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Abstract
This paper introduces decorated merge trees (DMTs) as a novel invariant for persistent
spaces. DMTs combine both π0 and Hn information into a single data structure that
distinguishes filtrations that merge trees and persistent homology cannot distinguish
alone. Three variants on DMTs, which emphasize category theory, representation
theory and persistence barcodes, respectively, offer different advantages in terms of
theory and computation. Two notions of distance—an interleaving distance and bot-
tleneck distance—for DMTs are defined and a hierarchy of stability results that both
refine and generalize existing stability results is proved here. To overcome some of
the computational complexity inherent in these distances, we provide a novel use of
Gromov-Wasserstein couplings to compute optimal merge tree alignments for a com-
binatorial version of our interleaving distance which can be tractably estimated. We
introduce computational frameworks for generating, visualizing and comparing deco-
rated merge trees derived from synthetic and real data. Example applications include
comparison of point clouds, interpretation of persistent homology of sliding window
embeddings of time series, visualization of topological features in segmented brain
tumor images and topology-driven graph alignment.
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1 Introduction

In this paper we introduce a new set of tools for Topological Data Analysis (TDA)
called Decorated Merge Trees (DMTs). Not only do these new tools have a rich
underlying theory that spans category theory and metric geometry, they also provide
topological signatures for datasets such as point clouds, time series, grayscale images
and networks which are more informative and interpretable than standard persistent
homology barcodes. Figure 1 illustrates the main construction of the paper with a sim-
ple example. In this figure, two point clouds with different coarse topological structure
are depicted. Their traditional TDA signatures—degree-0 and degree-1 Vietoris-Rips
persistence diagrams—do not distinguish these point clouds. Our DMT construc-
tion illustrates the multiscale topology of each point cloud by overlaying a merge
tree (a popular data structure in scientific visualization, used to summarize multiscale
connectivity—see surveysHeine et al. 2016;Yan et al. 2021)with a degree-1 persistent
homology barcode. This depicts not only themultiscale homological (H1) data of each
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Fig. 1 Decorated Merge Trees. The left column shows two point clouds. Their degree-0 and degree-1
Vietoris-Rips persistence diagrams in the middle column are essentially the same, despite clear topological
differences in the point clouds. The decorated merge trees (DMTs) in the third column clearly distinguish
the datasets topologically by fusing degree-0 and degree-1 information to track the topological location of
the degree-1 features. Each red bar corresponds to a degree-1 persistent feature and its placement in the
merge tree indicates the connected components over which the feature persists

point cloud, but also the (topological) location of each degree-1 feature in the dataset.
This paper formalizes the DMT construction from several perspectives and extends
classical lines of inquiry in the TDA literature—metric stability, decomposability and
practical computational aspects—to this novel setting.

Although the construction of the decorated merge tree presented above is intuitive,
it turns out that there are multiple ways of tracing births and deaths of homological
features along an evolving set of connected components. To this end we provide in
Sect. 2 three different definitions of a decorated merge tree:

1. The categorical decorated merge tree relies on the definition of a category of
parameterized vector spaces pVect. This definition fits squarely within the frame-
work of generalized persistence modules (Bubenik et al. 2015; Bubenik and Scott
2014) as it is defined in terms of a functor from (R,!) to pVect. This definition
allows us to leverage existing results to define an interleaving distance and establish
its stability.

2. The concretedecoratedmerge tree takes the perspective that the underlyingmerge
tree, along with its poset structure (MF,"), should define the domain of a functor
to the category of vector spaces Vect, where the homology of each component at
each time is recorded. This definition is equivalent to the categorical one, but is
more intuitive and suggests computational approaches.
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3. The barcode decorated merge tree takes a perspective similar to other TDA tech-
niques (Landi 2018; Lesnick and Wright 2015; Turner et al. 2014) that reduce the
study of complicated persistent spaces to ensembles of 1-dimensional persistence
modules. The barcode DMT associates to each point in the merge tree the barcode
gotten by restricting the filtration to the line that starts at that point and stretches to
infinity.

In Sect. 3, we introduce an interleaving distance between decorated merge trees
and establish several bounds that set decorated merge trees apart from existing TDA
methods. In particular, let f,g : X → R be functions whose sublevel sets are locally
connected. For every homological degree n, one obtains categorical decorated merge
trees F̃n and G̃n, as well as classical merge trees and persistence modules, associated
to the sublevel set filtrations of f and g. Theorems 2 and 3 allow one to extract the
following statement:

Theorem The interleaving distance between F̃n and G̃n is stable with respect to L∞-
distance between f and g, and is more sensitive than (i.e., lower bounded by) both the
interleaving distance between the associated merge trees and the interleaving distance
between the associated persistence modules.

After these stability results are proven, we focus on barcode decorated merge trees.
We show in Theorem 1 that a barcode decorated merge tree can be understood as a
Lipschitz map from the merge tree to the space of barcodes. Barcode decorated merge
trees are amenable to a theory of matchings (Definition 19) and thus a new decorated
bottleneck distance (Definition 20). This offers a tractable and approximable metric
for comparing these enriched invariants. Theorem 2 shows that this matching distance
is stable with respect to the interleaving distance between categorical decorated merge
trees.

In Sect. 4, representation-theoretic aspects of DMTs take center stage. In general,
one cannot hope for simple indecomposables such as the barcode decompositions that
appear in standard persistent homology—see Example 5 for an illustration. We say
that a DMT is real interval decomposable if it decomposes as a direct sum of DMTs
with totally ordered support. Theorem 4 provides a condition which is equivalent
to real interval decomposability. The class of real interval decomposable DMTs is
of particular interest. As Theorem 5 shows, on this class the map taking a DMT
to a barcode DMT is injective, thus providing a positive solution to a topological
inverse problem (Oudot and Solomon 2020). We also give methods for generating real
interval decomposable DMTs directly from data, with theoretical guarantees of their
correctness (Proposition 8).

Section 5 shifts the focus to computational aspects of interleaving distance between
decorated merge trees. Building on work of Gasparovic et al. (2019), we reformulate
computation of the matching distance between barcode decorated merge trees as the
search for an alignment between nodes of the trees which is optimal with respect to
a certain cost function (Proposition 9). This reformulation allows us to introduce a
method for estimating the metric via a continuous relaxation which can be solved
within the Gromov-Wasserstein framework from optimal transport theory (Mémoli
2011). Our algorithm is novel even when estimating the interleaving distance between
(undecorated) merge trees, but has close connections to other recent advances in the
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literature (Li et al. 2021; Mémoli et al. 2019, 2021). The computational focus is
continued in Sect. 6, where algorithms for computing and visualizing decorated merge
trees from synthentic and real datasets are described. The Python code used to produce
the figures and experiments for the paper are publicly available under an open source
license at https://github.com/trneedham/Decorated-Merge-Trees.

The main paper concludes with a discussion of future directions of research in
Sect. 7. In particular, we note that the DMT concept has natural generalizations such
as Reeb or MAPPER graphs decorated with zig-zag modules (Carlsson and De Silva
2010), correspondence modules (Hang and Mio 2020) or Leray (co)sheaves (Curry
2015). These constructions will be the subject of future work as they require more
substantative theoretical and algorithmic developments. By contrast, DMTs fit natu-
rally into a pre-existing body of literature and a fleshed out code base. Regardless,
decorated merge trees and decorated Reeb graphs are just a small part of a broader
research program to construct enriched TDA invariants that are more informative than
classical barcodes.

The paper includes three appendices. We draw readers’ attention to Appendices A
and B , which contain results on merge tree topology which are theoretically funda-
mental but fall outside of the narrative of the main body of the paper. Appendix C
contains proofs of some technical results.

2 Decoratedmerge trees three different ways

In this paperwe investigate topological signatureswhich go beyond standard persistent
homology of filtered topological spaces. To this end, we formally define three notions
of decoratedmerge trees—categorical, concrete and barcode-decorated—whichwere
described informally in the introduction. Before doing so, we review some preliminary
definitions.

2.1 Preliminaries

We now introduce the general class of objects to which our decorated merge tree
constructions will be applied.

Definition 1 A persistent space is a functor F : (R,!) → Top, where (R,!) is
considered as a poset category. Concretely, a persistent space associates to each
s ∈ R a topological space F(s) and to each ordered pair s ! t a continuous map
F(s ! t) : F(s) → F(t). These maps collectively satisfy the usual composition rules
of a functor. When each map F(s ! t) is an injection, we will call such a persistent
space a filtration.

We now describe several situations where persistent spaces arise, focusing on the
case of filtrations.
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Example 1 Given a continuous function f : X → R, one can consider the sublevel-set
filtration, which is a persistent space where

F(s) := f−1(−∞, s] = {x ∈ X | f(x) ! s}.

By equipping each sublevel-set with the subspace topology, the inclusionmaps F(s) ⊆
F(t) are continuous and define the maps F(s ! t) for the persistent space.

The following gives a flexible class of instances of sublevel-set filtrations.

Example 2 Given a subset Z of a metric space X, we define the offset function
fZ : X → R to be

fZ(x) := inf
z∈Z

d(x, z).

The offset filtration FZ, defined by

FZ(s) := {x ∈ X | d(x,Z) := inf
z∈Z

d(x, z) ! s},

is the sublevel-set filtration of fZ.

Sublevel-set filtrations can be extended to certain non-continuous functions on
simplicial complexes which arise frequently in topological data analysis.

Example 3 Let X be a simplicial complex and f : X → R a function which is constant
on each simplex. If f ismonotone, that is whenever σ is a face of τ then f(σ) ! f(τ),
then the sublevel-set filtration F(s) = |f−1(−∞, s]| defines a persistent space, where
| · | denotes geometric realization.

We now introduce some basic concepts of Topological Data Analysis (TDA). These
are invariants built to study persistent spaces. We assume that the reader is familiar
with the fundamentals of TDA and mainly use the definitions here to set terminology
and notation—see the survey (Carlsson 2014) for more background. For the remainder
of this paper we let π0 denote the connected components functor π0 : Top → Set and
let Hn denote some choice of homology theory with coefficients in a field k.
Definition 2 A functor S : (R,!) → Set is called a persistent set (Carlsson and
Mémoli 2013; Curry 2018). If F : (R,!) → Top is a persistent space, then the persis-
tent set of components is the composition of F : (R,!) → Top with the connected
components functor π0 : Top → Set, i.e.

π0 ◦ F : (R,!) → Set where s # π0(F(s)).

Associated to any persistent set S : (R,!) → Set is its display poset, which is simply
the disjoint union of all the sets that appear in S, i.e.

S :=
⊔

t∈R
S(t) :=

⋃
S(t) × {t}
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Fig. 2 A persistent space is shown on the left, given by the offset filtration FZ (Example 2), whereZ ⊂ R
consists of two points at distance 2L. The associated persistent set is visualized through its generalized
merge tree (a schematic Hasse diagram of the poset is shown here). The classical merge tree (visualized as
the Reeb graph of the epigraph of the filtration function) is shown on the right

The poset structure on S is defined by declaring

(x, s) " (y, t) if and only if S(s ! t)(x) = y.

The generalized merge tree of F is the display poset (MF,") associated to the
persistent set π0 ◦ F.

We use the term “generalized” to distinguish it from the classical merge tree.

Definition 3 Let X be a topological space and f : X → R a continuous function. The
epigraph of f is the set Ef := {(x, r) | f(x) ! r}. The classical merge tree Mf is
the Reeb graph of the projection function πf : Ef → R : (x, r) &→ r. That is, the
merge tree is the quotient space Mf := Ef/ ∼, where ∼ is the equivalence relation
p = (x, r) ∼ (x ′, r ′) = p ′ if and only if r = r ′ and p and p ′ lie in the same
connected component of the level set π−1

f (r). Let π̃f : Mf → R denote the projection
map induced by πf.

A simple example showing a persistent space together with its persistent set and
merge tree is shown in Fig. 2.

Remark 1 The differences between the classical and generalized merge tree have gone
largely uncommented on in the literature and are often treated as interchangeable.
Observe that MF is defined for any persistent space F and comes endowed with a
poset structure. On the other hand, Mf is defined for a continuous function f on a
space X and comes equipped with a quotient topology. This difference only creates
problems when one notices that there are two notions of interleaving, which might
not agree always. In Appendix A we prove that for functions on compact spaces with
finitely many critical points, this difference can be ignored.

Beyond using π0 to discriminate persistent spaces, we can use homology.

Definition 4 A persistence module is a functor from the poset category (R,!) into
Vectk, the category of vector spaces over the fieldk. A persistencemodule ispointwise
finite dimensional if its image lies in vectk, the category of finite dimensional vector
spaces over k.
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Let F : (R,!) → Top be a persistent space. For any non-negative integern $ 0 the
nth persistent homology module Fn : (R,!) → Vectk is the persistence module

Fn := Hn ◦ F : (R,!) → Vectk with s # Hn(F(s)Ik).

We will frequently drop the subscript k, with the understanding that a field of coeffi-
cients has been fixed.

One of the central results in the theory of TDA is the theoreom of Crawley-Boevey
(2015, Theorem 1.1) which states that pointwise finite-dimensional persistence mod-
ules always decompose into direct sums of simple indecomposables. We introduce the
relevant terminology and notation below.

Definition 5 Let I ⊂ R be an interval. The interval module associated to I is the
persistence module kI : (R,!) → vectk with kI(s) = k if and only if s ∈ I and
otherwise kI(s) is the zero vector space. We define kI(s ! t) = idk if and only if
s, t ∈ I and otherwise kI(s ! t) is the zero map.

Crawley-Boevey’s theorem says that any pointwise finite-dimensional persistence
module is isomorphic to a direct sum of interval modules, and that this representation
is unique up to permuting factors. A barcode B = {(I,mI)} is a multiset of intervals
in the real line, i.e. I ⊆ R is an interval and mI ∈ N indicates its multiplicity. It
follows from the discussion above that any pointwise finite dimensional R-module F
has a uniquely associated barcode B(F). Let Barcodes denote the set of all barcodes.

The existence of barcode representations of persistence modules allows for various
methods of visualization and analysis of the multiscale topology of a filtered space.
A barcode can be represented visually by drawing the collection of intervals in the
plane (see the righthand column of Fig. 3) or as a multiset of points in the plane called
a persistence diagram (see the righthand column of Fig. 1); here, the endpoints of
each interval are plotted as an ordered pair.

Fig. 3 Amotivating example for the need for decorated merge trees. Two subsetsX andY ofR2 along with
two times in their offset filtration are shown. Degree-0 and degree-1 persistent homology fails to distinguish
them as the number of components and the number of holes are the same across all stages in the filtration.
This is witnessed by their identical persistent homology barcodes, shown to the right
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We now consider the simple example illustrated in Fig. 3 to see these concepts
in action and to motivate the definitions introduced below. The spaces X,Y ⊂ R2

give rise to persistent spaces via their respective offset filtrations. Despite the fact that
X and Y are topologically distinct, the degree-0 and degree-1 persistent homology
barcodes extracted from these persistent spaces are the same. This brings us to the
goal of defining richer topological signatures (decorated merge trees), which are able
to track interactions of topological features in a persistent space.

2.2 The categorical decoratedmerge tree

The first definition of a decorated merge tree will be given as a purely category-
theoretic construction. This perspective allows for streamlined proofs of stability
theorems below, but has the downside that the connection to merge trees may not
be as transparent. This is remedied with alternative constructions in the following
subsections.

The key observation for defining the categorical decoratedmerge tree is that homol-
ogy decomposes into a direct sum of the homology of each connected component. This
is expressed in the well known fact that

if X ∼=
⊔

Xi :=
⋃

Xi × {i} then Hn(X) ∼=
⊕

i

Hn(Xi).

Moreover, if f : X → Y is a continuous map of spaces then we can view f as a map
between disjoint unions that send each factor in the domain to a unique factor in the
range. In other words, the continuous map

f = (fi :
⊔

i∈π0(X)

Xi →
⊔

j∈π0(Y)

Yj

can be parameterized by the underlying map of sets π0(f) : π0(X) → π0(Y). This
indicates thatwe can parameterizemaps inside of a persistent space along its associated
persistent set of connected components. This requires some further restrictions on
properties of the topological spaces involved such as local connectedness. First we
isolate an important categorical construction.

Definition 6 Let C be a category. The category of discretely parameterized objects
in C, written pC, has for objects functors I : S → Cwhere S is a set viewed as a discrete
category, i.e. the only morphisms in S are identity morphisms. The functor I amounts
to a choice of object of C for each s ∈ S. We will refer to such a functor as an S-
parameterized object. A morphism from an S-parameterized object I : S → C to a
T -parameterized object J : T → C consists of a map of sets m : S → T and a natural
transformation from the functor I to the pullback of J along m, i.e. a morphism is a
natural transformation α : I ⇒ m∗J where m∗J := J ◦ m.

We note that if C has coproducts, then pC participates in the following diagram of
categories and functors:
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pC

Set C

copdom

The functor dom sends any S-parameterized object I : S → C to the underlying
parameterizing set S. The functor cop sends the diagram I : S → C to its colimit,
which is the coproduct in this case. Before exploiting the above diagram further, we
state the result that was used implicitly at the outset of this subsection.

Lemma 1 Let Topc denote the category of connected and locally connected topologi-
cal spaces. Let Toplc denote the category of locally connected spaces. The coproduct
functor induces an equivalence between these categories:

cop : pTopc → Toplc where I : S → Topc #
⊔

s∈S

I(s).

Proof To complete the proof, it suffices to show that cop : pTopc → Toplc is full,
faithful and essentially surjective (Riehl 2017, Thm. 1.5.9). The essentially surjective
property is true by virtue of the fact that every locally connected space is naturally
homeomorphic to the coproduct (i.e., disjoint union) of its components. Full and
faithful mean that if I : S → Topc and J : T → Topc are two parameterized connected
spaces, then the map

HompTopc(I, J) → HomToplc

(
⊔

s∈S

I(s),
⊔

t∈T

J(t)

)

is surjective and injective, respectively. To show surjectivity (fullness), we have to
show that every continuous map

f :
⊔

s∈S

I(s) →
⊔

t∈T

J(t)

is realized by some morphism (m,α) in pTopc. Here connectivity of each I(s) is
an essential part of the hypothesis because it allows us to associate to each s ∈ S a
unique t ∈ T so that f(I(s)) ⊆ J(t). This specifies the map of sets m : S → T . The
restriction of the continuous map f to each I(s) specifies the components of a natural
transformation α : I ⇒ m∗J. Injectivity is not difficult to see because if (m,α) and
(n,β) are two morphisms that induce the same map between the disjoint unions, then
set-theoretically they are equal as well. Recalling the set-theoretic definition of the
disjoint union, this means that

(αs = (!s :
⋃

s∈S

I(s) × {s} →
⋃

t∈T

J(t) × {t}

and in particular that m = n and m∗α = n∗β.
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One consequence of Lemma 1 is that we can define another functor that serves as
sort of “inverse” to cop, up to natural isomorphism.

Definition 7 The parameterized by components functor

pbc : Toplc → pTopc

takes each locally connected space X to the object I : π0(X) → Topc which takes
the label i ∈ π0(X) for an equivalence class to the underlying subset of X carved
out by this equivalence class, equipped with the subspace topology. A map of spaces
f : X → Y is taken to the morphism (m,α) where m = π0(f) is the map recording
which connected component of Xmaps to which component of Y and α is the natural
transformation that records the restriction of f to each component.

By virtue of (Riehl 2017, Def. 1.5.4), an alternative proof to Lemma 1 is that

pbc ◦ cop ∼= idpToplc and cop ◦ pbc ∼= idToplc .

We leverage the above identities to provide our first refinement of persistent spaces
into functors from (R,!) → pTopc. This is the heart of the definition of a categorical
decorated merge tree.

Lemma 2 Any persistent space F : (R,!) → Toplc has an associated persistently
parameterized space

F̃ := pbc ◦ F : (R,!) → pTopc.

The functor F̃ fits into the following diagram, which commutes up to natural
isomorphism.

(R,!)

pTopc

Set Toplc

F̃
π0◦F̃ F

∼=

copdom

π0

Proof The natural isomorphism cop ◦ pbc ∼= idToplc from the remark above can be
restricted to the image of F to yield

cop ◦ pbc ◦ F ∼= F ⇔ cop ◦ F̃ ∼= F.

Explicitly this means that for every s ∈ R the spaces cop ◦ F̃(s) and F(s) are homeo-
morphic. Since homeomorphic spaces have isomorphic sets of components, we know
that the persistent sets π0 ◦ F and dom ◦ F̃ are naturally isomorphic as well.
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Fig. 4 Associated to the offset filtration of the two subsets X and Y of R2 from Fig. 3 are two categorical
decorated merge trees F̃1 and G̃1, as defined in Definition 8. This figure shows the mechanics of checking
if the parameterized vector spaces at offset 0, F̃1(0) = I : S → Vect and G̃1(0) = J : T → Vect, are
isomorphic. They are not, which proves that our categorical decorated merge tree can distinguish these
spaces. See Example 4 for more details

We are now able to define the categorical decorated merge tree of a persistent
(locally connected) space.

Definition 8 Let F : (R,!) → Toplc be a persistent space where every space is locally
connected and let F̃ : (R,!) → pTopc denote the persistently parameterized space
from Lemma 2. The categorical decorated merge tree in degree n is the functor

F̃n := Hn ◦ F̃ : (R,!) → pVect where s # I(s) : π0(F(s)) → Vect.

The functor I(s) : π0(F(s)) → Vect is a parameterized vector space (in the sense of
Definition 6) that sends each component index i ∈ π0(F(s)) to the homology vector
space of that component, i.e. Hn(F(s)i).

Example 4 (Our Motivating Example, Reconsidered) In Fig. 3, we considered the
offset filtrations F and G associated to two different subsets of the plane X and Y,
respectively. Following Definition 8 we can associate two categorical decorated merge
trees in degree 1, F̃1 and G̃1, to X and Y. To verify that F̃1 ! G̃1 it suffices to
show that their values at filtration value 0, which we denote by I : {x,y} → Vect and
J : {a,b} → Vect, are not isomorphic in the category pVect.

Two parameterized vector spaces I : S → Vect and J : T → Vect are isomorphic if
there are set mapsm : S → T andn : T → S and natural transformationsα : I ⇒ m∗J
and β : J ⇒ n∗I satisfying

m∗β ◦ α = idI and n∗α ◦ β = idJI

in particular,

n ◦ m = idS and m ◦ n = idT .

By considering the parameterized vector spaces at 0 in our example, I : {x,y} → Vect
and J : {a,b} → Vect, where I(x) = k2, I(y) = 0, J(a) = k and J(b) = k, we can
easily show that no isomorphism is possible because any bijection between S = {x,y}
and Y = {a,b} will force a linear transformation of the form
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k2 → k → k2,

which can never be an isomorphism. This argument is summarized in Fig. 4.

2.3 The concrete decoratedmerge tree

The categorical notion of a decorated merge tree boils down to the following sequence
of assignments: to each real number s ∈ R a set I(s) is assigned and then to each
element i ∈ I(s) a (homology) vector space is assigned. This process is reminiscent of
specifying an element of Hom(A, Hom(B,C)), which amounts to assigning to each
element of A a map from B to C. The reader then might find it useful to consider the
adjunction between products and exponentials gotten by currying:

Hom(A, Hom(B,C)) ∼= Hom(A × B,C).

In this section we work with, in essence, the right hand side of this isomorphism,
where A × B is replaced with the generalized merge tree MF and C is replaced with
the category of vector spaces. The analog of currying in this section is concretization,
the namesake of the concrete decorated merge tree defined below.

Definition 9 (The Concrete Decorated Merge Tree) Let F : (R,!) → Toplc be a per-
sistent space with all F(s) locally connected and let (MF,") denote its generalized
merge tree. The concrete decorated merge tree in degree n is the functor

Fn : (MF,") → Vectk where (i, s) # Hn(F(s)iIk)

that records the nth homology of the ith component of F(s).

Remark 2 The definition of a concrete decorated merge tree can be abstracted in a way
that does not refer to a persistent space F at all. That is, we can define a concrete deco-
rated merge tree more generally to be a functor F : (MF,") → Vect on a generalized
merge tree (considered as a poset) associated to some persistent set. When we wish
to displace emphasis on the originating persistent space F, we will use the term tree
module to refer to F.

Remark 3 A categorical merge tree can also be considered abstractly as a func-
tor F̃ : (R,!) → pVect. Moreover, these abstract constructions are equivalent in
the sense that one can always be constructed from the other. Indeed, given
a functor F̃ : (R,!) → pVect, we define a persistent set S : (R,!) → Set via
S(s) = dom(F̃(s)). LetM denote the associated display poset and define F : (M,")

→ Vect via F(i, s) = F̃(s)(i). Likewise, from a functor F : (M,") → Vect, whereM
is a generalized merge tree associated to a persistent set S : (R,!) → Vect, we define
F̃ : (R,!) → pVect by setting dom(F̃(s)) = S(s) and F̃(s)(i) = F(i, s).
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2.4 The barcode decoratedmerge tree

To a persistent space F : (R,!) → Toplc we have already shown how to associate two
(equivalent) devices to record homology in degreen as it varies across components and
filtration values s ∈ R. Unfortunately, unlike ordinary persistent homology modules,
neither of these devices have simple summaries such as barcodes or persistence dia-
grams. This is due to the fact that the underlying poset (MF,") is not totally-ordered.
However, if one considers the restriction of a tree module Fn to the principal up set
at a point p = (i, s) ∈ MF, then we do obtain a module indexed by a totally ordered
set and can call this the “barcode at p.” This motivates the following definitions.

Definition 10 A barcode decorated merge tree is a map from a generalized merge
tree to the set of barcodes,

B : (MF,") → Barcodes.

We say that a barcode decorated merge tree is determined by restriction if when-
ever (i, s) =: p " q := (j, t) ∈ MF, we have that

B(q) = B(p) ∩ [t,∞).

If the generalized merge tree has leaves, meaning that every maximal chain in
(MF,") has a minimal element, then we call a barcode decorated merge tree that is
determined by restriction a leaf-decorated merge tree.

Definition 11 Suppose (MF,") is the generalized merge tree associated to the persis-
tent set π0 ◦F. Given a tree module F : (MF,") → Vect and a point p = (i, s) ∈ MF,
we define the restriction of F to the principal up set Up to be the R-module

F|Up : (R,!) → Vect where, for s ! t, F|Up(t) = F(π0 ◦ F(s ! t)(i), t).

For r < s we defined F|Up(r) = 0.

Proposition 1 Assume that the generalized merge tree (MF,") has leaves. To any
pointwise finite dimensional tree module F : (MF,") → vect, we have a leaf-
decorated merge tree

BF : (MF,") → Barcodes where BF(p) = BC(F|Up).

HereUp := {q ∈ MF | p " q} is the principal up set at p. Note that since (MF,")
has leaves, it suffices to compute this barcode for every leaf node v.

Definition 12 (BarcodeTransform)ThemapBFwhose existence is implied byPropo-
sition 1 is referred to as the barcode transform of F.

Proof of Proposition 1 Since the tree module is already pointwise finite dimensional,
the restriction at each principal up set Up will be a pointwise finite dimensional R-
module. Crawley-Boevey’s Theorem (Crawley-Boevey 2015) then implies that this
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restricted tree module has a barcode. Obviously the barcode decoration is determined
by restriction because for any pair of comparable points p " q the restriction at Uq

can be obtained by restricting the module at Up.

We have the following immediate corollary.

Corollary 1 If F : (R,!) → Top is a persistent space whose associated generalized
merge tree MF has leaves and whose associated concrete decorated merge tree in
degree n $ 0 Fn : (MF,") → vect is pointwise finite dimensional, then F has an
associated leaf-decorated merge tree in degree n, BFn.

Remark 4 The barcode transform associates an (indexed) ensemble of barcodes to a
filtered space through a certain “slicing” operation (i.e., slicing along upsets from
leaves). This operation is analogous to several other recent methods in the TDA lit-
erature; we provide a few examples here. The persistent homology transform (Curry
et al. 2018; Turner et al. 2014) associates to an embedded simplicial complex a barcode
for each direction, obtained by using projection onto the direction axis as a filtration
function. A fibered barcode (Hang and Mio 2020; Lesnick and Wright 2015) is a
collection of barcodes associated to a multiparameter persistence module by slicing
the parameter space by affine lines. The barcode embedding (Dey et al. 2015; Oudot
and Solomon 2017) associates a barcode to each point in a metric graph by computing
extended persistence with respect to a radial filtration centered at that point.

Leaf decorated merge trees are the most computationally tractable of the three
variants of DMTs introduced in this section. Algorithms for analyzing DMTs are
described in Sects. 5 and 6.

3 Continuity and stability of decoratedmerge trees

In this section we focus onmetric theoretic aspects of decorated merge trees—namely,
continuity of the barcode transform BF : MF → Barcodes of a decorated merge tree
and stability of various pseudometrics on the space of decorated merge trees. To
properly state our results, we first briefly review standardmetrics in the TDA literature.

3.1 Metrics on persistencemodules

Let B,B ′ ∈ Barcodes be barcodes.

Definition 13 A matching of barcodes B and B ′ is a bijection ξ between subsets
dom(ξ) ⊂ B and ran(ξ) ⊂ B ′—such a ξ is also commonly referred to as a partial
bijection between B and B ′. The cost of a matching ξ is

max
{

max
I∈dom(ξ)

‖I − ξ(I)‖∞, max
I∈B\dom(ξ)

‖I‖∆, max
I ′∈B ′\ran(ξ)

‖I ′‖∆

}
,
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where, for I and I ′ with endpoints b ! d and b ′ ! d ′, respectively,

‖I − I ′‖∞ := max{|b − b ′|, |d − d ′|} and ‖I‖∆ :=
d − b

2
.

If a matching ξ has cost less than or equal to ε, we refer to ξ as an ε-matching. The
bottleneck distance between B and B ′ is

dB(B,B
′) := inf{ε $ 0 | there exists an ε-matching of B and B ′}.

A matching realizing the bottleneck distance will be called an optimal matching.

The bottleneck distance is an especially natural metric due to its connection to a
category-theoretic metric on persistence modules called interleaving distance. In fact,
interleaving distance can be defined formore general functor categories (Bubenik et al.
2015; Bubenik and Scott 2014). Generalizing interleaving distances to increasingly
abstract classes of functors is an active field of research (e.g., de Silva et al. 2018;
Stefanou 2018), we define the interleaving distance below at the level of generality
which will be most useful to us. In what follows, C denotes a fixed but arbitrary
category.

Definition 14 (Interleaving Distance) Consider (R,!) as a poset category. For ε ∈
[0,∞), we define the poset map σε : R → R via σε : s &→ s + ε. Now let
F : (R,!) → C be a functor, which is an object in the functor category Fun(R,C). We
define the ε-shift of F, written Fε : (R,!) → C, as Fε := F ◦ σε. This shift is functo-
rial, i.e. to every morphism φ : F ⇒ G in Fun(R,C) we have another morphism φε :
Fε ⇒ Gε, which defines the ε-translation functor (•)ε : Fun(R,C) → Fun(R,C).
Since each object F has a naturally associated internal ε-shift,

ηε
F : F ⇒ Fε where ηε

F(s) : F(s) → F(σε(s)) is F(s ! s+ ε),

there is a natural transformation from the identity functor idCR on Fun(R,C) to (•)ε.
Two objects F,G : (R,!) → C are ε-interleaved if there are morphisms φ : F ⇒

Gε and ψ : G ⇒ Fε such that

ψε ◦ φ = η2ε
F and φε ◦ ψ = η2ε

G .

We define the interleaving distance between F and G as

dI(F,G) = inf{ε $ 0 | F and G are ε-interleaved}.

When considering persistence modules F,G : (R,!) → Vect, the above definition
reduces to the classical interleaving distance of persistence modules as introduced
in the landmark paper (Chazal et al. 2009). Building on this work, it was shown in
Lesnick (2015) that the map taking a persistence module to its barcode is an isometry
with respect to the interleaving and bottleneck distances.
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3.2 Continuity of the barcode transform

We now establish the continuity of the barcode transformBF : MF → Barcodes asso-
ciated to a concrete decorated merge tree F. Continuity is measured with respect to
a whole family of !p-type metrics on the underlying merge tree MF for p ∈ [1,∞].
These metrics measure distance between pairs of points via their least common ances-
tor. The metric on Barcodes is the bottleneck distance (Definition 13).

Definition 15 Let (MF,") be a generalized merge tree where πF : MF → R is the
projection function. The merge height of points u, v ∈ MF is

mergeF(u, v) := inf{πF(w) | u, v " w}.

We define the least common ancestor of u and v to be the least common upper bound
of u and v,

LCAF(u, v) := argmin{πF(w) | u, v " w},

when it exists. In this case,

mergeF(u, v) = πF(LCAF(u, v)).

We will drop the subscript F when convenient. Finally, if every pair of points in a
merge tree have a least common ancestor, then we say the merge tree is connected.

Remark 5 Note that for a generalized merge tree the least common ancestor need not
exist. For example if S : (R,!) → Set is the persistent set that assigns S(t) = {x,y}
for t ! 0 and S(t) = {z} for t > 0, then there will not be a least upper bound for
x,y. The assumption that S is constructible (Definition 24) will, however, guarantee
the existence of least common ancestors.

Definition 16 If the generalized merge tree MF is connected, then the !p metric on
(MF,") for 1 ! p ! ∞ associates to every pair of points u, v ∈ MF the value

dp
MF

(u, v) = ‖(merge(u, v) − π(u), merge(u, v) − π(v))‖p.

Using general estimates for !p norms on R2, one sees that the !p metrics are bi-
Lipschitz equivalent and therefore induce the same topology. Moreover, we have the
following characterization whenMF comes from a sublevel set filtration.

Proposition 2 Let f : X → R be a continuous map such that the associated merge tree
Mf has finitely many leaves. Then the topology induced by each !p metric coincides
with the quotient space topology.

Wedefer the proof of the proposition toAppendixA, since it relies on other technical
results about merge tree topologies.
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Theorem 1 (Continuity of Barcode DMTs) Let (MF,") be a connected generalized
merge tree associated to a persistent set π0 ◦ F. Endow MF with the extended metric
dp
MF

and Barcodes with the bottleneck distance dB. For any pointwise finite dimen-
sional tree module F : (MF,") → vect, the associated barcode decorated merge tree
BF : MF → Barcodes is 21−1/p-Lipschitz forp ∈ [1,∞) and 2-Lipschitz forp = ∞.

Proof Let p = (i, s) and q = (j, t) be elements of MF and suppose that
mergeF(p,q) = r0, so that d1

MF
(p,q) = (r0 − s) + (r0 − t). For arbitrary δ > 0,

choose z = (k, r) ∈ MF such that z is a common ancestor of p and q and r < r0 + δ.
The barcode BF(z) is obtained by truncating each bar of BF(p) at height r (see
Definition 34 in the Appendix for a precise definition of truncation), and a simple con-
sequence is that dB(BF(z),BF(p)) ! r − s; likewise, dB(BF(z),BF(q)) ! r − t.
By the triangle inequality,

dB(BF(p),BF(q)) ! (r − s) + (r − t) < d1
MF

(p,q) + 2δ.

Since this holds for arbitrary δ > 0, this proves thatBF is 1-Lipschitz with respect
to d1

MF
. The remaining cases follow by the general bounds ‖ · ‖1 ! 21−1/p‖ · ‖p, for

p ∈ [1,∞) and ‖ · ‖1 ! 2‖ · ‖∞ in R2.

3.3 Interleavings of merge trees

Implicit in Definition 14 is a way of comparing generalized merge trees. If F and G
are persistent spaces, then the interleaving distance between π0 ◦ F and π0 ◦G, which
are both objects of Fun(R, Set), is covered by that definition. However, the original
definition of the merge tree interleaving distance given in Morozov et al. (2013) used
the classical merge tree construction (Definition 3) and assumed continuity of the
interleaving maps. In this section we review the construction of Morozov et al. (2013)
and prove that under suitable hypotheses this classical interleaving distance is the
same as the interleaving distance implied by Definition 14, which we have isolated as
Definition 18.

Definition 17 (Classical Merge Tree Interleaving Distance Morozov et al. 2013) Let
f : X → R and g : Y → R be continuous functions and let Mf and Mg be their
associated merge trees, as defined in Definition 3. For ε $ 0 we define an ε-map to
be a continuous (with respect to quotient space topologies) map α : Mf → Mg such
that

π̃g ◦ α([x], t) = t+ ε

for all points ([x], t) ∈ Mf. Two ε-maps α : Mf → Mg and β : Mg → Mf are said
to be ε-compatible ifβ◦α = η2ε

f andα◦β = η2ε
g . TheMorozov-Bekatayev-Weber

(MBW) interleaving distance between merge trees Mf and Mg is

θMBW
I (Mf,Mg)

:= inf{ε $ 0 | ∃ε-compatible maps α : Mf → Mg and β : Mg → Mf}.
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Given two functions f : X → R and g : Y → R, we note that their associated
sublevel set filtrations determine persistent spaces F,G : (R,!) → Top. By post-
composing these functors with π0 : Top → Set, we get two persistent sets, which
can be compared with Definition 14 when C = Set. We isolate this special case now.

Definition 18 (Modern Merge Tree Interleaving Distance Bubenik et al. 2015) The
interleaving distance between merge trees Mf and Mg associated to f : X → R
and g : Y → R is defined to be the interleaving distance between the persistent
sets π0 ◦ F and π0 ◦ G where F : (R,!) → Top is defined by F(t) := f−1(−∞, t]
and G : (R,!) → Top is defined by G(t) := g−1(−∞, t]. We introduce the special
notation

θI(Mf,Mg) := dI(π0 ◦ F,π0 ◦ G).

We now compare these two definitions of interleaving distance. As a preliminary
observation, note that an ε-map α : Mf → Mg carries components of f−1(−∞, t] to
g−1(−∞, t+ε]. This is exactly the expression that α defines a natural transformation
α : π0 ◦ F ⇒ π0 ◦ Gε.

Lemma 3 If α : Mf → Mg and β : Mg → Mf are ε-maps that are ε-compatible,
then they induce an ε-interleaving between the persistent sets π0 ◦ F and π0 ◦G of the
sublevel set filtrations of f : X → R and g : Y → R.
Proof The discussion above has already established that and ε-map α is equivalent
to specifying a natural transformation α : π0 ◦ F ⇒ π0 ◦ Gε and that β is likewise
tantamount to a natural transformation β : π0 ◦ G ⇒ π0 ◦ Fε without referring to
continuity. By comparing with Definition 14 it is now obvious that setting α to be φ
andβ to beψ and enforcing theε-compatibility condition then implies the interleaving
condition defined there.

We note that because an ε-interleaving of persistent sets does not necessarily guar-
antee continuity of themaps between themerge treesMf andMg, Lemma3establishes
the bound:

θI(Mf,Mg) ! θMBW
I (Mf,Mg).

In the next proposition we provide hypotheses under which these two interleaving
distances are the same. This fills a gap in the literature that is not usually remarked
upon and helps bridge the gap between (Morozov et al. 2013) and (Bubenik et al.
2015).

Proposition 3 Suppose f : X → R and g : Y → R are continuous maps defined
on compact spaces X and Y so that their (classical) merge trees Mf and Mg have
finitely many leaves. Let F and G denote the sublevel set filtrations of f and g. Every
ε-interleaving of the persistent sets π0 ◦ F and π0 ◦ G defines a pair of ε-compatible
maps between the merge trees Mf and Mg. Consequently,

θMBW
I (Mf,Mg) = θI(Mf,Mg) = dI(π0 ◦ F,π0 ◦ G).
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Proof Suppose φ : π0 ◦ F ⇒ π0 ◦ Gε and ψ : π0 ◦ G ⇒ π0 ◦ Fε specify an ε-
interleaving. Now consider the display posets of π0 ◦ F and π0 ◦ G, written MF and
MG to distinguish them from the merge treesMf andMg. It is obvious thatMF and
Mf are identical as posets, similarly for MG and Mg. Following the discussion in
Appendix A we can equipMF andMG with the interval topology (see Definition 32).
By Lemma 5 the principal up set of any point is closed in this topology. SinceMF and
MG havefinitelymany leaves, consider the closed cover of each by the principal up sets
at each of the leaf nodes. We first show that the map φ : MF → MG is continuous
when restricted to the up set Uv of any leaf node v ∈ MF because φ carries Uv

bijectively onto Uφ(v).
Bijectivity follows from the fact that φ is a natural transformation of functors.

Indeed, consider a triple v < p < q in the display poset MF for F where v ∈ F(r),
p ∈ F(s) and q ∈ F(t). Necessarily, r < s < t are strictly ordered in R and
φ(v) ∈ G(r + ε), φ(p) ∈ G(s + ε), φ(q) ∈ G(t + ε). Consequently, the images
are all distinct in MG, because they are elements of sets with different real indices,
and φ(v) < φ(p) < φ(q). Now if V is open inMG and p ∈ φ−1(V)∩Uv, then we
know there exists, for any q > p, a w ∈ MG with φ(p) < w < φ(q) and where the
interval [φ(p),w] ⊆ V . But φ is a bijection onto the image of Uv, which contains
[φ(p),w], so there exists a w ′ ∈ φ−1(w) with [p,w ′] ⊆ φ−1(V).

Since a map is continuous if it’s continuous when restricted to elements of a
finite closed cover, we conclude that φ : MF → MG is continuous with respect to
the interval topology. A completely symmetric argument proves that ψ : MG → MF

is continuous with respect to the interval topology as well. By Proposition 10 we
can conclude that the interval topology and the quotient topology are the same,
thus φ and ψ can be viewed as ε-maps (with the continuity assumption) that are
ε-compatible.

3.4 A decorated bottleneck distance

In this section we leverage the barcode decorated merge tree perspective to define a
second distance that uses an interleaving of merge trees along with an ε-matching of
the barcodes over each of themerge trees, as determined by their decorations.Although
finding optimal interleavings between merge trees is NP-Hard (Agarwal et al. 2018),
we provide in Sect. 5 an algorithm for estimating them.

Definition 19 Assume thatMF andMG are generalized merge trees associated to the
persistent sets π0 ◦ F and π0 ◦ G. Given two barcode decorated merge trees

BF : MF → Barcodes and BG : MG → Barcodes

we define an (ε, δ)-matching of BF and BG to consist of

– an ε-interleaving of the underlying generalized merge trees i.e. natural transfor-
mationsφ : π0 ◦F ⇒ π0 ◦Gε andψ : π0 ◦G ⇒ π0 ◦Fε that satisfyψε ◦φ = η2ε

F
and φε ◦ ψ = η2ε

G . We will abuse notation and write φ : MF → MG and
ψ : MG → MF to make clear that interleaving of persistent sets always provide
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ε-compatible maps in the sense of Morozov et al. (2013) (without the continuity
assumption) between the associated generalized merge trees;

– a δ-matching of the barcodes BF(p) and BG(φ(p)) for every p ∈ MF and a
δ-matching of the barcodes BG(q) and BF(ψ(q)) for every q ∈ MG.

Definition 20 Let p ∈ [1,∞]. The decorated bottleneck p-distance between two
barcode decorated merge trees BF and BG is defined as

dB,p(BF,BG) := inf{‖(ε, δ)‖p | ∃ (ε, δ)-matching of BF and BG}.

When p = ∞, we refer to the metric simply as the decorated bottleneck distance
and write dB := dB,∞.

Remark 6 We use the notation dB for both the bottleneck distance between barcodes
and for the decorated bottleneck∞-distance to emphasize the connection between the
metrics. The meaning of dB should always be clear from context.

Remark 7 We define the general family of decorated bottleneck p-distances in antic-
ipation that they will be be useful in data analysis tasks down the line. In this paper,
we develop the theory of the p = ∞ metric dB and will almost exclusively refer to
the decorated bottleneck distance in what follows.

The (p = ∞) decorated bottleneck distance can be formulated more simply than
the general p version. An (ε, δ)-matching of barcode decorated merge trees where
ε = δ will be referred to as an ε-matching. The proof of the following proposition is
elementary but technical. We relegate it to Appendix C.1.

Proposition 4 LetBF andBG be barcode decoratedmerge treeswhich are determined
by their leaves. The decorated bottleneck distance can be expressed as

dB(BF,BG) = inf{ε $ 0 | ∃ ε-matching of BF and BG}.

The last result of this subsection says that the “determined by leaves” assumption
allowsus to checkoneof thematching conditions only at leaves. Its proof uses technical
tools from the proof of Proposition 4, so we delay it to Appendix C.1.

Proposition 5 Let BF : MF → Barcodes and BG : MG → Barcodes be two leaf-
decorated merge trees. Letφ andψ be an ε-interleaving of the underlying generalized
merge treesMF andMG where for each leaf v ∈ MF and each leafw ∈ MG we have
a δ-matching between BF(v) and BG(φ(v)) and a δ-matching between BG(w) and
BF(ψ(w)). Then there is an (ε, δ)-matching between the entire barcode decorated
merge trees BF and BG.

3.5 Hierarchy of distances

In this section we prove the main two results of this paper.
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Theorem 2 (The Hierarchy of Stability Results for DMTs) Let f : X → R and g : Y →
R be continuous functions whose sublevel sets are locally connected. Let F and G
be the sublevel set filtrations, viewed as persistent spaces. The categorical decorated
merge trees for homological degree n are denoted F̃n and G̃n and the associated
barcode decorated merge trees are BFn and BGn. Our various distances satisfy

θI(MF,MG) ! dB(BFn,BGn) ! dI(F̃n, G̃n) ! δI(Xf,Yg).

Moreover, if X = Y then we have that

δI(Xf,Yg) ! ||f − g||∞.

The distance δI is a special case of the persistent homotopy type distance introduced
in Frosini et al. (2019). We recall the definition below.

Definition 21 An R-space is a topological space X endowed with a continuous func-
tion f : X → R. An ε-interleaving of R-spaces f : X → R and g : Y → R is
a pair of continuous maps Φ : X → Y and Ψ : Y → X along with homotopies
HX : X × [0, 1] → X and HY : Y × [0, 1] → Y connecting the identity maps idX and
idY with Ψ ◦ Φ and Φ ◦ Ψ, respectively. We require further that the following four
properties hold for Φ, Ψ, HX and HY :

1. Φ(X!s) ⊆ Y!s+ε for all s ∈ R
2. Ψ(Y!s) ⊆ X!s+ε for all s ∈ R
3. f ◦ HX(x, t) ! f(x) + 2ε for all x ∈ X and t ∈ [0, 1]
4. g ◦ HY(y, t) ! g(y) + 2ε for all y ∈ Y and t ∈ [0, 1]

The persistent homotopy type distance between R-spaces Xf := f : X → R and
Yg := g : Y → R is defined as

δI(Xf,Yg) := inf {ε | Xf and Yg are ε-interleaved}.

If no interleaving exists, we set δI(Xf,Yg) = ∞.

This metric was used in Hang et al. (2019) to develop persistent homology of R-
spaces with different, but homotopic domains. A similar metric on R-spaces, called
the homotopy interleaving distance, was defined in Blumberg and Lesnick (2017),
but the exact connection between homotopy type distance and homotopy interleaving
distance remains to be studied.

Proof of Theorem 2 The leftmost inequality θI(MF,MG) ! dB(BFn,BGn) follows
from the definition of the decorated bottleneck distance, since the data of an
interleaving of merge trees is part of the definition. Moreover it is obvious that
dI(F̃n, G̃n) $ θI(MF,MG) since one can always apply the functor dom to any ε-
interleaving φ̃ : F̃n ⇒ G̃ε

n and ψ̃ : G̃n ⇒ F̃ε
n of categorical decorated merge trees

to obtain an ε-interleaving φ and ψ of the underlying persistent sets or generalized
merge trees; this is the Lipschitz stability result of (Bubenik et al. 2015, Thm. 2.3.6)
applied to the functor dom. Moreover, if we take a point p ∈ MF then φ̃ : F̃n ⇒ G̃ε

n
specifies, by restriction, a morphism between the restriction of F̃n to the upset at p and
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the restriction of G̃ε
n to the upset at φ(p). Similarly, since ψ(φ(p)) must equal the

2ε translate of p in MF, we can conclude that the module F̃n|Up and φ∗G̃ε
n|Up are

ε interleaved, as R-modules. By the Algebraic Stability Theorem (Bauer and Lesnick
2020; Chazal et al. 2009), which states that an ε-interleaving ofR-modules induces an
ε-matching of barcodes, we have an ε-matching between the barcodes BFn(p) and
BGn(φ(p)) for all p. A completely symmetric argument works where we consider
q ∈ MG and the natural transformation ψ̃ : G̃n ⇒ F̃ε

n. This proves that

dB(BFn,BGn) ! dI(F̃n, G̃n).

To prove the rightmost inequality, first observe that if δI(Xf,Yf) = ∞ then we
are done, so assume not. Given ε > δI(Xf,Yg), there exists an ε-interleaving of the
R-spaces Xf and Yg. In particular, for each t ∈ R we have that the map Φ restricts to
a continuous map between the sublevel sets Φ : F(t) := X!t → Y!t+ε =: G(t+ε).
Since Φ is continuous and defined globally on X, it specifies a natural transformation
of the persistent spaces φ : F ⇒ Gε. Moreover, since the continuous image of
a (path) connected set is connected, the natural transformation φ defines a natural
transformation between the associated persistent spaces that are parameterized by
their (path) components φ̃ : F̃ ⇒ G̃ε. Interchanging the roles of X and Y in the above
discussion implies that Ψ : Y → X defines a natural transformation ψ̃ : G̃ ⇒ F̃ε.

It should be noted that φ̃ and ψ̃ do not define an interleaving of the functors F̃ and G̃
because that would require that for each t ∈ R the compositionψ(t+ε)◦φ(t) equals
the inclusion map X!t ⊆ X!t+2ε. This is not true, but condition (3) of Definition 21
does require that Ψ ◦ Φ restrict to a map that is homotopic to the inclusion map
X!t ⊆ X!t+2ε for all t. Since homotopic maps induce the same map on homology,
we can conclude that the natural transformations φ̃ : F̃ ⇒ G̃ε and ψ̃ : G̃ ⇒ F̃ε define
an ε-interleaving of the persistent component homology modules F̃n and G̃n.

In the case that X = Y, the desired inequality is (Frosini et al. 2019, Proposition
2.11). This completes the proof.

Although the above result establishes that categorical DMTs aremore sensitive than
undecorated merge trees, the relationship to higher dimensional persistent homology
is not described above. The next result establishes that categorical DMTs are, in fact,
more sensitive than ordinary persistent homology.

Theorem 3 For locally connected persistent spaces F,G : (R,!) → Toplc, the cat-
egorical decorated merge tree in homological degree n is more sensitive than the
interleaving distance of the persistent homology modules in degree n, i.e

dI(Hn ◦ F,Hn ◦ G) ! dI(F̃n, G̃n).

Proof We have

cop ◦ F̃n(s) :=
⊕

i∈π−1(s)

Hn(F(s)i) ∼= Hn




⊔

i∈π−1(s)

F(s)i



 ∼= Hn ◦ F(s),

and similarly for G.
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Fig. 5 The Barcode Decorated Merge Tree comes from restricting a tree module to its leaf nodes, one at a
time, and then calculating the barcode associated to the restriction of this tree module to the principal up
set at each leaf node. In this figure two non-isomorphic tree modules are shown to have identical barcodes,
when “viewed” from each of its leaf nodes. This example proves that the association of tree modules to
their associated barcode decorations is not injective

Note that the last isomorphism on the right uses the assumption that each F(s) is
locally connected. Since naturally isomorphic modules have the same interleaving
distance, the result now follows from the Lipschitz stability result of (Bubenik et al.
2015, Thm. 2.3.6) applied to the functor cop, i.e. applying cop is a 1-Lipschitz map
from Fun(R,pVect) to Fun(R,Vect).

Remark 8 (No Contradiction to Universality) By reconsidering the example from
Fig. 3, we know that the above inequality is not an equality, in general. Moreover,
when taken together Theorems 3 and 2 may appear to contradict Lesnick’s Univer-
sality result (Lesnick 2015, Thm. 5.5), which asserts that the interleaving distance on
persistent homology modules is the most sensitive distance that is bounded above by
the L∞ distance. However, there is no contradiction because universality theorems of
the type stated and conjectured in Lesnick (2015) only apply to functors from R (or
Rd) to Vect and not pVect.

Remark 9 (No One-Way Relationship of Bottleneck Distances) In the case where
locally connected persistent spaces F and G give rise to pointwise finite dimensional
persistent homology modules, we know that dI(Hn ◦ F,Hn ◦ G) coincides with
the bottleneck distance by virtue of the isometry theorem (Lesnick 2015, Thm. 3.4).
Unfortunately, the decorated bottleneck distance dB(BFn,BGn) can be greater than
or less than the bottleneck distance between Hn ◦ F and Hn ◦G. If one considers the
motivating example in Fig. 3, then the decorated bottleneck distance there is obviously
greater than the bottleneck distance betweenH1◦FX andH1◦FY . For this example, the
bottleneck distance is 0, but the decorated bottleneck distance is R/2, corresponding to
half the radius of the circles in Fig. 3. On the other hand, Fig. 5 gives an example of two
non-isomorphic tree modules (concrete DMTs) with identical barcode decorations, so
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the decorated bottleneck distance for F and G in those examples is 0. However, the
underlying persistent homology modules, which arise via the pushforward to R are
separated by the length of the edge from themerge point tow in the bottleneck distance.

4 Representations of tree posets and lift decorations

This section treats questions about the decomposability of decorated merge trees. We
will see that the situation is much more subtle than in the classical persistence setting,
due to the fact that merge tree posets are not totally ordered.

4.1 Indecomposables with totally ordered support

A crucial feature of pointwise finite dimensional (PFD) persistence modules is that
they decompose as a direct sum of interval modules; these decompositions are used
ubiquitously in visualization and analysis tasks in TDA. Although a PFD concrete
decorated merge tree F : MF → vect also admits a (Remak) decomposition into a
direct sum of indecomposables F ≈

⊕
i Fi, where the direct sum is taken pointwise

(Botnan andCrawley-Boevey 2020, Theorem 1.1), the indecomposables need not have
any special structure. However, we will consider a construction where the DMT does
decompose into modules that are supported on totally ordered subsets of the merge
tree, which will give us a structure theorem analogous to the usual one in persistence.

Definition 22 A concrete decorated merge tree F : MF → Vectk is real interval
decomposable if it can be expressed as a direct sum F =

⊕
i Fi, where each

Fi : MF → Vectk is indecomposable and has totally ordered support.

The next example shows that an arbitrary DMT does not have to be real interval
decomposable.

Example 5 Consider the space andmap shown in Fig. 6. The concrete decoratedmerge
tree F1 : (MF,") → vect reduces to the study of the four vector spaces and the maps
between them, indicated in red. It is a fact that this tree module is equivalent to one
of the twelve indecomposable representations of the Dynkin DiagramD4. This gives
a natural, Morse-theoretic example of a function whose associated tree module is not
real-interval decomposable. This can be seen more intuitively by observing that the
DMT fails to have the untwisted condition defined below: the image V! of the linear
map from the left branch to the root (at the top) and the image Vr of the map from the
right branch to the root do not satisfy V! ∩ Vr = 0.

The aim of this subsection is to establish a sufficient condition for a decorated
merge tree to be real interval decomposable.

Definition 23 A collection of vector subspaces V1, . . . ,Vm of a fixed vector space V
is independent if for all i Vi ∩

(∑
j '=i Vj

)
= 0. Under this hypothesis we have that

V1 + · · ·+ Vm = V1 ⊕ · · · ⊕ Vm.
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Fig. 6 Consider a cylinder with height function induced by the implied embedding. The concrete decorated
merge tree in degree-1 is an indecomposable tree module that is two dimensional at the merge point and for
values up to, but not including, the maximum. This is equivalent to an indecomposable tree module, which
is equivalent to one of the 12 indecomposable representations of the Dynkin DiagramD4. This shows that
not every tree module is real interval decomposable

Let (MF,") be a generalizedmerge tree and letF : (MF,") → Vect be a treemodule.
We say that F is untwisted if whenever we have a set of incomparable elements
p1,p2, · · · ,pn ∈ MF and any upper bound p ∈ MF of these, the collection of vector
subspaces

ImF(p1 " p), ImF(p2 " p) · · · , ImF(pn " p)

is independent.

Remark 10 It should be noted that this notion of untwisted is completely unrelated to
the notion used in Kim and Memoli (2018), which is used to describe Reeb graphs
which admit sections when restricted to certain intervals.

To state our sufficient condition for real interval decomposability, we impose a mild
geometric constraint on our generalized merge trees (Definition 2).

Definition 24 (cf. Defn. 2.2 of Patel 2018) A persistent set S : (R,!) → set is con-
structible if there exists a collection of times τ = {t0 < t1 < · · · < tn} such
that

– S(t) = ∅ for t < t0,
– S(t) = {"} for t > tn, and
– S(t ! s) is a bijection for every pair t ! s ⊂ [ti, ti+1).

Assuming these conditions, the associated display poset (S,") is said to be tame.

It is known that a constructible persistent set has an associated display poset that
can be topologized as a finite cell complex, making it into a bona fide tree (Curry
2018; Stefanou 2018). There are a few other consequences of this tameness condition
that are worth noting.
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Proposition 6 Suppose (MF,") is a tame generalized merge tree, i.e. the defining
persistent set π0 ◦ F is constructible. The following consequences of this assumption
are obvious:

– Any maximal chain C ⊆ MF has a minimum, which we call a leaf node. The set
of leaf nodes of MF is finite.

– The set of leaves has a (unique) least upper bound p∞ := (", tn) (using the
notation of Definition 24), which we call the root node.

– Any PFD tree module F : (MF,") → vect pushes forward along the natural pro-
jection map π : MF → R to a PFD R-module π∗F : (R,!) → vect, which is
defined pointwise as

π∗F(s) :=
⊕

p∈π−1(s)

F(s).

Remark 11 When the need arises, we use notation πF : MF → R for the projection
map. The extra notation will be necessary when comparing merge treesMF andMG

later in the paper.

Remark 12 In Appendix B, we give an alternative construction of a merge tree which
is guaranteed to produce a tree, in the metric sense, without any tameness assumption.

Theorem 4 Let (MF,") be a tame generalized merge tree. A pointwise finite dimen-
sional tree module F : (MF,") → vect is real interval decomposable if and only if it
is untwisted.

Proof We proceed by induction on the number of leaf nodes n of a generalized merge
tree (MF,"). If n = 1, then MF is totally ordered and any tree module is automat-
ically untwisted. The result then follows from the usual decomposition theorem for
R-indexed persistence modules. If the result is true for any PFD tree module on a
generalized merge tree with ! leaves where 1 ! ! ! m, then we now show the result
is true for tree modules on trees withm+ 1 leaf nodes.

To begin, we assume that (MF,") hasm+1 leaf nodes and a root node p∞. Write
MF as the union of two subsets M1 and M2 where each subset has at least one leaf
node and M1 ∩ M2 = Up∞—the intersection is the principal up set at the root node,
which is totally ordered. Associated to any PFD tree module F : (MF,") → vect and
such a decomposition MF = M1 ∪ M2 are two natural submodules F1 and F2. We
define F1 via three cases:

1. If p ∈ M1 and p < p∞, then F1(p) := F(p).
2. If p $ p∞, then F1(p) :=

∑
q∈M1|q<p∞ ImF(q < p).

3. If p ∈ M2 \M1, then F(p) = 0.

F2 is defined exactly in the samemanner, simply by interchanging 1 and 2 in the above
definition. By the induction hypothesis both F1 and F2 are untwisted and hence real
interval decomposable, i.e. F1 ∼= ⊕α∈I1Fα and F2 ∼= ⊕β∈I2Fβ and each of Fα and
Fβ are supported on totally ordered subsets ofM1 and M2, respectively.
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By Proposition 6, π∗F, π∗F1 and π∗F2 are each PFDR-modules. Moreover, since
π∗ : Fun(MF, vect) → Fun(R, vect) is an additive functor, we know that

π∗F1 ∼= π∗ ⊕α Fα
∼= ⊕π∗Fα,

which agrees, up to permuting factors with the Remak decomposition of π∗F1 guar-
anteed by the usual decomposition theorem in persistence. The symmetric statement
is true for π∗F2 as well. This implies that we can collect the interval modules that
appear in the Remak decomposition of π∗F into three terms:

π∗F ∼= F1 ⊕ F2 ⊕ F3 where F1 ∼= π∗F1 and F2 ∼= π∗F2.

We claim that F3 is the direct sum of real interval modules that are born at or
after π(p∞). In particular, the support of F3 is contained in [π(p∞),∞). This is clear
because for any t < π(p∞) the set of pre-images π−1(t) can be partitioned into points
that are inM1 orM2 exclusively, because π−1(t) ∩ M1 ∩ M2 = ∅. This implies that

for t < π(p∞) π∗F(t) ∼= π∗F1(t) ⊕ π∗F2(t).

We now use this observation to define F3 := π∗F3.
The proof of this direction concludes by showing that F ∼= F1 ⊕ F2 ⊕ F3. This

decomposition obviously holds for theMF-module when restricted to the set of points
strictly below p∞. Since Fi for i = 1, 2, 3 are naturally submodules of F, it suffices to
show thatwheneverp $ p∞ andvi ∈ Fi(p) are chosen such thatv1+v2+v3 = 0, then
each vi = 0. Of course if v1+v2+v3 = 0, then v3 ∈ (F1(p) ⊕ F2(p)) ∩ F3(p) = 0,
sov3 = 0.Moreoverv1 andv2 are the images ofw1 andw2 under themapsF1(q1 < p)
and F2(q2 < p), so the untwisted condition implies that v1 and v2 are independent,
hence 0 as well.

A real intervalmodule satisfies the untwisted condition and this property is inherited
by direct sums. This proves the converse statement and completes the proof of the
theorem.

4.2 Injectivity of the barcode transform

The class of real interval decomposable tree modules is nice for various reasons, but
one reason of interest to us is that the barcode transform is injective when restricted
to real interval decomposable modules.

Theorem 5 Suppose that F : (M,") → vect and F ′ : (M ′," ′) → vect are two
real interval decomposable tree modules with finitely many intervals in their
direct sum decompositions. If their associated barcode decorated merge trees
BF : M → Barcodes and BF ′ : M ′ → Barcodes are isomorphic then F ∼= F ′.

To prove the theorem, we introduce some notation. Let I ⊂ MF be a totally ordered
subset. We use kI : (MF,") → vectk to denote the functor that assigns the ground
field k to points p ∈ I and where any ordered pair p " q in I is assigned the identity
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map. If a decorated merge tree F : MF → Vect is real interval decomposable, then it
can be expressed as

F ≈
⊕

R(F)

kI, (1)

where R(F) := {(I,mI)} indicates the collection of intervals I that appear in the
Remak decomposition of F along with their multiplicity; the sum in (1) is taken with
multiplicity.

The following proposition is obvious.

Proposition 7 Suppose that the tree module F : (MF,") → vect is real interval
decomposable. Then the associated barcode decorated merge tree BF : MF →
Barcodes is determined at each point by the formula

BF(p) := {(Up ∩ I,mI) | (I,mI) ∈ R(F)}

whereUp is the principal up set atp inMF.Moreover, whenMF is tame, the associated
barcode decorated merge tree is completely described as the disjoint union of the
barcodes when viewed from each leaf node v, i.e.

BF =
⊔

v∈L(M)

BF(v),

where BF(v) is determined via intersection with the principal up setUv as indicated
above. We note that every bar (I,mI) in the barcode viewed from v can be expressed
as a sum

(I,mI, v) =
∑

I∈R(F)

Uv ∩ (I,mI) where I ∩ Uv = I.

Informally, we may write this as mI = mI1 + · · ·+mIk

Proof of Theorem 5 Two barcode decorated merge trees are isomorphic if there exists
an underlying isomorphism of their generalized merge trees φ : M → M ′ and
ψ : M ′ → M so thatBF(x) = BF ′(φ(x)) andBF ′(x ′) = BF(ψ(x ′)) for all x ∈ M
and x ′ ∈ M ′. The argument proceeds by proving that F ∼= F ′ ◦ φ and symmetrically
F ′ ∼= F ◦ ψ. Both arguments would be completely symmetric over the two general-
ized merge trees, so it suffices to consider the case whereM = M ′ and where we can
assume thatφ andψ are identity maps.We now proceed to showing that ifBF = BF ′

then F ∼= F ′ as M-modules.
The argument proceeds by showing that every real interval (I,mI) that appears in

the Remak decomposition for F must appear in the Remak decomposition for F ′ with
no intervals left over. This will establish the isomorphism of F and F ′. We start by
considering an oldest interval (I,mI, v) in B[F], this means that if we consider the
projection of I toR via the natural map π : M → R then inf{π(I)} ! inf{π(J)} for any
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(J,mJ,w) ∈ BF; such an oldest interval exists due to our finiteness assumption. By
Proposition 7 we know that any (I,mI, v) has a unique (up to permutation) expression

mI = mI1 + · · ·+mIk

for Ij ∈ R(F) with Ij ∩ Uv = I. We claim that if (I,mI, v) is an oldest interval then
there exists an (Ij,mIj) ∈ R(F)with (I,mI, v) = (Ij,mIj). Indeed, if there does not
exist a unique contributor, then this contradicts the assumption that (I,mI, v) was
oldest. The interval Ij is the oldest contributing factor in the sum for mI displayed
above. Since the barcode decoration associated toF ′ is equal to the barcode decoration
associated to F, then (I,mI, v) must also be an oldest interval and there must be the

same oldest contributor Ij ∈ R(F ′). This proves that F ′ ∼= G ′ ⊕ k
mIj

Ij
and of course

F ∼= G ⊕ k
mIj

Ij
and BG ′ = BG. The argument repeats with the barcode decorated

merge tree B[G] until it is empty.

4.3 Lift decoratedmerge trees

The process of extracting a decorated merge tree from a dataset is an algorithmic
challenge that we need to address. When a persistent space F : (R,!) → Top is a
filtration of a simplicial complex, existing software can be used to extract a merge
tree MF and a degree-k persistent homology barcode B. One would hope to use
this easily accessible data to reverse engineer the underlying decorated merge tree
F : MF → vect, for which the persistent homology barcode is the pushforward; i.e.,
B = π∗F, where π : MF → R is the projection function. Indeed, algorithms presented
in Sect. 6 are based on such a reverse engineering process and can be used to produce
decorated merge trees from point cloud and filtered graph data. In this subsection, we
provide the theoretical underpinning of these algorithms.

Let F : (R,!) → Top be a filtration of a simplicial complex with a tame merge tree
MF. The standard algorithm for extracting the barcode B records a birth simplex σ
for each interval I = [b,d) in the barcode (Edelsbrunner et al. 2000). This is to say that
σ is a simplex with filtration value b whose birth creates a representative homology
class for I. The birth point of I is the unique point p ∈ MF with π(p) = b and where
p is an ancestor of all the vertices of σ. Let q ∈ MF be the unique ancestor of p such
that π(q) = d.

Definition 25 With the notation above, define the lift of I to be the decorated merge
tree I : MF → vect defined by

I(r) :=

{
k p " r " q
0 otherwise.

The lift of B is the decorated merge tree

F̂ :=
⊕

I∈B

I.
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A decorated merge tree is called a lift decorated merge tree if it is obtained as the
lift of some barcode.

Based on the above discussion, it is straightforward to determine the lift decorated
merge tree directly from the filtered simplicial complex. However, the lift DMT is not
guaranteed to be isomorphic to the true DMT F : M → vect; indeed, we have F̂ ≈ F
if and only if F is real interval decomposable, in the sense of Definition 22. The task
which we aim to address for the rest of this subsection is to determine a condition on
the filtration F which

– can be verified directly from the merge tree MF and degree-k barcode B, and
– implies that F̂ ≈ F.

Our proposed condition is the following.

Definition 26 Let F : (R,!) → Top be a filtered simplicial complex with merge tree
MF and degree-k barcode B. We say that F has the Hk-disjointness property if for
any pair of bars I = [b,d) and I ′ = [b ′,d ′) in B with incomparable birth points p
and p ′, one of their death times is less than their merge height (Definition 15), i.e.

min{d,d ′} < merge(p,p ′).

Intuitively, this means that the lifts of I and I ′ have disjoint support.

Proposition 8 If a filtered simplicial complex F : (R,!) → Top has the
Hk-disjointness property, then the lift decorated merge tree and the concrete dec-
orated merge tree are isomorphic, i.e. F̂ ≈ F.

This result says thatHk-disjointness is sufficient to guarantee that the lifting proce-
dure produces a valid decorated merge tree. Our proof is straightforward but technical,
so we delay it to Appendix C.2.

5 Computing interleaving distances

The goal of this section is to develop a practically feasible algorithm for approximating
the matching distance between barcode decorated merge trees (Definition 10). This
relies on the notion of labeling a DMT.

5.1 Labeled distance

Throughout this section, we consider generalized merge trees MF arising from per-
sistent spaces F : (R,!) → Top such that the persistent set π0 ◦ F is constructible and
MF is tame, as in Proposition 6. The finite set of leaves ofMF is denoted L(MF). The
canonical projection functionMF → R is denoted πF.

Remark 13 The results of this section do not require that decorated merge trees arise
from persistent spaces at all; they could be derived formally treating tree modules as
the fundamental objects.
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We restrict our attention to the case of barcode decorated merge trees BF : MF →
Barcodes which are determined by restriction and which have leaves, i.e. BF is a
leaf-decorated merge tree. Recall that we denote an element of Barcodes as a multiset
{(I,mI)}I∈I, where I is an interval and mI is its multiplicity. We make the (realistic,
in practice) assumption that all barcodes are finite.

Inspired by a similar result for merge trees in Gasparovic et al. (2019), we will
now explain how the bottleneck distance between leaf decorated merge trees can be
expressed in terms of matrices obtained from labelings of merge trees.

Definition 27 A labeling of a merge tree MF is a map

λF : [n] := {1, . . . ,n} → MF,

for some integer n $ 1, which is surjective onto the set of leaves L(MF); that is,
L(MF) ⊆ Im(λF).

To each labeling λF : [n] → MF one associates an n × n matrix ΛF of merge
heights (Definition 15), referred to as the least common ancestor (LCA) matrix and
defined by

ΛF(i, j) = πF(LCAF(λF(i), λF(j))) = mergeF(λF(i), λF(j)). (2)

It is shown in (Gasparovic et al. 2019, Proposition 4.1) that interleaving distance
between merge trees can be expressed in terms of the !∞ distance between these LCA
matrices. To adapt this result to the decorated merge tree setting, we introduce a more
involved objective function.

Definition 28 Let BF : MF → Barcodes and BG : MG → Barcodes be leaf dec-
orated merge trees. Define the matching cost of labelings λF : [n] → MF and
λG : [n] → MG to be

cost(λF, λG) = max
{

‖ΛF − ΛG‖∞ , max
i

dB (BF(λF(i)),BG(λG(i)))

}
, (3)

where ‖ · ‖∞ is the !∞-norm on n × n matrices.

Proposition 9 The decorated bottleneck distance between leaf decorated merge trees
BF : MF → Barcodes and BG : MG → Barcodes is given by

dB(BF,BG) = min
λF,λG

cost(λF, λG),

where theminimum is taken over labelings λF and λG with common domain [n], where
n is the sum of the number of leaves inMF and the number of leaves inMG.

The proof adapts the proof of (Gasparovic et al. 2019, Proposition 4.1) to this new
setting. We provide a sketch of the idea and omit technical, but ultimately routine,
details.
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Proof Sketch Throughout the proof sketch, fix leaf decorated merge treesBF : MF →
Barcodes and BG : MG → Barcodes. Suppose that MF has k leaves and MG has !

leaves.
First assume that we have ε-compatible maps (φ,ψ) of MF and MG; recall from

Definition 19 that we slightly abuse notation and conflate the notion of natural trans-
formation with that of ε-compatible maps. Also assume that

dB(BF(u),BG(φ(u)),dB(BG(v),BF(ψ(v))) < ε.

We construct labelings λF and λG on the common set of labels [k+ !] as follows.

1. Label each leaf of MF with a unique element of {1, . . . , k}; this defines λF on [k].
Each label i is also assigned toMG as λG(i) = ψ(λF(i)).

2. Similarly, for each j ∈ {k + 1, . . . , k + !} define λG(j) to be a unique leaf of MG

and define λF(j) = ψ(λG(j)).

One must then show that the labelings λF and λG defined above have the property
that, for any i, j ∈ [k+ !],

|πF(LCAF(λF(i), λF(j))) − πG(LCAG(λG(i), λG(j)))| < ε (4)

and

dB(BF(λF(i)),BG(λG(i))) < ε. (5)

Conversely, suppose that we have labelings λF and λG such that cost(λF, λG) < ε.
For each i ∈ [k+ !] set ui = λF(i) and vi = λG(i).

1. We first define the map φ : MF → MG. Let x ∈ MF and choose an arbitrary
labeled point ui ∈ MF with ui ! x (always possible because all leaves ofMF are
labeled). Defineφ(x) ∈ MG to be the unique ancestor of vi such that πG(φ(x)) =
πF(x) + ε.

2. The map ψ : MG → MF is constructed similarly.

We first note that the maps φ and ψ are well defined. Indeed, if ui and uj are a
pair of labeled points in MF with ui,uj ! x, then LCAF(ui,uj) ! x. This means
that πG(LCAG(vi, vj)) ! πF(x) + ε, by our assumption on the cost of the labelings
λF and λG, so that vi and vj have the same ancestor at height πF(x)+ε. By the same
reasoning, ψ is well defined. The proof is completed by showing that the maps (φ,ψ)
define an ε-matching of barcode decorated merge trees.

5.2 Approximatingmerge tree interleaving via Gromov-Wasserstein distance

Computing interleaving distance between merge trees is known to be NP-Hard (Agar-
wal et al. 2018). A dynamic programming approach to computing interleaving distance
is taken in Farahbakhsh Touli and Wang (2019), illustrating that the computation is at
least fixed parameter tractable (roughly, precise upper bounds on interleaving distance
are computable in time with polynomial growth in the number of the nodes, provided
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one has a uniform upper bound on node degrees). An alternative and more efficient
method for analyzing merge trees is to apply (Gasparovic et al. 2019, Proposition 4.1):
given any labeling of merge trees, one obtains an upper bound on their interleaving
distance, so one could rely on a good heuristic for estimating optimal labelings. Such
a heuristic, based on replacing the problem with the simpler one of finding optimal
bipartite graph matchings, is proposed in Yan et al. (2019), yielding a comprehensive
framework for statistical analysis of merge tree ensembles.

In this section, we propose an alternative heuristic for estimating optimal labelings
using the concept of Gromov-Wasserstein (GW) distances. Different formulations
of GW distances were introduced around a decade ago by Sturm (2006, 2012), to
study abstract convergence of sequences of metric measure spaces, andMémoli (2007,
2011), with a view towards applications to object matching. GW distances have found
recent popularity in the machine learning community (Alvarez-Melis et al. 2019;
Chapel et al. 2020; Xu et al. 2019, 2020), largely due to the observation by Peyré et al.
(2016) that they can be used to measure distances between general kernel matrices;
this point of view was formalized mathematically in Chowdhury and Mémoli (2018).
We now briefly present GW distances from a computational point of view—see the
references above more thorough treatments.

Definition 29 (cf. Chowdhury and Mémoli 2018) A (finite) measure network is a
pair C = (C,µ), where C is an n × n matrix and µ is a length-n probability vector
(that is,

∑
µ(i) = 1 and µ(i) $ 0). A coupling between probability vectors µ1 ∈ Rn

and µ2 ∈ Rm is a matrix ν ∈ Rn×m such that ν(i, j) $ 0 and

∑

i

ν(i, j) = µ2(j),
∑

j

ν(i, j) = µ1(i).

That is, ν is a joint probability distribution with marginals µ1 and µ2. The set of
couplings between fixed µ1 and µ2 is denoted C(µ1,µ2) ⊂ Rn×m.

The Gromov-Wasserstein p-distance between finite measure networks (C1,µ1)
and (C2,µ2) is defined by

dGW,p ((C1,µ1), (C2,µ2)) = min
ν∈C(µ1,µ2)

Jp(ν)
1/p, (6)

where

Jp(ν) =
∑

i,j,k,!

(C1(i,k) − C2(j, !))
p ν(i, j)ν(k, !) (7)

denotes the Gromov-Wasserstein p-distortion functional.

To handle computational aspects of merge tree interleaving, we introduce the fol-
lowing discrete representation of a merge tree.

Definition 30 (cf. Gasparovic et al. 2019) A computational merge tree is a (discrete)
graph together with a height function on its nodes satisfying the following conditions:
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1. the graph must be a tree—that is, there is a unique edge path between any two
nodes;

2. exactly one of the leaf nodes (called the root) of the graph gets assigned height ∞;
3. adjacent nodes do not have equal function value; and
4. every non-root node has exactly one neighbor with higher function value.

A computational decorated merge tree is a computational merge tree together with
an assignment of a barcode to each of its nodes.

Remark 14 In what follows, we use the notation MF for a computational merge tree
andBF : MF → Barcodes for a computational decorated merge tree. This is in agree-
ment with the notation used for their non-computational counterparts earlier in the
paper, but the distinction should be clear from context. We also generally drop the
“computational” qualifier.

The GW framework is incorporated into a pipeline for estimating the interleaving
distance between merge trees MF and MG as described by the following algorithm;
this is augmented below in Sect. 5.3 to define an algorithm for estimating interleaving
distance between decorated merge trees. The main idea is that the algorithm produces
labelings of the merge trees, and the !∞ distance between the associated least common
ancestor matrices upper bounds interleaving distance—of course, any pair of labelings
produces such an upper bound, but the labelings constructed below are informed by a
GW structural alignment. The algorithm is also summarized in Fig. 7.

Algorithm 1 To estimate the interleaving distance between them merge treesMF and
MG:

1. Probability distributions µF and µG, respectively, are chosen for the nodes of the
trees. We use uniform distributions in our experiments

2. A cost matrix CF (respectively, CG) is associated toMF (resp.,MG) by choosing
an arbitrary labeling of its nodes and taking the associated least common ancestor
matrix. Then (CF,µF) and (CG,µG) define finite measure networks.

Fig. 7 Pipeline for estimating interleaving distance between merge trees. From left to right: we aim to
compute the interleaving distance between merge trees shown in the left column. We sample the merge
trees with a user-defined mesh (here the mesh is equal to 1). We assign arbitrary labels to the nodes in each
tree independently; LCA matrices for each merge tree (with respect to these labels) are shown in the third
column. The fourth column shows an optimal coupling between the sampled nodes of the merge tree. From
the coupling, we estimate an optimal labeling of the merge trees (fifth column), and this easily yields an
upper estimate on the interleaving distance between the merge trees
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3. An optimal coupling ν of µF and µG is estimated by numerically solving the GW
problem (6). Intuitively, the GW problem promotes large values of ν(i, j) when
node i of MF and node j of MG are structurally similar.

4. We use ν to estimate interleaving maps ofMF andMG: for each leaf u inMF, we
locate the maximum entry of the row of ν corresponding to this leaf and define this
to be φ(u) ∈ MG. We likewise define a map ψ from the leaf set of MG to MF by
examining columns of ν.

5. We useφ andψ to construct labelings λF and λG with domain [k+!] of the merge
trees as in the algorithm in the proof of Proposition 9, where k is the number of
leaves inMF and ! is the number of leaves inMG.

6. From λF and λG, we construct matrices ΛF and ΛG and compute ‖ΛF − ΛG‖∞,
yielding a principled upper estimate of interleaving distance.

Remark 15 Computing GW distance is an instance of quadratic programming prob-
lem with a nonconvex objective function and is therefore NP-Hard to compute exactly
(Mémoli 2011). However, since the space of couplings C(µ1,µ2) forms a convex
polytope, it is possible to approximate GW distance via Frank-Wolfe-style projected
gradient descent; our computations of GW distance will be handled by the Python
Optimal Transport package (Flamary and Courty 2017). Gradient updates have com-
putational complexity O(n3 log(n)) when p = 2 (Peyré et al. 2016), so we focus on
this case for the sake of efficiency.

The quality of the gradient descent-based estimation in step (2) of the algorithm can
be improved by upsampling the trees—i.e., adding degree-2 nodes at user-specified
heights to better approximate the continuous nature of the true merge trees. We have
found empirically that this procedure for estimating interleaving distance from above
tends to give meaningful labelings of merge trees. This is illustrated by an experiment
on synthetic data in Sect. 6.1.

Remark 16 Similar applications of Gromov-Wasserstein distance have recently
appeared in the literature. In Li et al. (2021), a framework for summarizing sets of
merge trees is developed using the Riemannian structure of the GWmetric on measure
networks developed in Chowdhury and Needham (2020). There, the authors use GW
distance to align merge trees, but the measure network representation of the merge
trees used there is different than the one proposed here and has a less clear connection
toGasparovic et al. (2019) and the computation of interleaving distance. The authors of
Mémoli et al. (2021) study a variant of GWdistance on the space of ultrametric spaces
(metric spaceswhich satisfy a stronger version of the triangle inequality). Applications
to merge tree interleaving are not directly discussed in Mémoli et al. (2021), but our
matrix representations ofmerge trees are inherently utilizing an underlying ultrametric
structure (or, using the terminology of Mémoli et al. (2021), ultradissimilarity struc-
ture), which is not the usual geodesic metric one considers when representing a merge
tree as a metric tree. Similar ideas for comparing metric spaces go back to Smith et al.
(2016) and Mémoli et al. (2019) (the latter describing specific connections to merge
tree interleavings), but to our knowledge the specific algorithm and implementation
described here for approximating merge tree interleaving is novel.
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5.3 Matchings of DMTs via fused Gromov-Wasserstein matchings

The GW framework described above has thus far only been applied to estimate inter-
leavings between (undecorated) merge trees. In order to incorporate barcodes into
comparisons between decorated merge trees, we employ the more general Fused
Gromov-Wasserstein (FGW) framework (Vayer et al. 2020). The FGW framework is
used to compare measure networks with additional structure.

Definition 31 Let Z = (Z,dZ) be a metric space. A Z-structured (finite) measure
network is a triple (C,µ,B) consisting of a finite measure network (C,µ), where
C ∈ Rn×n, together with an n-tuple B of points in Z.

Let (C1,µ1,B1) and (C2,µ2,B2) beZ-structuredmeasure networks. Forα ∈ [0, 1],
we define the Fused Gromov-Wasserstein (FGW) distance for parameter ζ ∈ [0, 1]
as

dFGW,ζ((C1,µ1,B1), (C2,µ2,B2))
2 = min

ν∈C(µ,ν)
((1 − ζ)I2(ν) + ζJ2(ν)) , (8)

where J2 is the GW p-loss (7) with p = 2 and

I2(ν) =
∑

i,j

dZ(B1(i),B2(j))
2ν(i, j)

is the standard 2-Wasserstein loss from classical optimal transport (see, e.g.,
Villani 2008).

The FGW framework is used to augment Algorithm 1 to estimatematching distance
between DMTs BF : MF → Barcodes and BG : MG → Barcodes. The difference is
that the optimal coupling of step (2) is obtained by solving (8) for some choice of hyper-
parameter ζ, where the functional J2 is the GW 2-distortion functional with respect
to the measure networks (Λ̄F,µF) and (Λ̄G,µG), exactly as in the previous subsec-
tion. The I2 term is Wasserstein 2-loss with respect to bottleneck distance between
node barcodes. Examples of FGW-based estimation of DMT matching distance are
provided in Sects. 6.4 and 6.6 .

6 Algorithmic details and examples

In this section, we outline theoretical and practical aspects of generating and compar-
ing decorated merge trees. We provide several computational examples coming from
real and synthetic data. Implementations (in Python) of all of these experiments as
well as source code are freely available in our GitHub repository.1 The code uses stan-
dard Python data science packages (scikit-learn Pedregosa et al. 2011, scipy
Virtanen et al. 2020, etc.), as well as more specialized packages for topological data

1 https://github.com/trneedham/Decorated-Merge-Trees.
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Fig. 8 Merge tree classification experiment. The merge trees shown on the left are samples from 6 different
classes generated from the family of scalar functions (9). Pairwise distance matrices and leave-one-out
nearest neighbor classification scores for !∞ and !2 interleaving distances are shown on the right

analysis (gudhi GUDHI 2021, giotto-tda Tauzin et al. 2021, ripser Bauer
2019 and scikit-tda Saul and Tralie 2019) and optimal transport (PythonOptimal
Transport, pot Flamary and Courty 2017).

6.1 Merge tree interleaving distances

To test the reliability of ourmethod for estimatingmerge tree interleaving distances,we
create a simple classification experiment (summarized in Fig. 8); note that this example
is only meant to demonstrate the viability of our method for computing merge tree
interleaving distance, and does not yet incorporate any merge tree decorations. We
define a parametric model for generating merge trees by considering merge treesMF

given by sublevel-set filtrations F of functions f : [0, 1] → R given by

f(t) = sin(ρ1πt) + cos(ρ2πt) + g(t), (9)

where ρj are parameters and g(t) ∈ [0, 1/2] is uniformly distributed random additive
noise. We construct a dataset of 120 random merge trees by drawing 10 samples for
each combination of parameter choices ρ1 ∈ {1, 2, 4, 8} and ρ2 ∈ {1, 3, 5}. The random
additive noise has the effect of generating many spurious local minima for the func-
tions which yield extraneous leaves in the merge trees, making the matching process
nontrivial. We compute a 120 × 120 pairwise distance matrix using our interleaving
distance estimator with uniform node weights and height sampling mesh size equal to
0.5. The leave-one-out nearest neighbor classification rate for this distance matrix is
98.33%, indicating that our interleaving distance computation provides a meaningful
comparison for the merge tree dataset.

Since the labelings in the GW-based interleaving computation are obtained via
optimization of an !2 loss, we also give a small tweak to the interleaving distance
formulation and compute the !2-interleaving distance between merge trees MF and
MG, defined to be

min
λF,λG

‖ΛF − ΛG‖2,
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where the minimum is, as usual, over labelings of the merge trees and ‖ · ‖2 is the
standard !2 norm onmatrices. The classification rate for this distance is 100%. Explor-
ing theoretical properties of !p versions of merge tree interleaving distance will be a
direction of future work.

6.2 Decoratedmerge trees for point clouds

Vietoris-Rips complexes of point clouds in metric spaces provide a ubiquitous source
for persistence diagrams in topological data analysis. In this subsection we provide
details on the construction of decorated merge trees and on the methods used to
visualize them. These constructions fit into the general theory by considering the
DMTs as being generated by a filtered simplicial complex, viewed as a persistent
space as in Example 3. Throughout the rest of this section, we will use the term DMT
to refer specifically to tame leaf decorated merge trees (Definitions 10 and 24).

Let X be a finite subset of a metric space (in our examples, the metric space is Rn,
but the procedure we describe here can be performed on any distance matrix). From
the Vietoris-Rips complex of X, we are easily able to compute a (discrete represen-
tation of a) merge tree MF (F denoting the Vietoris-Rips filtration for the complete
simplex on X)—i.e., a single linkage hierarchical clustering dendrogram of X (Carls-
son and Mémoli 2013)—via off-the-shelf functions available in standard packages
(e.g., scipy).

It remains to determine barcodes for the leaves ofMF. A straightforward algorithm
produces a lift decorated merge tree, as was considered in Sect. 4.3. The inputs are
the tree MF and a degree-k Vietoris-Rips barcode, generated by existing software
(ripser or gudhi). For convenience, we assume the generic condition that all
pairwise distances in X are distinct, but this condition can be removed with a bit
more work. The basic idea of the algorithm is that we can decorate the merge tree
with the bars of the barcode by locating the unique (under our generic assumption
on the distances) point in the tree where each bar in the barcode is born. Recall from
Sect. 4.3 that the lift decorated merge tree is not necessarily isomorphic to the true
decorated merge tree—this will be the case if and only if the true DMT is real interval
decomposable (Definition 22). Fortunately, Proposition 8 gives a simple method for
certifying correctness of the lift decorated merge tree. If a given merge tree does not
meet this certification, the true leaf decorations of the merge tree for the dataset can be
computed via a more laborious algorithm, where the idea is to construct a modification
of the Vietoris-Rips complex for each leaf and to then assign the associated persistent
homology barcode to that leaf. This is guaranteed to produce the correct leaf barcodes,
but comes with higher computational cost and less intuitive visualizations.

To visualize the lift decoratedmerge trees, we draw themerge tree together with off-
set edges indicating homology bars. Examples of decorated merge trees generated via
this algorithm are shown in Fig. 1. Observe that the point clouds in this example have
very similar degree-0 and degree-1 persistent homology barcodes, but that they are
easily distinguished by the interactions between their connectivity and degree-1 data;
this difference is clearly captured in their more refined DMT topological signatures.
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Fig. 9 Summarizing the topology in all degrees. The figure on the left shows a toy point cloud dataset
consisting of points sampled from a torus, a sphere and a Fig. 8. The figure on the right shows the associated
merge tree decorated with both degree-1 and degree-2 persistent homology data. This summarizes the
topology of the dataset in all degrees simultaneously, essentially giving a complete description of its overall
topology. As described in the text, the merge tree and persistence diagrams have been thresholded for visual
clarity: the merge tree was truncated at height 0.25 and the plotted bars have persistence at least 1.4 in
degree-0 and 0.6 in degree-1

We can also visualize merge trees decorated with bars from several higher homology
degrees—see Fig. 9. Our visualizations employ some tricks to improve legibility:

1. on the DMT, we typically only plot bars from the barcode which have persistence
longer than a (tunable, user-defined) threshold;

2. we truncate the merge tree itself at a relatively low (tunable, user-defined) height
and then extend the truncated edges to zero.

Both of these options are used to simplify the visualizations by removing unstable,
noisy topological features (transient higher-dimensional features and changes in con-
nectivity at small radii, respectively). Moreover, the simplified DMTs are frequently
used in matching distance computations—since this is an !∞-type distance, it is stable
under these small adjustments, but the simplifications provide a significant computa-
tional speedup.

Figure 10 shows an example of a pointcloud where the hypotheses of Proposition 8
(i.e. H1-disjointness) fail. In fact, the true DMT for this dataset is not real interval
decomposable and the true leaf barcodes are determined by the more computationally
taxing algorithm. In this case, a different technique for visualizing decorated merge
trees must be used—see the caption to the figure for details. We found in practice that
almost all of our other examples naturally satisfied the hypotheses of Proposition 8.

6.3 Sliding window embeddings

Established in Perea and Harer (2015), sliding window embeddings provide a method
for applying the techniques of point cloud TDA to 1-dimensional signals. Given
a function f : [0, T ] → R, one defines for each pair of parameters d ∈ N and
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Fig. 10 Apoint cloudwith non-real interval decomposable merge tree. The figure on the left shows a dataset
in R2. Its classical degree-0 and degree-1 persistence diagrams are shown second from the left. The DMT
shown in the second from the right is the one produced by the lifting algorithm—observe that this does not
satisfy the hypotheses of Proposition 8. In fact, the output of the more involved algorithm disagrees with
the lifted version, meaning that the true DMT for the point cloud is not real interval decomposable. The
true DMT is depicted on the right. In the non-real interval decomposable case, we must visualize the leaf
barcode for each leaf independently. All leaves colored blue (respectively, red) have the same barcode, also
depicted in blue (resp., red). For visual clarity, the merge tree is truncated at height 0.01 in the display and
only bars with persistence at least 0.2 are plotted

τ ∈ (0, T/d) the sliding window embedding (also referred to as the Takens embed-
ding, in reference to Takens’s theorem from dynamical system theory (Takens 1981))
as

SWd,τ(f) : [0, T − dτ] → Rd+1

t &→ (f(t), f(t+ τ), f(t+ 2τ), · · · , f(t+ dτ)).

The sliding window embedding assigns a (d+ 1)-dimensional Euclidean point cloud
to each collection of finite samples of f. Methods of TDA can then be applied to this
point cloud; this approach to signal analysis has found success in applications such
as wheeze detection in audio recordings of breathing (Emrani et al. 2014) and action
recognition from scalar measurements of joint movement (Venkataraman et al. 2016).

When performing this sort of analysis, the focus is typically on degree-1 homolog-
ical features, which indicate periodicity in the signal. We hypothesize that there may
also be interesting degree-0 features in the case that the signal includes a sudden shift.
We illustrate this behavior in the examples shown in Fig. 11. Given a signal with an
apparent shift, we:

1. construct a point cloud via a sliding window embedding; parameters d and τ are
chosen automatically via statistical tools in the giotto-tda package;

2. subsample the resulting point cloud by density—this has the effect of accentuating
disconnected clusters, which correspond to the pre- and post-shift regimes in the
original signal;

3. create a decorated merge tree from the result.

The examples in Fig. 11 (on both synthetic and real time series data) show that the
DMTs resulting from this process uncover interesting features of the signals.

From a real interval decomposable DMT, we obtain a simple method for locating
the connected component of a dataset which contains a given higher degree homology
cycle. For an interval I in the higher degree barcode of the dataset, the points belong-
ing to the connected component of the homology cycle are those corresponding to
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Fig. 11 Decorated Merge Trees from Takens embeddings. Each row shows a different experiment. Starting
with a time series (left), we produce an embedded point cloud via a Takens embedding (parameters deter-
mined automatically). The figure second from the left shows a PCA projection of the embedded point cloud.
From the embedded point cloud, we produce a decorated merge tree (second from right) after light prepro-
cessing via density-based subsampling in order to remove outliers (see text). Using the method described
in the text, we are able to locate samples in the original time series which correspond to a point in the
connected component where any particular degree-1 bar is born (shown on the right, color-coded to the bars
on the DMT). The top row shows a synthetic time series and the bottom row shows a real world time series
(heartrate data fromReiss et al. 2019). The heartrate data shows component-specific periodic behavior at the
beginning and at the end of the time series, with the middle part apparently filtered out as a ‘transitionary
phase’ when subsampling. The short (blue) bar belonging to the early part of the time series intuitively
indicates high frequency/low amplitude periodicity, whereas the more prominent (green) bar belonging to
the latter part of the signal represents the more visually apparent periodicity

descendent leaves of the birth point of I in the merge tree. Using our cycle component
location procedure, we can determine portions of the signals which generate various
degree-1 homology classes—these are indicated by color coding in Fig. 11.

6.4 Clustering point clouds

In this example, we demonstrate the ability of DMT matching distance to distinguish
point clouds with subtle topological differences. Figure 12a shows samples from six
classes of synthetically-generated point clouds consisting of noisy blobs and circles.
Each class contains 3 examples, with examples within class differing only due to
noise effects. All classes have similar degree-0 topological structure, classes in the top
row have three main degree-1 features and classes in the bottom row have two main
degree-1 features. The distribution of the cycles among the connected components
differ from class-to-class, but are the same within class.

For each point cloud, we construct various topological descriptors: a degree-0
persistence diagram, a degree-1 persistence diagram and a decorated merge tree.
Pairwise distance matrices are computed for all 18 samples with respect to various
metrics: bottleneck distance on degree-0 features, bottleneck distance on degree-1 fea-
tures, maximum of bottleneck distance between degree-0 and degree-1 features and
an estimation of decorated merge tree interleaving distance computed via the Fused
Gromov-Wasserstein algorithm of Sect. 5.3. The resultingmatrices and corresponding
MDS plots are shown in Fig. 12b.
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Fig. 12 a Samples from six classes of simple pointclouds in R2. Each class contains 3 examples of point-
clouds with similar topological patterns. b Pairwise distance matrices for various methods shown in the top
row, with corresponding MDS plots shown in the bottom row

6.5 Networks

Beyond Vietoris-Rips complexes of point clouds, we can generate DMTs for more
general filtered simplicial complexes. A class of such objects which is important from
a data science perspective is the class of filtered networks. To make this precise, a
filtered network is a graph G = (V ,E) together with a function f : V → R. This
function is extended to each edge {v,w} ∈ E by the rule

f({v,w}) := max{f(v), f(w)},

and this yields a sublevel-set filtration in the sense of Example 3. We found it useful to
add 2-dimensional simplices to the graphs by computing the 2-skeleton of theVietoris-
Rips complex with respect to shortest path distance; this has the effect of allowing
degree-1 bars to die at finite times which reflect the size of their representative cycles.
We are also able to threshold out small bars corresponding to triangles in the networks
when displaying DMTs. This method is admittedly ad hoc, but it results in more
informative topological summaries which capture both the topology of the filtration
and the distance structure of the graph.

Given a filtered network, we produce a DMT by first building the merge tree itself
by iteratively adding nodes to the tree in order of function value. Degree-1 homological
information can be added to the merge tree by lifting bars (guaranteed to produce the
correct DMT if the disjointness condition (Definition 26) is satisfied) or by a more
involved construction, as in the case of point clouds.

An important source of network data comes from images represented as node-
weighted graphs. Figure 13 shows a decorated merge tree describing the topological
features of real fMRI brain scan image data. This is accomplished by considering an
image as a weighted grid graph; that is, each pixel of the image is a node, nodes are
connected in a grid to their neighbors and weights are assigned according to grayscale
value. This procedure is also summarized in the figure. While the particular example
shown in the Fig. 13 is only an illustration of how to apply DMTs to summarize an
image network, there are potential realistic use cases. For example, there is a growing
body of work on the use of TDA techniques for regularization of deep learning-based
image segmentation (Huet al. 2019, 2020); usingDMTs insteadof barcodes as features
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Fig. 13 Grayscale images as a filtered networks. The top row illustrates the pipeline for extracting a
decorated merge tee from a grayscale image. Beginning with a toy image on the left, we convert it to
a filtered network (a regular graph with nodes weighted by grayscale value). From this, we produce a
decorated merge tree (right). The bottom row shows two examples of decorated merge trees extracted from
MRI images of Glioblastoma Multiforme tumors from The Cancer Imaging Archive (Clark et al. 2013;
Scarpace et al. 2016), with the segmentations coming from Crawford et al. (2020). Each example shows
the original image, with an inset showing a more detailed and lightly preprocessed version of the region of
interest

would yield more detailed topological regularization. A full-fledged implementation
of this pipeline is saved as a future direction.

6.6 Networkmatching

Computation of the decorated merge tree matching distance provides rich information
about correspondences between points in the merge trees, since it involves the com-
putation of an optimal coupling between these points. This is especially informative
in the setting of filtered networks, since each node in the merge tree produced via
our algorithm corresponds to a node in the original network. The optimal coupling
then provides a probabilistic matching between nodes of the filtered networks which
captures the topology of the filtration function.

Estimation of node correspondences between graphs is a classical problem which
has recently been a focus of Gromov-Wasserstein-based methods. The optimal cou-
pling used to match two graphs depends on the how they are represented as measure
networks in the GWmatching problem (6); for example a graph can be represented by
its geodesic distance matrix (Hendrikson et al. 2016), its adjacency matrix (Xu et al.
2019) or by a heat kernel matrix at a chosen scale (Chowdhury and Needham 2020).
The coupling produced in the process of computing the decoratedmerge tree matching
distance differs from existing approaches in that it matches based on purely topologi-
cal features of the graphs. A simple example illustrating the qualitative differences in
graph matchings is shown in Fig. 14. In this example, the node filtration for each graph
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Fig. 14 Matching networks. The top row shows two networks, constructed to have similar topological
motifs. The bottom row illustrates node matchings between the graph; each matching is illustrated by
transferring the node colors from the source graph (the node colors here are arbitrary) to the target graph
via a probabilistic coupling of its nodes—node j in the target graph receives the color of target node i
when the (i, j) entry is the largest in the jth column of the coupling matrix. The first color transfer utilizes
the coupling obtained during the computation of DMT matching distance via the Fused GW framework,
while the latter two couplings come from the GW framework applied to adjacency matrices and geodesic
distance matrices, respectively. Qualitatively, the matching produced using DMTs most strongly preserves
topological features

is given by a diffusion Fréchet function, which measures local node density (Martínez
et al. 2019). This simple example suggests the possibility that including topology in
the matching process may have a regularizing effect, allowing the matching to capture
large-scale graph similarity which may be lost during the optimization process when
usingmore localized similarity criteria. Learning the best filtration function for a given
task in the context of classical TDA is an active field of research (Hajij et al. 2020;
Hofer et al. 2020); extending this line of research to learn filtration functions which
capture the interplay between degree-0 and degree-1 features will be taken up in future
work.

7 Discussion

In this paper, we defined several variants of the notion of a decorated merge tree. We
introduced a metric on the space of DMTs as well as a metric on the simpler space
of leaf decorated merge trees which is more amenable to computation. A stability
result was demonstrated for these metrics, and stability was extended to compare
these metrics to several other metrics which have appeared in the literature. Several
use cases for the DMT framework were demonstrated via computational examples.

There are many directions for future research on DMTs and related ideas. On the
computational side, we plan to refine our algorithms to efficiently handle DMT com-
putations on real datasets. This challenge comes with some interesting theoretical
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questions. For example, we are currently using off-the-shelf methods for approximat-
ing Gromov-Wasserstein matchings between merge trees; the hierarchical structure
of merge trees should allow for specialized algorithms which utilize this structure to
produce faster and more accurate estimates. To scale DMT-based analyses to handle
large datasets in a modern machine learning setting, we also plan to explore principled
vectorizations of these signatures.

There are also several directions for research on the theoretical side. Two natural
ways to generalize the concept of a decorated merge tree are to vary the object being
decorated (the merge tree) and to vary the type of decoration (persistence barcodes).
In future work, we plan to extend these ideas to treat decorated Reeb graphs. We also
plan to explore decorations by zig-zag persistence modules and extended persistence
modules.

Furthermore, Remark 8 suggests that perhaps the interleaving distance on categor-
ical decorated merge trees is universal (Lesnick 2015). One avenue for studying this
result could leverage an observation of Gunnar Carlsson: that the cup product structure
on cohomology determinesπ0 information. Perhaps a universality result that preserves
the richer algebraic structure of cup products is the right framework for framing this
result. Finally, one might take up the question of how to define “higher” decorated
merge trees—via cochains, for example (Mandell 2006)—that might offer a complete
homotopical invariant of persistent spaces. Repeating much of the standard template
of results in algebraic topology from the past hundred years for persistent spaces is an
active and interesting line of research.
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A Interval topology

Let X be a compact topological space and f : X → R be a continuous function. Let Ef

be the epigraph of f : X → R, φ : Ef → R be the projection map, and π : Ef → TfX
be the Reeb quotient map, which identifies two points if they are in the same connected
component of a level set.

Define a partial order on TfX by letting p ! q if there exists x in X and r, s in R
such that f(x) ! r ! s and p = π(x, r) and q = π(x, s). The fact that this defines a
poset follows from the following lemma:
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Lemma 4 Let (x, r) and (y, s) be points in Ef such that r ! s. The following are
equivalent:

i) π(x, r) ! π(y, s).
ii) π(x, s) = π(y, s).
iii) π(x, t) = π(y, t) for all t > s.

Proof i) =⇒ ii) : Let z be a point in X such that π(z, r) = π(x, r) and π(z, s) =
π(y, s). Let C be the connected component of φ−1(r) containing (x, r) andD be the
connected component inφ−1(s) containing (y, s). LetC ′ be the subset of Ef obtained
by shifting up the second coordinates of points in C to s. As C contains (z, r) and D
contains (z, s), both C ′ and D contains (z, s). Since C ′ is connected, it is contained
in D. Hence π(x, s) = π(y, s).

ii) =⇒ iii) Note that π(x, s) = π(y, s) ! π(y, t). Now, the result follows from
the argument in the previous part.

iii) =⇒ i) Let (sn) be a decreasing sequence converging to s. Let Cn × {sn} be
the connected component of φ−1(sn) containing both (x, sn) and (y, sn). Note that
(Cn) is a decreasing sequence of closed connected sets in X. LetC be the intersection
of C ′

ns. Note that C × {s} is contained in Ef and x,y are elements of C. Let us show
that C is connected. Let V andW be open subsets in X such that C is contained in the
disjoint union of U of V andW. Assume x is in V . Let Un be the complement of Cn

in X. The collection consisting ofU and allUn’s is an open cover of X, hence it has a
finite subcover. Since (Un) is an increasing family of open sets, this implies that for
n large enough X is the union of U and Un, hence Cn is contained in U. Since Cn

is connected and has non-empty intersection with V for all n, for n large enough Cn

is contained in V . Therefore C is contained in V . This shows C is connected, hence
π(x, s) = π(y, s). By definition, π(x, r) ! π(y, s).

Corollary 2
i) (TfX,!) is a tree poset in the sense that the upper set of any point is a chain (i.e.,

well ordered).
ii) Let C be a chain in (TfX,!). Then C has an infimum (i.e., the maximum of its

lower bounds), and the closure of C in the quotient topology is contained in the
upper set of its infimum.

Proof i) : Assume that π(x, r) ! π(y, s), π(x, r) ! π(z, t) and s ! t. Then, by
Lemma 4, π(y, t) = π(x, t) = π(z, t), and therefore π(y, s) ! π(z, t).

ii) : let (xn, rn) be a sequence in C such that lim rn = r := inf{s : (x, s) ∈ C}.
The sequence (xn) has a subsequence converging to a point x in X. Let (yn, sn) be a
convergent sequence in Ef such that π(yn, sn) is in C for all n. Let lim(yn, sn) =
(y, s). We need to show that π(x, r) ! π(y, s). Let t > s. Without loss of generality,
we can assume that rn, sn ! t for all n and (xn) converges to x. Since C is a chain,
by Lemma 4, π(yi, t) = π(xj, t) for all i, j. Let D be the connected component
of φ−1(t) containing (yn, t) and (xn, t) for all n. Since D is closed, it contains
(x, t) and (y, t), hence π(x, t) = π(y, t). Since t > s was arbitrary, by Lemma 4,
π(x, r) ! π(y, s). This shows π(x, r) is a lower bound for the closure of C. Let
π(x ′, r ′) be another lower bound forC. For any t > r, there existsn such that rn ! t,
so π(x, t) = π(xn, t) = π(x ′, t). Therefore, by Lemma 4, π(x ′, r ′) ! π(x, r).
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We introduce a new topology on TfX, which we call the interval topology, defined
as follows.

Definition 32 Let TfX be the merge tree, viewed as a poset. A subsetU of TfX is open
in the interval topology if for each p in U and each q in TfX \ {p} comparable to p,
there exists w in U strictly in between p and q such that the interval between p and
w is contained in U.

Proposition 10 If (TfX,!) has finitely many leaves (i.e., minimal elements in the
poset), then the quotient topology coincides with the interval topology.

Lemma 5 The upper set of any point is closed in the interval topology.

Proof Let C be the upper set of a point π(z,u) in TfX. Let U be its complement. Let
us show that U is open in the interval topology. Let π(x, r) be in U. Let π(y, s) be
comparable toπ(x, r). Ifπ(y, s) < π(x, r), then everything in between them is already
in U as U is the complement of an upper set. Let us assume then π(x, r) < π(y, s).
By Lemma 4, there exists t such that r < t < s and π(x, t) is not in the upper set
of π(z,u). Then π(x, t) is strictly in between π(x, s) and π(y, s) and the interval in
between π(x, s) and π(x, t) is in U. 1(

Lemma 6 The height map h : TfX → R, π(x, r) &→ r is continuous with respect to
the interval topology.

Proof Let r be a real number and ε > 0. We need to show that the preimage of
(r − ε, r + ε) is open in the interval topology. Assume that π(x, s) is in TfX and
|s − r| < ε. Let π(y, t) be a point comparable to π(x, s). If π(y, t) < π(x, s), then
π(x, s) = π(y, s). Pick s ′ > t such that r − ε < s ′ < s. Then π(y, s ′) is strictly
in between π(y, t) and π(x, s) and the image of the interval between π(y, s ′) and
π(x, s) is [s ′, s], which is contained in (r − ε, r + ε). If π(y, t) > π(x, s) , then
π(x, t) = π(y, t). Pick s ′ < t such that s < s ′ < r + ε. Then π(x, s ′) is strictly in
betweenπ(x, s) andπ(y, t), and the image of the interval between π(x, s) andπ(x, s ′)
is [s.s ′], which is contained in (r − ε, r+ ε).

Lemma 7 For each x in X, the map ψx : [f(x),∞) → TfX, r &→ π(x, r) is continuous
with respect to the interval topology.

Proof Let U be an open set in the interval topology. Assume ψx(r) = π(x, r)
is in U. The result follows from the comparability of π(x, r) with π(x, f(x)) and
π(x, r+ 1).

Proof of Proposition 10 Let C1, . . . ,Cn be the upper sets of leaves in TfX. In both
topologies, they give a finite closed cover by Corollary 2 and Lemma 5. This implies
that a set U is open in these topologies if and only if its intersection with each Ci’s
is relatively open. Hence, it is enough to show that the relative topologies on the Ci’s
coincide for the quotient and the interval topologies. Both the height map π(x, r) &→ r
of Lemma 6 and ψx of Lemma 7 are continuous with respect to both topologies. If
we let π(x, f(x)) denote the leaf of Ci, and restrict h to Ci, then these maps becomes
inverses of each other. This completes the proof.
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We now return to the Proof of Proposition 2 from the main text, which says that the
topology induced by the !p-metrics on a merge tree agrees with the quotient space
topology.

Proof of Proposition 2 Using the logic from the Proof of Proposition 10, it suffices to
show that the relative topologies on the Ci’s with respect to the interval and metric
topologies coincide. Indeed, the intersection of an !p-ball with each upper set Cj of
a leaf of the merge tree is relatively open with respect to the interval topology. This is
clear, since this intersection is homeomorphic to an open interval via the height map.
Similarly, relatively open sets in the interval topology are relatively open in the metric
topology. 1(

B Comparison and existence of merge trees

In this paper we used two primary perspectives on merge trees: the classical merge
tree (Definition 3), which defines the merge tree as the Reeb graph of the epigraph,
and the generalized merge tree (Definition 2), which is defined as the display poset
of the persistent set. Each approach has its own advantages, but in order to ensure
that the Reeb graph of a function is actually a graph requires specifying conditions
on f : X → R such as the Morse condition or piecewise linearity (De Silva et al.
2016, p. 857). In this section, we describe a third way of constructing the merge tree
following the metric tree construction in Mémoli and Okutan (2018) and show that
when X is locally path connected, the classical construction coincides with the metric
construction described here.

For this section we assume that X is a compact path-connected topological space
and f : X → R is a continuous function. We are using the definition of metric tree
given in (Bowditch 1991, Section 3.4), which is also called real tree or R-tree.

Remark 17 As the quotient of the epigraph of f, the merge tree is the wedge of the
image of the graph of f and the half real line. Let us denote the image of the graph of
f : X → R inside the merge tree by MfX.

Definition 33 (Metric Merge Tree) Let X be a compact path connected topological
space and f : X → R be a continuous function. Let us define mf : X × X → R by

mf(x,y) := inf{max f ◦ γ|γ : [a,b] → X,γ(a) = x,γ(b) = y}.

Define tf : X × X → R by

tf(x,y) = 2mf(x,y) − f(x) − f(y).

It is easy to see that tf is a pseudo-metric (symmetric, non-negative and satisfies
triangle inequality). Let us denote the associated metric space by (TfX, tf) and call it
metric merge tree. The function f is still well defined on TfX.

Proposition 11 Let X be a compact topological space and f : X → R be a continuous
function. Then (TfX, tf) is a metric tree.
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Proof It is enough to show that tf is a path metric and it has hyperbolicity zero (see
Bowditch 1991, Proposition 3.4.2). To show that tf is a path metric, it is enough to
show that for each x,y i X and ε > 0, there exists z in X such that

tf(x, z) ! tf(x,y)
2

+ ε, tf(y, z) ! tf(x,y)
2

+ ε

(see BuragoBurago et al. 2001, Theorem 2.4.16). Take x,y in X and ε > 0. Let
γ : [0, 1] → X be a continuous curve from x to y such that

mf(x,y) $ max f ◦ γε.

Let M := max f ◦ γ. Define

t0 := min{t : f(γ(t)) = M}, t1 := max{t : f(γ(t)) = M}.

Let d0 := M − f(x) and d1 := M − f(y). Without loss of generality d0 >= d1. Let
r := (d0 + d1)/2 and

s := min{t : f ◦ γ(t) = f(x) + r}.

Let z = γ(s). Now, we have:

tf(x,y) $ 2(M − ε) − f(x) − f(y) = d0 + d1 − 2ε

tf(x, z) = r =
d0 + d1

2

tf(y, z) ! (M − f(x) − r) + d1 =
d0 + d1

2
.

Now let us show that tf has 0-hyperbolicity. Let p be a point where f takes its
maximum. The Gromov product gp : X × X → R with respect to the pseudo-metric
tf is defined by:

gp(x,y) =
1
2
(tf(p, x) + tf(p,y) − tf(x,y)).

The metric tf has zero hyperbolicty if

gp(x, z) $ min(gp(x,y),gp(y, z))

for all x,y, z in X (see Gromov 1987, Corollary 1.1.B).

Claim 1: gp(x,y) = f(p) − mf(x,y) for all x,y in X:
By maximality of p,mf(p, x) = f(p). Hence,

tf(p, x) = 2mf(p, x) − f(p) − f(x) = f(p) − f(x).
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So we have

gp(x,y) =
1
2
(tf(p, x) + tf(p,y) − tf(x,y))

=
1
2
(f(p) − f(x) + f(p) − f(y) − 2mf(x,y) + f(x) + f(y))

= f(p) − mf(x,y)

Claim 2: gp(x, z) $ min(gp(x,y),gp(y, z)) for all x,y, z in X.
By its definition,mf(x, z) ! max(mf(x,y),mf(y, z)). Claim 2 follows from this

and Claim 1.
Therefore the hyperbolicity of TfX is 0. 1(

Theorem 6 If X is locally path connected, then MfX is the underlying topological
space of TfX.

Proof It is enough to show that tf(x,y) = 0 if and only if (x, f(x)) and (y, f(y)) are
identified under the Reeb quotient map π.

Assume tf(x,y) = 0. Then, mf(x,y) = f(x) = f(y). So, for each t > f(x) =
f(y), there is a path in the sublevel set X!t connecting x,y. Therefore, π(x, t) =
π(y, t), and by Lemma 4, π(x, r) = π(y, r).

Assume π(x, f(x)) = π(y, f(y)). Let r = f(x) and t > r. Since x and y are in
the same connected component of the (closed) sublevel set X!r and X is locally path
connected, x,y are in the same path component of the (open) sublevel set X<t. This
implies that mf(x,y) < t. Since t > r arbitrary, mf(x,y) = r = f(x) = f(y), so
tf(x,y) = 0. 1(

C Technical proofs

This section contains proofs from the main body of the paper which are technical, but
essentially straightforward. These results are focused on barcodes and bottleneck dis-
tances. To keep the exposition clean, we deal with barcodes satisfying the simplifying
assumptions:

– the barcode is a set (all multiplicities of intervals are equal to one);
– the barcode is finite;
– each interval in the barcode is a half open interval of the form [b,d), where
0 ! b ! d ! ∞.

C.1 Proof of Proposition 4

To prove the proposition, we will introduce the notion of truncating a barcode.

Definition 34 LetB be a barcode and let I = [b,d) ∈ B. The truncation of I at height
h, denoted trunch(I) is

123



J. Curry et al.

– equal to I if h ! b;
– the interval [h,d) if b ! h ! d;
– the empty interval if h > d.

The truncation of B at height h, trunch(B), is the barcode obtained by truncating all
of the intervals of B at height h.

Lemma 8 Let B and B ′ be barcodes whose intervals [b,d) all satisfy b $ H for some
constantH $ 0. Suppose that there exists a δ-matching between B and B ′. For ε ! δ,
there is a δ-matching between B and truncH+ε(B

′).

Proof Let ξ be a δ-matching ofB andB ′. Define a matching ξ̂ ofB and truncH+ε(B
′)

by setting

dom(ξ̂) := {I ∈ dom(ξ) | truncH+ε(ξ(I)) 2= ∅}

ran(ξ̂) := {I ′ ∈ ran(ξ) | truncH+ε(I
′) 2= ∅}, and

ξ̂(I) := truncH+ε(ξ(I)).

Let I = [b,d) ∈ dom(ξ̂) with I ′ = [b ′,d ′) = ξ(I). Then b ′ ! H + ε ! d ′ and
truncH+ε(I

′) = [H + ε,d ′). We have |d − d ′| ! δ, by the assumption that ξ was a
δ-matching. Moreover,

δ $ b − b ′ $ b − (H+ ε)

and

δ $ ε $ ε + (H − b) = (H+ ε) − b

imply that |b − (H + ε)| ! δ, so that the cost of matching I with truncH+ε(I
′) is

less than δ. On the other hand, if I /∈ dom(ξ̂) then either I /∈ dom(ξ), in which
case we are done, or truncH+ε(ξ(I)) = ∅. In the latter case, let I = [b,d) and
I ′ = [b ′,d ′) = ξ(I). We have

d − b ! d ′ + δ − b ! d ′ + δ − H ! H+ ε + δ − H ! 2δ,

hence ‖[b,d)‖∆ ! δ. Similar arguments handle intervals I ′ /∈ ran(ξ̂). 1(

Proof of Proposition 4 Let

d̂B(BF,BG) := inf{ε $ 0 | ∃ ε-matching of BF and BG},

so that our goal is to show dB = d̂B. Clearly dB ! d̂B, since the former infimizes
over a larger set of matchings than the latter. To see the reverse inequality, let Φ, Ψ
define an (ε, δ)-matching. If ε $ δ, then each of the δ-matchings betweenBF(p) and
BG(Φ(p)) and between BG(q) and BF(Ψ(q)) is, in particular, an ε-matching. This
implies the existence of an ε-matching between BF and BG. Finally, suppose that
δ $ ε. Let Φ̂ and Ψ̂ denote the δ-interleaving maps obtained by composing Φ and Ψ
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with flows in their respective target merge trees. We claim that there exist δ-matchings
between all pairs BF(p) and BG(Φ̂(p)) and between BG(q) and BF(Ψ̂(q)). Indeed,
setting H = πF(p), with πF : MF → R denoting projection, we have that

BG(Φ̂(p)) = truncH+δ−ε(BG(Φ(p))).

Lemma 8 therefore implies that there exists a δ-matching of BF(p) and BG(Φ̂(p)).
The existence of a δ-matching of BG(q) and BF(Ψ̂(q)) follows for the same
reason. 1(

We now have the tools at hand to prove Proposition 5.

Proof of Proposition 5 Let p ∈ MF be an arbitrary point. Choose a leaf v of MF with
v " p and a leaf w " Φ(p). Let πF : MF → R be the projection map. Then the
barcodes at these points can be expressed as

BF(p) = truncπF(p)(BF(v)),and

BG(Φ(p)) = truncπF(p)+ε(BG(w)).

It is straightforward to check that a δ-matching of BF(p) and BF(Φ(p)) induces a
δ-matching of the truncated barcodes. A similar argument applies to pairs q ∈ MG

and Ψ(q) ∈ MF. 1(

C.2 Proof of Proposition 8

Let B = {Ij = [bj,dj)}
N
j=1 be the degree-k barcode for F. To ease exposition, assume

that the births in the barcode are distinct—this assumption is easily removed at the cost
of necessitating more involved notation. Suppose that the indices have been chosen so
that b1 < b2 < · · · < bN. For each bar Ij, we choose a representative cycle cj which
generates the persistent homology class represented by Ij; in particular, choose cj so
that all of its simplices are contained in the connected component of the birth simplex
for Ij. Let [cj] denote the homology class of cj. Let pj ∈ MF denote the birth point
of Ij.

We can use these representative cycles to build bases for various homology vector
spaces which agree with the barcode decomposition. In the following, let ιb,d denote
the inclusion map F(b) ↪→ F(d) for each b < d. By an abuse of notation, we also let
ιb,d denote the inducedmap on homologyHk(F(b)) → Hk(F(d)). We now construct
our bases:
1. {v1 := [c1]} is a basis for Hk(F(b1)),
2. {[c2], ιb1,b2(v1)} is a spanning set for Hk(F(b2)) and is linearly independent if

ιb1,b2(v1) 2= 0.

Moreover, we can choose λ
(2)
1 ∈ k so that

v2 := [c2] + λ
(2)
1 ιb1,b2(v1)
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has the property that

ιb2,d(v2) /∈ span{ιb1,d(v1)}

for any d < d2. In particular, v2 /∈ ker(ιb2,d) for d < d2.
3. Suppose that we have defined v1, . . . , vj−1. Then

{[cj], ιbj−1,bj
(vj−1), . . . , ιb1,bj

(v1)}

is a spanning set forHk(F(bj))which is linearly independent once any zero vectors
have been removed. We define

vj := [cj] + λ
(j)
j−1ιbj−1,bj

(vj−1) + · · ·+ λ
(j)
1 ιb1,bj−1(v1),

where coefficients λ
(j)
i are chosen so that

ιbj,d(vj) /∈ span{ιbj−1,d(vj−1), . . . , ιb1,d(v1)} (10)

for all d < dj. In particular, vj /∈ ker(ιbj,d) for d < dj.

The lifespan of the vector vj defined via this process represents the persistent homology
bar Ij.

To prove that F̂ ≈ F, we will show that F is real interval decomposable. To do
so, it suffices to show that each of these vj can be chosen to be a linear combination
of classes with cycle representatives that lie in the same connected component as the
birth simplex of Ij. This will be achieved via induction.

For the base case of the induction argument, we have v1 = [c1], and the claim
follows immediately. Suppose that v1, . . . , vj−1 have the desired property and consider
vj. We sort the v1, . . . , vj−1, into a collection vr1 , . . . , vrm of vectors corresponding
to bars in B which are born in the same component as cj (i.e., bars whose birth points
satisfy pr1 , . . . ,prm " pj) and a collection vs1 , . . . , vsn of vectors which do not have
this property, so that

vj = [cj] + λ
(j)
r1 ιbr1 ,bj

(vr1) + · · ·

+ λ
(j)
rmιbrm ,bj

(vrm) + λ
(j)
s1 ιbs1 ,bj

(vs1) + · · ·+ λ
(j)
sn ιbsn ,bj

(vsn).

We claim that taking λ
(j)
si = 0 for all i = 1, . . . ,n results in a valid vector vj; i.e., that

this yields a vj satisfying (10). Indeed, let d < dj and suppose that

ιbj,d

(
[cj] + λ

(j)
r1 ιbr1 ,bj

(vr1) + · · ·+ λ
(j)
rmιbrm ,bj

(vrm)
)

= µ1ιbj,d(vs1) + · · ·+ µmιbj,d(vsm) (11)

for some coefficients µi. We first note that there must be some vsi /∈ ker(ιsi,d)—
otherwise the right-hand side of (11) is zero, hence left-hand side is as well and
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we arrive at the contradiction that ιbj,d(vj) = 0. We therefore have a well defined
number

d ′ := min{merge(pj,psi) | ιbsi
,d(vsi) 2= 0}.

By theHk-disjointness assumption, either dj < d ′ or dsi < d ′ for all si. The former
case implies d < d ′. By the induction hypothesis, there is a cycle representation of
the left-hand side of (11) whose vertices all belong to the same connected component
as those of ιbj,d(cj) and a cycle representation of the right-hand side whose vertices
belong to a different connected component than cj. Moreover, these cycle represen-
tatives are homologous, and we have arrived at a contradiction. On the other hand, if
dsi < d ′ for all si then it must be that d < dsi for some si (since there exists some
vsi /∈ ker(ιbsi

,d)) and a similar argument yields a contradiction. This completes the
proof.
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