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Abstract—Shared� control� systems� can� make� complex� robot�
teleoperation� tasks� easier� for� users.� These� systems� predict� the�
user’s�goal,�determine�the�motion�required�for�the�robot�to�reach�
that� goal,� and� combine� that� motion� with� the� user’s� input.� Goal�
prediction� is� generally� based� on� the� user’s� control� input� (e.g.,�
the� joystick� signal).� In� this� paper,� we� show� that� this� prediction�
method�is�especially�effective�when�users�follow�standard�noisily�
optimal� behavior� models.� In� tasks� with� input� constraints� like�
modal� control,� however,� this� effectiveness� no� longer� holds,� so�
additional�sources�for�goal�prediction�can�improve�assistance.�We�
implement�a�novel� shared� control� system� that� combines�natural�
eye�gaze�with�joystick�input�to�predict�people’s�goals�online,�and�
we�evaluate�our�system� in�a�real-world,�COVID-safe�user�study.�
We� find� that� modal� control� reduces� the� efficiency� of� assistance�
according� to� our� model,� and� when� gaze� provides� a� prediction�
earlier�in�the�task,�the�system’s�performance�improves.�However,�
gaze� on� its� own� is� unreliable� and� assistance� using� only� gaze�
performs� poorly.� We� conclude� that� control� input� and� natural�
gaze�serve�different�and�complementary�roles�in�goal�prediction,�
and�using� them� together� leads� to� improved�assistance.�

I.� INTRODUCTION�

Teleoperation�is�often�used�to�control�robots,�but�performing�
complex� tasks� in� this� way� is� difficult.� Limited� interfaces,�
complex� kinematics,� and� the� lack� of� proprioception� turns�
tasks� easily� performed� by� hand� into� exercises� in� frustration.�
Shared� control� can� make� the� problem� easier.� These� sys-
tems�[12,�12,�22,�30,�34,�35,�47]�often�work�by�predicting�the�
user’s�goal,�planning� to�accomplish� that�goal,� and�combining�
the�autonomous�command�with� the�user� input.�

Typically,�shared�control�systems�rely�on�the�user’s�control�
input,� like� joystick� motion,� for� goal� inference� [8,� 24,� 37,�
44,� 46].� When� the� system� observes� that� the� user� is� working�
towards� a� particular� goal,� the� system� can� then� assist� towards�
that� same� goal.� While� this� method� does� not� necessarily� pro-
vide� the� earliest� predictions� [4],� user� input� works� well� for�
assistance,�since�accurate�predictions�arrive�more�often�exactly�
when� they� are� needed.� When� the� user� input� differentiates�
between� goals,� the� system� has� enough� information� to� give�
goal-specific� assistance.� When� all� goals� require� the� same�
motion,� the� user� input� does� not� help� the� system� to� predict�
the� user’s� goal,� but� no� goal� prediction� is� actually� needed.�
In� fact,� we� can� make� a� more� formal� claim:� when� a� user�
controlling� a� shared� autonomy� system� [19]� provides� control�
input�given�by�p(u|g) / exp(Qg (u)),�the�expected�regret�over�
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Fig.� 1:� A� user� controls� a� robot� with� a� joystick� to� pick� up�
a� mug,� while� their� eye� gaze� behavior� is� captured.� Eye� gaze�
gives�information�about�the�user’s�goal�earlier�than�the�joystick�
information�does,�which�makes� it�appealing�for� incorporation�
into�assistive�systems.�

user�actions�stays�bounded�as�the�cost�of�taking�a�suboptimal�
action�increases.�We�formalize�and�prove�this�result�in�Sec.�III.�

However,� users� often� do� not� follow� this� optimal� behavior.�
Specifically,�the�scenario�itself�can�prevent�the�user�from�acting�
optimally.�Consider�a�goal�that�can�be�split�into�multiple�tasks�
that�the�robot�can�perform�in�parallel,�e.g.,�splitting�the�goal�of�
moving�its�end-effector�to�a�desired�pose�into�six�independent�
dimensions�of�motion.�The�above�analysis�relies�on�the�system�
knowing� each� task� individually.� However,� the� structure� of�
the� task� itself� may� prevent� the� user� from� working� on� all� of�
them:�for�example,�modal�control�restricts�users�to�giving�only�
two�directions�of�end-effector�motion�at� a� time.�Then,� a�user�
working� on� one� task� and� not� another� will� not� give� sufficient�
information� to�enable� full�assistance.�

For� successful� assistance� in� these� cases,� we� must� consider�
other�sources�of�goal�prediction:�in�this�work,�we�incorporate�
the�user’s�natural�eye�gaze.�While�people�manipulate�objects,�
they�look�at�their�goals�before�reaching�them�[14,�21]�and�look�
forward� to� next� steps� in� their� tasks� [29].� These� patterns� also�
appear�during�teleoperated�manipulation�[2,�5,�11]�and�can�be�
used� for� goal� prediction� globally� through� the� task,� whatever�
its�current�state�[4,�33].�However,�gaze�is�noisy�and�somewhat�
unreliable,�making�it�a�poor�choice�to�use�on�its�own.�Thus,�it�is�
best�used�to�provide�the�global�information�that�complements�
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predictions� based� on� control� input� to� increase� the� amount� of�
assistance�provided.�

In�this�work,�we�implement�an�assistive�teleoperation�system�
that�incorporates�goal�prediction�using�both�the�user’s�control�
input� and� their� eye� gaze� behavior.� We� use� this� system� to�
evaluate� each� prediction� source� in� a� real-world,� COVID-safe�
user� study.� In� the� study,� participants� teleoperated� a� robot�
manipulator� using� modal� control� to� pick� up� one� of� two�
cups�while�our�system�provided�assistance.�The�scenario�was�
designed� so� that� the� user� could� not� act� optimally,� so� their�
control�input�was�unlikely�to�yield�optimal�assistance.�During�
each� trial,� the� assistance� relied� on� goal� prediction� based� on�
their� joystick� input,� their�gaze�behavior,�or�both.�

We�find�that�for�this�experimental�scenario,�assistance�based�
on� joystick� input� alone� is� delayed� relative� to� using� both�
joystick� and� gaze,� but� only� when� the� gaze� prediction� arrives�
sufficiently�early.�In�the�cases�with�early�gaze�predictions,�trials�
finished� more� quickly� and� users� supplied� less� control� input.�
Specifically,� early� gaze� leads� to� earlier� assistance� exactly� on�
the�axes�for�which�the�goal�positions�differ,�and�the�assistance�
is� the� same� otherwise,� matching� our� theoretical� analysis.�
However,� gaze-based� predictions� are� inherently� less� reliable,�
as� many� trials� never� gave� sufficient� information� for� accurate�
goal� prediction,� and� feedback� loops� led� to� arbitrarily� poor�
performance�in�some�cases.�This�work�explores�a�fundamental�
limitation� of� input-based� goal� prediction� for� assistance� and�
shows� that�eye�gaze�provides� the�global� information�required�
for�systems� to�provide�as�much�assistance�as�possible.�

II.� RELATED�WORK�

A.� Assisted�Teleoperation�

Assisted�teleoperation,�in�which�a�system�predicts�the�user’s�
intent,� plans� autonomously� to� achieve� that� intent,� and� com-
bines�its�generated�command�with�the�user’s�direct� input,�has�
been� widely� studied� [28].� Our� work� builds� most� directly� on�
Javdani�et�al.�[17,�18],�which�models�assistance�as�a�partially�
observable�Markov�decision�process,�with�partial�observability�
over� the�user’s�goal� choice;� this�model�has� shown�success� in�
various� iterations� and� applications� [12,� 22,� 30,� 34,� 35,� 47].�
This� structure� enables� the� system� to� generate� an� assistance�
command�even�with�no�knowledge�of�the�user’s�goal�when�the�
system� can� make� progress� towards� all� goals� simultaneously.�
This� work� poses� goal� inference� as� an� inverse� reinforcement�
learning�problem�by�assuming�a�noisily�optimal�human�model,�
which� is� frequently� built� upon� [8,� 24,� 37,� 44,� 46].� To� make�
the� joystick� input� more� predictive� of� the� goal,� Gopinath� and�
Argall� [13]�has� the� joystick�start� in�a�control�mode�such� that�
the�user�can� immediately�perform�goal-specific�motion.�

An�assistive�system�can�combine�predictions�from�different�
sources,� such� as� user� input� with� gaze� (proposed� by� Admoni�
and� Srinivasa� [1]).� Jain� and� Argall� [16]� proposed� combining�
multiple� predictions� by� assuming� each� is� independent� con-
ditioned� on� the� goal,� which� we� use.� Structural� challenges�
to� effective� shared� autonomy� have� also� been� identified� in�
Fontaine�and�Nikolaidis� [10].�

B.� Gaze� for� Intent�Prediction�
During� manual� manipulation,� people� look� at� their� targets�

before� reaching� towards� them.�Hayhoe� [14]� reports� that�87% 
of� reaching� movements� in� a� sandwich-making� task� were�
accompanied�by�target-directed�fixations.�These�directing�fix-
ations�[25,�29]�indicate�the�actor’s�intention�to�interact�with�an�
object.�A�number�of�works�have�used�gaze�to�predict�people’s�
goals�and� tasks� [7,�9,�23,�43]�during�manual�manipulation.�

During� teleoperation,� however,� gaze� behavior� changes.�
While� gaze� often� predicts� people’s� goals� and� tasks� accu-
rately� [4,� 11,� 33,� 42],� the� introduction� of� a� robot� causes�
challenges.� The� gaze� signal� can� be� noisy� and� difficult� to�
align� to� the� scene� [3].� Unlike� the� largely� goal-directed� gaze�
during� manual� manipulation,� people� often� look� at� the� robot�
itself� [2,� 4,� 5,� 11,�33].�Worse�yet,� people� can�complete� tasks�
without� ever� looking� at� their� goal,� especially�when� repeating�
the� task� [2,�4].�By�analyzing�offline�data�of�gaze�while�oper-
ating�a� robot,�Razin�and�Feigh� [33]�finds� that� task�prediction�
using� robot� motion� is� more� accurate� than� gaze� alone,� and�
adding� gaze� to� the� robot� motion� signal� does� not� improve�
overall� prediction� performance.� The� difficulty� of� using� gaze�
motivates�our�work�to�understand�how�to�use�gaze�effectively.�

C.� Gaze� in� the�Loop�
Many�systems�use�intentional�eye�gaze�as�a�control�input�to�

a�robotic�manipulation�system�[6,�26,�27,�36,�40,�41].�Instead,�
we� focus� on� people’s� natural� gaze� behavior,� which� emerges�
automatically� while� they� execute� a� task.� Huang� and� Mutlu�
[15]� used� people’s� natural� eye� gaze� while� selecting� a� menu�
item� to� anticipate� their� selection� and� move� a� serving� robot,�
which� improved� performance.� In� Stolzenwald� and� Mayol-
Cuevas�[38],�participants�play�a�screen-based�tile�placing�game�
using� a� robotic� pointer;� using� natural� eye� gaze� to� predict�
people’s� targets� so� the� robot� can� assist� outperformed� using�
the� prediction� to� hinder� the� user,� but� it� did� not� show� any�
improvement�over� taking�no�action.�

III.� WHEN�CONTROL�INPUT�IS�NOT�ENOUGH�

Consider� a� user� teleoperating� a� robot� to� pick� up� an� object�
(Fig.�1).�Grasping�tasks�like�this�are�difficult,�especially�when�
using� basic� interfaces� such� as� joysticks.� To� make� the� task�
easier,� shared� control� [18]� predicts� the� user’s� goal� among�
a� pre-specified� set� of� goal� candidates,� plans� to� achieve� the�
goal,� and� combines� this� autonomous� command� with� the� user�
command.�Shared�control�systems�[28]�often�use� the� joystick�
input� itself� to� infer� the� user’s� goal.� We� explore� the� joystick�
signal� and� propose� criteria� for� when� another� signal,� such� as�
eye�gaze,�will� lead� to�better�assistance.�

A.� Joystick-based�Prediction�and�Assistance�
In�this�section,�we�summarize�the�approach�for�goal�predic-

tion� and� assistance� given� in� Javdani� et� al.� [19].� This� method�
uses�the�user’s�control�input�u to�predict�their�goals,�expressed�
as� a� probability� distribution� p(G) over� a� pre-specified� set�
of� goal� candidates.� To� do� so,� it� frames� goal� inference� as�
an� inverse� reinforcement� learning� problem� [17,� 20,� 44,� 45]�



and�models� the� teleoperation�problem�as�a� family�of�Markov�
decision� processes� (MDPs)� with� different,� pre-specified� cost�

1functions� Cg(x, u) for� each� goal� candidate� g 2 G.� The�
system� then� assumes� that� the� user� is� noisily� optimizing� the�
cost� function�corresponding� to� their� true�goal.�

First,�this�method�solves�the�Bellman�equation�for�each�goal�
MDP�for�a�goal-specific�action�value�function�Qg (x, u).�Then,�
it�assumes�that�the�user’s�action�u at�each�state�x is�drawn�from�
a�distribution�given�as�

p(u|x, g) / exp(Qg(x, u)). (1)�

Note� that� this� is� equivalent� to� the� Boltzmann� rational� model�
with� � = 1.� Given� a� sequence� of� state-action� pairs� ⇠ = 
(x0, u0, · · · , xn, un),� the� strategy� assumes� that� the� user’s� ac-
tions�are�conditionally�independent�given�their�goal.�Since�⇠ is�
not�a�trajectory,�as�the�robot�will�be�acting�simultaneously�with�
the�user,�the�method�treats�only�the�actions�ui as�observations.�
Using� Bayes’� rule,� it� aggregates� a� goal� prediction� over� time�
using�

p(ui|g)p(g|u0, · · · , ui�1) p(g|u0, · · · , ui) = P . (2)�
p(ui|g 0 )p(g 0|u0, · · · , ui�1)g 0 

To� generate� an� assistance� signal� from� the� goal� prediction,�
this� method� represents� the� combined� robot-human� control�
problem� as� a� partially� observable� Markov� decision� process�
(POMDP),� with� the� user’s� goal� a� hidden� parameter.� The�
POMDP�augments�the�system�state�x with�a�belief�distribution�
over� the� user’s� goal� given� by� p(g) above.� The� action� value�
function� Q(x, p, a) depends� on� the� robot� state,� next� action,�
and� the� belief� state.� Since� solving� the� POMDP� is� generally�
computationally�prohibitive,� it� adopts� the�hindsight�optimiza-
tion�assumption,�which�assumes�that�the�uncertainty�expressed�
by�p(g) will� resolve� in� the�next�step.�From�here,�we�can�find�
the�optimal�assistance�policy� (x, p(g)):�

X 
 (x, p(g)) = arg max p(g)Qg(a). (3)�

a2A g 

This� assumption� replaces� the� overall� value� function� of� the�
POMDP�with�the�expectation�over�the�goal�probabilities�of�the�
goal-specific� value� functions,� and� it� reuses� the� goal-specific�
value� functions� Qg(u) used� in� Eqn.� 1.� (We� use� a here� to�
represent�that�this�action�is�selected�by�the�robot,�as�opposed�to�
u which�is�given�by�the�user.)�To�compute�the�overall�motion,�

⇤ ⇤ sum�a with� the�user�command�u directly:�aexec� = a + u. 

B.� Evaluating�Prediction�Sources�

While�accuracy�and�forecast�horizon�are�useful�measures�to�
evaluate�a�prediction�of�the�user’s�goal,�we�want�to�evaluate�the�
assistive�system�as�a�whole.�Accurate�predictions�only�matter�
when� they� improve� the� quality� of� the� assistance� provided.�
Whatever� its� metrics� as� a� prediction,� the� user’s� control� input�
is� effective� for� assistance,� since� the� signal� is� directly� tied� to�
the�generation�of� the�assistance�command.�

1Following� Javdani� et� al.� [19],� the� cost� function� was� constant� outside� a�
radius�of� the�goal�and�declined� linearly� to�0�at� the�goal� location.�

A B C

Fig.� 2:� Diagram� of� user� input� (u)� and� optimal� robot� motion�
(a ⇤)�during�an�example�task.�The�user�moves�a�point�robot�to�
one�of�the�green�stars.�At�A,�user�input�and�optimal�motion�are�
both�to�the�right.�At�B,�user�input�is�still�directly�to�the�right,�
but� the�optimal�motion� is�diagonally� towards� the�goal.�At�C,�
both� the�user� input�and� the�optimal�motion�point� towards� the�
goal.�Early�prediction� improves� task�performance�only�at�B.�

To�explore�this�coupling�between�assistance�and�goal�predic-
tion,�we�start�with�an�example.�A�planar� robot� task� is� shown�
in� Fig.� 2.� The� user� must� move� the� point� robot� from� A� to�
one� of� the� two� goals� (green� stars).� At� A,� the� only� way� to�
make�task�progress�for�either�goal�is�to�move�to�the�right.�The�
user’s�expected�input�is�the�same�for�each�goal,�so�it�does�not�
yield� a� goal� prediction.� However,� no� prediction� is� necessary:�
knowledge�of� the�goal�would�not�change�the�optimal�motion.�
At�C,�the�situation�is�reversed.�The�optimal�motion�is�to�move�
either� up� or� down� directly� towards� the� user’s� goal.� Here,� the�
system�requires�a�goal�prediction�to�assist.�As�the�user’s�input�
depends�on� the�goal,� though,� the�prediction� is�available.�

Location� B� is� different.� Say� the� user� continues� moving�
to� the� right,� which� gives� no� goal� information.� However,� the�
system� can� do� better.� If� it� knew� the� goal,� it� could� move�
diagonally;� without� goal� knowledge,� however,� it� must� wait�
until�observing�a�goal-dependent�user�input�(like�at�C)�before�it�
can�assist�along�the�vertical�direction.�Early,�independent�goal�
prediction� only� improves� assistance� at� points� like� B,� where�
goal� information�would�change� the�motion�but� the�user� input�
does�not�provide� it.�

To�formalize�this�analysis,�consider�an�assistive�system�with�
two�goal�candidates�{g1, g2}.�

• Two� goals� require� different� motion� at�x if� their� optimal�
⇤ ⇤ ⇤robot�motion�a depends�on�the�goal:�a1(x) =6 a2(x);�the�

motion� is� identical�otherwise.�
• Two� goals� are� distinguishable� at�x if� the� observed� user�

input� generally� differs� based� on� the� goal:� u(x|g1) =6 
u(x|g2);� they�are� indistinguishable�otherwise.�

Identical� and� different� motion� are� properties� of� the� robot’s�
state,�whereas�distinguishable�and� indistinguishable�goals�are�
determined� by� the� user’s� input.� When� the� user� is� acting�
near-optimally,�different�motion�likely�leads�to�distinguishable�
goals.� Next,� we� formalize� this� alignment� between� optimal�
users�and�effective�assistance.�



C.� Noisily�Optimal� Input�Bounds�Regret�
The� above� analysis� suggests� that� when� users� give� approx-

imately� optimal� input,� the� system� will� likely� receive� the�
information� needed� to� provide� assistance.� If� we� assume� the�
user� follows� the� model� given� in� Eqn.� 1,� we� can� evaluate� the�
expected� performance� of� the� shared� autonomy� policy� given�
in� Eqn.� 3.� We� show� that� as� the� importance� of� taking� the�
optimal�robot�action�(measured�by�regret)�increases,�the�user’s�
probability�of�providing�a�distinguishing�input�increases�faster,�
such� that� the�overall�system�has�bounded�regret.�

For� simplicity,� assume� we� only� have� two� goal� candidates�
with� action� value� functions�Q1 and�Q2,� and� assume� without�
loss� of� generality� that� the� user’s� goal� is� g1.� We� also� assume�
that� the� set� of� actions� A is� finite� and� identify� actions� with�
the� same�Q(a).� At� some� state�x (which� we� drop� for� ease� of�
notation),� let�Q⇤ be� the�maximum�value�of�Q1(a) attained�at1 

⇤ some�action�a1.�If�we�define�the�goal�probability�from�control�
input� u as� above,� the� shared� autonomy� policy� (p(g)) is� a�
function� of�u and� we� write� (u).� We� can� then� compute� the�
expected� regret�R( (u)) = Q⇤ 

1 � Q1( (u)) of� the�assistance�
policy� (u) over� the�user�model.�

⇤We�can�measure�the�importance�of�taking�a1 over�any�other�
0action�a by� letting�Rmin� represent� the� minimum� regret� over�

all�alternative�actions:�

Rmin� = min 
⇤ 
R(a). 

a=a1 6

We� want� to� understand� the� behavior� of� the� system� as� Rmin�
increases.� Increasing�Rmin� can� be� achieved� by� changing� the�
selected� state� or� the� MDP� itself.� For� example,� consider� an�
MDP� with� reward� function� r(x).� If� we� scale� that� reward�
function,� r 0 (x) = �r(x),� > 0,� the� value� function� scales�
similarly,�Q 0 (x, a) = �Q(x, a).�Then,�R 0 min� = �Rmin,� and�we�
can�then�consider� the�behavior�as�� increases.�Similar�effects�
can� also�occur� by� changing�x or�r(x) in� other�ways� that� are�
more� complicated� to� formulate.� However� the� change� occurs,�
increasing� values� of�Rmin� represent� increased� importance� of�
taking� the�optimal�action.�

We�can�now�determine�the�expected�regret�of�the�assistance�
policy�under�a�user� following�Eqn.�1.�
Proposition.�

lim Eu[R( (u))] = 0. 
Rmin!1 

(4)

We� sketch� a� proof� in� two� parts.� First,� we� show� that� as�
Rmin� ! 1,� the� assistance� action� taken� when� observing� the�

⇤ ⇤optimal�action�from�the�user,� (a1),�becomes�a1:�
⇤ ⇤ lim  (a1) = a1. 

Rmin!1 

By�manipulating�Eqn.�3�and�collecting�terms�in�p(g),�we�find�
⇤ ⇤ 0that� for� (a1) = a1,�we�must�have,� for�all�a 2 A,�

⇤ ⇤ ⇤ ⇤ p(g1|a1)(Q1(a1) � Q1(a 0 )) � p(g2|a1)(Q2(a 0 ) � Q2(a1)). 

The� left-hand� side� is� greater� than� p(g1|a⇤1)Rmin� which� in-
creases� as� Rmin� ! 1,� while� the� right-hand� side� is� nonin-
creasing�through�p(g ⇤

2|a1).�Once�the�importance�of�taking�the�

optimal�action�exceeds�some�threshold,�the�assistance�will�take�
that�optimal�action�whenever� it�observes� it� from�the�user.�

The�expected�regret� is�given�by
X 

Eu[R( (u))] = R( (u))p(u|g1). 
u 

⇤From� above,� once� Rmin� is� sufficiently� large,� R( (a1)) = 
⇤ ⇤R(a1) = 0.� We� can� therefore� break� a out� of� the� sum.� If1 

we�define�Rmax� = maxa R(a) analogously,�we�have�
X 

⇤ ⇤ Eu[R( (u))] = R( (a1))p(a1|g1) + R( (u))p(u|g1) 
⇤ 

X 
u=a1 

= R( (u))p(u|g1) 
⇤ u=a1 

⇤  Rmaxp(u = a1|g1). 

6

6

6

Finally,�we�bound�the�probability�of�the�user�giving�an�action�
other� than� the� optimal� action� based� on� our� model� of� user�
behavior,�

P 
66

6

6

6

u=a ⇤ exp Q1(u)
⇤ 1p(u = a1|g1) = P 

exp Q⇤ 
1 + ⇤ exp Q1(u)

P u=a1 

⇤ exp(�R(u))u=a1 = P 
1 + ⇤ exp(�R(u))u=a1 

(|A|� 1) exp(�Rmin) . 
1 + (|A|� 1) exp(�Rmin) 

Putting� it�all� together,�
RmaxEu[R( (u))]  .11 + exp(Rmin)|A|�1 

As� long�as�Rmax� increases� less� than�exponentially�with�Rmin,�
the� result�goes� to�0 as�Rmin� ! 1 and� the� regret� is�bounded.�
This� condition� is� met� by� uniformly� scaling� the� reward� as�
described�earlier.�

As� the� importance� of� taking� the� optimal� action� increases,�
the� chance� of� the� user� performing� that� optimal� action� under�
the�model�increases�exponentially�faster,�so�the�system�is�more�
likely� to� receive� the� information� it�needs.�

D.� Control�Input�Restrictions�Require�New�Prediction�Sources�
We� see� from� the� previous� result� that� noisily-optimal� users�

are� particularly� easy� to� assist� using� input-based� goal� pre-
diction.� If� we� remove� the� assumption� of� optimality� —� by�
assuming,�e.g.,�that�the�user�acts�randomly,�mistakenly,�or�ad-
versarially�—�we�no�longer�have�guarantees�that�the�assistance�
will�behave�well.�However,� there� is�a� large�class�of�problems�
for� which� the� user� still� acts� optimally� but� the� assistance� can�
be�arbitrarily�ineffective:�when�the�user’s�action�are�limited�to�
only�a�subset�of� the�actions� that� the�system�can� take.�

It� is� not� the� user’s� suboptimality� that� limits� the�
effectiveness� of� the� system,� but� the� constraints� that�
the�system�itself�puts�on� the�user’s�behavior.�

One�common�example�of�this�problem�in�teleoperation�is�the�
use�of�modal�control.�In�this�scheme,�the�robot�can�control�its�



end-effector�simultaneously�in�all�directions.�However,�the�user�
has�only�a�2-D� joystick�with�which� to�control� the� robot.�The�
user�can�fully�control�the�robot�by�cycling�through�modes�with�
the�joystick�controlling�x/y,�z/yaw,�and�pitch/roll�in�turn.�If�the�
optimal�action�does�not�align�with�a�single�control�mode,� the�
user�cannot�perform�it.�The�best�the�user�can�do�is�to�provide�
input� in� the� single� most� useful� mode.� And� when� the� robot�
motion� is� different� but� the� control� input� within� the� optimal�
mode� is� not� distinguishing,� assistance� does� not� have� enough�
information� to�be�optimal.�

We� can� return� to� Fig.� 2� to� explore� this� limitation� further.�
At� B,� we� observe� the� user� giving� indistinguishable� motion,�
though� the� assistance� requires� different� motion� per� goal.� In�
the� noisily� rational� model,� this� user� action� occurs� at� a� lower�
probability� than� a� distinguishable� input.� However,� if� we� add�
the� additional� restriction� that� the� user� can� only� provide� axis-
aligned� commands,� the� user’s� input� at� B� is� optimal.� Even�
with� an� optimal� user,� the� assistance� does� not� receive� enough�
information� to�provide� full�assistance.� In� these�situations,� the�
system� benefits� from� an� alternative,� global� method� for� goal�
prediction�that�is�less�reliant�on�the�user’s�local�behavior.�While�
an� alternative� information� source� will� not� remove� the� direct�
restrictions� of� modal� control,� it� can� bypass� the� limitations� in�
goal�information�forced�by�the�control�restriction�and�improve�
overall�system�performance.�

IV.� GAZE-BASED�GOAL�PREDICTION�

To� provide� goal� prediction� when� motion� differs� but� input�
is�indistinguishable,�we�use�natural�eye�gaze.�Gaze�provides�a�
global�goal�prediction�which�is�less�dependent�on�the�state�of�
the�task,�and�people’s�gaze�often�anticipates�future�tasks�while�
their�actions�focus�on� the�current�one.�

Systems� using� intentional� gaze� behavior� typically� select�
the� goal� closest� to� the� user’s� gaze� location� and� implicitly�
rely� on� the� user� to� adjust� their� gaze� to� provide� accurate�
information� [6,� 26,� 27,� 36,� 40,� 41].�However,� natural� gaze� is�
not�so�reliable.�While�gaze�relates�to�the�user’s�intentions,�most�
gaze� is� directed� towards� the� robot� end-effector,� and� people�
can�complete�robotic�manipulation�tasks�without�ever�looking�
at� their� goals� [2,� 5,� 33].� These� complications� require� more�
complex�prediction�strategies.�

To�predict�the�user’s�goals�from�their�natural�gaze,�we�adapt�
the�sequential�method�given�in�Aronson�et�al.�[4].�This�method�
has�two�stages�of�gaze�processing:�(1)�semantic�gaze�labeling,�
which� segments� the� raw� gaze� into� individual� fixations� and�
labels�each�fixation�with�its�corresponding�scene�keypoint;�and�
(2)�sequential�goal�prediction,�which�uses�a�pre-trained�hidden�
Markov�model� to�yield�goal�probabilities�from�this�sequence.�

A.� Semantic�Gaze�Labeling�
Raw� gaze� data� is� captured� as� a� 90Hz� time� series� of� pixel�

locations.� This� signal� is� segmented� into� individual� fixations,�
during�which� the�user’s�object�of� focus� remains�fixed2,�using�

2Traditional�gaze�analysis�distinguishes�between�fixations� towards� station-
ary�objects�and�smooth�pursuits�towards�moving�objects.�We�only�require�that�
the�object�of� regard�remain� the�same,�so�we�elide� the�difference.�

a�variant�of�the�I-BMM�algorithm�[39].�Next,�each�fixation�is�
matched� with� an� object� in� the� scene� based� on� proximity.� In�
this� task,� candidate� objects� included� one� for� each� goal,� one�
for�each�robot�joint,�and�one�representing�the�displayed�mode�
indicator.� This� timed,� labeled� sequence� of� fixations� is� then�
used�for�goal�prediction.�

B.� Sequential�Goal�Prediction�
The� sequence� is� next� passed� into� a� pre-trained� hidden�

Markov� model� for� processing.� We� obtain� an� observation�
probability�of�each�sequence�by�relabeling�each�goal�candidate�
in�turn�as�the�true�goal�with�a�function�fg ,�evaluating�the�HMM�
likelhood,�and�marginalizing�over�all�goal�candidates�assuming�
a�uniform�prior:�

pHMM(fg (`0), · · · , fg (`n)) 
p(g|`0, · · · , `n) = P . 

g 0 2G pHMM(fg 0 (`0), · · · , fg 0 (`n)) 

To�train� the�model,�we�use� the�HARMONIC�data�set� [32],�
which�consists�of�natural�gaze�behavior�of�people�performing�
a�similar� task�with�a�similar� robot.�While� this�method�differs�
from� the�method�described� in�Aronson�et� al.� [4],� it� produces�
comparable�results:�57.8%�accuracy�(vs.�33%�chance),�63.2%�
mean�probability�assigned�to�the�correct�goal�at�the�end�of�the�
trial,� and� 92.0%� median� probability� assigned� to� the� correct�
goal�at� the�end�of� the� trial.�

C.� Combined�Prediction�
To� combine� the� joystick� and� gaze� predictions,� we� follow�

Jain� and� Argall� [16]� and� assume� that� each� prediction� is�
independent� conditioned� on� the� goal.� Assuming� a� uniform�
prior,�we�compute�

p(g|gaze)p(g|joystick) 
p(g|gaze, joystick) = P , 

02G p(g 0|gaze)p(g 0|joystick)g 

with�p(g|gaze) and�p(g|joystick) given� as� above.� Combining�
the�probabilities�ensures�that�the�assistance�command�is�always�
providing�the�maximum�effort�based�on�the�system�knowledge,�
so� conflicting� information� between� the� signals� leads� to� full�
movement� to�a�neutral�position.�

V.� USER�STUDY�

We� hypothesize� that� gaze-based� prediction� will� improve�
assistance�when�the�user�is�unable�to�make�progress�on�all�parts�
of�the�task�simultaneously,�but�the�system�could�act�in�parallel�
with�sufficient�information.�In�this�situation,�task�metrics�will�
improve� and� goal-specific� assistance� will� appear� earlier� than�
without� the�use�of�gaze.�To�evaluate�this�claim,�we�design�an�
appropriate� task�and�conduct�a�COVID-safe�user�study.�

A.� Task�Development�
As� discussed� in� Sec.� III,� we� expect� that� only� some� tasks�

benefit� from� early� prediction.� We� design� a� task� such� that� at�
some�state�typically�reached,�the�assistance�required�is�different�
but� the�user’s�command� is� indistinguishable.�The� task� is�a�6-
dimensional,� 3-mode� analogue� for� the� example� in� Fig.� 2,� in�
which� the�user�can�control�only�one�axis�at�a� time.�



(a)� (b)� (c)�

Fig.� 3:� Evolution� of� mug� grasping� task.� First� (a),� users�
generally� reorient� the� robot� so� that� the� gripper� is� coplanar�
with�the�grasp�points�of�the�cups�(b).�Next,�the�user�translates�
and� rotates� the� robot� to� align� with� their� specific� goal� (c).� If�
the� robot� knows� the� user’s� goal� in� stage� (a),� it� can� provide�
goal-specific�motion� in�x and�roll.�

Gaze sensor

Webcam

JoystickLaptop

Fig.�4:�Study�setup� that�participants�prepared�at�home.�

We� start� from� an� object� spearing� task� used� in� our� prior�
assisted� manipulation� work� [5,� 17,� 32]� but� modify� it� into� a�
cup� grasping� task.� The� robot� starts� at� a� neutral� position,� and�
the� user� must� teleoperate� it� with� modal� control� to� grasp� one�
of� the� two�cups.�From�prior�work�with� this� task,�we�observe�
that�users�generally�start�by�moving�the�robot�forward�(+y)�to�
close�the�distance�to�all�goals�and�reorienting�the�end-effector�
to�face�forward�(pitch)�before�performing�goal-specific�motion.�
Therefore,�we�change�the�initial�robot�position�to�start�midway�
between� the�goals� in� the�x axis,�so� initial� left-right�motion� is�
different�based�on�the�goal.�We�add�an�additional,�goal-specific�
constraint� along� the� roll� axis� by� orienting� the� cup� handles�
differently;�to�grasp�a�cup,�the�user�must�rotate�the�end-effector�
to� align� with� its� handle,� another� motion� that� depends� on� the�
goal.�The� stages�of� the�new� task� appear� in�Fig.� 3.�While� the�
user� is�moving� the� robot� in�y and�pitch,� the� system�does�not�
get�any�information�about� their�goal�from�their�control� input;�
early,� gaze-based� goal� prediction� enables� assistance� in�x and�
roll�before� the�user�begins�providing�goal-specific� input.�

B.� User�Study�
We�conducted�a�user�study�in�which�participants�performed�

this� cup� grasping� task.� The� study� was� performed� within�
subjects� and� fully� counterbalanced,� with� three� conditions�
{joystick,� gaze,� merged} corresponding� to� which� prediction�
strategy�was�used�for� the�assistance.�

Because� of� the� COVID-19� pandemic,� the� user� study� was�
performed� in� a� hybrid� remote-local� fashion.� The� robot� and�
a� stationary� camera� were� set� up� in� the� lab.� Each� participant�
received� a� laptop,� eye� gaze� sensor� (Tobii� Eye� Tracker� 4C,� a�
screen-based� tracker),� joystick,� webcam,� and� computer� para-
phernalia�at�their�home.�Participants�assembled�the�equipment�
with� remote� experimenter� supervision.� They� then� connected�
the�laptop�to�the�lab�via�OpenVPN.�Using�ROS�and�a�custom�
interface,� the� laptop� displayed� a� live� video� feed� of� the� robot�
and� transmitted� the� user’s� joystick� command,� gaze� data,� and�

face�video�(which�was�used�only�for�communication).� In� this�
way,�participants�controlled� the�robot�without� indoor�contact.�

C.� Procedure�
After�filling�out�a�consent�form�and�reporting�demographic�

information,� participants� received� an� explanation� of� the� task�
while� observing� an� autonomous� grasp� by� the� robot.� Next,�
participants� were� instructed� on� how� to� control� the� robot� and�
practiced� for� approximately� five� minutes.� During� this� time,�
camera� parameters� were� adjusted� to� compensate� for� latency;�
the�resulting�delay�was�typically�50 � 70 ms.�In�addition,� the�
fixation�segmentation�algorithm�[39]�was�trained�on�their�eye�
gaze�data.�Next,� the�participant�performed�four� trials�with�no�
assistance.� Finally,� the� participant� performed� four� trials� each�
of� the� three� conditions� listed� above,� fully� counterbalanced.�
To� accustom� participants� to� the� assistance,� they� performed�
an� additional� trial� in� their� first� assisted� condition� which� was�
omitted� from� analysis.� Participants� filled� out� a� questionnaire�
after�each�condition�and�another�questionnaire�at�the�end�(see�
supplementary�material).�

D.� Participants�
The� study� was� conducted� with� 12� participants� (6� male,�

6� female,� 0� other).� Ages� of� participants� were� 6� aged� 18-
24,� 4� aged� 25-30,� and� 2� aged� 30-40.� For� familiarity� with�
operating� robots,� 2� reported� lots� of� familiarity,� 6� reported�
some� familiarity,� and� 4� reported� no� familiarity.� Participants�
received�$20�compensation�for�their�participation,�which�took�
approximately�1.5-2�hours�including�setup�and�teardown.�The�
study� was� approved� by� the� university� IRB� office.� Since� the�
study� required� lending� materials� to� participants,� recruitment�
was� limited� to�university�posting�and�word�of�mouth.�

E.� Evaluation�Metrics�
a)� Algorithmic� metrics:� Within� each� trial,� we� compute�

the� prediction� strength,� which� is� the� probability� assigned� to�
the�correct�goal�during� the�course�of� the� trial.�

b)� Trial� metrics:� For� each� trial,� we� compute� the� trial�
duration� and� the� active� fraction.� Trial� duration� refers� how�
long�it� took�the�user�to�complete�the�task,�and�active�fraction�
refers� to�what� fraction�of� the� trial� the� joystick�command�was�
non-zero;�i.e.,�the�user�was�explicitly�providing�input.�Shorter�
trials�and�trials�with�less�joystick�input�were�considered�better.�
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Fig.�5:�Distributions�of�prediction�strength�given�by�gaze�and�
joystick�methods�over� all� trials,� normalized�by� trial� duration.�
While� the� median� prediction� strength� over� time� is� similar�
between� the� two,� the� distributions� are� different.� The� joystick�
prediction� for� each� trial� smoothly� increases� over� time.� The�
gaze� prediction,� however,� is� bimodal,� and� the� median� gaze�
prediction�strength�increases�as�more�trials�transition�from�the�
p ⇡ 0.5 to� p ⇡ 1 at� different� times.� The� bimodal� nature� of�
gaze�means�that�many�trials�provide�accurate�goal�predictions�
substantially�earlier�than�the�joystick�method�does,�despite�the�
two�signals’�similar�median�performance.�
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Fig.� 6:� Prediction� strength� for� each� condition� over� all� trials,�
normalized�by� trial�duration.�The�gaze�predictions� (left)�gen-
erally� transition� sharply�between�p ⇡ 0.5 (no�prediction)�and�
p ⇡ 1 (confident,�accurate�prediction).�The�joystick�predictions�
(right)�smoothly� increase�over� time.�

c)� Subjective�metrics:� See�supplementary�material.�

F.� Hypotheses�

H1:� Eye� gaze� is� capable� of� predicting� the� user’s� goal�
earlier� than� joystick� input� can.� This� hypothesis� follows� the�
observation� in� Aronson� et� al.� [4]� that� gaze� can� give� an�
earlier� prediction� horizon,� which� underlies� our� model� for�
task� improvement.� We� do� not� require� (or� expect)� the� gaze�
prediction� to� consistently� precede� joystick� prediction;� rather,�
we�only�need�it�to�do�so�sufficiently�often�to�evaluate�its�impact�
on� the�assistance.�

H2:� When� the� assistance� system� receives� a� prediction�
from� gaze� before� a� distinguishable� state,� trial� metrics� will�
improve� and� goal-specific� assistance� will� appear� earlier.� By�
considering�only�trials�in�which�gaze�yielded�a�prediction�and�
analyzing� when� the� prediction� was� received,� we� evaluate� the�
model�of�when� joystick-based�assistance� is� improved.�

VI.� RESULTS�

A.� Gaze�Gives�Early�Predictions�

Our� model� for� gaze� improving� assistance� requires� that� it�
gives�earlier�predictions�than�the�joystick�input�does.�Figure�5�
shows� the� prediction� strength� of� gaze� and� joystick� over� the�
course�of�each�trial.�While�gaze�and�joystick�prediction�medi-
ans�behave�similarly,�they�follow�different�distributions.�Gaze-
based�prediction�is�bimodal,�which�agrees�with�Aronson�et�al.�
[4].� While� the� joystick� prediction� strength� steadily� increases�
throughout� each� trial,� the� gaze� prediction� strength� increases�
by� shifting� probability� mass� from� p = 0.5 to� p ⇡ 1.� Fig.� 6�
shows� traces� of� all� runs� in� the� gaze� and� joystick� conditions.�
The�gaze�prediction�generally�starts�at�0.5 and�jumps�to�p ⇡ 1 

at�some�point.�This�jump�occurs�at�the�first�identified�fixation�
on�one�of� the�goals.�While�the�effect� is�not�consistent,�we�do�
find� that�gaze� is�capable�of�providing�earlier�predictions� than�
the� joystick�can,�so�H1� is�supported.�

B.� Early�Gaze�Improves�Trial�Performance�

Next,�we�assess�how�early�goal�prediction�from�gaze�affects�
trial� performance.� First,� we� consider� only� trials� in� which�
the� gaze� gave� a� prediction� at� all.� We� divide� this� set� into�
those� that�gave�an�early�prediction�and� those� that�gave�a� late�
prediction.�Early�trials�predicted�a�goal�before�a�threshold�time�
Tc.�Specifically,�we�require:�

8t, t � Tc : |p(g|data0, · · · , datat) � 0.5| � 0.1. 

Since� there� are� only� two� goals,� either� goal� can� be� used�
for� this� calculation.� These� criteria� mirror� the� ones� given� in�
Sec.� III:� the� gaze� must� give� a� prediction� when� the� optimal�
motion� is� different� for� each� goal,� but� the� user’s� command� is�
still� indistinguishable.� To� choose� this� threshold,� we� observe�
that� the� goal-independent� assistance� generally� finishes� about�
Tc = 20 seconds� into� the� task.�The�remaining� trials� that�gave�
a�prediction�were� labeled� late.�Of� the�47� trials� in� the�merged�
condition,� 21� (45%)� were� early� and� 9� (19%)� were� late.� (The�
remaining� 17� (37%)� did� not� give� a� prediction.)� We� compare�
the� early� and� late� gaze� prediction� strength� with� the� joystick�
prediction� strength� in� Fig.� 7� to� confirm� that� this� threshold�
generally�aligns�with�when�the�joystick�gives�a�goal�prediction.�

We� now� consider� how� the� timing� of� the� prediction� affects�
trial� metrics.� Fig.� 8� show� task� metrics� for� early� and� late�
trials�compared� to� trials� in� the� joystick�condition.�A�one-way�
ANOVA� evaluated� on� the� log� of� the� data� shows� significance�
for� both� trial� duration� (F (2, 76) = 6.78, p < 0.002)� and�
active�fraction�(F (2, 76) = 4.32, p < 0.013).�Post-hoc�analysis�
with� the� Tukey� HSD� test� shows� that� early� gaze� has� shorter�
trials� than� both� late� gaze� (p < 0.006, 95% CI�= [0.14, 0.93])�
and� joystick� alone� (p < 0.008, 95% CI� = [0.077, 0.60]).� In�
addition,�early�gaze�takes�less�joystick�effort�than�does�joystick�
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Fig.� 7:� Distributions� of� prediction�
strength�over�all�trials�for�early�gaze,�late�
gaze,�and�joystick.�The�x-axis�here�is�not�
normalized�by�trial�time.�The�dashed�line�
at� 20s� indicates� the� cutoff� time� Tc for�
early�gaze�prediction.�
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Fig.�8:�Trial�metrics� for�early�gaze,� late�
gaze,� and� joystick.� *� indicates� signifi-
cance� at�p < 0.05 and� **� at�p < 0.01.�
Early� gaze� trials� are� shorter� than� both�
other� conditions� and� require� less� input�
than� the� joystick.�

0

2

4

x
(c

m
/s

) Early gaze
Late gaze
Joystick

Time since trial start (sec)
0

2

4

y
(c

m
/s

)

Fig.� 9:� Robot� assistance� over� time� in�x 
(top)�and�y (bottom).�Early�gaze�assists�
in� x before� the� Tc = 20 sec.� cutoff,�
while�late�gaze�and�joystick�do�not�assist�
in� this� axis� until� after� Tc.� In� y,� the�
assistance�is�the�same�for�all�conditions.�

alone�(p < 0.02, 95% CI�= [0.077, 0.93]).�The�benefit�of�early�
gaze� specifically� relative� to�both� late�gaze� and� joystick� show�
that�H2� is�supported.�

We� also� consider� the� magnitude� of� the� assistance� over�
time,� shown� in� Fig.� 9.� As� described� in� Sec.� V-A,� the� task� is�
designed� such� that� the�optimal�motion� is�different�depending�
on� the� user’s� goal� along� the�x axis� throughout� the� task,� but�
it� is� identical� along� the� y axis.� We� see� that� the� early� gaze�
allows� earlier� assistance� in� x than� late� gaze� or� joystick� do,�
since� the� latter�conditions�can�only�assist�once� the�user� input�
becomes� distinguishing.� In� contrast,� the� assistance� along� the�
y axis�is�similar�for�all�cases;�receiving�a�goal�prediction�does�
not� change� the� assistance.� This� observation� aligns� with� the�
reasoning�given� in�Sec.� III.�

VII. STUDY�CIRCUMSTANCES�

A. User�Gaze� is�Natural,�Not� Intentional

This� study� proposed� to� evaluate� natural� gaze� for� goal
prediction.� Unlike� during� passive� data� collection,� the� system�
responded� actively� to� participants’� gaze� behavior.� Therefore,�
participants� may� have� noticed� that� the� system� responded� to�
their� gaze� and� chosen� to� use� their� gaze� as� an� explicit� input.�
To�determine�if�the�gaze�was�indeed�natural,�participants�were�
asked�after�each�condition�if�they�used�any�particular�strategies�
to�control�the�robot.�In�addition,�in�the�final�questionnaire,�they�
were�asked�to�select�trials�in�which�the�robot�was�responsive�to�
their�gaze.�Of�the�12�participants,�8�reported�that�they�did�not�
notice�gaze�responsiveness�in�any�system,�2�incorrectly�labeled�
the� joystick� condition� as� gaze-responsive,� 1� identified� the�
merged�condition�but�not�the�gaze�condition,�and�1�labeled�the�
conditions�correctly.�Several�participants�expressed�surprise�at�
the� question� and� during� the� subsequent� debrief,� saying� they�
had� forgotten� about� the� gaze� collection� entirely� or� assumed�
that�it�was�only�for�passive�collection.�Therefore,�much�of�the�
gaze�captured�seems� to�be�natural� rather� than� intentional.�

B. Remote�Robot�Control
As� described� in� Sec.� V-B� above,� the� study� was� performed

in� a� hybrid� manner,� in� which� a� participant� at� their� home�
controlled� a� robot� in� the� lab,� which� led� to� some� challenges.�
The� primary� challenge� mentioned� by� participants� was� using�
a� single,� stationary� camera� to� judge� the� robot’s� position.�
Participants� often� reported� struggling� with� depth� perception,�
particularly�during�the�first,�unassisted�trials�and�when�aligning�
the� robot� gripper� with� the� goal� handle.� When� the� assistance�
was� available,� depth� perception� was� less� of� a� problem.� Few�
participants� reported� latency�problems;�when� they�did,�modi-
fying�the�video�streaming�resolution�mitigated�the�problem.�In�
addition,�using�a�stationary�viewpoint�made�the�gaze�detection�
problem� significantly� easier,� as� it� eliminated� head� motion,�
3D�gaze�detection,�and�parallax.�Ultimately,� the�remote�study�
seemed� to�validate�our� system�on�a�physical� robot� and�using�
eye� tracking� in� the� loop� despite� the� restrictions� imposed� by�
the�COVID-19�pandemic.�

VIII. DISCUSSION�

The�results�above�demonstrate�a�particular�example�of�when�
goal� prediction� using� control� input� falls� short.� Even� when�
the� user� acts� optimally,� the� constraints� of� the� task� cause�
assistance�using�only�input-based�prediction�to�underperform.�
When� another� source� provides� an� earlier� goal� prediction,� the�
assistance� can� help� more,� earlier.� This� finding� matches� the�
model�for�the�success�and�limitation�of�input-based�prediction�
discussed� in�Sec.� III.�

In� addition,� we� find� that� natural� gaze� can� provide� the�
early�goal�prediction�that�the�input�cannot.�However,�the�gaze�
pipeline� used� here,� and� the� gaze� signal� itself,� does� not� pro-
vide� the� information� consistently.�Only�21/47� (45%)�of� trials�
using� gaze� alongside� the� joystick� gave� accurate� predictions�
sufficiently�early�to�outperform�trials�with�only�joystick-based�
assistance.� These� findings� suggest� that� an� appropriate� use� of�
gaze-based�prediction�is�as�a�signal�of�opportunity.�While�gaze�
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Fig.�10:�Trial�metrics�per�condition.�*�indicate�significance�at�
p < 0.05,�and�**�at�p < 0.01.�Gaze�takes�significantly�longer�
than�either�condition,�and�there�is�no�distinction�within�active�
fraction.�

can�improve�task�performance�for�certain�tasks,�its�unreliability�
makes�it�a�poor�signal�on�its�own.�Though�better�interpretation�
pipelines� can� improve� performance,� the� lack� of� any� goal-
directed� fixations� during� some� trials� fundamentally� limits� its�
predictive�ability.�

Alternate�strategies�for�merging�the�two�prediction�methods�
may�make�gaze�more�useful.�Since�we�find�that�gaze�only�helps�
when�it�appears�before�the�joystick�prediction�does,�we�can�use�
gaze�for�an�initial�prediction,�but�switch�to�the�joystick�method�
and� entirely� omit� gaze� once� distinguishing� input� becomes�
available.� In� addition,� other� tasks� that� are� more� sensitive� to�
early� prediction� may� show� greater� improvement� using� gaze.�
By�analyzing� the� specific� role�and�of� each�prediction� source,�
we�can�combine�multiple�signals�in�a�more�nuanced�way�and�
achieve�better�overall�performance.�

A.� Gaze�Alone�Performs�Poorly�

To� further� explore� the� usefulness� of� natural� gaze� for� goal�
prediction,� we� measure� how� effective� the� gaze� signal� is� for�
assistance� on� its� own.� We� report� overall� trial� metrics� in�
Fig.� 10� for� each� condition.� A� one-way� ANOVA� evaluated�
on� the� log� of� the� data� shows� significance� only� for� trial�
duration� (F (2, 142) = 12.7, p < 10�5).� Post-hoc� analysis�
using� the� Tukey� HSD� test� on� the� log� shows� that� the� gaze�
condition� alone� takes� longer� than� both� the� merged� condition�
(p = 0.001, 95% CI� = [�0.71, �0.25])� and� the� joystick�
condition�(p < 0.002, 95% CI�= [�0.59, �0.12]).�In�addition,�
people� generally� rated� the� gaze-alone� condition� worse� than�
either�of� the�others� (see�supplementary�material).�

Gaze� suffers� because� goal-directed� gaze� does� not� occur� in�
every� trial.� Familiarity� with� the� scene� from� previous� trials,�
adjusting� goal-independent� factors� such� as� robot� rotation,�
and� peripheral� vision� all� contribute� to� the� unreliability� of�
distinguishing� gaze� behavior� [2,� 5].� In� fact,� 33/95� (35%)� of�
trials�exhibited�no�goal-directed�fixations�at�all.�In�these�cases,�
assistance�was�provided�for�the�first�part�of�the�trial�(when�it�is�
identical� for�each�goal),�but�subsequent�motion� is�unassisted.�

Incorrect� predictions� were� even� worse� than� no� predictions�
at� all.� If� the� gaze� prediction� selects� the� incorrect� goal� early�

in� the� trial,� it� was� nearly� impossible� for� users� to� correct� it.�
For� example,� if� the� user� glances� at� one� goal� while� trying�
to� navigate� to� the� other� (due� to,� e.g.,� wandering� attention� or�
an� error� in� gaze� detection),� the� gaze-based� assistance� moves�
the� robot� directly� to� that� goal.� When� the� user� attempts� to�
maneuver� the� robot� arm� away� from� that� goal,� they� look� at�
the�robot�end-effector�and�at�the�incorrect�goal�to�avoid�colli-
sion,�reinforcing�the�incorrect�prediction.�This�self-reinforcing�
behavior� was� nearly� impossible� for� participants� to� correct.�
Participants�described�this�condition�as�“adversarial”�and�“like�
trying� to� hold� onto� a� slimy� eel� while� it� attempts� to� wriggle�
away,”� and� even� changed� their� goals� to� “accept� its� whimsy�
ways.”�This�behavior�is�analogous�to�the�adversarial�conditions�
in� Newman� et� al.� [31]� and� Stolzenwald� and� Mayol-Cuevas�
[38].�While� this� issue� can� arise�when� a� system�using� control�
input� approaches� collinear� goals� [10],� when� gaze� is� the� only�
prediction�source,�even�maximum�input�to�the�other�goal�does�
not� fix� the� problem.� The� simplicity� of� the� gaze� model,� and�
the� focus� on� object� identification� without� an� understanding�
of�object� role,� illustrates� the� fragility�of� this�method� for�goal�
prediction� in�even�a�simple� task.�

B.� Adding�Gaze�Does�Not�Provide�Overall� Improvement�

While�adding�gaze�improves�on�tasks�metrics�when�the�gaze�
provides�an�early�prediction,�we�consider�the�overall�impact�of�
adding�gaze.�The�merged�condition,�which�uses�both�gaze�and�
joystick� predictions,� does� not� show� improvement� over� using�
joystick� alone� in� trial� metrics� (Fig.� 10)� or� subjective� metrics�
(see�supplementary�material).�While�45%�of�merged�trials�con-
tained�early�gaze�and�thus�better�performance,� the�effect�may�
not�have�been�sufficiently�large�or�occur�frequently�enough�to�
make�an�overall�difference.�In�addition,�the�downsides�of�poor�
gaze� may� have� led� to� frustrating� behavior� that� counteracted�
the�benefit�gained�from�early�gaze.�

C.� Extension� to�More�Complex�Tasks�

The� gaze-based� method� can� be� extended� to� include� addi-
tional�goals,�with�the�caveat�that�gaze�discrimination�becomes�
noisier� as� the� goals� get� closer� together.� For� more� complex�
tasks,� however,� gaze� prediction� will� require� more� sophisti-
cated� analysis.� In� particular,� it� is� difficult� using� gaze� itself�
to� determine� the� role� that� any� particular� object� has� in� a�
task:� users� can� look� at� one� object� since� it� is� a� goal,� and�
another�since�it�is�an�obstacle.�More�detailed�analysis�such�as�
stronger� task�models� [9]� or� analysis� of� gaze� locations�within�
an�object� [2,�21]�may�help�for�more�general� tasks.�

In�addition,�this�work�assumes�that�a�grasp�is�the�only�pos-
sible�interaction�with�a�goal.�However,�both�control�input�[22]�
and�natural� gaze� [42]� can�be�used� to� infer� information� about�
the� intended� task� of� the� user.� We� believe� that� task� inference�
may� follow� similar� patterns� as� goal� inference,� with� task-
specific�control�input�restricted�in�time�if�the�interface�can�only�
support� particular� interactions� and� gaze� possibly� providing�
earlier� task� information.� Extending� this� work� to� more� varied�
tasks� is�an� important�aim�of� future�work.�



Finally,� this� work� assumes� that� the� user’s� goal� is� one� of� a�
pre-specified� set� of� objects� already� known� to� the� assistance�
system.� While� this� assumption� is� standard� [18],� it� represents�
a� significant� gap� between� the� experimental� conditions� and� a�
full,�deployed�system.�We�look�forward�to�expanding�the�goal�
inference�process� to�more�general�settings.�

IX.� CONCLUSION�

In� this� work,� we� explore� the� strengths� and� limitations� of�
goal� prediction� based� on� control� input� for� assisted� robot�
teleoperation,� and� we� explore� natural� gaze� as� a� prediction�
method� to�mitigate� some�of� those�problems.�We�demonstrate�
that� particular� task� constraints� can� arbitrarily� limit� assistance�
even�if�the�user�acts�optimally.�In�a�user�study,�we�demonstrate�
this� suboptimality� in� joystick-based�prediction.�Using�natural�
eye�gaze�for�the�prediction�as�well�does�improve�task�metrics�
when� the� gaze� information� comes� sufficiently� early,� which� it�
does�often.�However,�it�does�not�give�this�information�reliably,�
as� people� will� often� never� produce� goal-distinguishing� gaze�
during� a� trial,� and� using� gaze� alone� can� lead� to� problematic�
feedback� loops.� Further� work� will� focus� on� developing� this�
complementarity�between�gaze-based�prediction�and�joystick-
based� prediction,� specifically� by� exploring� nuanced� ways� to�
combine� the�signals� for�effective�assistance.�
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