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In this work, we present a method for estimating the unsteady flowfield of a fluid system with
unknown model parameters (such as angle of attack or Reynolds number) in real time from
a limited number of sensor measurements using a “bank” of Dynamic Mode Decomposition
(DMD) models. First, a set of DMD models is computed at sample values of the model
parameter. Then, a bank of Kalman filters is run for each one of the models, yielding a state
estimate for each one of the DMD models and, thus, a corresponding flowfield estimate. Finally,
the minimum mean-squared error (MMSE) estimate of the actual flowfield is computed as a
weighted sum of the individual flowfield estimates from each model, where the weights are the
likelihood of each model being the correct one given current and past measurements, under
the Multiple Model Kalman Filter (MMKEF) framework. The performance of the proposed
approach to estimating the flowfield of a system with varying parameters is demonstrated in
simple flow settings: a Blasius boundary layer at discrete adverse pressure gradients and a flat
plate at different angles of attack.

I. Introduction

STIMATING the unsteady flowfield in practical flow settings, such as around airfoils, is a useful and, often, necessary
Estep in evaluating the performance of such systems and controlling them. For instance, the unsteady flow structures
around an airfoil may depend on the (possibly varying) angle of attack and Reynolds number and directly affect the lift
and drag coefficients. Fluid flows are infinite-dimensional, nonlinear, and, often, chaotic dynamical systems governed
by a set of partial differential equations — the Navier-Stokes (NS) equations — which are intractable to solve in real
time. For that reason, any attempt to estimate the state of such a system requires a model-reduction step (e.g. if a
high-dimensional dynamical model, such as the linearized NS equations [1], is available) and/or a system identification
step (if only numerical or experimental data are available) [2].

The infinite-dimensional states (e.g. velocity, pressure, or vorticity) of fluid flows are commonly discretized in
space at a set of fixed grid points, leading to a finite, but high-dimensional state space. A number of model reduction
techniques for discovering low-dimensional patterns that describe the evolution of such systems have appeared in the
literature [3-8].

One popular model reduction method is proper orthogonal decomposition (POD), also known as Principal Component
Analysis (PCA). First introduced in the fluid mechanics community by Lumley [3], POD computes the singular value
decomposition (SVD) of a collection of flow snapshots (e.g. the velocities at a set of grid points) and identifies a
subspace on which the discretized flow equations or measurements are projected [9]. POD modes are optimal in the
L,-norm sense and, therefore, describe flow structures based on their energy content. However, low-energy modes
can have a large influence on the evolution of fluid flows [2]. Variations of POD, such as balanced proper orthogonal
decomposition (BPOD) [4], have also been proposed. BPOD retains the most controllable and observable modes of
the flow, producing models that are suitable for both control and estimation. However, this method requires data from
impulse responses of the primary system, as well as from the adjoint system, for which the equations need to be known.
Another commonly used system identification method is the eigensystem realization algorithm (ERA) [5], a subspace
system identification method that extracts linear state-space models from impulse response data only. This method
is attractive, since it can be used when only experimental data are available. In fact, it was shown in [10] that ERA
computes the same state-space model as BPOD without the need for adjoint response data, but does not compute the
BPOD modes. However, impulse response data may not be easy to obtain. A common solution to this restriction is
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to use the observer/Kalman filter identification (OKID) technique to extract the impulse response of a system from
input-output data of random inputs [5].

Dynamic mode decomposition (DMD), first introduced in [7] and [6], has been a popular model reduction method in
recent years, used as an alternative or as complementary to POD for extracting dynamical features of flows purely from
time-resolved snapshot data. DMD modes represent flow structures with coherent dynamics, i.e. a specific frequency
and decay rate, instead of being characterized by their energy content. A number of extensions to the original DMD
algorithm have been proposed for handling systems with control inputs [8], time-varying systems [11], noisy datasets
[12, 13], and streaming datasets with a large number of snapshots [14], just to name a few. A probabilistic version of
DMD has also been proposed in [15], while the connection of DMD to Koopman spectral analysis [16] has inspired a
number of extensions to systems where the dynamics cannot be sufficiently described by a linear system [17, 18].

One of the weaknesses of DMD is that the dynamic modes do not have an objective ranking, unlike POD modes
which are ranked based on their energy content, making the selection of the most important DMD modes nontrivial.
A number of methods for choosing the DMD modes have been proposed, such as optimized DMD [19], optimal
mode decomposition [20], and sparsity-promoting DMD (DMDsp) [21]. Sparsity-promoting DMD, first introduced
by Jovanovic et al. [21], is a particularly attractive method for truncating the DMD modes in a systematic way by
solving a convex optimization problem with a performance index that includes a sparsity-promoting term. Inspired
by DMDsp and its extension to systems with inputs in [22], the authors reformulated sparsity-promoting DMD as a
one-time-step-ahead least-squares optimization, similar to [23], that can also include the effects of control inputs [24].
This reformulation of DMDsp was recently used for flow control applications [25].

The goal of this work is to estimate in real time the full flowfield for systems with (continuously or discretely)
varying model parameters, when the full flowfield for different model parameters is available at training time but only a
limited number of sensor measurements are available at test time, while the model parameters are also unknown. As an
illustrative example, consider an aircraft flying in gusty conditions, where the flow around the wing depends on the
angle of attack (the model parameter) which can vary and is perhaps hard to measure independently in such conditions.
We assume that for a fixed model parameter the underlying system can be sufficiently approximated by a Dynamic
Mode Decomposition model and, therefore, an optimal linear estimator — i.e. a Kalman Filter — can be used as the
base estimator. Kalman filters have been previously used in combination with DMD models for flowfield estimation
[26], flow control [24], and denoising the DMD modes [27, 28]. In the context of Koopman operators, Kalman filters
have also been used for the design of linear observers for nonlinear systems [29]. In this work, the idea of estimating a
high-dimensional flowfield from limited sensor measurements is extended to systems with varying model parameters,
where a single DMD model is insufficient to describe the system at different parameter values. In order to expand the
applicability of linear filters for flowfield estimation, we use a bank of DMD models at different values of the model
parameters and compute the minimum mean-squared error (MMSE) estimate of the flowfield from a limited number
of sensor measurements using a Multiple Model Kalman Filter (MMKF) [30, 31] that “balances” or “weights” the
contribution of each model to the MMSE-estimated flowfield based on the probability of each model being correct given
the history of measurements. In addition, the unknown model parameter can also be inferred from the probabilities of
each model: the most probable value of the parameter is simply the one on which the most probable DMD model was
trained on.

Numerical examples demonstrating the basic idea of flowfield estimation from limited measurements with unknown
parameters using a bank of DMD models and MMKEF is demonstrated in simple flow settings: 1) a Blasius boundary
layer at various adverse pressure gradients and 2) the flow around a flat plate at time-varying angles of attack (AoA).

The rest of the paper is organized as follows. In Section II, we briefly describe the process of computing a single
sparsity-promoting DMD model from snapshot data. In Section III we formulate the Kalman filter estimator for a single
DMD model. Section IV presents multiple model DMD for flowfield estimation — the main contribution of this work.
Numerical examples are presented in Section V. We conclude with remarks and directions for future research in Section
VL

II. System Identification Using Dynamic Mode Decomposition
The motion of a fluid is generally described by a set of nonlinear partial differential equations — the Navier Stokes
equations — that are infinite dimensional and not easily amenable to standard real-time estimation techniques, such as
the celebrated Kalman filter [31]. For that reason, it is desirable to have an approximate low-dimensional linear model
that can be identified from numerical or experimental data. Such a model can be easily derived using Dynamic Mode
Decomposition (DMD), and its variants, such as the sparsity-promoting DMD.



Before moving to the case of varying model parameters, we first present the process of estimating a high-dimensional
flowfield from limited measurements (e.g. wall-mounted sensors) using a single DMD model, similar to [26] and
[24]. Toward that goal, we begin by presenting the standard DMD and its sparsity-promoting variant (DMDsp), first
developed in [21] and reformulated in [24] as a one-time-step-ahead least-squares optimization, similar to [23], that can
also include the effects of control inputs.

A. Dynamic Model Decomposition
Let the dynamics of the high-dimensional system be described by an unknown (and, generally, nonlinear) function
f(:) : R"™ — R™, such that

Yis1 = £(yr), 9]

where y; € R™ is the state of the high-dimensional system (e.g. the velocity components at a set of grid points) at time
step k and n,, < 1.

Assume that we have a set of training data pairs D = {(y?,f(y(?)) : i =1,..., p} that are stacked as the columns
of the following “data matrices”

Y = [y(l) y(p>] e RWXP, (2a)
Y = [f(y(l)) f(y(p))] € RWXP, (2b)

with p denoting the number of available pairs and p < n,.

Since the state y is high-dimensional, identifying a linear model in R can be computationally intractable. Instead,
we seek an optimal (in the £,-norm sense) low-dimensional subspace to project the high-dimensional state using proper
orthogonal decomposition (POD). The singular value decomposition of Y,

Y =UzVT, 3)

yields the POD modes — which are the orthonormal eigenvectors of YY T — as the columns of U € R™*P  arranged by
their energy content, i.e. their singular value. A common choice for the low-dimensional space is the range space of
U, € R™*4 formed by the first ¢ most energetic POD modes. The high-dimensional state y is then projected onto the
range-space of U, yielding a low-dimensional (reduced-order) state € R?, where

e =UJyi )
at time step k. The original state y (i.e. the full flowfield) can be approximated as
Yi = Ughy + €k, S)

with €, € R denoting the approximation error.
If we assume a linear form for the reduced-order dynamics,

M = Fip, (6)

we can fit F € R7*4 to the data set D in a least-squares sense as

F=(UgY)(UgY)', (7)
where T denotes the Moore-Penrose inverse. The DMD modes can then be extracted by bringing Eq. 7 in complex
modal form. Assuming that F has a set of linearly-independent eigenvectors {wy, ..., W}, we can fit

FW = WA, )]
where W € C9%9 is the nonsingular matrix containing the right eigenvectors of F, A = diag{1} € C?*4, and
T
A= [/11 e /lq] € C1 is the vector of eigenvalues of F. Setting 17, = Wy, we get Eq. 7 in modal form,
Ve = APy, )



where ¢, € C™ is the complex vector of the amplitudes of the DMD modes at time step k. The high-dimensional state
Yk can now be approximated as

Ye = QY (10)

where ® = U,W € C"™*7 and the i-th column of ®, which is denoted as ¢; € C"~, is the i-th DMD mode corresponding
to the eigenvalue 4;.

B. Sparsity-Promoting Dynamic Mode Decomposition

The DMD modes, ¢;, decompose the flowfield based on the frequency and decay rate of the corresponding
eigenvalue, 4;. However, the number of DMD modes that we have is equal to the number of POD modes we chose to
keep — a choice based on the approximation error or “energy content” of the first few POD modes. However, energetic
POD modes are not necessarily dynamically important.

In order to determine the most important DMD modes, sparsity-promoting DMD (DMDsp) was developed in [21].
Recently, (DMDsp) was reformulated in [24] as a one-time-step-ahead least-squares optimization, similar to [23], that
can also include the effects of control inputs and does not require the data to come from the same time sequence.

Using the approach in [24], we truncate the DMD modes by weighting the contribution of each mode to the dynamics
with a scalar weight «;

q
Yi+1 = Z @i ik + Eks (11)
i=1
. . T . .
where i; i is the i—th component of vector ¥,. A sparse representation of @ = [0/1 . aq] is obtained by

minimizing the error &; for the training data, along with a regularization or sparsity-promoting term ||&||o. In particular,
we minimize the cost function

Jis(@) = Y’ — @diag{a}ADTY || + plle|lo, (12)

where p balances the importance of sparsity versus approximation and || - ||z denotes the Frobenius norm. The
sparsity-promoting term |||y is approximated by the reweighted %} norm [32], making the least-squares problem

convex.
T

The sparse solution to the preceding problem is a vector a = [a IR aq] € R4, with only n, < g non-zero
terms. The states of ¢, that correspond to @; = 0 are truncated, resulting in an n,-dimensional state-space model
containing only the dynamically relevant DMD modes. After transforming the truncated state-space model from
complex to real modal form, we obtain the sparse reduced-order linear model

Xkt = AXk (133-)
Yi = Ox (13b)

where x; € R"~ is the sparse reduced-order state, A € R~ and ® € R">*"~ is the output matrix containing the real
and imaginary parts of the most important DMD modes, with n, < g < n,. For more details, the reader is referred to
[24].

I11. Flowfield Estimation Using Dynamic Mode Decomposition

In practical flow control applications, full flowfield measurements are generally expensive to obtain (e.g. through
numerical simulations or experimental measurements) and only few such measurements might be available during the
training process. On the other hand, real-time measurements from a limited number of sensors, such as wall-mounted
pressure or shear-stress sensors, are more easily available upon deployment. Using the full flowfield “training”
measurements, we can obtain a DMD model and then estimate the full flowfield from a small set of sensors using a
Kalman filter, as presented in [26] and [24].

At each time step k, assume that only some of the elements of the full state y; are available as measurements, i.e.
zr = E;yi, where z; € R"= is the measurement vector containing only 7, of the n, elements of yi, E, € R"<*"~ is the
matrix that truncates the elements of y, that are not measured, and n, < n,. If we define C = E,©, the measurement
z; can be related to the state x; via

Zp = CXk. (14)



A. Error Estimation
Similar to [26], assume that the stochastic form of model (13a) and the output equation (14) can be written as

Xiel = AXg + Wy, (15a)
Zi = CXk + Vg, (15b)

where wi € R™, w; ~ 47(0, Q) is the process noise (e.g. due to modeling errors) and vi € R":, vy ~ A4(0, R) is
the measurement noise. Both the process and measurement noises are assumed to be sequences of independent and
identically distributed Gaussian random variables with covariances Q € R"™*"x and R € R"=*"= (symmetric positive
definite matrices) that are constant and are chosen based on the modeling errors resulting from DMDcsp as follows: If a
full flowfield measurement yy is available, the best estimate for x; is

)A(k = @fyk. (16)

Given (16) and the stochastic linear state space model (15a) - (15b), the best estimate of the process and measurement
noise, when the full flowfields y; and y.; and the limited measurement z; are known, is

Wi = 07y — AQTyy, (17)
Vi =zk—C®Tyk. (18)

Thus, the covariances Q = E [wxw] | and R = E [vv] |, can be directly estimated from the ensembles of full flowfield
data D that are available during the design process.

Note that the additive Gaussian white noise processes in (15a) and (15b) are chosen as a model for the approximation
error of the identified DMD model, even if the actual error at each time step does not correspond to a realization of
a sequence of independent and identically distributed random vectors, but one that follows deterministic — albeit too
complicated to model — dynamics. However, for additional robustness to measurement noise, we set R = E [VkVZ] +0,1,
where o, is the standard deviation of the expected measurement noise.

B. Kalman Filter

With the covariances of the process and measurement noises computed, the well-known Kalman filter [31] can
now be applied to estimate the amplitudes of the DMD modes Xy, as well as the full flowfield y, from the limited
measurements zx. For an initial guess X¢ of the state estimate and Py of the state covariance, given the previous estimates
Xx-1, Pr-1, and the measurement zg, the state x; can be estimated using the following steps:

1) State propagation:

ﬁ; = AX;_;
P = AP _1AT + Q.

2) Measurement update:

Ki = P,CT [CPiCT +R,]™
Xp = )A(; + Ky, [Zk - Cﬁ;]
Pi = [I1-KiC] P,

where x;_is the a priori state estimate, P, the a priori state covariance, K the Kalman gain, X the updated (a posteriori)
state estimate, and Py the updated state covariance. Thus, for an observable pair (A, C), the DMD mode amplitudes x
can be estimated from limited measurements z; without the need to know the entire snapshot y;. The full flowfield can
then be estimated from the limited measurements as

$i = O%. (21

IV. Multiple Model Dynamic Mode Decomposition Flowfield Estimation
In this section, we present the main contribution of this work: the extension of the DMD-based flowfield estimation
from systems with fixed model parameters (sufficiently described by a single DMD model) to systems with varying



model parameters, where a single set of DMD modes is not enough to describe the flow structures at significantly
different model parameters (e.g. Reynolds number or angle of attack). This extension leverages the concept of MMKEF,
first introduced in [30], to balance the contribution of each DMD model to the full flowfield estimate.

Assume that the dynamics of the high-dimensional system depend on a generally unknown vector or scalar parameter
m € M C R4, In this case, the discrete-time dynamics can be written as

Vi1 = E(y;m). (22)

In the simplest case, m is a constant. However, we can also allow m to vary slowly in time.
Assume that we also have M sets of measurements

D = {(yV 8y smy) - j=1,....p}, (23)

fori =1,..., M, of the high-dimensional system, obtained for different values of the parameter m = m;,fori = 1,..., M.
For instance, if the system of interest is the flow around a flat plate, the system parameter m could be the angle of
attack and D; the flowfield measurements at a given angle m;. Note that m; does not necessarily have to be a discrete
(constant) value, but it can also belong to a subset M; C M of the parameter space (e.g. a range of angles of attack).

For each of the discrete parameters m;, we fit a sparse DMD model on the corresponding data set D;, resulting in a
bank of DMD models

x;:il = A<")x,(f) + w,(f), wg) ~ N(0,07), (24)
L= @(i)xl((i) +6§(i)’ 6](Ci) - N(O,Z(i)), (25)
7 = COx +v, v? ~ N(0.RD), (26)

fori=1,..., M, where X]((i) is the state of the reduced-order model for m = m; and (A(i), e, C(i>) are computed

using sparsity-promoting DMD and determine the evolution of the reduced-order state (A(?)) and the mappings from the
low-dimensional state space to the full flowfield (@) and the real-time measurements (C9).

Our goal is to estimate the flowfield y; given a history of measurements, Z¥ = {z ;o j=1,...,k}, and the bank of
DMD models, when the model parameter m is unknown. If we knew that m is equal to one of the parameters for which
we have a DMD model, then we could simply select the appropriate DMD model and perform the flowfield estimation
as described in Section III. However, when m is unknown or not one of the training values m;, we have to either select
the most appropriate DMD model or utilize the estimates from each model. In particular, under the Multiple Model
Kalman Filter (MMKF) framework, we can estimate the flowfield in a minimum mean-squared error (MMSE) sense
using the probabilities of each model being the correct to weight the contribution from each model as

gumsE Z”(l)e(l) g 27)

where

1" = p(m=m; | Z¥) (28)

is the probability of the i-th model being correct given the available measurements and & A(') =E [X;(i) | Z k] is the state
estimate for the i-th model, which is obtained by running a Kalman Filter for the 1nd1v1dua1 model ;.

The estimated probabilities y( D can change at each time step as new measurements z; become available. Using
Bayes’ rule, we can update 9 recursively as

' =pm=m; | )
=p(m=m; | 2, Z*")
p(zi | m=mi, Z"VYp(m =m; | ZF1)
p(zx | ZK1)

plzi | m=m, Z5Hpl?, 29)
M p(ai | m=my, Z-Oul?




where the likelihood p(zx | m = m;, Z*~') can be computed from the KF of the i-th model as
p(zi | m=m;, 2 = NP5 0,80), (30)

where v,(:) = zx — CV%; (D is the innovation of the i-th KF at time step k and S = COP,DCOT 4+ R is the
innovation covariance. Note that Zf.‘;l i ,u](f) =1

An important observation is that we cannot compute the MMSE estimate of the reduced-order state f(,(:) as we do
for the full state in Eq. 27, since the reduced-order state of each model corresponds to a different set of DMD modes
computed on a different dataset and cannot be summed as in Eq. 27. Following that observation, the different models

can have a different number of DMD modes (n,), depending on the specific dataset that each model is trained on.

V. Numerical Examples

In this section, we demonstrate the multiple model approach to flowfield estimation in simple flow settings where
our goal is to estimate the flowfield from limited measurements in: 1) a Blasius boundary layer with a varying adverse
pressure gradient (APG) and 2) the flow around a flat plate at varying angles of attack (AoA). High-fidelity direct
numerical simulations (DNS) of a uniform laminar flow are performed using an in-house code based on [33] that solves
the 3D Navier-Stokes equations via a pseudo-spectral algorithm [34] that includes a custom force field. Solid surface
boundary conditions are imposed via immersed boundary forces. Note that in both cases we assume that the full flowfield
is available at training time, but only limited measurements are available at test time.

A. Blasius Boundary Layer with Varying Adverse Pressure Gradient

Consider a 2D laminar boundary layer with a negative pressure gradient (dp/dx < 0). For a weak APG, the flow is
steady (i.e. a single DMD mode is enough to describe the flow). As the magnitude of the APG increases, the flow
separates and sheds vortices periodically. Assume that the pressure gradient is the unknown model parameter m. The
Reynolds number is Re = 1400 based on the boundary layer thickness at the start of the computational domain. We
record a snapshot of the vorticity field every 5 time steps of the DNS at an orthogonal grid of size 141 x 39 along the
boundary layer. In total, the flowfield y consists of the vorticity at n, = 5499 grid points. We collect snapshots for four
different (suitably normalized) pressure gradients m = dp/dx:

e my=-12x1073

e my=-16x1073

e m3=-20x10"3

o my=-24x1073
For each parameter, a total of p = 10000 snapshots are collected with a normalized time step of 7y = 6.25 x 1073
non-dimensionalized time units, forming the datasets D;,i = 1,2, 3, 4.

A sparse DMD model is trained on each dataset, leading to a total of M = 4 models — one for each discrete value of
the APG. Once the models are computed, we want to estimate the entire flowfield from limited wall measurements
of vorticity. In particular, we use a set of n, = 5 near-wall vorticity measurements (sampled at the same rate as the
snapshots) to infer the rest of the flowfield, while the APG is unknown at test time.

1. System identification using sparsity-promoting DMD

Each sparse DMD model is trained on one of the datasets. Initially, we keep enough POD modes to capture the
training snapshots with more than 99% accuracy (in the £,-norm sense). Then, we run sparsity-promoting DMD for a
range of different parameters p and retain the 5, 25, 55, and 55 most important DMD modes for the 1%, 2", 3" and
4™ model, respectively. This choice leads to a reconstruction error of the training snapshots of less than 1% (smaller
APGs need less modes for the same accuracy). The bank of sparse DMD models consists of {(A®), @ )}, for
each parameter m;, i = 1,2, 3, 4. In addition, for each model we estimate the covariances Q) (process noise) and R(?)
(measurement noise) from the training data, according to Section III. Note that all the pairs (A(i) ,C (i>), i=1,2,3,4,
are observable.

2. Estimating the flowfield at an unknown pressure gradient.
We start a new simulation of the 2D Blasius boundary layer at a pressure gradient of dp/dx = =20 x 1073, but this
time we only measure the vorticity at the n, = 5 locations near the wall. Our goal is to infer both the pressure gradient



and the rest of the vorticity field from those measurements. This is a parameter that is included in the training data. A
bank of Kalman Filters — one for each DMD model — is initialized with f((()i) =0 and Péi) =1001,, fori=1,2,3,4.
Each KF runs separately and estimates the reduced-order state, xx, for each DMD model. The model probabilities are
initialized equally, i.e. y(()i) = 1/M, where M = 4 is the total number of DMD models. Furthermore, additive zero-mean,
Gaussian noise with standard deviation o, = 0.01 is added to the wall measurements, in order to test the robustness of
the MMKEF. The model probabilities p,((i) are updated according to Eq. (29) with each new measurement (Figure 1a). At
each time step, we also compute the estimation error as

er = 193™F = yell2/llyll2 x 100. (€1
Note that since the state x¥) of each DMD model is, in general, a different quantity due to the data-driven nature of
DMD, we can only obtain MMSE estimates of y, since the quantities being summed in Eq. (27) are all the same physical
quantities, i.e. vorticity at the same locations.

3. Discussion

The MMKEF quickly chooses the correct model (Figure 1b) and the estimation error drops to less than 6% after 500
time steps (Figure 1c, black). The boundary layer at this APG is characterized by vortex shedding that weakens with
time. While this is a simple flow setting, a large number of DMD modes (55) is needed to describe the flowfield for
the larger APGs (3 and 4" models) with an accuracy of more than 99% (in the £,-norm sense for the training data).
When the data from all four different pressure gradients are combined and used in a single DMD model, the lack of
robustness becomes more apparent. In the single model case, as the number of DMD modes increases, the error also
tends to increase. This is due to the lack of observablility of the larger models. In particular, the DMD model with 25
modes is fully observable, while the larger models with 35 and 45 modes have 1 and 4 unobserved modes, respectively.

B. Flat Plate at a Varying Angle of Attack

Consider the 2D flow around a flat plate at different AoA. The flow is dominated by the periodic wake behind the
flat plate. The angle of attack is considered as the model parameter, m, while the Reynolds number is constant and equal
to Re = 250 (based on the chord length). Every 5 time steps of the DNS, we record a snapshot of the vorticity field at
an orthogonal grid of size 231 X 135 around the flat plate for different model parameters m. In total, the flowfield y
consists of the vorticity at n,, = 31185 grid points.

First, the flowfield snapshots are split in three separate datasets, each corresponding to a different subspace of the
parameter space. In particular,

e my = 20° (constant AoA)

* my € (20°,307) (varying AoA)

* m3 = 307 (constant AoA)

For each model parameter case, we collect p = 2000 pairs of snapshots with a time step of Ty = 6.25 x 1073
non-dimensionalized time units, forming three datasets D;, i = 1,2, 3.

Then, a sparse DMD model is trained on each dataset, for a total of M = 3 models. Once the models are computed,
the goal is to estimate in real time the full flowfield from limifted sensor measurements. In particular, we choose to place
three sensors that measure the vorticity at three points in the wake of the flat plate and then estimate the rest of the
flowfield using these three measurements and the DMD models. However, since we don’t know the model parameter
(i.e. the AoA) at test time, we cannot select a model by hand. Instead, we will infer the most appropriate model from the
bank of DMD models using the Multiple Model Kalman Filter.

1. System identification using sparsity-promoting DMD

For each dataset, we train a sparse DMD model. In particular, we first keep enough POD modes to capture the
training snapshots with more than 99% accuracy (in the £,-norm sense). Then, we run sparsity-promoting DMD and
retain the 25 most important DMD modes for the 1 and 3" model (m = 20° and m-30°) and 45 DMD modes for the
2" model (m € (20°,30°)). The bank of sparse DMD models consists of {(A?), @ )}, for each parameter m;,
i = 1,2,3. In addition, for each model we estimate the covariances Q(i) (process noise) and R (measurement noise)
from the training data, according to Section III. Comparisons are performed with a single DMDsp model trained on the
combined datasets D; U D, U D3 and with different number of DMD modes.



(a) Near-wall vorticity measurements obtained from a DNS  (b) Probabilities of each model being correct, given the noisy
of a Blasius boundary layer at dp/dx = —20 x 1073, measurements.

(c) Estimation error, £y, at each time step, for the MMSE esti-
mate of y. The multiple model DMD estimation error (black) is
compared with the single-DMD-model estimation error for dif-
ferent DMD model sizes. Estimation error of standard DMD
increases with model size due to lack of observability.

Fig.1 2D Blasius boundary layer at an adverse pressure gradient. While the MMKF initially has a hard time
choosing a model, after a while it converges to the correct model choice (3" model).

2. Estimating the flowfield at varying AoA

We start a DNS of the flat plate at m = 20° for 2000 time steps. Then, the flat plate rotates to m = 30 at a constant
rate for 1000 time steps and stays at that angle for another 5000 steps. The goal is to estimate the flowfield throughout
the simulation just by measuring the vorticity at only three points at the wake of the flat plate. Artificial (zero mean,
Gaussian) noise with standard deviation o, = 0.05 is also added to the measurements. We initialize the bank of Kalman
Filters — one for each DMD model — with f((()i) =0 and P(()i) = 1001, fori = 1,2,3. Each KF runs separately and
estimates the reduced-order state, Xz, for each DMD model. In addition, the model probabilities are initialized equally,
ie. y(()i) = 1/M, where M = 3 is the total number of DMD models. Here, the model probabilities are kept constant
for the first 50 time steps, until the individual KFs have started converging to more realistic state estimates. Then,
probabilities /,z(i) are updated according to Eq. (29). At each time step, we also compute the estimation error of the

k
MMSE estimates of y, as in the previous example.
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(a) Flowfield at time step k = 1000.
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(b) Flowfield at time step £ = 1000.

Fig. 2 Actual (top) vs estimated (bottom) flowfield of the 2D Blasius boundary layer at an adverse pressure
gradient of dp/dx = -20 x 1073 (non-dimensionalized). In both cases, the estimator yields an error of less than
10%. Measurement positions are shown as black triangles near the wall.
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3. Discussion

During the first few time steps, the MMKEF is still figuring out which model best fits the noisy measurements (Figure
3a), as indicated by the model probabilities (Figure 3b). After a while, the estimator correctly selects the model with
m = 20°, leading to u; — 1, while the other probabilities go to zero. At the same time, once the MMKF selects the
appropriate model, the estimation error also reduced to less than 10% (Figure 3c). Once the flat plate starts rotating
(around k = 2000), the estimator switches to the 2" model, which was trained on an AocA varying within m € (20°, 30°)
and captures the modes of the rotating plate. The estimator then switches to the 3™ model (m = 30°) just after the AoA
stabilizes at 30°. Note that the model probabilities initially appear to be noisy due to the smaller signal-to-noise ratio
caused by the added measurement noise (which has a constant standard deviation).

While the AoA is constant, the estimation error converges to below 10% as more measurements are collected.
The model has a harder time estimating the flowfield when the (unknown) AoA starts increasing. However, the error
still remains at a qualitatively acceptable value below 20% (Figure 3c, black). For comparison, single-DMD-model
estimation is performed for a DMD model trained on the entire dataset with 25 and 45 DMD modes. The larger DMD
model captures the training data with more than 97.5% accuracy. While both models perform similarly to mmDMD
when the AoA is varying, they perform worse when the AoA is constant (Figure 3c, blue and red). One of the reasons
for the estimation error not further decreasing with more DMD modes is the lack of observability which is noticed with
increasing model size. However, with the multiple DMD models, we are able to capture subspaces of the parameter
space with fewer DMD modes, while the model remains observable.

The convergence of the filter toward the actual flowfield can also be seen by visualizing the actual vorticity field at
different time steps and comparing it with the estimated one (top and bottom of Figure 4, respectively). At both 20°
(Figure 4a) and 30° (Figure 4b), the flowfield is qualitatively similar to the ground truth (i.e. the DNS simulation).

VI. Conclusion

In this work, we presented a framework for flowfield estimation in settings with unknown model parameters using a
“pank” of Dynamic Mode Decomposition models under the multiple model Kalman filter framework. The advantage
of the proposed method is the ability of the estimator to infer the unknown model parameters, such as the angle of
attack of a flat plate or the pressure gradient of a boundary layer, from limited flow measurements. In addition, splitting
the datasets in smaller subsets based on the model parameters leads to smaller and more accurate models (that remain
observable), suitable for flowfield estimation. Future work includes using the proposed estimator in closed-loop flow
control settings.
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error of less than 10%. Measurement locations are shown as triangles at the wake of the flat plate.
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