫
pλ d̟(λ) and q =

∫
qλ d̟(λ), and define

δ1 = max
j

sup
λ

∫

Zj

(pλ − p)2

pλpj
dν

δ2 = max
j

sup
λ

∫

Zj

(qλ − pλ)
2

pλpj
dν

δ3 = max
j

sup
λ

∫

Zj

(q − p)2

pλpj
dν

for a dominating measure ν. If p/pλ ≤ b <∞ and maxj pj ≤ b/n, then

H2

(∫
Pnλ d̟(λ),

∫
Qnλ d̟(λ)

)
≤ Cn2

(
max
j
pj

)(
δ1δ2 + δ22

)
+ Cnδ3

for a constant C only depending on b.

In the next proposition, we bound the quantities from Lemma 2 and put the results to-
gether to obtain a bound on the desired Hellinger distance between product mixtures.

Proposition 2. Assume h ≤ 1/4 and hγ + 2k−β/d ≤ 1 − 4ǫ for some ǫ ∈ (0, 1/4), and take
hγ = 4k−2s/d for s ≡ (α+β)/2. Then for the distributions Pλ and Qλ from Definition 1, with
̟ the uniform distribution over {−1, 1}k, we have

δ1 ≤
(
2d+1‖B‖22

ǫ

)
k−2β/d, δ2 ≤

(
2d+1‖B‖22

ǫ

)
k−2α/d, δ3 = 0,

and pj = (h/2)d/k. Further

H2

(∫
Pnλ d̟(λ),

∫
Qnλ d̟(λ)

)
≤ C

(
2d+2‖B‖22

ǫ

)(
n2hd

k

)(
k−4s/d + k−4α/d

)

for C a constant only depending on ǫ.
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Before moving to the proof of Proposition 2, we briefly discuss and give some remarks.
Compared to the Hellinger distance arising in the average treatment effect or expected con-
ditional covariance lower bounds [Robins et al., 2009b], there is an extra hd factor in the
numerator. Of course, one cannot simply repeat those calculations with k/hd bins, since then
for example the k−4s/d term would also be inflated to (k/hd)−4s/d; our carefully localized
construction is crucial to obtain the right rate in this case. We also note that the choice
hγ = 4k−2s/d is required for ensuring that the averaged densities p(z) and q(z) are equal
(implying that δ3 = 0); specifically this equalizes the CATE bump under Pλ with the squared
nuisance bumps under Qλ.

Proof. Here the relevant partition of the sample space X × A × Y = [0, 1]d × {0, 1} × {0, 1}
is Zj = Ch/2k1/d(mj) × {0, 1} × {0, 1}, j = 1, ..., k, along with Z ′

j , which partitions the space

[0, 1]d/C2h(x0) away from x0 into disjoint cubes with side lengths h/2k1/d. Therefore

Pλ(Zj) = Pλ(Z ′
j) = Qλ(Zj) = Qλ(Z ′

j) = pj

where pj = (h/2)d/k is the volume of a cube with side lengths h/2k1/d. Further the conditional
distributions 1ZjdPλ/pj and 1ZjdQλ/pj do not depend on λℓ for ℓ 6= j, since λj only changes
the density in Zj . Note when (λ1, ..., λk) are iid Rademacher random variables the marginalized
densities are

p(z) ≡
∫
pλ(z) dν(λ) = f(x)

{
1

4
+ (2a− 1)(2y − 1)

hγ

4
B

(
x− x0
h

)}

q(z) ≡
∫
qλ(z) dν(λ) = f(x)




1

4
+ (2a− 1)(2y − 1)k−2s/d

k∑

j=1

B

(
x−mj

h/k1/d

)2


 .

First we show that relevant densities and density ratios are appropriately bounded. In
particular, when h ≤ 1/4 then it follows that on Shk we have

1 ≤ f(x) =

{
1−

(
4d − 1

2d

)
hd
}−1

≤ 2. (2)

Further, since B(x) ≤ 1(x ∈ [−1, 1]d), a, y ∈ {0, 1}, and λ ∈ {−1, 1}, we have on Shk that
(
1

4
− k−β/d

2
− hγ

4

)
≤ pλ(z)

f(x)
≤
(
1

4
+
k−β/d

2
+
hγ

4

)
,

regardless of the values of h, k ≥ 0. Therefore when hγ + 2k−β/d ≤ 1 − 4ǫ, the above bound
implies

pλ(z)

f(x)
≥
(
1

4
− k−β/d

2
− hγ

4

)
≥ ǫ. (3)

Similarly, when hγ + 2k−β/d ≤ 1− 4ǫ (which implies hγ ≤ 1) we also have

p(z)

pλ(z)
≤

1
4 + hγ

4
1
4 − k−β/d

2 − hγ

4

≤ 1/2

ǫ
.

Note that, although Robins et al. [2009b] assume pλ(z) is uniformly lower bounded away from
zero in their version of Lemma 2, they only use a bound on p/pλ to ensure their quantity c is
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bounded (see page 1319). Therefore this condition also holds in our case. Now it remains to
bound the quantities δ1, δ2, and δ3.

We begin with δ3, which is tackled somewhat differently from δ1 and δ2, as it is a distance
between the marginalized densities p and q. For it notice that if we take k−2s/d = hγ/4 then

q(z)− p(z) = (2a− 1)(2y − 1)f(x)



k

−2s/d
k∑

j=1

B

(
x−mj

h/k1/d

)2

− hγ

4
B

(
x− x0
h

)
 = 0,

since f(x) = 0 for x /∈ Shk and

B

(
x−mj

h/k1/d

)
= B

(
x− x0
h

)
= 0 for x ∈

{
[0, 1]d \ C2h(x0)

}

B

(
x−mj

h/k1/d

)
= B

(
x− x0
h

)
= 1 for x ∈

k⋃

j=1

Chk−1/d/2(mj).

We note that this result requires a carefully selected relationship between h and k, which guar-
antees that the squared nuisance bumps under Qλ equal the CATE bumps under Pλ. This
also exploits the flat-top bump functions we use, together with a covariate density that only
puts mass at these tops, so that the squared terms are constant and no observations occur
elsewhere where the bumps are not equal.

Now we move to the distance δ1, which does not end up depending on h and is somewhat
easier to handle. For it we have

δ1 =

(
2dk

hd

)
max
ℓ

sup
λ

∫

Xℓ

∑

a,y

f(x)2

4pλ(z)
k−2β/d

k∑

j=1

B

(
x−mj

h/k1/d

)2

dx

≤
(
2dk

hd

)(
2

ǫ

)
k−2β/dmax

ℓ

∫

Xℓ

k∑

j=1

B

(
x−mj

h/k1/d

)2

dx =

(
2d‖B‖22
ǫ/2

)
k−2β/d

where the first equality follows by definition, and since pℓ = (h/2)d/k and B
(
x−mj

h/k1/d

)
= 0

outside of the cube Ch/k1/d(mj), which implies that




∑

j

λjB

(
x−mj

h/k1/d

)


2

=
∑

j,ℓ

λjλℓB

(
x−mj

h/k1/d

)
B

(
x−mℓ

h/k1/d

)
=
∑

j

λ2jB

(
x−mj

h/k1/d

)2

,

the inequality in the second line since pλ(z)/f(x) ≥ ǫ and f(x) ≤ 2 as in (3) and (2), and the
last equality since

∫

Xℓ

k∑

j=1

B

(
x−mj

h/k1/d

)2

dx =

∫

Xℓ

B

(
x−mℓ

h/k1/d

)2

dx =
hd

k

∫
B(u)2 du

by a change of variables.
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For δ2 we use a mix of the above logic for δ3 and δ1. Note that

(qλ − pλ)
2 = f(x)2

[
(a− 1/2)k−α/d

k∑

j=1

λjB

(
x−mj

h/k1/d

)

+ (2a− 1)(2y − 1)



k

−2s/d
k∑

j=1

B

(
x−mj

h/k1/d

)2

− hγ

4
B

(
x− x0
h

)


]2

≤ 2f(x)2


k

−2α/d

4

k∑

j=1

B

(
x−mj

h/k1/d

)2

+



k

−2s/d
k∑

j=1

B

(
x−mj

h/k1/d

)2

− hγ

4
B

(
x− x0
h

)


2


= (1/2)f(x)2k−2α/d
k∑

j=1

B

(
x−mj

h/k1/d

)2

where in the second line we used the fact that (a+b)2 ≤ 2(a2+b2) and {
∑

j λjB
(
x−mj

h/k1/d

)
}2 =

∑
j B
(
x−mj

h/k1/d

)2
, and in the third the same logic as above with δ3. Now we have

δ2 =

(
2dk

hd

)
max
ℓ

sup
λ

∫

Xℓ

∑

a,y

f(x)2

4pλ(z)
k−2α/d

k∑

j=1

B

(
x−mj

h/k1/d

)2

dx

≤
(
2dk

hd

)(
2

ǫ

)
k−2α/dmax

ℓ

∫

Xℓ

k∑

j=1

B

(
x−mj

h/k1/d

)2

dx =

(
2d‖B‖22
ǫ/2

)
k−2α/d

using the exact same logic as for δ1.

3.3 Choice of Parameters & Final Rate

Finally we detail how the parameters h and k can be chosen to ensure the Hellinger distance
from Proposition 2 remains bounded, and use the result to finalize the proof of Theorem 1.

Proposition 3. Let

h = (4k−2s/d)1/γ and k = (C∗n2)d/(4s+d+2sd/γ)

for C∗ = 22d/γ+d+3C‖B‖22/ǫ and C the constant from Proposition 2. Then under the assump-
tions of Proposition 2 we have

H2

(∫
Pnλ d̟(λ),

∫
Qnλ d̟(λ)

)
≤ 1

and hγ = 4(
√
C∗n)

−1/
(
1+ d

2γ
+ d

4s

)

.

The proof of Proposition 3 follows directly from Proposition 2, after plugging in the se-
lected values of h and k. Importantly, it also settles the proof of Theorem 1 via Lemma 1.
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This follows since, with the proposed choices of h and k, the Hellinger distance is appropri-

ately bounded so that the term
1−
√
α(1−α/4)

2 =
1−
√

3/4

2 ≈ 0.067 in Lemma 1 is a constant
(greater than 1/20 for example), while the separation in the CATE at x0, which equals hγ , is

proportional to n
−1/

(
1+ d

2γ
+ d

4s

)

under all Pλ and Qλ. Therefore this separation is indeed the
minimax rate in the low smoothness regime where s < d/4

1+d/2γ . Note again that, as discussed

in Remark 1, when s > d/4
1+d/2γ the rate n

−1/
(
1+ d

2γ
+ d

4s

)

is faster than the usual nonparametric

regression rate n−1/(2+d/γ), and so the standard lower bound construction as in Section 2.5 of
Tsybakov [2009] indicates that the slower rate n−1/(2+d/γ) is the tighter lower bound in that
regime.

Figure 2 illustrates the minimax rate from Theorem 1, as a function of the average nuisance
smoothness s/d (scaled by dimension), and the CATE smoothness scaled by dimension γ/d.
A number of important features about the rate are worth highlighting.
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Figure 2: The minimax rate for CATE estimation, as a function of average nuisance smoothness
s and CATE smoothness γ, each scaled by covariate dimension d. The black dotted line denotes
a threshold on the nuisance smoothness s/d, below which the oracle nonparametric regression
rate n−1/(2+d/γ) is unachievable (the “elbow” phenomenon).

First, of course, the rate never slows with higher nuisance smoothness s/d, for any CATE
smoothness γ/d, and vice versa. In other words, more smoothness can never hurt. However,
there is an important elbow phenomenon, akin to that found in functional estimation problems
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[Bickel and Ritov, 1988, Birgé and Massart, 1995, Robins et al., 2009b, Tsybakov, 2009]. In
particular, the minimax lower bound shows that when the average nuisance smoothness is low
enough that s < d/4

1+d/2γ , the oracle rate n−1/(2+d/γ) (which could be achieved if one actually

observed the potential outcomes) is in fact unachievable. This verifies a conjecture in Kennedy
[2020].

Notably, though, the elbow phenomenon we find in the problem of CATE estimation differs
quite substantially from that for classic pathwise differentiable functionals. For the latter,
the rate is parametric (i.e., n−1/2) above some threshold, and nonparametric (n−1/(1+d/4s))
below. In contrast, in our setting the rate matches that of nonparametric regression above
the threshold, and otherwise is a combination of nonparametric regression and functional
estimation rates. Thus in this problem there are many elbows, with the threshold depending
on the CATE smoothness γ. In particular, our minimax rate below the threshold,

n
−1/

(
1+ d

2γ
+ d

4s

)

,

is a mixture of the nonparametric regression rate n−1/(1+d/2γ) (on the squared scale) and the
classic functional estimation rate n−1/(1+d/4s). This means, for example, that in regimes where
the CATE is very smooth, e.g., γ → ∞, the CATE estimation problem begins to resemble that
of pathwise-differentiable functional estimation, where the elbow occurs at s > d/4, with rates
approaching the parametric rate n−1/2 above, and the functional estimation rate n−1/(1+d/4s)

below. At the other extreme, where the CATE does not have any extra smoothness, so that
γ → β (note we must have γ ≥ β), the elbow threshold approaches

s >
d/4

1 + d/2β
⇐⇒ α >

−β
1 + d/2β

which holds for any α ≥ 0. Thus, at this other extreme, there is no elbow phenomenon, and
the CATE estimation problem resembles that of smooth nonparametric regression, with opti-
mal rate n−1/(2+d/β). For the arguably more realistic setting, where the CATE smoothness γ
may take intermediate values between β and ∞, the minimax rate is a mixture, interpolating
between the two extremes. All of this quantifies the sense in which the CATE can be viewed
as a regression/functional hybrid.

It is also worth mentioning that no estimator previously proposed in the literature (that we
know of) attains the minimax rate in Theorem 1 in full generality. Some estimators have been
shown to attain the oracle rate n−1/(2+d/γ), but only under stronger assumptions than the
minimal condition we find here, i.e., that s > d/4

1+d/2γ . One exception is the undersmoothed R-

learner estimator analyzed in Kennedy [2020], which did achieve the rate n−1/(2+d/γ) whenever

s > d/4
1+d/2γ , under some conditions. However, in the low-smoothness regime where s < d/4

1+d/2γ ,

that estimator’s rate was n−2s/d, which is slower than the minimax rate we find here. This
motivates our work in the following section, where we propose and analyze a new estimator,
whose error matches the minimax rate in much greater generality (under some conditions, e.g.,
on how well the covariate density is estimated).

Remark 4. A slightly modified version of our construction also reveals that, when the CATE

τ(x) = τ is constant, the classic functional estimation rate n−1/(1+ d
4s) acts as a minimax lower

bound. To the best of our knowledge, this result has not been noted elsewhere.
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4 Attainability

In this section we show that the minimax lower bound of Theorem 1 is actually attainable,
via a new local polynomial version of the R-Learner [Kennedy, 2020, Nie and Wager, 2021],
based on an adaptation of higher-order influence functions [Robins et al., 2008, 2009a, 2017].

4.1 Proposed Estimator & Decomposition

In this subsection we first describe our proposed estimator, and then give a preliminary error
bound, which motivates the specific bias and variance calculations in following subsections. In
short, the estimator is a higher-order influence function-based version of the local polynomial
R-learner analyzed in Kennedy [2020]. At its core, the R-Learner essentially regresses outcome
residuals on treatment residuals to estimate a weighted average of the CATE. Early versions
for a constant or otherwise parametric CATE were studied by Chamberlain [1987], Robinson
[1988], and Robins [1994], with more flexible series, RKHS, and lasso versions studied more
recently by Robins et al. [2008], Nie and Wager [2021], and Chernozhukov et al. [2017], re-
spectively. This previous work did not obtain the minimax optimal rates in Theorem 2.

Definition 2 (Higher-Order Local Polynomial R-Learner). Let Kh(x) =
1
hd

1(‖x−x0‖ ≤ h/2).
For each covariate xj , j = 1, ..., d, define ρ(xj) = {ρ0(xj), ρ1(xj), ..., ρ⌊γ⌋(xj)}T as the first
(⌊γ⌋+ 1) terms of the Legendre polynomial series (shifted to be orthonormal on [0, 1]),

ρm(xj) =

m∑

ℓ=0

θℓmx
ℓ
j for θℓm = (−1)ℓ+m

√
2m+ 1

(
m

ℓ

)(
m+ ℓ

ℓ

)
.

Define ρ(x) to be the corresponding tensor product of all interactions of ρ(x1), ..., ρ(xd) up

to order ⌊γ⌋, which has length q =
(d+⌊γ⌋

⌊γ⌋

)
and is orthonormal on [0, 1]d, and finally define

ρh(x) = ρ (1/2 + (x− x0)/h). The proposed estimator is then defined as

τ̂(x0) = ρh(x0)
TQ̂−1R̂ (4)

where Q̂ is a q × q matrix and R̂ a q-vector given by

Q̂ = Pn

{
ρh(X)Kh(X)ϕ̂a1(Z)ρh(X)T

}
+ Un

{
ρh(X1)Kh(X1)ϕ̂a2(Z1, Z2)Kh(X2)ρh(X1)

T

}

R̂ = Pn

{
ρh(X1)Kh(X1)ϕ̂y1(Z1)

}
+ Un

{
ρh(X1)Kh(X1)ϕ̂y2(Z1, Z2)Kh(X2)

}
,

respectively, and

ϕ̂a1(Z) = {A− π̂(X)}2

ϕ̂y1(Z) = {Y − µ̂(X)}{A− π̂(X)}
ϕ̂a2(Z1, Z2) = −{A1 − π̂(X1)}bh(X1)

TΩ̂−1bh(X2){A2 − π̂(X2)}
ϕ̂y2(Z1, Z2) = −{A1 − π̂(X1)}bh(X1)

TΩ̂−1bh(X2){Y2 − µ̂(X2)}
bh(x) = b{1/2 + (x− x0)/h}1(‖x− x0‖ ≤ h/2)

Ω̂ =

∫

v∈[0,1]d
b(v)b(v)T dF̂ (x0 + h(v − 1/2))

for b : Rd 7→ R
k a basis of dimension k. The nuisance estimators (F̂ , π̂, µ̂) are constructed

from a separate training sample Dn, independent of that on which Un operates.
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The estimator in Definition 2 can be viewed as a localized higher-order estimator, and
depends on two main tuning parameters: the bandwidth h, which controls how locally one
averages near x0, and the basis dimension k, which controls how bias and variance are balanced
in the second-order U-statistic terms in Q̂ and R̂. The latter U-statistic terms are important
for debiasing the first-order sample average terms. In addition, our proposed estimator can
be viewed as estimating a locally weighted projection parameter τh(x0) = ρh(x0)

Tθ, with
coefficients given by

argmin
β

E

[
Kh(x)π(x){1− π(x)}

{
τ(x)− βTρh(x)

}2
]
= Q−1R (5)

for

Q =

∫
ρh(x)Kh(x)ϕa1(z)ρh(x)

T dP(z) =

∫
ρh(x)Kh(x)π(x){1− π(x)}ρh(x)T dF (x)

R =

∫
ρh(x)Kh(x)ϕy1(z) dP(z) =

∫
ρh(x)Kh(x)π(x){1− π(x)}τ(x) dF (x).

In other words, this projection parameter τh(x0) is a Kh(x)π(x){1 − π(x)}-weighted least
squares projection of the CATE τ(x) on the scaled Legendre polynomials ρh(x). Crucially,
since ρh(x) includes polynomials in x up to order ⌊γ⌋, the projection parameter is within hγ

of the target CATE; this is formalized in the following proposition.

Proposition 4. Let τh(x0) = ρh(x0)
TQ−1R denote the projection parameter from (5), and

assume:

1. τ(x) is γ-smooth,

2. the eigenvalues of Q are bounded below away from zero, and

3.
∫

1{‖x− x0‖ ≤ h/2} dF (x) . hd.

Then
|τh(x0)− τ(x0)| . hγ .

Proof. This proof follows from a higher-order kernel argument (e.g., Proposition 1.13 of Tsy-
bakov [2009], Proposition 4.1.5 of Giné and Nickl [2021]), after noting that we can treat
Kh(x)π(x){1 − π(x)} itself as a kernel. A similar result was also proved in Kennedy [2020].
To ease notation we prove the result in the d = 1 case but the logic is the same when d > 1.

First note that the local polynomial projection operator Lg(x) ≡
∫
g(x)wh(x) dx for

wh(x) ≡ ρh(x0)
TQ−1ρh(x)Kh(x)π(x){1− π(x)}f(x)

reproduces polynomials, in the sense that, for any polynomial of the form g(x) = aTρh(x),
a ∈ R

q, we have

Lg(x) =

∫ {
aTρh(x)

}
wh(x) dx

= ρh(x0)
TQ−1

∫
ρh(x)Kh(x)π(x){1− π(x)}ρh(x)Tf(x) dx a

= ρh(x0)
TQ−1Qa = aTρh(x0) = g(x0).
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Therefore
∫
wh(x)τ(x) dx− τ(x0) =

∫
wh(x)

{
τ(x)− τ(x0)

}
dx

=

∫
wh(x)





⌊γ⌋−1∑

j=1

Djτ(x0)

j!
(x− x0)

j +
D⌊γ⌋τ(x∗)

⌊γ⌋! (x− x0)
⌊γ⌋



 dx

= 0 +

∫
wh(x)

{
D⌊γ⌋τ(x0 + ǫ(x− x0))−D⌊γ⌋τ(x0)

⌊γ⌋!

}
(x− x0)

⌊γ⌋ dx

≤
∫

|wh(x)|
C‖x− x0‖γ−⌊γ⌋

⌊γ⌋! ‖x− x0‖⌊γ⌋ dx

=
Chγ

⌊γ⌋!

{
hd
∫

‖u‖γ |wh(x0 + hu)| du
}

(6)

where the second line follows by Taylor expansion (with x∗ = x0+ǫ(x−x0) for some ǫ ∈ [0, 1]),
the third by the polynomial reproducing property, the fourth since τ is γ-smooth, and the last
by a change of variable with u = (x− x0)/h (so that dx = hd du).

Now the result follows since we show the term on the right in (6) is bounded under the
stated assumptions. Specifically

hd
∫

‖u‖γ |wh(x0 + hu)| du =

∫
‖u‖γ

∣∣ρh(x0)TQ−1ρh(x0 + hu)
∣∣ 1(‖u‖ ≤ 1/2)

× π(x0 + hu){1− π(x0 + hu)}f(x0 + hu) du

≤
(
1/4

2γ

)
‖ρ(1/2)‖

∥∥Q−1
∥∥
∫ 1/2

−1/2
‖ρ(1/2 + u)‖f(x0 + hu) du

=
Cq2/4

2γ
∥∥Q−1

∥∥h−d
∫

1(‖x− x0‖ ≤ h/2) dF (x) . 1

where the second line follows from the submultiplicative property of the operator norm and
since π(1− π) ≤ 1/4, and the last from Assumptions 2 and 3 and since

‖ρ(x)‖2 ≤
(
d+ ⌊γ⌋
⌊γ⌋

)
(2⌊γ⌋+ 1) ≤ Cq2

for all x (Belloni et al. [2015], Example 3.1), since each Legendre term satisfies |ρm(xj)| ≤√
2m+ 1 ≤

√
2⌊γ⌋+ 1 for m ≤ ⌊γ⌋, and the length of ρ is q =

(d+⌊γ⌋
⌊γ⌋

)
, i.e., the maximum

number of monomials in a polynomial in d variables with degree up to ⌊γ⌋.

Before continuing, we first give simple sufficient conditions under which the eigenvalues of
Q are bounded. In short, this holds under standard boundedness conditions on the propensity
score and covariate density.

Proposition 5. If (i) ǫ ≤ π(x) ≤ 1− ǫ and (ii) the density dF (x) is bounded above and below
away from zero on {x : ‖x − x0‖ ≤ h/2}, then the eigenvalues of Q are bounded above and
below away from zero.
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Proof. Define the stretched function g∗(v) = g(x0 + h(v − 1/2)) for any g : Rd 7→ R. This
maps values of g in the small cube [x0 − h/2, x0 + h/2]d around x0 to the whole space [0, 1]d.
Then note that, with the change of variables v = 1

2 + x−x0
h ,

Q =

∫
ρh(x)Kh(x)π(x){1− π(x)}ρh(x)T dF (x)

=

∫

‖v−1/2‖≤1/2
ρ(v)ρ(v)Tπ∗(v){1− π∗(v)} dF ∗(v).

Next note that ǫ(1− ǫ) ≤ π(1− π) ≤ 1/4, so the eigenvalues of Q will be bounded if those of
the matrix ∫

ρ(v)ρ(v)T dF (x0 + h(v − 1/2))

are. But
∫
ρ(x)ρ(x)T dx = I by orthonormality of the Legendre polynomials on [0, 1]d, and

the local boundedness of dF ensures dF ∗/dµ is bounded above and below away from zero, for
µ the uniform measure. Therefore Proposition 2.1 of Belloni et al. [2015] yields the result.

As mentioned above, the estimator (4) can be viewed as a modified higher-order (specifi-
cally, second-order) estimator of the projection parameter. To see this, first note that the first
term in R̂, i.e.,

Pn

{
ρh(X)Kh(X)ϕ̂y1(Z)

}
,

is the usual first-order influence function-based estimator of R. Kennedy [2020] analyzed an
undersmoothed version of this estimator (where the nuisance estimates π̂ and µ̂ themselves
are undersmoothed linear smoothers), calling it the local polynomial R-learner. The second
term

Un

{
ρh(X1)Kh(X1)ϕ̂y2(Z1, Z2)Kh(X2)

}

is similar to the second-order U-statistic correction that would be added using the higher-order
influence function methodology developed by Robins et al. [2008, 2009a, 2017]. However, this
term differs in two important ways, both relating to localization near x0. First, the U-statistic
is localized with respect to both X1 and X2, i.e., the product Kh(X1)Kh(X2) is included,
whereas only Kh(X1) would arise if the goal were purely to estimate the parameter R in (5).
Second, the basis functions

bh(x) = b

(
1/2 +

x− x0
h

)
1(‖x− x0‖ ≤ h/2)

appearing in ϕ̂a2, ϕ̂y2, and Ω̂ are localized; they only operate on Xs near x0, stretching them
out so as to map the cube [x0 − h/2, x0 + h/2]d around x0 to the whole space [0, 1]d (e.g.,
bh(x0 − h/2) = b(0), bh(x0) = b(1/2), etc.). This is the same localization that is used with
the Legendre basis ρ(x). In this sense, these localized basis terms spend all their approxima-
tion power locally rather than globally away from x0. (Specific approximating properties we
require of b will be detailed shortly). These somewhat subtle distinctions play a crucial role
in appropriately controlling bias, as will be described in more detail shortly.

Remark 5. Note again that, as with other higher-order estimators, the estimator (4) depends
on an initial estimate of the covariate distribution F (near x0), through Ω̂. Importantly, we do
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not take this estimator F̂ to be the empirical distribution, in general, since then our optimal
choices of the tuning parameter k would yield Ω̂ non-invertible; this occurs with higher-order
estimators of pathwise differentiable functionals as well [Mukherjee et al., 2017]. As discussed
in Remark 7, and in more detail shortly, we do give conditions under which the estimation
error in Ω̂ or F̂ does not impact the overall rate of τ̂(x0).

Crucially, Proposition 4 allows us to focus on understanding the estimation error in τ̂(x0)
with respect to the projection parameter τh(x0), treating hγ as a separate approximation bias.
The next result gives a finite-sample bound on this error, showing how it is controlled by the
error in estimating the components of Q and R.

Proposition 6. The estimator (4) satisfies

|τ̂(x0)− τh(x0)| ≤ ‖ρ(1/2)‖
(
|‖Q−1‖+ ‖Q̂−1 −Q−1‖

)(∥∥∥R̂−R
∥∥∥+

∥∥∥Q− Q̂
∥∥∥
2
‖Q−1R‖

)
,

and further if ‖Q−1‖, ‖Q̂−1 −Q−1‖, and ‖Q−1R‖ are all bounded above, then

E |τ̂(x0)− τh(x0)| . max
j

√
E

{
E(R̂j −Rj | Dn)2 + var(R̂j | Dn)

}

+max
j,ℓ

√
E

{
E(Q̂jℓ −Qjℓ | Dn)2 + var(Q̂jℓ | Dn)

}
.

for Dn a separate independent training sample on which (F̂ , π̂, µ̂) are estimated.

Proof. We have

|τ̂(x0)− τh(x0)| =
∣∣∣ρh(x0)TQ̂−1

{(
R̂−R

)
+
(
Q− Q̂

)
Q−1R

}∣∣∣

≤ ‖ρ(1/2)‖
∥∥∥Q̂−1

∥∥∥
(∥∥∥R̂−R

∥∥∥+
∥∥∥Q− Q̂

∥∥∥
∥∥Q−1R

∥∥
)

≤ ‖ρ(1/2)‖
(∥∥Q−1

∥∥+
∥∥∥Q̂−1 −Q−1

∥∥∥
)(∥∥∥R̂−R

∥∥∥+
∥∥∥Q− Q̂

∥∥∥
2

∥∥Q−1R
∥∥
)

by the sub-multiplicative and triangle inequalities of the operator norm, along with the fact
that ‖A‖ ≤ ‖A‖2. Together with the bounds on ‖Q−1‖, ‖Q̂−1 − Q−1‖, and ‖Q−1R‖, this
yields the first inequality. For the second inequality, first note ‖ρ(x)‖ ≤ Cq, as described in
the proof of Proposition 4. The second inequality now follows since

E‖R̂−R‖ ≤
√

E‖R̂−R‖2 =
√∑

j

E

[
E

{
(R̂j −Rj)2 | Dn

}]

=

√∑

j

E

{
bias(R̂j | Dn)2 + var(R̂j | Dn)

}

≤
√(

d+ ⌊γ⌋
⌊γ⌋

)
max
j

√
E

{
bias(R̂j | Dn)2 + var(R̂j | Dn)

}

using Jensen’s inequality, iterated expectation, and the usual bias-variance decomposition.
The last line follows since the length of R is

(d+⌊γ⌋
⌊γ⌋

)
. The logic is exactly the same for

E‖Q̂−Q‖2 = E

√∑
j,ℓ(Q̂jℓ −Qjℓ)2.
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Thus Proposition 6 tells us that bounding the conditional bias and variance of the com-
ponents of R̂ and Q̂ will also yield finite-sample bounds on the error in τ̂(x0), relative to the
projection parameter τh(x0). These bias and variance bounds will be derived in the following
two subsections.

4.2 Bias

In this subsection we derive bounds on the conditional bias of the estimators R̂j and Q̂jℓ, rel-
ative to the components of the projection parameter (5), given the training sample Dn. The
main ideas behind the approach are to use localized versions of higher-order influence function
arguments, along with a specialized localized basis construction, which results in smaller bias
due to the fact that the bases only need to be used for approximation in a shrinking window
around x0.

Here we rely on the basis b(x) having optimal Hölder approximation properties, in the
sense that the approximation error of projections in L2 norm satisfies

‖(I −Πb)g‖F ∗ . k−s/d for any s-smooth function g (7)

where Πbg = argminℓ=θTb
∫
(g − ℓ)2 dF ∗ is the usual linear projection of g on b, for dF ∗(v) =

dF (x0 + h(v − 1/2)) the distribution in Bh(x0), the h-ball around x0, mapped to [0, 1]d. The
approximating condition (7) holds for numerous bases, including spline, CDV wavelet, and
local polynomial partition series (and polynomial and Fourier series, up to log factors); it is
used often in the literature. We refer to Belloni et al. [2015] for more discussion and specific
examples (see their Condition A.3 and subsequent discussion in, for example, their Section 3.2).

Proposition 7. Assume:

1. λmax(Ω) is bounded above,

2. the basis b satisfies approximating condition (7),

3. π(x)− π̂(x) is α-smooth,

4. µ(x)− µ̂(x) is β-smooth.

Then

|E(R̂j −Rj | Dn)| .

(
k

hd

)−2s/d

+ ‖π̂ − π‖F ∗‖µ̂− µ‖F ∗‖Ω̂−1 − Ω−1‖

|E(Q̂jℓ −Qjℓ | Dn)| .

(
k

hd

)−2α/d

+ ‖π̂ − π‖2F ∗‖Ω̂−1 − Ω−1‖.

Before delving into the proof, we give some brief discussion. The bias consists of two terms;
the first is the main bias term that would result even if the covariate distribution F were known,
and the second is essentially the contribution from having to estimate F . Compared to the
main bias term in a usual higher-order influence function analysis, which is k−2s/d (e.g., for
the average treatment effect), our bias term is smaller; this is a result of using the localized
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basis bh(x) in Definition (4), which only has to be utilized locally near x0 (this smaller bias
will be partially offset by a larger variance, as discussed in the next subsection). As mentioned
in Remark 7, the contribution from having to estimate F is only a third-order term, since the
estimation error of Ω̂ (in terms of operator norm) is multiplied by a product and square of
nuisance errors for Rj and Qjℓ, respectively (in L2(F

∗) norm). In Proposition 9, given after

the proof of Proposition 7, we show how the operator norm error of Ω̂ translates to estimation
error in the distribution F itself.

Proof. We only prove the result for R̂j , since the logic is the same for Q̂jℓ. By iterated
expectation, the conditional mean of the first-order term is

E{ρh(X1)Kh(X1)ϕ̂y1(Z) | Dn} = R+

∫
ρh(x)Kh(x){π(x)− π̂(x)}{µ(x)− µ̂(x)} dF (x)

= R+

∫
ρ(v){π∗(v)− π̂∗(v)}{µ∗(v)− µ̂∗(v)} dF ∗(v) (8)

where we use the change of variable v = 1
2+

x−x0
h and again define for any function g : Rd 7→ R

its corresponding stretched version as g∗(v) = g(x0 + h(v − 1/2)). To ease notation it is left
implicit that any integral over v is only over {v : ‖v − 1/2‖ ≤ 1/2}. Similarly, the conditional
mean of the second-order influence function term is

E{ρh(X1)Kh(X1)ϕ̂y2(Z1, Z2)Kh(X2) | Dn}

= −
∫∫

ρh(x1)Kh(x1){π(x1)− π̂(x1)}bh(x1)TΩ̂−1bh(x2){µ(x2)− µ̂(x2)}Kh(x2) dF (x2) dF (x1)

= −
∫∫

ρ(v1){π∗(v1)− π̂∗(v1)}b(v1)TΩ̂−1b(v2){µ∗(v2)− µ̂∗(v2)} dF ∗(v2) dF
∗(v1)

= −
∫
ρ(v1){π∗(v1)− π̂∗(v1)}Π̂b(µ∗ − µ̂∗)(v1) dF

∗(v1) (9)

where we define

Πbg
∗(u) = b(u)TΩ−1

∫
b(v)g∗(v) dF ∗(v)

as the F ∗-weighted linear projection of g∗ on the basis b, and Π̂bg
∗(u) as the estimated version,

which simply replaces Ω with Ω̂. Therefore adding the first- and second-order expected values
in (8) and (9), the overall bias relative to R is

∫
ρ(v){π∗(v)− π̂∗(v)}(I − Π̂b)(µ

∗ − µ̂∗)(v) dF ∗(v)

=

∫
ρ(v){π∗(v)− π̂∗(v)}(I −Πb)(µ

∗ − µ̂∗)(v) dF ∗(v)

+

∫
ρ(v){π∗(v)− π̂∗(v)}(Πb − Π̂b)(µ

∗ − µ̂∗)(v) dF ∗(v)

=

∫
(I −Πb){ρ(π∗ − π̂∗)}(v)(I −Πb)(µ

∗ − µ̂∗)(v) dF ∗(v) (10)

+

∫
ρ(v){π∗(v)− π̂∗(v)}(Πb − Π̂b)(µ

∗ − µ̂∗)(v) dF ∗(v) (11)
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where the last line follows from orthogonality of a projection with its residuals (Lemma 3(i)).

Now we analyze the bias terms (10) and (11) separately; the first is the main bias term,
which would arise even if the covariate density were known, and the second is the contribution
coming from having to estimate the covariate density.

Crucially, by virtue of using the localized basis bh, the projections in these bias terms are
of stretched versions of the nuisance functions (π∗ − π̂∗) and (µ∗ − µ̂∗), on the standard non-
localized basis b, with weights equal to the stretched density dF ∗. This is important because
stretching a function increases its smoothness; in particular, the stretched and scaled function
g∗(v)/hα is α-smooth whenever g is α-smooth. This follows since

∣∣∣D⌊α⌋g∗(v)−D⌊α⌋g∗(v′)
∣∣∣ =

∣∣∣D⌊α⌋g(x0 + h(v − 1/2))−D⌊α⌋g(x0 + h(v′ − 1/2))
∣∣∣

= h⌊α⌋
∣∣∣g(⌊α⌋)(x0 + h(v − 1/2))− g(⌊α⌋)(x0 + h(v′ − 1/2))

∣∣∣
. hα|v − v′|

where the second equality follows by the chain rule, and the third since g is α-smooth. Thus
the above implies h−α

∣∣D⌊α⌋g∗(v)−D⌊α⌋g∗(v′)
∣∣ . |v − v′|, i.e., that g∗(v)/hα is α-smooth.

Therefore if g is α-smooth, then ‖(I −Πb)g
∗/hα‖F ∗ . k−α/d by the Hölder approximation

properties (7) of the basis b, and so it follows that

‖(I −Πb)g
∗/hα‖F ∗ . hαk−α/d = (k/hd)−α/d (12)

for any α-smooth function g.

Therefore now consider the bias term (10). This term satisfies
∫ [

(I −Πb){ρ(π∗ − π̂∗)}(v)
]{

(I −Πb)(µ
∗ − µ̂∗)(v)

}
dF ∗(v)

≤ ‖(I −Πb){ρ(π∗ − π̂∗)}‖F ∗‖(I −Πb)(µ
∗ − µ̂∗)‖F ∗

. (k/hd)−2s/d

where the second line follows by Cauchy-Schwarz, and the third by (12), since (π − π̂) and
(µ− µ̂) are assumed α- and β-smooth, respectively (note ρ(v) is a polynomial, so the smooth-
ness of ρ(π∗ − π̂∗) is the same as (π∗ − π̂∗)).

Now for the term in (11), let θb,g = Ω−1
∫
bg dF ∗ denote the coefficients of the projection

Πbg, and note for any functions g1, g2 we have
∫
g1(Πb − Π̂b)(g2) dF

∗ =
(
Ω1/2θb,g1

)
T

Ω1/2(Ω−1 − Ω̂−1)Ω1/2
(
Ω1/2θb,g2

)

≤ ‖g1‖F ∗‖Ω1/2(Ω−1 − Ω̂−1)Ω1/2‖‖g2‖F ∗

≤ ‖g1‖F ∗‖g2‖F ∗‖Ω‖‖Ω̂−1 − Ω−1‖

where the first equality follows by definition, the second line since the L2 norm of the coef-
ficients of a (weighted) projection is no more than the weighted L2(P) norm of the function
itself (Lemma 3(iii)), and the last by the sub-multiplicative property of the operator norm,
along with the fact that ‖Ω1/2‖2 = ‖Ω‖.
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Several of our results require the eigenvalues of Ω be bounded above and below away from
zero. The next proposition gives simple sufficient conditions for this to hold, just as in Propo-
sition 5 for the matrix Q.

Proposition 8. If (i) the basis b(v) is orthonormal with respect to the uniform measure, and
(ii) the density dF (x) is bounded above and below away from zero on {x : ‖x − x0‖ ≤ h/2},
then the eigenvalues of Ω are bounded above and below away from zero.

Proof. The proof is similar to that of Proposition 5. First note that

Ω =

∫
bh(x)Kh(x)bh(x)

TdF (x) =

∫
b(v)b(v)T dF ∗(v)

by the change of variables v = 1
2 +

x−x0
h , and where dF ∗(v) = dF (x0 + h(v − 1/2)) as before.

Further
∫
b(v)b(v)T dv = I by the assumed orthonormality, and the local boundedness of

dF ensures dF ∗/dµ is bounded above and below away from zero, for µ the uniform measure.
Therefore Proposition 2.1 of Belloni et al. [2015] yields the result.

The next result is a refined version of Proposition 7, giving high-level conditions under
which estimation of F itself (rather than the matrix Ω−1) does not impact the bias. We refer
to Remark 7 for more detailed discussion of these conditions, and note that the result follows
directly from Proposition 7 together with Lemma 4.

Proposition 9. Under the assumptions of Proposition 7, if α ≥ β and additionally

1. λmin(Ω) is bounded below away from zero,

2. ‖dF̂ ∗/dF ∗‖∞ is bounded above and below away from zero,

3. ‖(dF̂ ∗/dF ∗)− 1‖∞ .
(k/hd)−2s/d

‖π̂−π‖F∗ (‖π̂−π‖F∗+‖µ̂−µ‖F∗ ) ,

then the bias satisfies

|E(R̂j −Rj | Dn)| ∨ |E(Q̂jℓ −Qjℓ | Dn)| .

(
k

hd

)−2s/d

.

4.3 Variance

In this subsection we derive bounds on the conditional variance of the estimators R̂j and Q̂jℓ,
given the training sample Dn. The main tool used here is a localized version of second-order
U-statistic variance arguments, recognizing that our higher-order estimator is, conditionally,
a second-order U-statistic over nhd observations.

Proposition 10. Assume:

1. y2, π̂2, µ̂2, and ‖µ̂− µ‖F ∗ are all bounded above, and
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2. λmax(Ω) is bounded above.

Then

var(R̂j | Dn) ∨ var(Q̂jℓ | Dn) .
1

nhd

(
1 +

k

nhd

(
1 + ‖Ω̂−1 − Ω−1‖2

))
.

Before giving the proof, we make a few brief comments. First, the variance here is anal-
ogous to that of a higher-order (quadratic) influence function estimator (cf. Theorem 1 of
Robins et al. [2009a]), except with sample size n deflated to nhd. This is to be expected given
the double localization in our proposed estimator. Another important note is that the contri-
bution to the variance from having to estimate F is relatively minimal, compared to the bias,
as detailed in Proposition 7. For the bias, non-trivial rate conditions are needed to ensure esti-
mation of F does not play a role, whereas for the variance one only needs the operator norm of
Ω̂−1 −Ω−1 to be bounded (under regularity conditions, this amounts to the estimator F̂ only
having bounded errors, in a relative sense, as will be noted in a remark shortly after the proof).

Proof. As with the bias, we prove the result for R̂j , since the logic is exactly the same for Q̂jℓ.

Given the training data Dn, the estimator R̂j is a second-order U-statistic with kernel

ξ(Z1, Z2) = ρh(X1)Kh(X1)
{
ϕ̂y1(Z1) + ϕ̂y2(Z1, Z2)Kh(X2)

}

Thus its conditional variance is given by the usual variance of a second-order U-statistic (e.g.,
Lemma 6 of Robins et al. [2009a]), which is

var {Un(ξ) | Dn} =

(
4(n− 2)

n(n− 1)

)
var{ξ1(Z1) | Dn}+

(
2

n(n− 1)

)
var{ξ(Z1, Z2) | Dn}

≤ 4E{ξ1(Z1)
2 | Dn}

n
+

4E{ξ(Z1, Z2)
2 | Dn}

n2
(13)

for ξ1(z1) =
∫
ξ(z1, z2) dP(z2), if n ≥ 2. In our case ξ1 equals

ρh(X1)Kh(X1)
{
ϕ̂y1(Z1) + {A1 − π̂(X1)}Π̂b(µ∗ − µ̂∗)(X1)

}
.

Therefore for the first term in (13) we have

∫
ξ21 dP ≤ 2

(∫
ρ2hK

2
hϕ̂

2
y1 dP+

∫
ρ2hK

2
h{π(1− π) + (π − π̂)2}{Π̂b(µ∗ − µ̂∗)}2 dF

)

.
1

hd

(∫
ρ(v)2 dF ∗(v) +

∫
ρ(v)2{Π̂b(µ∗ − µ̂∗)(v)}2 dF ∗(v)

)

.
1

hd
(
1 + ‖µ̂− µ‖2F ∗

)

where the second inequality follows by the change of variables v = 1
2+

x−x0
h and since (ϕ̂y1, π, π̂)

are uniformly bounded and 0 ≤ Kh(x) . h−d, and the third since supv ‖ρ(v)‖ . q (Belloni
et al. [2015], Example 3.1) and the weighted L2 norm of a projection is no more than the
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weighted L2(P) norm of the function itself (Lemma 3(ii)). Now, for the second term in (13),
letting bj(x) ≡ Ω−1/2bj(x) and M ≡ Ω1/2Ω̂−1Ω1/2, we have

E{ξ(Z1, Z2)
2 | Dn} =

∫ [
ρh(x1){a1 − π̂(x1)}

{
bh(x1)

TΩ̂−1bh(x2)
}
{y2 − µ̂(x2)}Kh(x1)Kh(x2)

]2
dP(z1) dP(z2)

.
1

h2d

∫
ρh(x1)

2
{
bh(x1)

TΩ̂−1bh(x2)
}2
Kh(x1)Kh(x2) dF (x1) dF (x2)

.
1

h2d

∫ {
b(v1)

TMb(v2)
}2

dF ∗(v1) dF
∗(v2)

=
‖M‖22
h2d

=

(
1

h2d

)
‖Ω1/2Ω−1Ω1/2 +Ω1/2(Ω̂−1 − Ω−1)Ω1/2‖22

≤ 2

(
1

h2d

)(
‖I‖22 + ‖Ω1/2(Ω̂−1 − Ω−1)Ω1/2‖22

)

≤ 2

(
1

h2d

)
k
(
1 + ‖Ω‖2‖Ω̂−1 − Ω−1‖2

)

where the first line follows by definition, the second since (a − π̂) and (y − µ̂) are uniformly
bounded and 0 ≤ Kh(x) . h−d, the third by a change of variables v = 1

2+
x−x0
h , by definition of

b and M , and since ρ(v) is bounded, the fourth by definition since
∫
bb

T

dF ∗ = I, and the last
two by basic properties of the Frobenius norm (e.g., triangle inequality and ‖A‖2 ≤

√
k‖A‖)

and (a+ b)2 ≤ 2(a2 + b2).

Remark 6. By Lemma 4, under the assumptions of Proposition 9, it follows that

‖Ω̂−1 − Ω−1‖ . ‖(dF̂ ∗/dF ∗)− 1‖∞,

so estimation of F will not affect the conditional variances as long as the error of F̂ is bounded
in uniform norm.

4.4 Overall Rate

Combining the approximation bias in Proposition 4 with the decomposition in Proposition 6,
and the bias and variance bounds from Proposition 9 and Proposition 10, respectively, shows
that

EP |τ̂(x0)− τP (x0)| . hγ +

(
k

hd

)−2s/d

+

√
1

nhd

(
1 +

k

nhd

)
(14)

under all the combined assumptions of these results, which are compiled in the statement of
Theorem 2 below. The first two terms in (14) are the bias, with hγ an oracle bias that would
remain even if one had direct access to the potential outcomes (Y 1 − Y 0) (or equivalently,
samples of τ(X) + ǫ for some ǫ with conditional mean zero), and (k/hd)−2s/d analogous to
a squared nuisance bias term, but shrunken due to the stretching induced by the localized
basis bh. Similarly, 1/(nhd) is an oracle variance that would remain even if given access to
the potential outcomes, whereas the k/(nhd) factor is a contribution from nuisance estimation
(akin to the variance of a series regression on k basis terms with nhd samples).
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Balancing bias and variance in (14) by taking the tuning parameters to satisfy

h ∼ n
−(1/γ)/

(
1+ d

2γ
+ d

4s

)

and k ∼ n
−
(

d
γ
+ d

2s

)
/
(
1+ d

2γ
+ d

4s

)

ensures the rate matches the minimax lower bound from Theorem 1, proving that lower bound
is in fact tight. This is formalized in the following theorem, which we present after compiling
and briefly discussing the necessary regularity conditions.

Condition A1. The eigenvalues of Q and Ω are bounded above and below away from zero.

Condition A2. π(x)− π̂(x) is α-smooth and µ(x)− µ̂(x) is β-smooth.

Condition A3. The quantities y2, (π̂2, µ̂2), ‖µ̂−µ‖F ∗ , and ‖Q̂−1−Q−1‖ are all bounded above,
and ‖dF̂ ∗/dF ∗‖∞ is bounded above and below away from zero.

Condition A1 is a standard collinearity restriction used with least squares estimators;
simple sufficient conditions were given earlier in Propositions 5 and 8. In Lemma 5 in the
appendix we also prove that this condition holds for the class of densities used in the model
P in Theorem 1, ensuring that the upper bound holds over the same model. A sufficient
condition for Condition A2 to hold is that the estimators π̂(x) and µ̂(x) match the (known)
smoothness of π(x) and µ(x); this would be the case for standard minimax optimal estimators
based on series or local polynomial methods. Condition A3 is a mild boundedness condition
on the outcome Y (which could be weakened at the expense of adding some complexity via
tail conditions), as well as the nuisance estimators (F̂ ∗, π̂, µ̂), and even weaker, the errors
‖µ̂ − µ‖F ∗ and ‖Q̂−1 − Q−1‖ (which would typically not only be bounded but decreasing to
zero).

Theorem 2. Assume regularity conditions A1–A3, that the basis b satisfies Hölder approxi-
mating condition (7), and:

1. ‖(dF̂ ∗/dF ∗)− 1‖∞ . n
−1/(1+ d

2γ + d
4s∨(1+ d

2γ ))
‖π̂−π‖F∗ (‖π̂−π‖F∗+‖µ̂−µ‖F∗ ) ,

2. π(x) is α-smooth, and ǫ ≤ π(x) ≤ 1− ǫ for some ǫ > 0,

3. µ(x) is β-smooth, with β ≤ α,

4. τ(x) is γ-smooth.

Then if the tuning parameters satisfy h ∼ n
−(1/γ)/

(
1+ d

2γ
+ d

4s

)

and k ∼ n
−
(

d
γ
+ d

2s

)
/
(
1+ d

2γ
+ d

4s

)

,
the estimator τ̂ from Definition 2 has error upper bounded as

EP |τ̂(x0)− τP (x0)| .




n
−1/

(
1+ d

2γ
+ d

4s

)

if s < d/4
1+d/2γ

n
−1/

(
2+ d

γ

)

otherwise.

We refer to Section 3.3 for more detailed discussion and visualization of the rate from The-
orem 2. However, in the following remark we discuss some details of Condition 1 of Theorem
2, which ensures the covariate distribution is estimated accurately enough in uniform norm.
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Remark 7. First, Condition 1 of Theorem 2 will of course hold if the covariate distribution is
estimated at a rate faster than that of the CATE (i.e., the numerator of the rate in Condition
1); however, it also holds under substantially weaker conditions, depending on how accurately
π and µ are estimated. This is because the condition really amounts to a third-order term (the
covariate distribution error multiplied by the squared nuisance error) being of smaller order
than the CATE rate. Specifically, the result of Theorem 2 can also be written as

EP |τ̂(x0)− τP (x0)| . n
−1/

(
1+ d

2γ
+ d

4s
∨
(
1+ d

2γ

))

+R3,n, (15)

for the third-order error term

R3,n = ‖(dF̂ ∗/dF ∗)− 1‖∞‖π̂ − π‖F ∗

(
‖π̂ − π‖F ∗ + ‖µ̂− µ‖F ∗

)
,

so that Condition 1 simply requires this third-order term to be smaller order than the first
minimax optimal rate in (15). Second, we note that we leave the condition in terms of the
L2(F

∗) errors ‖π̂ − π‖F ∗ and ‖µ̂ − µ‖F ∗ because, although we assume π and µ are α− and
β-smooth, technically, they do not need to be estimated at particular rates for any of the other
results we prove to hold. Of course, under these smoothness assumptions, there are available
minimax optimal estimators for which

‖π̂ − π‖F ∗ ≍ n−1/(2+d/α) and ‖µ̂− µ‖F ∗ ≍ n−1/(2+d/β).

If in addition there exists some ζ for which ‖(dF̂ ∗/dF ∗)− 1‖∞ ≍ n−1/(2+d/ζ) (e.g., if F has a
density that is ζ-smooth), then Condition 1 reduces to

1/

(
2 +

d

ζ

)
+ 2/

(
2 +

d

α

)
> 1/

(
1 +

d

2γ
+

d

4s
∨
(
1 +

d

2γ

))
.

Exploring CATE estimation under weaker conditions on the covariate distribution is an in-
teresting avenue for future work; we suspect the minimax rate changes depending on what is
assumed about this distribution, as is the case for average effects (e.g., page 338 of Robins
et al. [2008]) and conditional variance estimation [Shen et al., 2020, Wang et al., 2008].

5 Discussion

In this paper we have characterized the minimax rate for estimating heterogeneous causal
effects in a smooth nonparametric model. We derived a lower bound on the minimax rate
using a localized version of the method of fuzzy hypotheses, and a matching upper bound via
a new local polynomial R-Learner estimator based on higher-order influence functions. The
minimax rate has several important features. First, it exhibits a so-called elbow phenomenon:
when the nuisance functions (regression and propensity scores) are smooth enough, the rate
matches that of standard smooth nonparametric regression (the same that would be obtained
if potential outcomes were actually observed). On the other hand, when the average nuisance
smoothness is below the relevant threshold, the rate obtained is slower. This leads to a second
important feature: in the latter low-smoothness regime, the minimax rate is a mixture of the
minimax rates for nonparametric regression and functional estimation. This quantifies how
the CATE can be viewed as a regression/functional hybrid.
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There are numerous important avenues left for future work. We detail a few briefly here.
First, the goal of the present work is mostly to further our theoretical understanding of the
fundamental limits of CATE estimation; thus there remains lots to do to make the optimal
rates obtained here achievable in practice. For example, although we have specified partic-
ular values of the tuning parameters h and k to confirm attainability of our minimax lower
bound, it would be practically useful to have more data-driven approaches for selection. In
particular, the optimal tuning values depend on underlying smoothness, and since in practice
this is often unknown, a natural next step is to study adaptivity. We expect that approaches
based on Lepski’s method could be used, as in Mukherjee et al. [2015] and Liu et al. [2021],
but how well these work in practice is unclear. There are also potential computational chal-
lenges associated with constructing the tensor products in ρ(x) when dimension d is not small,
as well as evaluating the U-statistic terms of our estimator, and inverting the matrices Q̂ and Ω̂.

Second, in this work we have assumed the propensity score is smoother than the regression
function. Interestingly, there seems to be some important asymmetry in the role of these two
nuisance functions for the CATE, indicating that it may differ in this respect from the ATE
or expected partially missing outcome [Robins et al., 2009b]. In particular, our lower bound
construction breaks down when the regression function is smoother, and our upper bound rate
is then driven by the lesser propensity score smoothness, rather than the average smoothness.
We conjecture that the upper bound could be improved in this regime.
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6 Technical Lemmas

Lemma 3. Let Πwf(t) = b(t)TΩ−1
∫
b(x)w(x)f(x) dP(x) denote a w-weighted projection with

Ω =
∫
bwbTdP for w ≥ 0. And let θw,f = Ω−1

∫
b(x)w(x)f(x) dP(x) denote the coefficients of

the projection. Then:

(i) projections are orthogonal to residuals, i.e.,

∫
(Πwf)(I −Πw)g wdP = 0,

(ii) the L2(wP) norm of a projection is no more than that of the function, i.e.,

∫
(Πwf)

2w dP ≤
∫
f2 wdP,

(iii) the L2 norm of the scaled coefficients is no more than the L2(wP) norm of the function,
i.e.,

‖Ω1/2θw,f‖2 ≤
∫
f2 wdP.

Proof. For (i) let b∗(x) = Ω−1/2b(x) so that
∫
b∗w(b∗)TdP = I and note that

∫
(Πwf)(I −Πw)g wdP =

∫ ∫
b(x)TΩ−1b(t)f(t)g(x) wdP(t) wdP(x)

−
∫
b(x)TΩ−1b(t)f(t)b(x)TΩ−1b(u)g(u) wdP(t) wdP(x) wdP(u)

=

∫
b∗(x)Tb∗(t)f(t)g(x) wdP(t) wdP(x)

−
∫
f(t)b∗(t)Tb∗(x)b∗(x)Tb∗(u)g(u) wdP(t) wdP(x) wdP(u)

=

∫
b∗(x)Tb∗(t)f(t)g(x) wdP(t) wdP(x)

−
∫
f(t)b∗(t)Tb∗(u)g(u) wdP(t) wdP(u) = 0

where the last line follows since
∫
b∗(x)b∗(x)T wdP(x) = I.
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For (ii) we have by definition that

∫
{Πwf(x)}2w(x) dF (x) =

∫ {∫
f(u)w(u)b(u)T dP(u)Ω−1b(x)

}{
b(x)TΩ−1

∫
b(t)w(t)f(t) dP(t)

}
w(x)dP(x)

=

{∫
f(u)w(u)b(u)T dP(u)Ω−1

}{∫
b(t)w(t)f(t) dP(t)

}
(16)

=

∫
f(t)Πwf(t)w(t) dP(t)

and so
∫
(f −Πwf)

2w dP =

∫
f2w dP− 2

∫
fΠwfw dP+

∫
(Πwf)

2w dP

=

∫
f2w dP−

∫
(Πwf)

2w dP

which implies the result as long as w ≥ 0, so that the far left side is non-negative.

For (iii) we have

‖Ω1/2θw,f‖2 = (Ω1/2θw,f )
T(Ω1/2θw,f ) = θTw,fΩθw,f

=

(∫
bTwf dP

)
Ω−1

(∫
bwf dP

)

=

∫
{Πwf(x)}2w(x) dP(x)

where the last equality holds by (16), and so the result follows from Lemma 3(ii).

Lemma 4. Assume:

1. 0 < b ≤ λmin(Ω) ≤ λmax(Ω) ≤ B <∞

2. 0 < c ≤ ‖dF̂ ∗/dF ∗‖∞ ≤ C <∞

Then
bc ≤ λmin(Ω̂) ≤ λmax(Ω̂) ≤ BC

and

‖Ω̂−1 − Ω−1‖ ≤
(
B

b2c

)
‖(dF̂ ∗/dF ∗)− 1‖∞.

Proof. The logic mirrors that of the proof of Proposition 2.1 in Belloni et al. [2015]. Note that

aTΩ̂a =

∫ {
aTb(v)

}2
dF̂ ∗(v)

≤ ‖dF̂ ∗/dF ∗‖∞
∫ {

aTb(v)
}2

dF ∗(v)

= ‖dF̂ ∗/dF ∗‖∞ aTΩa
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and by the same logic, aTΩa ≤ ‖dF ∗/dF̂ ∗‖∞ aTΩ̂a. Therefore

λmax(Ω̂) = max
‖a‖=1

aTΩ̂a ≤ ‖dF̂ ∗/dF ∗‖∞λmax(Ω)

λmin(Ω̂) = min
‖a‖=1

aTΩ̂a ≥ ‖dF ∗/dF̂ ∗‖−1
∞ λmin(Ω)

by the min-max theorem, which gives the first inequality. For the second, note

‖Ω̂−1 − Ω−1‖ = ‖Ω̂−1(Ω− Ω̂)Ω−1‖
≤ ‖Ω̂−1‖‖Ω− Ω̂‖‖Ω−1‖

by the sub-multiplicative property of the operator norm, and then

‖Ω− Ω̂‖ ≤ ‖(dF̂ ∗/dF ∗)− 1‖∞ ‖Ω‖

by the same logic as above.

Lemma 5. Assume:

1. dF (x) satisfies
∫

1{‖x− x0‖ ≤ h/2} dF (x) ≍ hd,

2. dF (x) is bounded above and below away from zero on its local support {x ∈ R
d : dF (x) >

0, ‖x−x0‖ ≤ h/2}, which is a union of no more than k disjoint cubes all with proportional
volume, for h and k defined in Proposition 3.

Let dF ∗(v) = dF (x0 + h(v − 1/2)) denote the distribution in Bh(x0), the h-ball around x0,
mapped to [0, 1]d, and similarly for π∗. Then the eigenvalues of

Q =

∫
ρ(v)ρ(v)Tπ∗(v){1− π∗(v)} dF ∗(v)

are bounded above and below away from zero, and there exists a basis b with Hölder approxi-
mation property (7), for which the eigenvalues of

Ω =

∫
b(v)b(v)T dF ∗(v)

are bounded above and below away from zero.

Proof. Note that since ǫ(1− ǫ) ≤ π(1−π) ≤ 1/4 and since dF (x) is bounded above and below
on its support, the eigenvalues of Q will be bounded if those of the matrix

k∑

j=1

∫
ρ(v)ρ(v)T1(v ∈Mj) dv

are, where Mj indicates the jth disjoint cube making up the local support of F . By the
min-max theorem, the eigenvalues are bounded by the min and max of

aT

∫
ρ(v)ρ(v)T

∑

j

1(v ∈Mj) dv a =

∫ {
aTρ(v)

}2∑

j

1(v ∈Mj) dv
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over all a ∈ R
q with ‖a‖ = 1. First consider lower bounding the eigenvalues. Note g(v) =

aTρ(v) is a polynomial of degree at most q. Therefore

∑

j

∫
g(v)21(v ∈Mj) dv ≥

∫
g(v)21{g(v)2 ≥ ǫ}

∑

j

1(v ∈Mj) dv

≥ ǫ

∫
1{g(v)2 ≥ ǫ}

∑

j

1(v ∈Mj) dv

≥ ǫ




∑

j

∫
1(v ∈Mj) dv −

∫
1{g(v)2 < ǫ} dv





≥ ǫ
(
C∗ − Cǫ1/2q

)
=

(
C∗

√
C

)4q

> 0

where the last line follows since
∫ ∑

j

1(v ∈Mj) dv ≍
∫
dF ∗(v) =

∫
dF (x0 + h(v − 1/2))

= h−d
∫

1{‖x− x0‖ ≤ h/2} dF (x) ≥ C∗

from a change of variables x = x0 + h(v− 1/2), so that v = 1/2+ (x− x0)/h and hd dv = dx,
together with Assumption 1 of the lemma, and by Theorem 4 of Carbery and Wright [2001].
The last equality follows if we choose ǫ = (C∗/2C)2q. To upper-bound the eigenvalues, note
that

∫ {
aTρ(v)

}2∑

j

1(v ∈Mj) dv ≤
∫ {

aTρ(v)
}2

dv = ‖a‖2 = 1

since
∫
ρ(v)ρ(v)T dv = I by the orthonormality of ρ.

Now consider the eigenvalues of Ω. We will construct a basis of order k for which eigenvalues
of Ω are bounded and for which the Hölder approximation property (7) holds.

Remark 8. For simplicity we only consider the case where there are exactly k cubes in the
local support of F ; if there are finitely many cubes, say M < ∞, the arguments are more
straightforward, orthonormalizing a standard series M times, once per cube, and taking k/M
terms from each. We omit details in the intermediate case where the number of cubes scales
at a rate slower than k, but we expect similar arguments to those below can be used.

First, let ρ(x) denote the tensor products of a Legendre basis of order s, orthonormal on
[−1, 1], i.e., tensor products of

ρj(xℓ) =

√
j + 1/2

2jj!

dj

dxjℓ
(x2ℓ − 1)j

for j ∈ {1, ..., s} and ℓ ∈ {1, ..., d}. This basis satisfies

∫
ρ(x)ρ(x)T dx = Is.
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Now shift and rescale so that the basis is orthonormal on Mj with

bj(x) = 2d
√
kρ

(
4k1/d

(
x− 1

2
− mj − x0

h

))

and so satisfies
∫
bj(x)bj(x)

T
1(x ∈Mj) dx = 4dk

∫
ρ

(
4k1/d

(
x− 1

2
− mj − x0

h

))
1(x ∈Mj) dx

=

∫ 1

−1
ρ(v)ρ(v)T dv = Is

where we used the change of variable v = 4k1/d
(
x− 1

2 − mj−x0
h

)
so that dv = 4dk dx and

x = v/4k1/d + 1/2 + (mj − x0)/h ∈Mj when v ∈ [−1, 1]d. Finally define the basis

b(v) = {b1(v)T1(v ∈M1), ..., bk(v)
T
1(v ∈Mk)}T

of length sk. Then

b(v)b(v)T =




b1(v)b1(v)
T
1(v ∈M1) 0 · · · 0
0 b2(v)b2(v)

T
1(v ∈M2) · · · 0

...
...

. . .
...

0 0 · · · bk(v)bk(v)
T
1(v ∈Mk)




Therefore since dF ∗(x) is bounded above and below on its support, the j-th diagonal block of
Ω is proportional to

∫
bj(v)bj(v)

T
1(v ∈Mj) dv = Is.

Therefore the eigenvalues of Ω are all proportional to one and bounded as desired. Further,
by the same higher-order kernel arguments for local polynomials as in Proposition 4, the basis
satisfies the Hölder approximation property (7).
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