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ABSTRACT

Real-world machine learning deployments are characterized by mismatches be-
tween the source (training) and target (test) distributions that may cause perfor-
mance drops. In this work, we investigate methods for predicting the target domain
accuracy using only labeled source data and unlabeled target data. We propose Av-
erage Thresholded Confidence (ATC), a practical method that learns a threshold on
the model’s confidence, predicting accuracy as the fraction of unlabeled examples
for which model confidence exceeds that threshold. ATC outperforms previous
methods across several model architectures, types of distribution shifts (e.g., due to
synthetic corruptions, dataset reproduction, or novel subpopulations), and datasets
(WILDS, ImageNet, BREEDS, CIFAR, and MNIST). In our experiments, ATC
estimates target performance 2–4ˆ more accurately than prior methods. We also
explore the theoretical foundations of the problem, proving that, in general, identi-
fying the accuracy is just as hard as identifying the optimal predictor and thus, the
efficacy of any method rests upon (perhaps unstated) assumptions on the nature
of the shift. Finally, analyzing our method on some toy distributions, we provide
insights concerning when it works.

1 INTRODUCTION

Machine learning models deployed in the real world typically encounter examples from previously
unseen distributions. While the IID assumption enables us to evaluate models using held-out data
from the source distribution (from which training data is sampled), this estimate is no longer valid
in presence of a distribution shift. Moreover, under such shifts, model accuracy tends to degrade
(Szegedy et al., 2014; Recht et al., 2019; Koh et al., 2021). Commonly, the only data available to
the practitioner are a labeled training set (source) and unlabeled deployment-time data which makes
the problem more difficult. In this setting, detecting shifts in the distribution of covariates is known
to be possible (but difficult) in theory (Ramdas et al., 2015), and in practice (Rabanser et al., 2018).
However, producing an optimal predictor using only labeled source and unlabeled target data is
well-known to be impossible absent further assumptions (Ben-David et al., 2010; Lipton et al., 2018).

Two vital questions that remain are: (i) the precise conditions under which we can estimate a clas-
sifier’s target-domain accuracy; and (ii) which methods are most practically useful. To begin, the
straightforward way to assess the performance of a model under distribution shift would be to collect
labeled (target domain) examples and then to evaluate the model on that data. However, collect-
ing fresh labeled data from the target distribution is prohibitively expensive and time-consuming,
especially if the target distribution is non-stationary. Hence, instead of using labeled data, we aim
to use unlabeled data from the target distribution, that is comparatively abundant, to predict model
performance. Note that in this work, our focus is not to improve performance on the target but, rather,
to estimate the accuracy on the target for a given classifier.

˚Work done in part while Saurabh Garg was interning at Google
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ATC is simple to implement with existing frameworks, compatible with arbitrary model classes, and
dominates other contemporary methods. Across several model architectures on a range of benchmark
vision and language datasets, we verify that ATC outperforms prior methods by at least 2–4ˆ in
predicting target accuracy on a variety of distribution shifts. In particular, we consider shifts due
to common corruptions (e.g., ImageNet-C), natural distribution shifts due to dataset reproduction
(e.g., ImageNet-v2, ImageNet-R), shifts due to novel subpopulations (e.g., BREEDS), and distribution
shifts faced in the wild (e.g., WILDS).

As a starting point for theory development, we investigate ATC on a simple toy model that models
distribution shift with varying proportions of the population with spurious features, as in Nagarajan
et al. (2020). Finally, we note that although ATC achieves superior performance in our empirical
evaluation, like all methods, it must fail (returns inconsistent estimates) on certain types of distribution
shifts, per our impossibility result.

2 PRIOR WORK

Out-of-distribution detection. The main goal of OOD detection is to identify previously unseen
examples, i.e., samples out of the support of training distribution. To accomplish this, modern methods
utilize confidence or features learned by a deep network trained on some source data. Hendrycks &
Gimpel (2016); Geifman & El-Yaniv (2017) used the confidence score of an (already) trained deep
model to identify OOD points. Lakshminarayanan et al. (2016) use entropy of an ensemble model to
evaluate prediction uncertainty on OOD points. To improve OOD detection with model confidence,
Liang et al. (2017) propose to use temperature scaling and input perturbations. Jiang et al. (2018)
propose to use scores based on the relative distance of the predicted class to the second class. Recently,
residual flow-based methods were used to obtain a density model for OOD detection (Zhang et al.,
2020). Ji et al. (2021) proposed a method based on subfunction error bounds to compute unreliability
per sample. Refer to Ovadia et al. (2019); Ji et al. (2021) for an overview and comparison of methods
for prediction uncertainty on OOD data.

Predicting model generalization. Understanding generalization capabilities of overparameterized
models on in-distribution data using conventional machine learning tools has been a focus of a long
line of work; representative research includes Neyshabur et al. (2015; 2017); Neyshabur (2017);
Neyshabur et al. (2018); Dziugaite & Roy (2017); Bartlett et al. (2017); Zhou et al. (2018); Long
& Sedghi (2019); Nagarajan & Kolter (2019a). At a high level, this line of research bounds the
generalization gap directly with complexity measures calculated on the trained model. However, these
bounds typically remain numerically loose relative to the true generalization error (Zhang et al., 2016;
Nagarajan & Kolter, 2019b). On the other hand, another line of research departs from complexity-
based approaches to use unseen unlabeled data to predict in-distribution generalization (Platanios
et al., 2016; 2017; Garg et al., 2021; Jiang et al., 2021).

Relevant to our work are methods for predicting the error of a classifier on OOD data based on
unlabeled data from the target (OOD) domain. These methods can be characterized into two broad
categories: (i) Methods which explicitly predict correctness of the model on individual unlabeled
points (Deng & Zheng, 2021; Jiang et al., 2021; Deng et al., 2021); and (ii) Methods which directly
obtain an estimate of error with unlabeled OOD data without making a point-wise prediction (Chen
et al., 2021; Guillory et al., 2021; Chuang et al., 2020).

To achieve a consistent estimate of the target accuracy, Jiang et al. (2021); Guillory et al. (2021)
require calibration on target domain. However, these methods typically yield poor estimates as
deep models trained and calibrated on some source data are seldom calibrated on previously unseen
domains (Ovadia et al., 2019). Additionally, Deng & Zheng (2021); Guillory et al. (2021) derive
model-based distribution statistics on unlabeled target set that correlate with the target accuracy and
propose to use a subset of labeled target domains to learn a (linear) regression function that predicts
model performance. However, there are two drawbacks with this approach: (i) the correlation of
these distribution statistics can vary substantially as we consider different nature of shifts (refer to
Sec. 5.1, where we empirically demonstrate this failure); (ii) even if there exists a (hypothetical)
statistic with strong correlations, obtaining labeled target domains (even simulated ones) with strong
correlations would require significant a priori knowledge about the nature of shift that, in general,
might not be available before models are deployed in the wild. Nonetheless, in our work, we only
assume access to labeled data from the source domain presuming no access to labeled target domains
or information about how to simulate them.
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Moreover, unlike the parallel work of Deng et al. (2021), we do not focus on methods that alter the
training on source data to aid accuracy prediction on the target data. Chen et al. (2021) propose an
importance re-weighting based approach that leverages (additional) information about the axis along
which distribution is shifting in form of “slicing functions”. In our work, we make comparisons
with importance re-weighting baseline from Chen et al. (2021) as we do not have any additional
information about the axis along which the distribution is shifting.

3 PROBLEM SETUP

Notation. By ||¨||, and x¨, ¨y we denote the Euclidean norm and inner product, respectively. For a
vector v P R

d, we use vj to denote its jth entry, and for an event E we let I rEs denote the binary
indicator of the event.

Suppose we have a multi-class classification problem with the input domain X Ď R
d and label

space Y “ t1, 2, . . . , ku. For binary classification, we use Y “ t0, 1u. By DS and DT, we denote
source and target distribution over X ˆ Y . For distributions DS and DT, we define pS or pT as
the corresponding probability density (or mass) functions. A dataset S :“ tpxi, yiquni“1

„ pDSqn

contains n points sampled i.i.d. from DS. Let F be a class of hypotheses mapping X to ∆k´1 where
∆k´1 is a simplex in k dimensions. Given a classifier f P F and datum px, yq, we denote the 0-1
error (i.e., classification error) on that point by Epfpxq, yq :“ I

“

y R argmaxjPY fjpxq
‰

. Given a

model f P F , our goal in this work is to understand the performance of f on DT without access to
labeled data from DT. Note that our goal is not to adapt the model to the target data. Concretely,
we aim to predict accuracy of f on DT. Throughout this paper, we assume we have access to the
following: (i) model f ; (ii) previously-unseen (validation) data from DS; and (iii) unlabeled data
from target distribution DT.

3.1 ACCURACY ESTIMATION: POSSIBILITY AND IMPOSSIBILITY RESULTS

First, we investigate the question of when it is possible to estimate the target accuracy of an arbitrary
classifier, even given knowledge of the full source distribution pspx, yq and target marginal ptpxq.
Absent assumptions on the nature of shift, estimating target accuracy is impossible. Even given
access to pspx, yq and ptpxq, the problem is fundamentally unidentifiable because ptpy|xq can shift
arbitrarily. In the following proposition, we show that absent assumptions on the classifier f (i.e.,
when f can be any classifier in the space of all classifiers on X ), we can estimate accuracy on the
target data iff assumptions on the nature of the shift, together with pspx, yq and ptpxq, uniquely
identify the (unknown) target conditional ptpy|xq. We relegate proofs from this section to App. A.

Proposition 1. Absent further assumptions, accuracy on the target is identifiable iff ptpy|xq is
uniquely identified given pspx, yq and ptpxq.

Proposition 1 states that we need enough constraints on nature of shift such that pspx, yq and ptpxq
identifies unique ptpy|xq. It also states that under some assumptions on the nature of the shift, we
can hope to estimate the model’s accuracy on target data. We will illustrate this on two common
assumptions made in domain adaptation literature: (i) covariate shift (Heckman, 1977; Shimodaira,
2000) and (ii) label shift (Saerens et al., 2002; Zhang et al., 2013; Lipton et al., 2018). Under
covariate shift assumption, that the target marginal support supppptpxqq is a subset of the source
marginal support suppppspxqq and that the conditional distribution of labels given inputs does not
change within support, i.e., pspy|xq “ ptpy|xq, which, trivially, identifies a unique target conditional
ptpy|xq. Under label shift, the reverse holds, i.e., the class-conditional distribution does not change
(pspx|yq “ ptpx|yq) and, again, information about ptpxq uniquely determines the target conditional
ptpy|xq (Lipton et al., 2018; Garg et al., 2020). In these settings, one can estimate an arbitrary
classifier’s accuracy on the target domain either by using importance re-weighting with the ratio
ptpxq{pspxq in case of covariate shift or by using importance re-weighting with the ratio ptpyq{pspyq
in case of label shift. While importance ratios in the former case can be obtained directly when ptpxq
and pspxq are known, the importance ratios in the latter case can be obtained by using techniques from
Saerens et al. (2002); Lipton et al. (2018); Azizzadenesheli et al. (2019); Alexandari et al. (2019).
In App. B,we explore accuracy estimation in the setting of these shifts and present extensions to
generalized notions of label shift (Tachet des Combes et al., 2020) and covariate shift (Rojas-Carulla
et al., 2018).

As a corollary of Proposition 1, we now present a simple impossibility result, demonstrating that no
single method can work for all families of distribution shift.
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Corollary 1. Absent assumptions on the classifier f , no method of estimating accuracy will work in
all scenarios, i.e., for different nature of distribution shifts.

Intuitively, this result states that every method of estimating accuracy on target data is tied up with
some assumption on the nature of the shift and might not be useful for estimating accuracy under
a different assumption on the nature of the shift. For illustration, consider a setting where we have
access to distribution pspx, yq and ptpxq. Additionally, assume that the distribution can shift only
due to covariate shift or label shift without any knowledge about which one. Then Corollary 1 says
that it is impossible to have a single method that will simultaneously for both label shift and covariate
shift as in the following example (we spell out the details in App. A):

Example 1. Assume binary classification with pspxq “ α ¨ φpµ1q ` p1 ´ αq ¨ φpµ2q,
pspx|y “ 0q “ φpµ1q, pspx|y “ 1q “ φpµ2q, and ptpxq “ β ¨ φpµ1q ` p1 ´ βq ¨ φpµ2q
where φpµq “ N pµ, 1q, α, β P p0, 1q, and α ‰ β. Error of a classifier f on target

data is given by E1 “ Epx,yq„pspx,yq

”

ptpxq
pspxq I rfpxq ‰ ys

ı

under covariate shift and by E2 “

Epx,yq„pspx,yq

”´

β
α
I ry “ 0s ` 1´β

1´α
I ry “ 1s

¯

I rfpxq ‰ ys
ı

under label shift. In App. A, we show

that E1 ‰ E2 for all f . Thus, given access to pspx, yq, and ptpxq, any method that consistently
estimates error of a classifer under covariate shift will give an incorrect estimate of error under label
shift and vice-versa. The reason is that the same ptpxq and pspx, yq can correspond to error E1 (under
covariate shift) or error E2 (under label shift) and determining which scenario one faces requires
further assumptions on the nature of shift.

4 PREDICTING ACCURACY WITH AVERAGE THRESHOLDED CONFIDENCE

In this section, we present our method ATC that leverages a black box classifier f and (labeled)
validation source data to predict accuracy on target domain given access to unlabeled target data.
Throughout the discussion, we assume that the classifier f is fixed.

Before presenting our method, we introduce some terminology. Define a score function s : ∆k´1 Ñ
R that takes in the softmax prediction of the function f and outputs a scalar. We want a score function
such that if the score function takes a high value at a datum px, yq then f is likely to be correct. In
this work, we explore two such score functions: (i) Maximum confidence, i.e., spfpxqq “ max

jPY
fjpxq;

and (ii) Negative Entropy, i.e., spfpxqq “
ř

j fjpxq logpfjpxqq. Our method identifies a threshold t

on source data DS such that the expected number of points that obtain a score less than t match the
error of f on DS, i.e.,

Ex„DS rI rspfpxqq ă tss “ Epx,yq„DS

„

I

„

argmax
jPY

fjpxq ‰ y



, (1)

and then our error estimate ATCDT psq on the target domain DT is given by the expected number of
target points that obtain a score less than t, i.e.,

ATCDT psq “ Ex„DT rI rspfpxqq ă tss . (2)

In short, in (1), ATC selects a threshold on the score function such that the error in the source domain
matches the expected number of points that receive a score below t and in (2), ATC predicts error
on the target domain as the fraction of unlabeled points that obtain a score below that threshold t.
Note that, in principle, there exists a different threshold t1 on the target distribution DT such that (1)
is satisfied on DT. However, in our experiments, the same threshold performs remarkably well. The
main empirical contribution of our work is to show that the threshold obtained with (1) might be used
effectively in condunction with modern deep networks in a wide range of settings to estimate error on
the target data. In practice, to obtain the threshold with ATC, we minimize the difference between the
expression on two sides of (1) using finite samples. In the next section, we show that ATC precisely
predicts accuracy on the OOD data on the desired line y “ x. In App. C, we discuss an alternate
interpretation of the method and make connections with OOD detection methods.

5 EXPERIMENTS

We now empirical evaluate ATC and compare it with existing methods. In each of our main
experiment, keeping the underlying model fixed, we vary target datasets and make a prediction
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Dataset Shift
IM AC DOC GDE ATC-MC (Ours) ATC-NE (Ours)

Pre T Post T Pre T Post T Pre T Post T Post T Pre T Post T Pre T Post T

CIFAR10
Natural 6.60 5.74 9.88 6.89 7.25 6.07 4.77 3.21 3.02 2.99 2.85

Synthetic 12.33 10.20 16.50 11.91 13.87 11.08 6.55 4.65 4.25 4.21 3.87

CIFAR100 Synthetic 13.69 11.51 23.61 13.10 14.60 10.14 9.85 5.50 4.75 4.72 4.94

ImageNet200
Natural 12.37 8.19 22.07 8.61 15.17 7.81 5.13 4.37 2.04 3.79 1.45

Synthetic 19.86 12.94 32.44 13.35 25.02 12.38 5.41 5.93 3.09 5.00 2.68

ImageNet
Natural 7.77 6.50 18.13 6.02 8.13 5.76 6.23 3.88 2.17 2.06 0.80

Synthetic 13.39 10.12 24.62 8.51 13.55 7.90 6.32 3.34 2.53 2.61 4.89

FMoW-WILDS Natural 5.53 4.31 33.53 12.84 5.94 4.45 5.74 3.06 2.70 3.02 2.72

RxRx1-WILDS Natural 5.80 5.72 7.90 4.84 5.98 5.98 6.03 4.66 4.56 4.41 4.47

Amazon-WILDS Natural 2.40 2.29 8.01 2.38 2.40 2.28 17.87 1.65 1.62 1.60 1.59

CivilCom.-WILDS Natural 12.64 10.80 16.76 11.03 13.31 10.99 16.65 7.14

MNIST Natural 18.48 15.99 21.17 14.81 20.19 14.56 24.42 5.02 2.40 3.14 3.50

ENTITY-13
Same 16.23 11.14 24.97 10.88 19.08 10.47 10.71 5.39 3.88 4.58 4.19

Novel 28.53 22.02 38.33 21.64 32.43 21.22 20.61 13.58 10.28 12.25 6.63

ENTITY-30
Same 18.59 14.46 28.82 14.30 21.63 13.46 12.92 9.12 7.75 8.15 7.64

Novel 32.34 26.85 44.02 26.27 36.82 25.42 23.16 17.75 14.30 15.60 10.57

NONLIVING-26
Same 18.66 17.17 26.39 16.14 19.86 15.58 16.63 10.87 10.24 10.07 10.26

Novel 33.43 31.53 41.66 29.87 35.13 29.31 29.56 21.70 20.12 19.08 18.26

LIVING-17
Same 12.63 11.05 18.32 10.46 14.43 10.14 9.87 4.57 3.95 3.81 4.21

Novel 29.03 26.96 35.67 26.11 31.73 25.73 23.53 16.15 14.49 12.97 11.39

Table 1: Mean Absolute estimation Error (MAE) results for different datasets in our setup grouped by
the nature of shift. ‘Same’ refers to same subpopulation shifts and ‘Novel’ refers novel subpopulation
shifts. We include details about the target sets considered in each shift in Table 2. Post T denotes use
of TS calibration on source. Across all datasets, we observe that ATC achieves superior performance
(lower MAE is better). For language datasets, we use DistilBERT-base-uncased, for vision dataset we
report results with DenseNet model with the exception of MNIST where we use FCN. We include
results on other architectures in App. H. For GDE post T and pre T estimates match since TS doesn’t
alter the argmax prediction. Results reported by aggregating MAE numbers over 4 different seeds.
We include results with standard deviation values in Table 3.

Average Confidence (AC). Error is estimated as the expected value of the maximum softmax
confidence on the target data, i.e, ACDT “ Ex„DT rmaxjPY fjpxqs.

Difference Of Confidence (DOC). We estimate error on target by subtracting difference of confidences
on source and target (as a surrogate to distributional distance Guillory et al. (2021)) from the error on
source distribution, i.e, DOCDT “ Ex„DS

“

I
“

argmaxjPY fjpxq ‰ y
‰‰

` Ex„DT rmaxjPY fjpxqs ´
Ex„DS rmaxjPY fjpxqs. This is referred to as DOC-Feat in (Guillory et al., 2021).

Importance re-weighting (IM). We estimate the error of the classifier with importance re-weighting
of 0-1 error in the pushforward space of the classifier. This corresponds to MANDOLIN using one
slice based on the underlying classifier confidence Chen et al. (2021).

Generalized Disagreement Equality (GDE). Error is estimated as the expected disagreement of two
models (trained on the same training set but with different randomization) on target data (Jiang et al.,
2021), i.e., GDEDT “ Ex„DT rI rfpxq ‰ f 1pxqss where f and f 1 are the two models. Note that GDE
requires two models trained independently, doubling the computational overhead while training.

5.1 RESULTS

In Table 1, we report MAE results aggregated by the nature of the shift in our testbed. In Fig. 2
and Fig. 1(right), we show scatter plots for predicted accuracy versus OOD accuracy on several
datasets. We include scatter plots for all datasets and parallel results with other architectures in
App. H. In App. H.1, we also perform ablations on CIFAR using a pre-trained model and observe
that pre-training doesn’t change the efficacy of ATC.
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Consider a easy-to-learn binary classification problem with two features x “ rxinv, xsps P R
2 where

xinv is fully predictive invariant feature with a margin γ ą 0 and xsp P t´1, 1u is a spurious feature
(i.e., a feature that is correlated but not predictive of the true label). Conditional on y, the distribution
over xinv is given as follows: xinv|py “ 1q „ U rγ, cs and xinv|py “ 0q „ U r´c,´γs, where c is a
fixed constant greater than γ. For simplicity, we assume that label distribution on source is uniform
on t´1, 1u. xsp is distributed such that Psrxsp ¨ p2y ´ 1q ą 0s “ psp, where psp P p0.5, 1.0q controls
the degree of spurious correlation. To model distribution shift, we simulate target data with different
degree of spurious correlation, i.e., in target distribution Ptrxsp ¨ p2y ´ 1q ą 0s “ p1

sp P r0, 1s. Note
that here we do not consider shifts in the label distribution but our result extends to arbitrary shifts in
the label distribution as well.

In this setup, we examine linear sigmoid classifiers of the form fpxq “
”

1

1`ew
T x

, ew
T

x

1`ew
T x

ı

where

w “ rwinv, wsps P R
2. While there exists a linear classifier with w “ r1, 0s that correctly classifies all

the points with a margin γ, Nagarajan et al. (2020) demonstrated that a linear classifier will typically
have a dependency on the spurious feature, i.e., wsp ‰ 0. They show that due to geometric skews,
despite having positive dependencies on the invariant feature, a max-margin classifier trained on
finite samples relies on the spurious feature. Refer to App. D for more details on these skews. In
our work, we show that given a linear classifier that relies on the spurious feature and achieves a
non-trivial performance on the source (i.e., winv ą 0), ATC with maximum confidence score function
consistently estimates the accuracy on the target distribution.

Theorem 1 (Informal). Given any classifier with winv ą 0 in the above setting, the threshold obtained
in (1) together with ATC as in (2) with maximum confidence score function obtains a consistent
estimate of the target accuracy.

Consider a classifier that depends positively on the spurious feature (i.e., wsp ą 0). Then as the
spurious correlation decreases in the target data, the classifier accuracy on the target will drop and
vice-versa if the spurious correlation increases on the target data. Theorem 1 shows that the threshold
identified with ATC as in (1) remains invariant as the distribution shifts and hence ATC as in (2)
will correctly estimate the accuracy with shifting distributions. Next, we illustrate Theorem 1 by
simulating the setup empirically. First we pick a arbitrary classifier (which can also be obtained by
training on source samples), tune the threshold on hold-out source examples and predict accuracy
with different methods as we shift the distribution by varying the degree of spurious correlation.

Empirical validation and comparison with other methods. Fig. 3(right) shows that as the degree
of spurious correlation varies, our method accurately estimates the target performance where all other
methods fail to accurately estimate the target performance. Understandably, due to poor calibration of
the sigmoid linear classifier AC, DOC and GDE fail. While in principle IM can perfectly estimate the
accuracy on target in this case, we observe that it is highly sensitive to the number bins and choice of
histogram binning (i.e., uniform mass or equal width binning). We elaborate more on this in App. D.

Biased estimation with ATC. Now we discuss changes in the above setup where ATC yields
inconsistent estimates. We assumed that both in source and target xinv|y “ 1 is uniform between rγ, cs
and x|y “ ´1 is uniform between r´c,´γs. Shifting the support of target class conditional ptpxinv|yq
may introduce a bias in ATC estimates, e.g., shrinking the support to c1(ă c) (while maintaining
uniform distribution) in the target will lead to an over-estimation of the target performance with
ATC. In App. D.1, we elaborate on this failure and present a general (but less interpretable) classifier
dependent distribution shift condition where ATC is guaranteed to yield consistent estimates.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed ATC, a simple method for estimating target domain accuracy based on
unlabeled target (and labeled source data). ATC achieves remarkably low estimation error on several
synthetic and natural shift benchmarks in our experiments. Notably, our work draws inspiration
from recent state-of-the-art methods that use softmax confidences below a certain threshold for OOD
detection (Hendrycks & Gimpel, 2016; Hendrycks et al., 2019) and takes a step forward in answering
questions raised in Deng & Zheng (2021) about the practicality of threshold based methods.

Our distribution shift toy model justifies ATC on an easy-to-learn binary classification task. In our
experiments, we also observe that calibration significantly improves estimation with ATC. Since in
binary classification, post hoc calibration with TS does not change the effective threshold, in future
work, we hope to extend our theoretical model to multi-class classification to understand the efficacy
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of calibration. Our theory establishes that a classifier’s accuracy is not, in general identified, from
labeled source and unlabeled target data alone, absent considerable additional constraints on the
target conditional ptpy|xq. In light of this finding, we also hope to extend our understanding beyond
the simple theoretical toy model to characterize broader sets of conditions under which ATC might
be guaranteed to obtain consistent estimates. Finally, we should note that while ATC outperforms
previous approaches, it still suffers from large estimation error on datasets with novel populations,
e.g., BREEDS. We hope that our findings can lay the groundwork for future work for improving
accuracy estimation on such datasets.

Reproducibility Statement We have been careful to ensure that our results are reproducible. We
have stored all models and logged all hyperparameters and seeds to facilitate reproducibility. Note
that throughout our work, we do not perform any hyperparameter tuning, instead, using benchmarked
hyperparameters and training procedures to make our results easy to reproduce. While, we have not
released code yet, the appendix provides all the necessary details to replicate our experiments and
results. Moreover, we plan to release the code with a revised version of the manuscript.
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APPENDIX

A PROOFS FROM SEC. 3

Before proving results from Sec. 3, we introduce some notations. Define Epfpxq, yq :“
I

“

y R argmaxjPY fjpxq
‰

. We express the population error on distribution D as EDpfq :“
Epx,yq„D rEpfpxq, yqs.

Proof of Proposition 1. Consider a binary classification problem. Assume P be the set of possible
target conditional distribution of labels given pspx, yq and ptpxq.

The forward direction is simple. If P “ tptpy|xqu is singleton given pspx, yq and ptpxq, then the
error of any classifier f on the target domain is identified and is given by

EDT pfq “ Ex„ptpxq,y„ptpy|xq

„

I

„

argmax
jPY

fjpxq ‰ y



. (3)

For the reverse direction assume that given ptpxq and pspx, yq, we have two possible distributions DT

and DT 1

with ptpy|xq, p1
tpy|xq P P such that on some x with ptpxq ą 0, we have ptpy|xq ‰ p1

tpy|xq.
Consider XM “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ‰ p1

tpy “ 1|xqu be the set of all input covariates
where the two distributions differ. We will now choose a classifier f such that the error on the two
distributions differ. On a subset X 1

M “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ą p1
tpy “ 1|xqu, assume

fpxq “ 0 and on a subset X 2

M “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ă p1
tpy “ 1|xqu, assume

fpxq “ 1. We will show that the error of f on distribution with ptpy|xq is strictly greater than the
error of f on distribution with p1

tpy|xq. Formally,

EDT pfq ´ EDT 1 pfq

“ Ex„ptpxq,y„ptpy|xq

„

I

„

argmax
jPY

fjpxq ‰ y



´ Ex„ptpxq,y„p1

t
py|xq

„

I

„

argmax
jPY

fjpxq ‰ y



“

ż

xPXM

I rfpxq ‰ 0s
`

ptpy “ 0|xq ´ p1
tpy “ 0|xq

˘

ptpxqdx

`

ż

xPXM

I rfpxq ‰ 1s
`

ptpy “ 1|xq ´ p1
tpy “ 1|xq

˘

ptpxqdx

“

ż

xPX 2

M

`

ptpy “ 0|xq ´ p1
tpy “ 0|xq

˘

ptpxqdx `

ż

xPX 1

M

`

ptpy “ 1|xq ´ p1
tpy “ 1|xq

˘

ptpxqdx

ą 0 , (4)

where the last step follows by construction of the set X 1

M and X 2

M . Since EDT pfq ‰ EDT 1 pfq, given
the information of ptpxq and pspx, yq it is impossible to distinguish the two values of the error with
classifier f . Thus, we obtain a contradiction on the assumption that ptpy|xq ‰ p1

tpy|xq. Hence, we
must pose restrictions on the nature of shift such that P is singleton to to identify accuracy on the
target.

Proof of Corollary 1. The corollary follows directly from Proposition 1. Since two different target
conditional distribution can lead to different error estimates without assumptions on the classifier, no
method can estimate two different quantities from the same given information. We illustrate this in
Example 1 next.

B ESTIMATING ACCURACY IN COVARIATE SHIFT OR LABEL SHIFT

Accuracy estimation under covariate shift assumption Under the assumption that ptpy|xq “
pspy|xq, accuracy on the target domain can be estimated as follows:

EDT pfq “ Epx,yq„DS

„

ptpx, yq

pspx, yq
I rfpxq ‰ ys



(5)

“ Epx,yq„DS

„

ptpxq

pspxq
I rfpxq ‰ ys



. (6)
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Given access to ptpxq and pspxq, one can directly estimate the expression in (6).

Accuracy estimation under label shift assumption Under the assumption that ptpx|yq “ pspx|yq,
accuracy on the target domain can be estimated as follows:

EDT pfq “ Epx,yq„DS

„

ptpx, yq

pspx, yq
I rfpxq ‰ ys



(7)

“ Epx,yq„DS

„

ptpyq

pspyq
I rfpxq ‰ ys



. (8)

Estimating importance ratios ptpxq{pspxq is straightforward under covariate shift assumption when
the distributions ptpxq and pspxq are known. For label shift, one can leverage moment matching
approach called BBSE (Lipton et al., 2018) or likelihood minimization approach MLLS (Garg et al.,
2020). Below we discuss the objective of MLLS:

w “ argmax
wPW

Ex„ptpxq

“

log pspy|xqTw
‰

, (9)

where W “ tw | @y , wy ě 0 and
řk

y“1
wypspyq “ 1u. MLLS objective is guaranteed to obtain

consistent estimates for the importance ratios w˚pyq “ ptpyq{pspyq under the following condition.

Theorem 2 (Theorem 1 (Garg et al., 2020)). If the distributions tppxq|yq : y “ 1, . . . , ku are strictly
linearly independent, then w˚ is the unique maximizer of the MLLS objective (9).

We refer interested reader to Garg et al. (2020) for details.

Above results of accuracy estimation under label shift and covariate shift can be extended to a
generalized label shift and covariate shift settings. Assume a function h : X Ñ Z such that y is
independent of x given hpxq. In other words hpxq contains all the information needed to predict
label y. With help of h, we can extend estimation to following settings: (i) Generalized covariate
shift, i.e., pspy|hpxqq “ ptpy|hpxqq and psphpxqq ą 0 for all x P Xt; (ii) Generalized label shift, i.e.,
psphpxq|yq “ ptphpxq|yq and pspyq ą 0 for all y P Yt. By simply replacing x with hpxq in (6) and
(9), we will obtain consistent error estimates under these generalized conditions.

Proof of Example 1. Under covariate shift using (6), we get

E1 “ Epx,yq„pspx,yq

„

ptpxq

pspxq
I rfpxq ‰ ys



“ Ex„pspx,y“0q

„

ptpxq

pspxq
I rfpxq ‰ 0s



` Ex„pspx,y“1q

„

ptpxq

pspxq
I rfpxq ‰ 1s



“

ż

I rfpxq ‰ 0s ptpxqpspy “ 0|xqdx `

ż

I rfpxq ‰ 1s ptpxqpspy “ 1|xqdx

Under label shift using (8), we get

E2 “ Epx,yq„DS

„

ptpyq

pspyq
I rfpxq ‰ ys



“ Ex„pspx,y“0q

„

β

α
I rfpxq ‰ 0s



` Ex„pspx,y“1q

„

1 ´ β

1 ´ α
I rfpxq ‰ 1s



“

ż

I rfpxq ‰ 0s
β

α
pspy “ 0|xqpspxqdx `

ż

I rfpxq ‰ 1s
p1 ´ βq

p1 ´ αq
pspy “ 1|xqpspxqdx

Then E1 ´ E2 is given by

E1 ´ E2 “

ż

I rfpxq ‰ 0s pspy “ 0|xq

„

ptpxq ´
β

α
pspxq



dx

`

ż

I rfpxq ‰ 1s pspy “ 1|xq

„

ptpxq ´
p1 ´ βq

p1 ´ αq
pspxq



dx

“

ż

I rfpxq ‰ 0s pspy “ 0|xq
pα ´ βq

α
φpµ2qdx

`

ż

I rfpxq ‰ 1s pspy “ 1|xq
pα ´ βq

1 ´ α
φpµ1qdx . (10)
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If α ą β, then E1 ą E2 and if α ă β, then E1 ă E2. Since E1 ‰ E2 for arbitrary f , given access to
pspx, yq, and ptpxq, any method that consistently estimates error under covariate shift will give an
incorrect estimate under label shift and vice-versa. The reason being that the same ptpxq and pspx, yq
can correspond to error E1 (under covariate shift) or error E2 (under label shift) either of which is not
discernable absent further assumptions on the nature of shift.

C ALTERNATE INTERPRETATION OF ATC

Consider the following framework: Given a datum px, yq, define a binary classification problem
of whether the model prediction argmax fpxq was correct or incorrect. In particular, if the model
prediction matches the true label, then we assign a label 1 (positive) and conversely, if the model
prediction doesn’t match the true label then we assign a label 0 (negative).

Our method can be interpreted as identifying examples for correct and incorrect prediction based
on the value of the score function spfpxqq, i.e., if the score spfpxqq is greater than or equal to
the threshold t then our method predicts that the classifier correctly predicted datum px, yq and
vice-versa if the score is less than t. A method that can solve this task will perfectly estimate the
target performance. However, such an expectation is unrealistic. Instead, ATC expects that most of
the examples with score above threshold are correct and most of the examples below the threshold
are incorrect. More importantly, ATC selects a threshold such that the number of falsely identified
correct predictions match falsely identified incorrect predictions on source distribution, thereby
balancing incorrect predictions. We expect useful estimates of accuracy with ATC if the threshold
transfers to target, i.e. if the number of falsely identified correct predictions match falsely identified
incorrect predictions on target. This interpretation relates our method to the OOD detection literature
where Hendrycks & Gimpel (2016); Hendrycks et al. (2019) highlight that classifiers tend to assign
higher confidence to in-distribution examples and leverage maximum softmax confidence (or logit)
to perform OOD detection.

D DETAILS ON THE TOY MODEL

Skews observed in this toy model In Fig. 4, we illustrate the toy model used in our empirical
experiment. In the same setup, we empirically observe that the margin on population with less density
is large, i.e., margin is much greater than γ when the number of observed samples is small (in Fig. 4
(d)). Building on this observation, Nagarajan et al. (2020) showed in cases when margin decreases
with number of samples, a max margin classifier trained on finite samples is bound to depend on the
spurious features in such cases. They referred to this skew as geometric skew.

Moreover, even when the number of samples are large so that we do not observe geometric skews,
Nagarajan et al. (2020) showed that training for finite number of epochs, a linear classifier will have a
non zero dependency on the spurious feature. They referred to this skew as statistical skew. Due both
of these skews, we observe that a linear classifier obtained with training for finite steps on training
data with finite samples, will have a non-zero dependency on the spurious feature. We refer interested
reader to Nagarajan et al. (2020) for more details.

Proof of Theorem 1 Recall, we consider a easy-to-learn binary classification problem with two
features x “ rxinv, xsps P R

2 where xinv is fully predictive invariant feature with a margin γ ą 0 and
xsp P t´1, 1u is a spurious feature (i.e., a feature that is correlated but not predictive of the true label).
Conditional on y, the distribution over xinv is given as follows:

xinv|y „

"

U rγ, cs y “ 1

U r´c,´γs y “ ´1
, (11)

where c is a fixed constant greater than γ. For simplicity, we assume that label distribution on source
is uniform on t´1, 1u. xsp is distributed such that Psrxsp ¨ p2y´1q ą 0s “ psp, where psp P p0.5, 1.0q
controls the degree of spurious correlation. To model distribution shift, we simulate target data with
different degree of spurious correlation, i.e., in target distribution Ptrxsp ¨p2y´1q ą 0s “ p1

sp P r0, 1s.
Note that here we do not consider shifts in the label distribution but our result extends to arbitrary
shifts in the label distribution as well.
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Proof. First we consider the case of wsp ą 0. The proof follows in two simple steps. First we notice
that the classifier will make an error only on some points in XM and the threshold t will be selected
such that the fraction of points in XM with maximum confidence less than the threshold t will match
the error of the classifier on XM . Classifier with wsp ą 0 and winv ą 0 will classify all the points in
XC correctly. Second, since the distribution of points is not changing within XM and XC , the same
threshold continues to work for arbitrary shift in the fraction of examples in XM , i.e., p1

sp.

Note that when wsp ą 0, the classifier makes no error on points in XC and makes an error on a
subset Xerr “ tx|xsp ¨ p2y ´ 1q ă 0& pwinvxinv ` wspxspq ¨ p2y ´ 1q ď 0u of XM , i.e., Xerr Ď XM .
Consider Xthres “ tx| argmaxyPY fypxq ď tu as the set of points that obtain a score less than or
equal to t. Now we will show that ATC chooses a threshold t such that all points in XC gets a score
above t, i.e., Xthres Ď XM . First note that the score of points close to the true separator in XC , i.e., at
x1 “ pγ, 1q and x2 “ p´γ,´1q match. In other words, score at x1 matches with the score of x2 by
symmetricity, i.e.,

argmax
yPY

fypx1q “ argmax
yPY

fypx2q “
ewinvγ`wsp

p1 ` ewinvγ`wsp q
. (14)

Hence, if t ě argmaxyPY fypx1q then we will have |Xerr| ă |Xthres| which is contradiction violating
definition of t as in (12). Thus Xthres Ď XM .

Now we will relate LHS and RHS of (12) with their expectations using Hoeffdings and DKW
inequality to conclude (13). Using Hoeffdings’ bound, we have with probability at least 1 ´ δ{4
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∣

∣

∣
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ÿ

iPXM

“

I
“

argmaxjPY fjpxiq ‰ yi
‰‰

|XM |
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„

I

„

argmax
jPY

fjpxq ‰ y



∣

∣

∣

∣

∣

ď

d

logp8{δq

2 |XM |
.

(15)

With DKW inequality, we have with probability at least 1 ´ δ{4
∣

∣

∣

∣

∣

ÿ

iPXM

rI rmaxjPY fjpxiq ă t1ss

|XM |
´ Epx,yq„DT

„

I

„

max
jPY

fjpxq ă t1



∣

∣

∣

∣

∣

ď

d

logp8{δq

2 |XM |
, (16)

for all t1 ą 0. Combining (15) and (16) at t1 “ t with definition (12), we have with probability at
least 1 ´ δ{2

∣

∣

∣

∣

Ex„DT rI rspfpxqq ă tss ´ Epx,yq„DT

„

I

„

argmax
jPY

fjpxq ‰ y

∣

∣

∣

∣

ď

d

logp8{δq

2 |XM |
. (17)

Now for the case of wsp ă 0, we can use the same arguments on XC . That is, since now all the error
will be on points in XC and classifier will make no error XM , we can show that threshold t will be
selected such that the fraction of points in XC with maximum confidence less than the threshold t will
match the error of the classifier on XC . Again, since the distribution of points is not changing within
XM and XC , the same threshold continues to work for arbitrary shift in the fraction of examples in
XM , i.e., p1

sp. Thus with similar arguments, we have

∣

∣

∣

∣

Ex„DT rI rspfpxqq ă tss ´ Epx,yq„DT

„

I

„

argmax
jPY

fjpxq ‰ y

∣

∣

∣

∣

ď

d

logp8{δq

2 |XC |
. (18)

Using Hoeffdings’ bound, with probability at least 1 ´ δ{2, we have

|XM ´ n ¨ p1 ´ pspq| ď

c

n ¨ logp4{δq

2
. (19)

With probability at least 1 ´ δ{2, we have

|XC ´ n ¨ psp| ď

c

n ¨ logp4{δq

2
. (20)

Combining (19) and (17), we get the desired result for wsp ą 0. For wsp ă 0, we combine (20) and
(18) to get the desired result.
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With DKW inequality, we have with probability at least 1 ´ δ{2
∣

∣

∣

∣

∣

n
ÿ

i“1

„

I

„

max
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„
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jPY
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

∣

∣

∣

∣

∣

ď

c

logp4{δq

2n
, (23)

for all t1 ą 0. Finally by definition, we have

n
ÿ

i“1

„

I

„

max
jPY

fjpxiq ă t1



“
n

ÿ

i“1

„

I

„

argmax
jPY

fjpxiq ‰ yi



(24)

Combining (22), (23) at t1 “ t, and (24), we have the desired result.

E BASLINE METHODS

Importance-re-weighting (IM) If we can estimate the importance-ratios
ptpxq
pspxq with just the unla-

beled data from the target and validation labeled data from source, then we can estimate the accuracy
as on target as follows:

EDT pfq “ Epx,yq„DS

„

ptpxq

pspxq
I rfpxq ‰ ys



. (25)

As previously discussed, this is particularly useful in the setting of covariate shift (within support)
where importance ratios estimation has been explored in the literature in the past. Mandolin (Chen
et al., 2021) extends this approach. They estimate importance-weights with use of extra supervision
about the axis along which the distribution is shifting.

In our work, we experiment with uniform mass binning and equal width binning with the number of
bins in r5, 10, 50s. Overall, we observed that equal width binning works the best with 10 bins. Hence
throughout this paper we perform equal width binning with 10 bins to include results with IM.

Average Confidence (AC) If we expect the classifier to be argmax calibrated on the target then
average confidence is equal to accuracy of the classifier. Formally, by definition of argmax calibration
of f on any distribution D, we have

EDpfq “ Epx,yq„D

„

I

„

y R argmax
jPY

fjpxq



“ Epx,yq„D

„

max
jPY

fjpxq



. (26)

Difference Of Confidence We estimate the error on target by subtracting difference of confidences
on source and target (as a distributional distance (Guillory et al., 2021)) from expected error on
source distribution, i.e, DOCDT “ Ex„DS

“

I
“

argmaxjPY fjpxq ‰ y
‰‰

` Ex„DT rmaxjPY fjpxqs ´
Ex„DS rmaxjPY fjpxqs. This is referred to as DOC-Feat in (Guillory et al., 2021).

Generalized Disagreement Equality (GDE) Jiang et al. (2021) proposed average disagreement of
two models (trained on the same training set but with different initialization and/or different data
ordering) as a approximate measure of accuracy on the underlying data, i.e.,

EDpfq “ Epx,yq„D

“

I
“

fpxq ‰ f 1pxq
‰‰

. (27)

They show that marginal calibration of the model is sufficient to have expected test error equal to the
expected of average disagreement of two models where the latter expectation is also taken over the
models used to calculate disagreement.

F DETAILS ON THE DATASET SETUP

In our empirical evaluation, we consider both natural and synthetic distribution shifts. We con-
sider shifts on ImageNet (Russakovsky et al., 2015), CIFAR Krizhevsky & Hinton (2009), FMoW-
WILDS (Christie et al., 2018), RxRx1-WILDS (Taylor et al., 2019), Amazon-WILDS (Ni et al., 2019),
CivilComments-WILDS (Borkan et al., 2019), and MNIST LeCun et al. (1998) datasets.
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Train (Source) Valid (Source) Evaluation (Target)

MNIST (train) MNIST (valid) USPS, SVHN and Q-MNIST

CIFAR10 (train) CIFAR10 (valid) CIFAR10v2, 95 CIFAR10-C datasets (Fog and Motion blur, etc. )

CIFAR100 (train) CIFAR100 (valid) 95 CIFAR100-C datasets (Fog and Motion blur, etc. )

FMoW (2002-12) (train) FMoW (2002-12) (valid)
FMoW {(2013-15, 2016-17) ˆ

(All, Africa, Americas, Oceania, Asia, and Europe)}

RxRx1 (train) RxRx1(id-val) RxRx1 (id-test, OOD-val, OOD-test)

Amazon (train) Amazon (id-val) Amazon (OOD-val, OOD-test)

CivilComments (train) CivilComments (id-val)
CiviComments (8 demographic identities male, female, LGBTQ,

Christian, Muslim, other religions, Black, and White)

ImageNet (train) ImageNet (valid)
3 ImageNetv2 datasets, ImageNet-Sketch,

95 ImageNet-C datasets

ImageNet-200 (train) ImageNet-200 (valid)
3 ImageNet-200v2 datasets, ImageNet-R,

ImageNet200-Sketch, 95 ImageNet200-C datasets

BREEDS (train) BREEDS (valid)

Same subpopulations as train but unseen images from natural
and synthetic shifts in ImageNet, Novel subpopulations on

natural and synthetic shifts

Table 2: Details of the test datasets considered in our evaluation.

ImageNet setup. First, we consider synthetic shifts induced to simulate 19 different visual corruptions
(e.g., shot noise, motion blur, pixelation etc.) each with 5 different intensities giving us a total of 95
datasets under ImageNet-C (Hendrycks & Dietterich, 2019). Next, we consider natural distribution
shifts due to differences in the data collection process. In particular, we consider 3 ImageNetv2 (Recht
et al., 2019) datasets each using a different strategy to collect test sets. We also evaluate performance
on images with artistic renditions of object classes, i.e., ImageNet-R (Hendrycks et al., 2021) and
ImageNet-Sketch (Wang et al., 2019) with hand drawn sketch images. Note that renditions dataset
only contains 200 classes from ImageNet. Hence, in the main paper we include results on ImageNet
restricted to these 200 classes, which we call as ImageNet-200, and relegate results on ImageNet with
1k classes to appendix.

We also consider BREEDS benchmark (Santurkar et al., 2020) in our evaluation to assess robustness
to subpopulation shifts, in particular, to understand how accuracy estimation methods behave when
novel subpopulations not observed during training are introduced. BREEDS leverages class hierarchy
in ImageNet to repurpose original classes to be the subpopulations and defines a classification task
on superclasses. Subpopulation shift is induced by directly making the subpopulations present
in the training and test distributions disjoint. Overall, BREEDS benchmark contains 4 datasets
ENTITY-13, ENTITY-30, LIVING-17, NON-LIVING-26, each focusing on different subtrees in the
hierarchy. To generate BREEDS dataset on top of ImageNet, we use the open source library: https:
//github.com/MadryLab/BREEDS-Benchmarks. We focus on natural and synthetic shifts
as in ImageNet on same and different subpopulations in BREEDs. Thus for both the subpopulation
(same or novel), we obtain a total of 99 target datasets.

CIFAR setup. Similar to the ImageNet setup, we consider (i) synthetic shifts (CIFAR-10-C) due to
common corruptions; and (ii) natural distribution shift (i.e., CIFARv2 (Recht et al., 2018; Torralba
et al., 2008)) due to differences in data collection strategy on on CIFAR-10 (Krizhevsky & Hinton,
2009). On CIFAR-100, we just have synthetic shifts due to common corruptions.

FMoW-WILDS setup. In order to consider distribution shifts faced in the wild, we consider FMoW-
WILDS (Koh et al., 2021; Christie et al., 2018) from WILDS benchmark, which contains satellite
images taken in different geographical regions and at different times. We obtain 12 different OOD
target sets by considering images between years 2013–2016 and 2016–2018 and by considering five
geographical regions as subpopulations (Africa, Americas, Oceania, Asia, and Europe) separately
and together.

RxRx1–WILDS setup. Similar to FMoW, we consider RxRx1-WILDS (Taylor et al., 2019) from
WILDS benchmark, which contains image of cells obtained by fluorescent microscopy and the task
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is to genetic treatments the cells received. We obtain 3 target datasets with shift induced by batch
effects which make it difficult to draw conclusions from data across experimental batches.

Amazon-WILDS setup. For natural language task, we consider Amazon-WILDS (Ni et al., 2019)
dataset from WILDS benchmark, which contains review text and the task is get a corresponding star
rating from 1 to 5. We obtain 2 target datasets by considered shifts induced due to different set of
reviewers than the training set.

CivilComments-WILDS setup. We also consider CivilComments-WILDS (Borkan et al., 2019) from
WILDS benchmark, which contains text comments and the task is to classify them for toxicity. We
obtain 18 target datasets depending on whether a comment mentions each of the 8 demographic
identities male, female, LGBTQ, Christian, Muslim, other religions, Black, and White.

MNIST setup. For completeness, we also consider distribution shifts on MNIST (LeCun et al., 1998)
digit classification as in the prior work (Deng & Zheng, 2021). We use three real shifted datasets, i.e.,
USPS (Hull, 1994), SVHN (Netzer et al., 2011) and QMNIST (Yadav & Bottou, 2019).

G DETAILS ON THE EXPERIMENTAL SETUP

All experiments were run on NVIDIA Tesla V100 GPUs. We used PyTorch (Paszke et al., 2019) for
experiments.

Deep nets We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as follows:

nn.Sequential(nn.Flatten(),

nn.Linear(input dim, 5000, bias=True),

nn.ReLU(),

nn.Linear(5000, 5000, bias=True),

nn.ReLU(),

nn.Linear(5000, 50, bias=True),

nn.ReLU(),

nn.Linear(50, num label, bias=True)

)

We mainly experiment convolutional nets. In particular, we use ResNet18 (He et al., 2016), ResNet50,
and DenseNet121 (Huang et al., 2017) architectures with their default implementation in PyTorch.
Whenever we initial our models with pre-trained models, we again use default models in PyTorch.

Hyperparameters and Training details As mentioned in the main text we do not alter the standard
training procedures and hyperparameters for each task. We present results at final model, however,
we observed that the same results extend to an early stopped model as well. For completeness, we
include these details below:

CIFAR10 and CIFAR100 We train DenseNet121 and ResNet18 architectures from scratch. We use
SGD training with momentum of 0.9 for 300 epochs. We start with learning rate 0.1 and decay it by
multiplying it with 0.1 every 100 epochs. We use a weight decay of 5´4. We use batch size of 200.
For CIFAR10, we also experiment with the same models pre-trained on ImageNet.

ImageNet For training, we use Adam with a batch size of 64 and learning rate 0.0001. Due to
huge size of ImageNet, we could only train two models needed for GDE for 10 epochs. Hence, for
relatively small scale experiments, we also perform experiments on ImageNet subset with 200 classes,
which we call as ImageNet-200 with the same training procedure. These 200 classes are the same
classes as in ImageNet-R dataset. This not only allows us to train ImageNet for 50 epochs but also
allows us to use ImageNet-R in our testbed. On the both the datasets, we observe a similar superioriy
with ATC. Note that all the models trained here were initialized with a pre-trained ImageNet model
with the last layer replaced with random weights.

FMoW-WILDS For all experiments, we follow Koh et al. (2021) and use two architectures
DenseNet121 and ResNet50, both pre-trained on ImageNet. We use the Adam optimizer (Kingma &
Ba, 2014) with an initial learning rate of 10´4 that decays by 0.96 per epoch, and train for 50 epochs
and with a batch size of 64.
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RxRx1-WILDS For all experiments, we follow Koh et al. (2021) and use two architectures
DenseNet121 and ResNet50, both pre-trained on ImageNet. We use Adam optimizer with a learning
rate of 1e ´ 4 and L2-regularization strength of 1e ´ 5 with a batch size of 75 for 90 epochs. We
linearly increase the learning rate for 10 epochs, then decreasing it following a cosine learning rate
schedule. Finally, we pick the model that obtains highest in-distribution validation accuracy.

Amazon-WILDS For all experiments, we follow Koh et al. (2021) and finetuned DistilBERT-
base-uncased models (Sanh et al., 2019), using the implementation from Wolf et al. (2020), and
with the following hyperparameter settings: batch size 8; learning rate 1e ´ 5 with the AdamW
optimizer (Loshchilov & Hutter, 2017); L2-regularization strength 0.01; 3 epochs with early stopping;
and a maximum number of tokens of 512.

CivilComments-WILDS For all experiments, we follow Koh et al. (2021) and fine-tuned DistilBERT-
base-uncased models (Sanh et al., 2019), using the implementation from Wolf et al. (2020) and
with the following hyperparameter settings: batch size 16; learning rate 1e ´ 5 with the AdamW
optimizer (Loshchilov & Hutter, 2017) for 5 epochs; L2-regularization strength 0.01; and a maximum
number of tokens of 300.

Living17 and Nonliving26 from BREEDS For training, we use SGD with a batch size of 128, weight
decay of 10´4, and learning rate 0.1. Models were trained until convergence. Models were trained
for a total of 450 epochs, with 10-fold learning rate drops every 150 epochs. Note that since we want
to evaluate models for novel subpopulations no pre-training was used. We train two architectures
DenseNet121 and ResNet50.

Entity13 and Entity30 from BREEDS For training, we use SGD with a batch size of 128, weight
decay of 10´4, and learning rate 0.1. Models were trained until convergence. Models were trained
for a total of 300 epochs, with 10-fold learning rate drops every 100 epochs. Note that since we want
to evaluate models for novel subpopulations no pre-training was used. We train two architectures
DenseNet121 and ResNet50.

MNIST For MNIST, we train a MLP described above with SGD with momentum 0.9 and learning
rate 0.01 for 50 epochs. We use weight decay of 10´5 and batch size as 200.

We have a single number for CivilComments because it is a binary classification task. For multiclass
problems, ATC-NE and ATC-MC can lead to different ordering of examples when ranked with
the corresponding scoring function. Temperature scaling on top can further alter the ordering of
examples. The changed ordering of examples yields different thresholds and different accuracy
estimates. However for binary classification, the two scoring functions are the same as entropy
(i.e. p logppq ` p1 ´ pq logppq) has a one-to-one mapping to the max conf for p P r0, 1s. Moreover,
temperature scaling also doesn’t change the order of points for binary classification problems. Hence
for the binary classification problems, both the scoring functions with and without temperature scaling
yield the same estimates. We have made this clear in the updated draft.

Implementation for Temperature Scaling We use temperature scaling implementation from
https://github.com/kundajelab/abstention. We use validation set (the same we use
to obtain ATC threshold or DOC source error estimate) to tune a single temperature parameter.

G.1 DETAILS ON FIG. 1 (RIGHT) SETUP

For vision datasets, we train a DenseNet model with the exception of FCN model for MNIST dataset.
For language datasets, we fine-tune a DistilBERT-base-uncased model. For each of these models,
we use the exact same setup as described Sec. G. Importantly, to obtain errors on the same scale, we
rescale all the errors by subtracting the error of Average Confidence method for each model. Results
are reported as mean of the re-scaled errors over 4 seeds.
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Dataset Shift
IM AC DOC GDE ATC-MC (Ours) ATC-NE (Ours)

Pre T Post T Pre T Post T Pre T Post T Post T Pre T Post T Pre T Post T

CIFAR10

Natural
6.60 5.74 9.88 6.89 7.25 6.07 4.77 3.21 3.02 2.99 2.85

p0.35q p0.30q p0.16q p0.13q p0.15q p0.16q p0.13q p0.49q p0.40q p0.37q p0.29q

Synthetic
12.33 10.20 16.50 11.91 13.87 11.08 6.55 4.65 4.25 4.21 3.87

p0.51q p0.48q p0.26q p0.17q p0.18q p0.17q p0.35q p0.55q p0.55q p0.55q p0.75q

CIFAR100 Synthetic
13.69 11.51 23.61 13.10 14.60 10.14 9.85 5.50 4.75 4.72 4.94

p0.55q p0.41q p1.16q p0.80q p0.77q p0.64q p0.57q p0.70q p0.73q p0.74q p0.74q

ImageNet200

Natural
12.37 8.19 22.07 8.61 15.17 7.81 5.13 4.37 2.04 3.79 1.45

p0.25q p0.33q p0.08q p0.25q p0.11q p0.29q p0.08q p0.39q p0.24q p0.30q p0.27q

Synthetic
19.86 12.94 32.44 13.35 25.02 12.38 5.41 5.93 3.09 5.00 2.68

p1.38q p1.81q p1.00q p1.30q p1.10q p1.38q p0.89q p1.38q p0.87q p1.28q p0.45q

ImageNet

Natural
7.77 6.50 18.13 6.02 8.13 5.76 6.23 3.88 2.17 2.06 0.80

p0.27q p0.33q p0.23q p0.34q p0.27q p0.37q p0.41q p0.53q p0.62q p0.54q p0.44q

Synthetic
13.39 10.12 24.62 8.51 13.55 7.90 6.32 3.34 2.53 2.61 4.89

p0.53q p0.63q p0.64q p0.71q p0.61q p0.72q p0.33q p0.53q p0.36q p0.33q p0.83q

FMoW-WILDS Natural
5.53 4.31 33.53 12.84 5.94 4.45 5.74 3.06 2.70 3.02 2.72

p0.33q p0.63q p0.13q p12.06q p0.36q p0.77q p0.55q p0.36q p0.54q p0.35q p0.44q

RxRx1-WILDS Natural
5.80 5.72 7.90 4.84 5.98 5.98 6.03 4.66 4.56 4.41 4.47

p0.17q p0.15q p0.24q p0.09q p0.15q p0.13q p0.08q p0.38q p0.38q p0.31q p0.26q

Amazon-WILDS Natural
2.40 2.29 8.01 2.38 2.40 2.28 17.87 1.65 1.62 1.60 1.59

p0.08q p0.09q p0.53q p0.17q p0.09q p0.09q p0.18q p0.06q p0.05q p0.14q p0.15q

CivilCom.-WILDS Natural
12.64 10.80 16.76 11.03 13.31 10.99 16.65 7.14

p0.52q p0.48q p0.53q p0.49q p0.52q p0.49q p0.25q p0.41q

MNIST Natural
18.48 15.99 21.17 14.81 20.19 14.56 24.42 5.02 2.40 3.14 3.50

p0.45q p1.53q p0.24q p3.89q p0.23q p3.47q p0.41q p0.44q p1.83q p0.49q p0.17q

ENTITY-13

Same
16.23 11.14 24.97 10.88 19.08 10.47 10.71 5.39 3.88 4.58 4.19

p0.77q p0.65q p0.70q p0.77q p0.65q p0.72q p0.74q p0.92q p0.61q p0.85q p0.16q

Novel
28.53 22.02 38.33 21.64 32.43 21.22 20.61 13.58 10.28 12.25 6.63

p0.82q p0.68q p0.75q p0.86q p0.69q p0.80q p0.60q p1.15q p1.34q p1.21q p0.93q

ENTITY-30

Same
18.59 14.46 28.82 14.30 21.63 13.46 12.92 9.12 7.75 8.15 7.64

p0.51q p0.52q p0.43q p0.71q p0.37q p0.59q p0.14q p0.62q p0.72q p0.68q p0.88q

Novel
32.34 26.85 44.02 26.27 36.82 25.42 23.16 17.75 14.30 15.60 10.57

p0.60q p0.58q p0.56q p0.79q p0.47q p0.68q p0.12q p0.76q p0.85q p0.86q p0.86q

NONLIVING-26

Same
18.66 17.17 26.39 16.14 19.86 15.58 16.63 10.87 10.24 10.07 10.26

p0.76q p0.74q p0.82q p0.81q p0.67q p0.76q p0.45q p0.98q p0.83q p0.92q p1.18q

Novel
33.43 31.53 41.66 29.87 35.13 29.31 29.56 21.70 20.12 19.08 18.26

p0.67q p0.65q p0.67q p0.71q p0.54q p0.64q p0.21q p0.86q p0.75q p0.82q p1.12q

LIVING-17

Same
12.63 11.05 18.32 10.46 14.43 10.14 9.87 4.57 3.95 3.81 4.21

p1.25q p1.20q p1.01q p1.12q p1.11q p1.16q p0.61q p0.71q p0.48q p0.22q p0.53q

Novel
29.03 26.96 35.67 26.11 31.73 25.73 23.53 16.15 14.49 12.97 11.39

p1.44q p1.38q p1.09q p1.27q p1.19q p1.35q p0.52q p1.36q p1.46q p1.52q p1.72q

Table 3: Mean Absolute estimation Error (MAE) results for different datasets in our setup grouped by
the nature of shift. ‘Same’ refers to same subpopulation shifts and ‘Novel’ refers novel subpopulation
shifts. We include details about the target sets considered in each shift in Table 2. Post T denotes
use of TS calibration on source. For language datasets, we use DistilBERT-base-uncased, for vision
dataset we report results with DenseNet model with the exception of MNIST where we use FCN.
Across all datasets, we observe that ATC achieves superior performance (lower MAE is better). For
GDE post T and pre T estimates match since TS doesn’t alter the argmax prediction. Results reported
by aggregating MAE numbers over 4 different seeds. Values in parenthesis (i.e., p¨q) denote standard
deviation values.
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Dataset Shift
IM AC DOC GDE ATC-MC (Ours) ATC-NE (Ours)

Pre T Post T Pre T Post T Pre T Post T Post T Pre T Post T Pre T Post T

CIFAR10

Natural
7.14 6.20 10.25 7.06 7.68 6.35 5.74 4.02 3.85 3.76 3.38

p0.14q p0.11q p0.31q p0.33q p0.28q p0.27q p0.25q p0.38q p0.30q p0.33q p0.32q

Synthetic
12.62 10.75 16.50 11.91 13.93 11.20 7.97 5.66 5.03 4.87 3.63

p0.76q p0.71q p0.28q p0.24q p0.29q p0.28q p0.13q p0.64q p0.71q p0.71q p0.62q

CIFAR100 Synthetic
12.77 12.34 16.89 12.73 11.18 9.63 12.00 5.61 5.55 5.65 5.76

p0.43q p0.68q p0.20q p2.59q p0.35q p1.25q p0.48q p0.51q p0.55q p0.35q p0.27q

ImageNet200

Natural
12.63 7.99 23.08 7.22 15.40 6.33 5.00 4.60 1.80 4.06 1.38

p0.59q p0.47q p0.31q p0.22q p0.42q p0.24q p0.36q p0.63q p0.17q p0.69q p0.29q

Synthetic
20.17 11.74 33.69 9.51 25.49 8.61 4.19 5.37 2.78 4.53 3.58

p0.74q p0.80q p0.73q p0.51q p0.66q p0.50q p0.14q p0.88q p0.23q p0.79q p0.33q

ImageNet

Natural
8.09 6.42 21.66 5.91 8.53 5.21 5.90 3.93 1.89 2.45 0.73

p0.25q p0.28q p0.38q p0.22q p0.26q p0.25q p0.44q p0.26q p0.21q p0.16q p0.10q

Synthetic
13.93 9.90 28.05 7.56 13.82 6.19 6.70 3.33 2.55 2.12 5.06

p0.14q p0.23q p0.39q p0.13q p0.31q p0.07q p0.52q p0.25q p0.25q p0.31q p0.27q

FMoW-WILDS Natural
5.15 3.55 34.64 5.03 5.58 3.46 5.08 2.59 2.33 2.52 2.22

p0.19q p0.41q p0.22q p0.29q p0.17q p0.37q p0.46q p0.32q p0.28q p0.25q p0.30q

RxRx1-WILDS Natural
6.17 6.11 21.05 5.21 6.54 6.27 6.82 5.30 5.20 5.19 5.63

p0.20q p0.24q p0.31q p0.18q p0.21q p0.20q p0.31q p0.30q p0.44q p0.43q p0.55q

ENTITY-13

Same
18.32 14.38 27.79 13.56 20.50 13.22 16.09 9.35 7.50 7.80 6.94

p0.29q p0.53q p1.18q p0.58q p0.47q p0.58q p0.84q p0.79q p0.65q p0.62q p0.71q

Novel
28.82 24.03 38.97 22.96 31.66 22.61 25.26 17.11 13.96 14.75 9.94

p0.30q p0.55q p1.32q p0.59q p0.54q p0.58q p1.08q p0.84q p0.93q p0.64q p0.78q

ENTITY-30

Same
16.91 14.61 26.84 14.37 18.60 13.11 13.74 8.54 7.94 7.77 8.04

p1.33q p1.11q p2.15q p1.34q p1.69q p1.30q p1.07q p1.47q p1.38q p1.44q p1.51q

Novel
28.66 25.83 39.21 25.03 30.95 23.73 23.15 15.57 13.24 12.44 11.05

p1.16q p0.88q p2.03q p1.11q p1.64q p1.11q p0.51q p1.44q p1.15q p1.26q p1.13q

NONLIVING-26

Same
17.43 15.95 27.70 15.40 18.06 14.58 16.99 10.79 10.13 10.05 10.29

p0.90q p0.86q p0.90q p0.69q p1.00q p0.78q p1.25q p0.62q p0.32q p0.46q p0.79q

Novel
29.51 27.75 40.02 26.77 30.36 25.93 27.70 19.64 17.75 16.90 15.69

p0.86q p0.82q p0.76q p0.82q p0.95q p0.80q p1.42q p0.68q p0.53q p0.60q p0.83q

LIVING-17

Same
14.28 12.21 23.46 11.16 15.22 10.78 10.49 4.92 4.23 4.19 4.73

p0.96q p0.93q p1.16q p0.90q p0.96q p0.99q p0.97q p0.57q p0.42q p0.35q p0.24q

Novel
28.91 26.35 38.62 24.91 30.32 24.52 22.49 15.42 13.02 12.29 10.34

p0.66q p0.73q p1.01q p0.61q p0.59q p0.74q p0.85q p0.59q p0.53q p0.73q p0.62q

Table 4: Mean Absolute estimation Error (MAE) results for different datasets in our setup grouped
by the nature of shift for ResNet model. ‘Same’ refers to same subpopulation shifts and ‘Novel’ refers
novel subpopulation shifts. We include details about the target sets considered in each shift in Table 2.
Post T denotes use of TS calibration on source. Across all datasets, we observe that ATC achieves
superior performance (lower MAE is better). For GDE post T and pre T estimates match since TS
doesn’t alter the argmax prediction. Results reported by aggregating MAE numbers over 4 different
seeds. Values in parenthesis (i.e., p¨q) denote standard deviation values.
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