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Abstract—Shared control systems can make complex robot
teleoperation tasks easier for users. These systems predict the
user’s goal, determine the motion required for the robot to reach
that goal, and combine that motion with the user’s input. Goal
prediction is generally based on the user’s control input (e.g.,
the joystick signal). In this paper, we show that this prediction
method is especially effective when users follow standard noisily
optimal behavior models. In tasks with input constraints like
modal control, however, this effectiveness no longer holds, so
additional sources for goal prediction can improve assistance. We
implement a novel shared control system that combines natural
eye gaze with joystick input to predict people’s goals online, and
we evaluate our system in a real-world, COVID-safe user study.
We find that modal control reduces the efficiency of assistance
according to our model, and when gaze provides a prediction
earlier in the task, the system’s performance improves. However,
gaze on its own is unreliable and assistance using only gaze
performs poorly. We conclude that control input and natural
gaze serve different and complementary roles in goal prediction,
and using them together leads to improved assistance.

I. INTRODUCTION

Teleoperation is often used to control robots, but performing
complex tasks in this way is difficult. Limited interfaces,
complex kinematics, and the lack of proprioception turns
tasks easily performed by hand into exercises in frustration.
Shared control can make the problem easier. These sys-
tems (301 [34] 35| often work by predicting the
user’s goal, planning to accomplish that goal, and combining
the autonomous command with the user input.

Typically, shared control systems rely on the user’s control
input, like joystick motion, for goal inference 24|
[46]. When the system observes that the user is working
towards a particular goal, the system can then assist towards
that same goal. While this method does not necessarily pro-
vide the earliest predictions [4]], user input works well for
assistance, since accurate predictions arrive more often exactly
when they are needed. When the user input differentiates
between goals, the system has enough information to give
goal-specific assistance. When all goals require the same
motion, the user input does not help the system to predict
the user’s goal, but no goal prediction is actually needed.
In fact, we can make a more formal claim: when a user
controlling a shared autonomy system [19] provides control
input given by p(u|g) o exp(Qg4(u)), the expected regret over
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Fig. 1: A user controls a robot with a joystick to pick up
a mug, while their eye gaze behavior is captured. Eye gaze
gives information about the user’s goal earlier than the joystick
information does, which makes it appealing for incorporation
into assistive systems.

user actions stays bounded as the cost of taking a suboptimal
action increases. We formalize and prove this result in Sec.

However, users often do not follow this optimal behavior.
Specifically, the scenario itself can prevent the user from acting
optimally. Consider a goal that can be split into multiple tasks
that the robot can perform in parallel, e.g., splitting the goal of
moving its end-effector to a desired pose into six independent
dimensions of motion. The above analysis relies on the system
knowing each task individually. However, the structure of
the task itself may prevent the user from working on all of
them: for example, modal control restricts users to giving only
two directions of end-effector motion at a time. Then, a user
working on one task and not another will not give sufficient
information to enable full assistance.

For successful assistance in these cases, we must consider
other sources of goal prediction: in this work, we incorporate
the user’s natural eye gaze. While people manipulate objects,
they look at their goals before reaching them and look
forward to next steps in their tasks [29]. These patterns also
appear during teleoperated manipulation [2} [3, [11] and can be
used for goal prediction globally through the task, whatever
its current state [4] 33]]. However, gaze is noisy and somewhat
unreliable, making it a poor choice to use on its own. Thus, it is
best used to provide the global information that complements
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predictions based on control input to increase the amount of
assistance provided.

In this work, we implement an assistive teleoperation system
that incorporates goal prediction using both the user’s control
input and their eye gaze behavior. We use this system to
evaluate each prediction source in a real-world, COVID-safe
user study. In the study, participants teleoperated a robot
manipulator using modal control to pick up one of two
cups while our system provided assistance. The scenario was
designed so that the user could not act optimally, so their
control input was unlikely to yield optimal assistance. During
each trial, the assistance relied on goal prediction based on
their joystick input, their gaze behavior, or both.

We find that for this experimental scenario, assistance based
on joystick input alone is delayed relative to using both
joystick and gaze, but only when the gaze prediction arrives
sufficiently early. In the cases with early gaze predictions, trials
finished more quickly and users supplied less control input.
Specifically, early gaze leads to earlier assistance exactly on
the axes for which the goal positions differ, and the assistance
is the same otherwise, matching our theoretical analysis.
However, gaze-based predictions are inherently less reliable,
as many trials never gave sufficient information for accurate
goal prediction, and feedback loops led to arbitrarily poor
performance in some cases. This work explores a fundamental
limitation of input-based goal prediction for assistance and
shows that eye gaze provides the global information required
for systems to provide as much assistance as possible.

II. RELATED WORK

A. Assisted Teleoperation

Assisted teleoperation, in which a system predicts the user’s
intent, plans autonomously to achieve that intent, and com-
bines its generated command with the user’s direct input, has
been widely studied [28]. Our work builds most directly on
Javdani et al. [17, [18], which models assistance as a partially
observable Markov decision process, with partial observability
over the user’s goal choice; this model has shown success in
various iterations and applications [12| 22| 30, 34, 35 47].
This structure enables the system to generate an assistance
command even with no knowledge of the user’s goal when the
system can make progress towards all goals simultaneously.
This work poses goal inference as an inverse reinforcement
learning problem by assuming a noisily optimal human model,
which is frequently built upon [8} 24| 137, 44, 46l]. To make
the joystick input more predictive of the goal, Gopinath and
Argall [13] has the joystick start in a control mode such that
the user can immediately perform goal-specific motion.

An assistive system can combine predictions from different
sources, such as user input with gaze (proposed by Admoni
and Srinivasa [1]). Jain and Argall [16] proposed combining
multiple predictions by assuming each is independent con-
ditioned on the goal, which we use. Structural challenges
to effective shared autonomy have also been identified in
Fontaine and Nikolaidis [10].

B. Gaze for Intent Prediction

During manual manipulation, people look at their targets
before reaching towards them. Hayhoe [14] reports that 87%
of reaching movements in a sandwich-making task were
accompanied by target-directed fixations. These directing fix-
ations [25) 29]] indicate the actor’s intention to interact with an
object. A number of works have used gaze to predict people’s
goals and tasks [7} 19} 23} 43] during manual manipulation.

During teleoperation, however, gaze behavior changes.
While gaze often predicts people’s goals and tasks accu-
rately [4, (L1, |33 42]], the introduction of a robot causes
challenges. The gaze signal can be noisy and difficult to
align to the scene [3]. Unlike the largely goal-directed gaze
during manual manipulation, people often look at the robot
itself [2, 14, 15 [11) 133]]. Worse yet, people can complete tasks
without ever looking at their goal, especially when repeating
the task [2, i4]. By analyzing offline data of gaze while oper-
ating a robot, Razin and Feigh [33]] finds that task prediction
using robot motion is more accurate than gaze alone, and
adding gaze to the robot motion signal does not improve
overall prediction performance. The difficulty of using gaze
motivates our work to understand how to use gaze effectively.

C. Gaze in the Loop

Many systems use intentional eye gaze as a control input to
a robotic manipulation system [6} 126} 27, 136, 40l 41]. Instead,
we focus on people’s natural gaze behavior, which emerges
automatically while they execute a task. Huang and Mutlu
[L5] used people’s natural eye gaze while selecting a menu
item to anticipate their selection and move a serving robot,
which improved performance. In Stolzenwald and Mayol-
Cuevas [38], participants play a screen-based tile placing game
using a robotic pointer; using natural eye gaze to predict
people’s targets so the robot can assist outperformed using
the prediction to hinder the user, but it did not show any
improvement over taking no action.

IIT. WHEN CONTROL INPUT IS NOT ENOUGH

Consider a user teleoperating a robot to pick up an object
(Fig. [T). Grasping tasks like this are difficult, especially when
using basic interfaces such as joysticks. To make the task
easier, shared control [18|] predicts the user’s goal among
a pre-specified set of goal candidates, plans to achieve the
goal, and combines this autonomous command with the user
command. Shared control systems [28] often use the joystick
input itself to infer the user’s goal. We explore the joystick
signal and propose criteria for when another signal, such as
eye gaze, will lead to better assistance.

A. Joystick-based Prediction and Assistance

In this section, we summarize the approach for goal predic-
tion and assistance given in Javdani et al. [[19]. This method
uses the user’s control input u to predict their goals, expressed
as a probability distribution p(G) over a pre-specified set
of goal candidates. To do so, it frames goal inference as
an inverse reinforcement learning problem [17, 20} 44, 45]]



and models the teleoperation problem as a family of Markov
decision processes (MDPs) with different, pre-specified cost
functions Cy(x,u) for each goal candidate g € G The
system then assumes that the user is noisily optimizing the
cost function corresponding to their true goal.

First, this method solves the Bellman equation for each goal
MDP for a goal-specific action value function Q4(x, v). Then,
it assumes that the user’s action u at each state  is drawn from
a distribution given as

p(ulz, g) o< exp(Qg(x, u)). (1)

Note that this is equivalent to the Boltzmann rational model
with § = 1. Given a sequence of state-action pairs £ =
(:co, Uy, Ty, un), the strategy assumes that the user’s ac-
tions are conditionally independent given their goal. Since & is
not a trajectory, as the robot will be acting simultaneously with
the user, the method treats only the actions u; as observations.
Using Bayes’ rule, it aggregates a goal prediction over time
using

__ p(uilg)p(gluo, - -, ui—1)
> g Pluilg)p(g [uo, -+ s ui-1)

p(gluo, -+ s u;) (2)

To generate an assistance signal from the goal prediction,
this method represents the combined robot-human control
problem as a partially observable Markov decision process
(POMDP), with the user’s goal a hidden parameter. The
POMDP augments the system state = with a belief distribution
over the user’s goal given by p(g) above. The action value
function Q(x,p,a) depends on the robot state, next action,
and the belief state. Since solving the POMDP is generally
computationally prohibitive, it adopts the hindsight optimiza-
tion assumption, which assumes that the uncertainty expressed
by p(g) will resolve in the next step. From here, we can find
the optimal assistance policy ¥ (z, p(g)):

(@, p(g)) = argmax Y p(g)Qqy(a). 3)

acA

This assumption replaces the overall value function of the
POMDP with the expectation over the goal probabilities of the
goal-specific value functions, and it reuses the goal-specific
value functions Q,(u) used in Eqn. |1} (We use a here to
represent that this action is selected by the robot, as opposed to
u which is given by the user.) To compute the overall motion,
sum a* with the user command u directly: aexee = a™ + u.

B. Evaluating Prediction Sources

While accuracy and forecast horizon are useful measures to
evaluate a prediction of the user’s goal, we want to evaluate the
assistive system as a whole. Accurate predictions only matter
when they improve the quality of the assistance provided.
Whatever its metrics as a prediction, the user’s control input
is effective for assistance, since the signal is directly tied to
the generation of the assistance command.

lFollowing Javdani et al. [[19], the cost function was constant outside a
radius of the goal and declined linearly to O at the goal location.

Fig. 2: Diagram of user input (u) and optimal robot motion
(a*) during an example task. The user moves a point robot to
one of the green stars. At A, user input and optimal motion are
both to the right. At B, user input is still directly to the right,
but the optimal motion is diagonally towards the goal. At C,
both the user input and the optimal motion point towards the
goal. Early prediction improves task performance only at B.

To explore this coupling between assistance and goal predic-
tion, we start with an example. A planar robot task is shown
in Fig. [2| The user must move the point robot from A to
one of the two goals (green stars). At A, the only way to
make task progress for either goal is to move to the right. The
user’s expected input is the same for each goal, so it does not
yield a goal prediction. However, no prediction is necessary:
knowledge of the goal would not change the optimal motion.
At C, the situation is reversed. The optimal motion is to move
either up or down directly towards the user’s goal. Here, the
system requires a goal prediction to assist. As the user’s input
depends on the goal, though, the prediction is available.

Location B is different. Say the user continues moving
to the right, which gives no goal information. However, the
system can do better. If it knew the goal, it could move
diagonally; without goal knowledge, however, it must wait
until observing a goal-dependent user input (like at C) before it
can assist along the vertical direction. Early, independent goal
prediction only improves assistance at points like B, where
goal information would change the motion but the user input
does not provide it.

To formalize this analysis, consider an assistive system with
two goal candidates {g1, g2}.

o Two goals require different motion at z if their optimal
robot motion a* depends on the goal: aj(x) # a’(x); the
motion is identical otherwise.

o Two goals are distinguishable at z if the observed user
input generally differs based on the goal: w(z|g1) #
u(x|g2); they are indistinguishable otherwise.

Identical and different motion are properties of the robot’s
state, whereas distinguishable and indistinguishable goals are
determined by the user’s input. When the user is acting
near-optimally, different motion likely leads to distinguishable
goals. Next, we formalize this alignment between optimal
users and effective assistance.



C. Noisily Optimal Input Bounds Regret

The above analysis suggests that when users give approx-
imately optimal input, the system will likely receive the
information needed to provide assistance. If we assume the
user follows the model given in Eqn. |I} we can evaluate the
expected performance of the shared autonomy policy given
in Eqn. 3] We show that as the importance of taking the
optimal robot action (measured by regret) increases, the user’s
probability of providing a distinguishing input increases faster,
such that the overall system has bounded regret.

For simplicity, assume we only have two goal candidates
with action value functions ;1 and ()2, and assume without
loss of generality that the user’s goal is g;. We also assume
that the set of actions A is finite and identify actions with
the same (Q(a). At some state = (which we drop for ease of
notation), let Q7 be the maximum value of @1 (a) attained at
some action aj. If we define the goal probability from control
input u as above, the shared autonomy policy ¥ (p(g)) is a
function of w and we write 1(u). We can then compute the
expected regret R(¢)(u)) = QF — Q1(¢(u)) of the assistance
policy ©(u) over the user model.

We can measure the importance of taking a over any other
action a’ by letting Ry, represent the minimum regret over
all alternative actions:

Rpin = min R(a).
a#aj

We want to understand the behavior of the system as Ry,
increases. Increasing R, can be achieved by changing the
selected state or the MDP itself. For example, consider an
MDP with reward function r(z). If we scale that reward
function, 7’(x) = Ar(x),A > 0, the value function scales
similarly, Q' (x,a) = AQ(z,a). Then, R/, = ARmin, and we
can then consider the behavior as A increases. Similar effects
can also occur by changing = or r(z) in other ways that are
more complicated to formulate. However the change occurs,
increasing values of R, represent increased importance of
taking the optimal action.

We can now determine the expected regret of the assistance
policy under a user following Eqn. [T}

Proposition.
lim E,[R((u))] = 0. 4)
Rpin—00
We sketch a proof in two parts. First, we show that as
Runin — o0, the assistance action taken when observing the
optimal action from the user, ©)(a}), becomes aj:
li 1) =aj.
Rmiigmw(al) ay
By manipulating Eqn. [3| and collecting terms in p(g), we find
that for ¢ (a}) = aj, we must have, for all a’ € A,

p(g1la7)(Q1(a7) — Qi(a")) = p(g2]ai)(Q2(a’) — Q2(a)).

The left-hand side is greater than p(g1|a})Rmin which in-
creases as Ry, — oo, while the right-hand side is nonin-
creasing through p(gz|aj). Once the importance of taking the

optimal action exceeds some threshold, the assistance will take
that optimal action whenever it observes it from the user.
The expected regret is given by

Ey[R($(w)] = ) R(¥(u))p(ulgr)-

From above, once Ry, is sufficiently large, R(¢(a})) =
R(aj) = 0. We can therefore break aj out of the sum. If
we define R.x = max, R(a) analogously, we have

Ey[R($(w)] = R($(a7))p(ailgr) + D R (w))p(ulgr)

utal
= > R((u))p(ulgr)
utal
< Rumaxp(u # ajlg1).
Finally, we bound the probability of the user giving an action

other than the optimal action based on our model of user
behavior,

> e €50 Q1 ()
XD Qf + 3, z0: X Qu (1)
5 as exp(—R (1))
L+ sa: exp(—R(u))
(4] = 1) exp(—Ruin)
1+ (JA] = 1) exp(—Ruin)
Putting it all together,

Rinax
Eu [R(UJ(U))] S 14+ W%l eXp(Rmin) '

p(u # ajlgr) =

As long as Ry, increases less than exponentially with Ry,
the result goes to 0 as Ry, — oo and the regret is bounded.
This condition is met by uniformly scaling the reward as
described earlier. O

As the importance of taking the optimal action increases,
the chance of the user performing that optimal action under
the model increases exponentially faster, so the system is more
likely to receive the information it needs.

D. Control Input Restrictions Require New Prediction Sources

We see from the previous result that noisily-optimal users
are particularly easy to assist using input-based goal pre-
diction. If we remove the assumption of optimality — by
assuming, e.g., that the user acts randomly, mistakenly, or ad-
versarially — we no longer have guarantees that the assistance
will behave well. However, there is a large class of problems
for which the user still acts optimally but the assistance can
be arbitrarily ineffective: when the user’s action are limited to
only a subset of the actions that the system can take.

It is not the user’s suboptimality that limits the
effectiveness of the system, but the constraints that
the system itself puts on the user’s behavior.

One common example of this problem in teleoperation is the
use of modal control. In this scheme, the robot can control its



end-effector simultaneously in all directions. However, the user
has only a 2-D joystick with which to control the robot. The
user can fully control the robot by cycling through modes with
the joystick controlling z/y, z/yaw, and pitch/roll in turn. If the
optimal action does not align with a single control mode, the
user cannot perform it. The best the user can do is to provide
input in the single most useful mode. And when the robot
motion is different but the control input within the optimal
mode is not distinguishing, assistance does not have enough
information to be optimal.

We can return to Fig. [2] to explore this limitation further.
At B, we observe the user giving indistinguishable motion,
though the assistance requires different motion per goal. In
the noisily rational model, this user action occurs at a lower
probability than a distinguishable input. However, if we add
the additional restriction that the user can only provide axis-
aligned commands, the user’s input at B is optimal. Even
with an optimal user, the assistance does not receive enough
information to provide full assistance. In these situations, the
system benefits from an alternative, global method for goal
prediction that is less reliant on the user’s local behavior. While
an alternative information source will not remove the direct
restrictions of modal control, it can bypass the limitations in
goal information forced by the control restriction and improve
overall system performance.

IV. GAZE-BASED GOAL PREDICTION

To provide goal prediction when motion differs but input
is indistinguishable, we use natural eye gaze. Gaze provides a
global goal prediction which is less dependent on the state of
the task, and people’s gaze often anticipates future tasks while
their actions focus on the current one.

Systems using intentional gaze behavior typically select
the goal closest to the user’s gaze location and implicitly
rely on the user to adjust their gaze to provide accurate
information [6, 26, 27, 136, 40, 41]. However, natural gaze is
not so reliable. While gaze relates to the user’s intentions, most
gaze is directed towards the robot end-effector, and people
can complete robotic manipulation tasks without ever looking
at their goals [2, 15, 33]. These complications require more
complex prediction strategies.

To predict the user’s goals from their natural gaze, we adapt
the sequential method given in Aronson et al. [4]. This method
has two stages of gaze processing: (1) semantic gaze labeling,
which segments the raw gaze into individual fixations and
labels each fixation with its corresponding scene keypoint; and
(2) sequential goal prediction, which uses a pre-trained hidden
Markov model to yield goal probabilities from this sequence.

A. Semantic Gaze Labeling

Raw gaze data is captured as a 90Hz time series of pixel
locations. This signal is segmented into individual fixations,
during which the user’s object of focus remains ﬁxe using

2Traditional gaze analysis distinguishes between fixations towards station-
ary objects and smooth pursuits towards moving objects. We only require that
the object of regard remain the same, so we elide the difference.

a variant of the I-BMM algorithm [39]. Next, each fixation is
matched with an object in the scene based on proximity. In
this task, candidate objects included one for each goal, one
for each robot joint, and one representing the displayed mode
indicator. This timed, labeled sequence of fixations is then
used for goal prediction.

B. Sequential Goal Prediction

The sequence is next passed into a pre-trained hidden
Markov model for processing. We obtain an observation
probability of each sequence by relabeling each goal candidate
in turn as the true goal with a function f,, evaluating the HMM
likelhood, and marginalizing over all goal candidates assuming
a uniform prior:

pHMM(fg(€O)7 e 7fg(€’n))
gec Pam(fy (lo), -+, fo (Ln))

To train the model, we use the HARMONIC data set [32],
which consists of natural gaze behavior of people performing
a similar task with a similar robot. While this method differs
from the method described in Aronson et al. [4]], it produces
comparable results: 57.8% accuracy (vs. 33% chance), 63.2%
mean probability assigned to the correct goal at the end of the
trial, and 92.0% median probability assigned to the correct
goal at the end of the trial.

pgllo, -+ ln) = 5

C. Combined Prediction

To combine the joystick and gaze predictions, we follow
Jain and Argall [16] and assume that each prediction is
independent conditioned on the goal. Assuming a uniform
prior, we compute

p(g|gaze)p(gljoystick)
g'eG p(g’|gaze)p(g’|joystick)’

p(g|gaze, joystick) =
>

with p(g|gaze) and p(g|joystick) given as above. Combining
the probabilities ensures that the assistance command is always
providing the maximum effort based on the system knowledge,
so conflicting information between the signals leads to full
movement to a neutral position.

V. USER STUDY

We hypothesize that gaze-based prediction will improve
assistance when the user is unable to make progress on all parts
of the task simultaneously, but the system could act in parallel
with sufficient information. In this situation, task metrics will
improve and goal-specific assistance will appear earlier than
without the use of gaze. To evaluate this claim, we design an
appropriate task and conduct a COVID-safe user study.

A. Task Development

As discussed in Sec. we expect that only some tasks
benefit from early prediction. We design a task such that at
some state typically reached, the assistance required is different
but the user’s command is indistinguishable. The task is a 6-
dimensional, 3-mode analogue for the example in Fig. [2] in
which the user can control only one axis at a time.



(b)

Fig. 3: Evolution of mug grasping task. First @), users
generally reorient the robot so that the gripper is coplanar
with the grasp points of the cups (b). Next, the user translates
and rotates the robot to align with their specific goal (c). If
the robot knows the user’s goal in stage (a), it can provide
goal-specific motion in z and roll.

We start from an object spearing task used in our prior
assisted manipulation work [3] but modify it into a
cup grasping task. The robot starts at a neutral position, and
the user must teleoperate it with modal control to grasp one
of the two cups. From prior work with this task, we observe
that users generally start by moving the robot forward (+y) to
close the distance to all goals and reorienting the end-effector
to face forward (pitch) before performing goal-specific motion.
Therefore, we change the initial robot position to start midway
between the goals in the x axis, so initial left-right motion is
different based on the goal. We add an additional, goal-specific
constraint along the roll axis by orienting the cup handles
differently; to grasp a cup, the user must rotate the end-effector
to align with its handle, another motion that depends on the
goal. The stages of the new task appear in Fig. [3] While the
user is moving the robot in y and pitch, the system does not
get any information about their goal from their control input;
early, gaze-based goal prediction enables assistance in = and
roll before the user begins providing goal-specific input.

B. User Study

We conducted a user study in which participants performed
this cup grasping task. The study was performed within
subjects and fully counterbalanced, with three conditions
{joystick, gaze, merged} corresponding to which prediction
strategy was used for the assistance.

Because of the COVID-19 pandemic, the user study was
performed in a hybrid remote-local fashion. The robot and
a stationary camera were set up in the lab. Each participant
received a laptop, eye gaze sensor (Tobii Eye Tracker 4C, a
screen-based tracker), joystick, webcam, and computer para-
phernalia at their home. Participants assembled the equipment
with remote experimenter supervision. They then connected
the laptop to the lab via OpenVPN. Using ROS and a custom
interface, the laptop displayed a live video feed of the robot
and transmitted the user’s joystick command, gaze data, and

Fig. 4: Study setup that participants prepared at home.

face video (which was used only for communication). In this
way, participants controlled the robot without indoor contact.

C. Procedure

After filling out a consent form and reporting demographic
information, participants received an explanation of the task
while observing an autonomous grasp by the robot. Next,
participants were instructed on how to control the robot and
practiced for approximately five minutes. During this time,
camera parameters were adjusted to compensate for latency;
the resulting delay was typically 50 — 70 ms. In addition, the
fixation segmentation algorithm [39] was trained on their eye
gaze data. Next, the participant performed four trials with no
assistance. Finally, the participant performed four trials each
of the three conditions listed above, fully counterbalanced.
To accustom participants to the assistance, they performed
an additional trial in their first assisted condition which was
omitted from analysis. Participants filled out a questionnaire
after each condition and another questionnaire at the end (see
supplementary material).

D. Farticipants

The study was conducted with 12 participants (6 male,
6 female, 0 other). Ages of participants were 6 aged 18-
24, 4 aged 25-30, and 2 aged 30-40. For familiarity with
operating robots, 2 reported lots of familiarity, 6 reported
some familiarity, and 4 reported no familiarity. Participants
received $20 compensation for their participation, which took
approximately 1.5-2 hours including setup and teardown. The
study was approved by the university IRB office. Since the
study required lending materials to participants, recruitment
was limited to university posting and word of mouth.

E. Evaluation Metrics

a) Algorithmic metrics: Within each trial, we compute
the prediction strength, which is the probability assigned to
the correct goal during the course of the trial.

b) Trial metrics: For each trial, we compute the trial
duration and the active fraction. Trial duration refers how
long it took the user to complete the task, and active fraction
refers to what fraction of the trial the joystick command was
non-zero; i.e., the user was explicitly providing input. Shorter
trials and trials with less joystick input were considered better.
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Fig. 5: Distributions of prediction strength given by gaze and
joystick methods over all trials, normalized by trial duration.
While the median prediction strength over time is similar
between the two, the distributions are different. The joystick
prediction for each trial smoothly increases over time. The
gaze prediction, however, is bimodal, and the median gaze
prediction strength increases as more trials transition from the
p ~ 0.5 to p &~ 1 at different times. The bimodal nature of
gaze means that many trials provide accurate goal predictions
substantially earlier than the joystick method does, despite the
two signals’ similar median performance.

c) Subjective metrics: See supplementary material.

F. Hypotheses

HI: Eye gaze is capable of predicting the user’s goal
earlier than joystick input can. This hypothesis follows the
observation in Aronson et al. [4]] that gaze can give an
earlier prediction horizon, which underlies our model for
task improvement. We do not require (or expect) the gaze
prediction to consistently precede joystick prediction; rather,
we only need it to do so sufficiently often to evaluate its impact
on the assistance.

H2: When the assistance system receives a prediction
from gaze before a distinguishable state, trial metrics will
improve and goal-specific assistance will appear earlier. By
considering only trials in which gaze yielded a prediction and
analyzing when the prediction was received, we evaluate the
model of when joystick-based assistance is improved.

VI. RESULTS
A. Gaze Gives Early Predictions

Our model for gaze improving assistance requires that it
gives earlier predictions than the joystick input does. Figure [3]
shows the prediction strength of gaze and joystick over the
course of each trial. While gaze and joystick prediction medi-
ans behave similarly, they follow different distributions. Gaze-
based prediction is bimodal, which agrees with Aronson et al.
[4]. While the joystick prediction strength steadily increases
throughout each trial, the gaze prediction strength increases
by shifting probability mass from p = 0.5 to p ~ 1. Fig. [f]
shows traces of all runs in the gaze and joystick conditions.
The gaze prediction generally starts at 0.5 and jumps to p ~ 1

1.0 I [T 711

0.8

0.6

0.4

0.2

Prediction strength

0.0 : T
0.0 0.5

Trial progress

1.0 0.0 0.5 1.0
Trial progress

Fig. 6: Prediction strength for each condition over all trials,
normalized by trial duration. The gaze predictions (left) gen-
erally transition sharply between p ~ 0.5 (no prediction) and
p = 1 (confident, accurate prediction). The joystick predictions
(right) smoothly increase over time.

at some point. This jump occurs at the first identified fixation
on one of the goals. While the effect is not consistent, we do
find that gaze is capable of providing earlier predictions than
the joystick can, so HI is supported.

B. Early Gaze Improves Trial Performance

Next, we assess how early goal prediction from gaze affects
trial performance. First, we consider only trials in which
the gaze gave a prediction at all. We divide this set into
those that gave an early prediction and those that gave a late
prediction. Early trials predicted a goal before a threshold time
T.. Specifically, we require:

Vt, t > T, : |p(g|datag, - - - ,data;) — 0.5] > 0.1.

Since there are only two goals, either goal can be used
for this calculation. These criteria mirror the ones given in
Sec. the gaze must give a prediction when the optimal
motion is different for each goal, but the user’s command is
still indistinguishable. To choose this threshold, we observe
that the goal-independent assistance generally finishes about
T. = 20 seconds into the task. The remaining trials that gave
a prediction were labeled late. Of the 47 trials in the merged
condition, 21 (45%) were early and 9 (19%) were late. (The
remaining 17 (37%) did not give a prediction.) We compare
the early and late gaze prediction strength with the joystick
prediction strength in Fig. [7] to confirm that this threshold
generally aligns with when the joystick gives a goal prediction.

We now consider how the timing of the prediction affects
trial metrics. Fig. [§] show task metrics for early and late
trials compared to trials in the joystick condition. A one-way
ANOVA evaluated on the log of the data shows significance
for both trial duration (F'(2,76) = 6.78,p < 0.002) and
active fraction (F'(2,76) = 4.32, p < 0.013). Post-hoc analysis
with the Tukey HSD test shows that early gaze has shorter
trials than both late gaze (p < 0.006,95% CI = [0.14,0.93])
and joystick alone (p < 0.008,95% CI = [0.077,0.60]). In
addition, early gaze takes less joystick effort than does joystick
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Fig. 9: Robot assistance over time in x
(top) and y (bottom). Early gaze assists
in z before the 7, = 20 sec. cutoff,
while late gaze and joystick do not assist
in this axis until after 7.. In y, the

alone (p < 0.02,95% CI = [0.077,0.93]). The benefit of early
gaze specifically relative to both late gaze and joystick show
that H2 is supported.

We also consider the magnitude of the assistance over
time, shown in Fig. [0 As described in Sec. the task is
designed such that the optimal motion is different depending
on the user’s goal along the = axis throughout the task, but
it is identical along the y axis. We see that the early gaze
allows earlier assistance in x than late gaze or joystick do,
since the latter conditions can only assist once the user input
becomes distinguishing. In contrast, the assistance along the
y axis is similar for all cases; receiving a goal prediction does
not change the assistance. This observation aligns with the
reasoning given in Sec.

VII. STUDY CIRCUMSTANCES

A. User Gaze is Natural, Not Intentional

This study proposed to evaluate natural gaze for goal
prediction. Unlike during passive data collection, the system
responded actively to participants’ gaze behavior. Therefore,
participants may have noticed that the system responded to
their gaze and chosen to use their gaze as an explicit input.
To determine if the gaze was indeed natural, participants were
asked after each condition if they used any particular strategies
to control the robot. In addition, in the final questionnaire, they
were asked to select trials in which the robot was responsive to
their gaze. Of the 12 participants, 8 reported that they did not
notice gaze responsiveness in any system, 2 incorrectly labeled
the joystick condition as gaze-responsive, 1 identified the
merged condition but not the gaze condition, and 1 labeled the
conditions correctly. Several participants expressed surprise at
the question and during the subsequent debrief, saying they
had forgotten about the gaze collection entirely or assumed
that it was only for passive collection. Therefore, much of the
gaze captured seems to be natural rather than intentional.

assistance is the same for all conditions.

B. Remote Robot Control

As described in Sec. [V-B] above, the study was performed
in a hybrid manner, in which a participant at their home
controlled a robot in the lab, which led to some challenges.
The primary challenge mentioned by participants was using
a single, stationary camera to judge the robot’s position.
Participants often reported struggling with depth perception,
particularly during the first, unassisted trials and when aligning
the robot gripper with the goal handle. When the assistance
was available, depth perception was less of a problem. Few
participants reported latency problems; when they did, modi-
fying the video streaming resolution mitigated the problem. In
addition, using a stationary viewpoint made the gaze detection
problem significantly easier, as it eliminated head motion,
3D gaze detection, and parallax. Ultimately, the remote study
seemed to validate our system on a physical robot and using
eye tracking in the loop despite the restrictions imposed by
the COVID-19 pandemic.

VIII. DISCUSSION

The results above demonstrate a particular example of when
goal prediction using control input falls short. Even when
the user acts optimally, the constraints of the task cause
assistance using only input-based prediction to underperform.
When another source provides an earlier goal prediction, the
assistance can help more, earlier. This finding matches the
model for the success and limitation of input-based prediction
discussed in Sec. [

In addition, we find that natural gaze can provide the
early goal prediction that the input cannot. However, the gaze
pipeline used here, and the gaze signal itself, does not pro-
vide the information consistently. Only 21/47 (45%) of trials
using gaze alongside the joystick gave accurate predictions
sufficiently early to outperform trials with only joystick-based
assistance. These findings suggest that an appropriate use of
gaze-based prediction is as a signal of opportunity. While gaze
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can improve task performance for certain tasks, its unreliability
makes it a poor signal on its own. Though better interpretation
pipelines can improve performance, the lack of any goal-
directed fixations during some trials fundamentally limits its
predictive ability.

Alternate strategies for merging the two prediction methods
may make gaze more useful. Since we find that gaze only helps
when it appears before the joystick prediction does, we can use
gaze for an initial prediction, but switch to the joystick method
and entirely omit gaze once distinguishing input becomes
available. In addition, other tasks that are more sensitive to
early prediction may show greater improvement using gaze.
By analyzing the specific role and of each prediction source,
we can combine multiple signals in a more nuanced way and
achieve better overall performance.

A. Gaze Alone Performs Poorly

To further explore the usefulness of natural gaze for goal
prediction, we measure how effective the gaze signal is for
assistance on its own. We report overall trial metrics in
Fig. for each condition. A one-way ANOVA evaluated
on the log of the data shows significance only for trial
duration (F'(2,142) = 12.7,p < 107°). Post-hoc analysis
using the Tukey HSD test on the log shows that the gaze
condition alone takes longer than both the merged condition
(p = 0.001,95% CI = [-0.71,—0.25]) and the joystick
condition (p < 0.002,95% CI = [—0.59, —0.12]). In addition,
people generally rated the gaze-alone condition worse than
either of the others (see supplementary material).

Gaze suffers because goal-directed gaze does not occur in
every trial. Familiarity with the scene from previous trials,
adjusting goal-independent factors such as robot rotation,
and peripheral vision all contribute to the unreliability of
distinguishing gaze behavior [2, [5l]. In fact, 33/95 (35%) of
trials exhibited no goal-directed fixations at all. In these cases,
assistance was provided for the first part of the trial (when it is
identical for each goal), but subsequent motion is unassisted.

Incorrect predictions were even worse than no predictions
at all. If the gaze prediction selects the incorrect goal early

in the trial, it was nearly impossible for users to correct it.
For example, if the user glances at one goal while trying
to navigate to the other (due to, e.g., wandering attention or
an error in gaze detection), the gaze-based assistance moves
the robot directly to that goal. When the user attempts to
maneuver the robot arm away from that goal, they look at
the robot end-effector and at the incorrect goal to avoid colli-
sion, reinforcing the incorrect prediction. This self-reinforcing
behavior was nearly impossible for participants to correct.
Participants described this condition as “adversarial” and “like
trying to hold onto a slimy eel while it attempts to wriggle
away,” and even changed their goals to “accept its whimsy
ways.” This behavior is analogous to the adversarial conditions
in Newman et al. [31] and Stolzenwald and Mayol-Cuevas
[38]]. While this issue can arise when a system using control
input approaches collinear goals [10], when gaze is the only
prediction source, even maximum input to the other goal does
not fix the problem. The simplicity of the gaze model, and
the focus on object identification without an understanding
of object role, illustrates the fragility of this method for goal
prediction in even a simple task.

B. Adding Gaze Does Not Provide Overall Improvement

While adding gaze improves on tasks metrics when the gaze
provides an early prediction, we consider the overall impact of
adding gaze. The merged condition, which uses both gaze and
joystick predictions, does not show improvement over using
joystick alone in trial metrics (Fig. or subjective metrics
(see supplementary material). While 45% of merged trials con-
tained early gaze and thus better performance, the effect may
not have been sufficiently large or occur frequently enough to
make an overall difference. In addition, the downsides of poor
gaze may have led to frustrating behavior that counteracted
the benefit gained from early gaze.

C. Extension to More Complex Tasks

The gaze-based method can be extended to include addi-
tional goals, with the caveat that gaze discrimination becomes
noisier as the goals get closer together. For more complex
tasks, however, gaze prediction will require more sophisti-
cated analysis. In particular, it is difficult using gaze itself
to determine the role that any particular object has in a
task: users can look at one object since it is a goal, and
another since it is an obstacle. More detailed analysis such as
stronger task models [9] or analysis of gaze locations within
an object [2, 21] may help for more general tasks.

In addition, this work assumes that a grasp is the only pos-
sible interaction with a goal. However, both control input [22]
and natural gaze [42] can be used to infer information about
the intended task of the user. We believe that task inference
may follow similar patterns as goal inference, with task-
specific control input restricted in time if the interface can only
support particular interactions and gaze possibly providing
earlier task information. Extending this work to more varied
tasks is an important aim of future work.



Finally, this work assumes that the user’s goal is one of a
pre-specified set of objects already known to the assistance
system. While this assumption is standard [18], it represents
a significant gap between the experimental conditions and a
full, deployed system. We look forward to expanding the goal
inference process to more general settings.

IX. CONCLUSION

In this work, we explore the strengths and limitations of
goal prediction based on control input for assisted robot
teleoperation, and we explore natural gaze as a prediction
method to mitigate some of those problems. We demonstrate
that particular task constraints can arbitrarily limit assistance
even if the user acts optimally. In a user study, we demonstrate
this suboptimality in joystick-based prediction. Using natural
eye gaze for the prediction as well does improve task metrics
when the gaze information comes sufficiently early, which it
does often. However, it does not give this information reliably,
as people will often never produce goal-distinguishing gaze
during a trial, and using gaze alone can lead to problematic
feedback loops. Further work will focus on developing this
complementarity between gaze-based prediction and joystick-
based prediction, specifically by exploring nuanced ways to
combine the signals for effective assistance.
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