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How do global manufacturing shifts affect long-term clean energy innovation? 
A study of wind energy suppliers 

 
 

ABSTRACT 

Clean energy technologies are important for meeting long-term climate and competitiveness goals. But 

clean energy industries are part of global value chains (GVCs), where past manufacturing shifts from 

developed to emerging economies have raised questions on a decline in long-term innovation. Our 

research centers on how geographic shifts in the GVC shape long-term innovation, i.e., innovation in a 

time frame within which “mission-oriented”, societal, or firm strategic objectives need to be met rather 

than tactical, near-term market competitiveness alone. Focusing on wind energy, we introduce a 

temporal measure to distinguish between long-term and short-term innovation, applying natural language 

processing methods on patent text data. We consider supply-side value chain factors (i.e., manufacturing 

supplier relationships with original equipment manufacturers (OEMs)) and demand-side factors (i.e., 

policy-induced clean energy market growth), shaping the patenting activities of 358 global specialized 

wind suppliers (2006-2016). Our findings suggest that the wind industry did not suppress long-term 

innovation during manufacturing shifts, in this case, to China. After 2012 when China developed a large 

wind market, long-term innovation increased by 80.7% in European suppliers working with non-

European OEMs (including Chinese) and by 67.2% in Chinese suppliers working with non-Chinese 

OEMs. Our results highlight the importance of coupling international manufacturing relationships with 

sizeable local demand for inducing long-term innovation. Our results advance research in innovation, 

GVCs, and green industrial policy with implications for several industries that can contribute to climate 

mitigation.  
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1 INTRODUCTION 
Accelerating innovation in clean energy technologies is urgently needed for addressing climate 

change mitigation goals (i.e., long-term net-zero targets and emission reduction) and economic and 

development goals (i.e., competitiveness and employment in rapidly expanding green industries). 

Estimates suggest that currently mature technologies are sufficient to meet only a quarter of the long-

term emissions reductions targets through 2070 (IEA, 2020). This means that the direction of innovation 

must focus not only on generating breakthroughs or radical changes (Breakthrough Energy, 2021), but 

also on ensuring that different technologies can deliver on long-term societal goals (e.g., at least 10-20 

years in the future) to avoid locking in technologies that are already mature.  

Delivering the innovation needed to meet climate-related societal goals requires introducing a 

temporal dimension to the analysis of innovation and its relationship with changing markets and 

industries—i.e., with the provision of short-term innovation related to current needs and the provision of 

long-term innovation linked to anticipated future needs. The temporal dimension complements extant 

approaches on measuring innovation through novelty (e.g., breakthroughs, radicalness, exploration) (e.g., 

Arts et al., 2021; Funk and Owen-Smith, 2017; Kelly et al., 2018; Verhoeven et al., 2016). Existing 

approaches do not explicitly consider innovation relative to societal challenges, industry needs, or longer-

term, strategic competitiveness goals for innovating firms. The novel temporal dimension can be crucial 

for scholars and policymakers grappling with the challenge of enabling long-term innovation for climate 

change, economic, and development goals, as exemplified by efforts of the European Commission to 

translate the concept of ‘mission-oriented innovation’ in various areas into their institutions or in 

technology-specific plans (e.g., for lithium-ion batteries) in the United States (U.S.) (Anadon, 2012; 

European Commission, 2021; Foray et al., 2012; Mazzucato, 2018; U.S. Department of Energy, 2021).  

While enabling long-term clean energy innovation outcomes is important for meeting climate-

related societal goals, firms must also quickly react to growing global demand and expanding 

international competition and networks, especially with many new entrants from China and other 
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emerging economies. Such globalization of supply (changes in location of manufacturing) and demand 

(changes in location of deployment) can shape innovation outcomes in different directions (Binz and 

Truffer, 2017; Meckling and Hughes, 2018; Nemet, 2009)—and in some cases, significantly limit some 

types of innovation efforts. The global value chains (GVCs) for manufacturing clean energy technologies 

have shifted from Europe, the U.S., and Japan to emerging economies since 2010, most notably to China 

(Sandor et al., 2020; Surana et al., 2020; Zhang and Gallagher, 2016). Experience from other modern 

industries such as optoelectronics, automobiles, and rare-earth element technology suggests that shifts in 

manufacturing from developed to emerging economies could suppress long-term innovation by moving 

innovation away from technologies that are further from commercialization (Fifarek et al., 2008; Fuchs, 

2014; Fuchs et al., 2011; Fuchs and Kirchain, 2010). However, the location of demand is also important, 

as the proximity between manufacturing and deployment could create learning effects that spur 

innovation (Fuchs, 2014; Nemet, 2009; Von Hippel, 1994). For clean energy, manufacturing activities in 

China have been associated with innovation that has short-term benefits for scale-up and cost 

reductions, often linked to the increase in domestic demand (Helveston and Nahm, 2019; Lam et al., 

2017). However, these manufacturing shifts to China may have suppressed advanced or next generation 

alternative designs with long-term benefits (Sivaram et al., 2018), as has been suggested for other areas 

like optoelectronics (Fuchs and Kirchain, 2010). This raises the question whether shifts in manufacturing 

from developed countries to emerging economies such as China combined with strong local demands in 

emerging economies promote or suppress long-term clean energy innovation necessary for meeting 

societal goals. 

The relationship between the location of supply, demand, and the temporal dimension of 

innovation is not only important when it comes to the end products (e.g., wind turbines or solar panels) 

and lead firms (i.e., Original Equipment Manufacturers, or OEMs), but also for the components and 

suppliers in the GVC of these final products (Gao and Rai, 2019; Meckling and Hughes, 2017; Sandor et 

al., 2020; Surana et al., 2020; van der Loos et al., 2022; Zhang and Gallagher, 2016). Suppliers’ and 
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OEMs’ locations depend on local public policies, skills of the suppliers, the complexity of the 

components they manufacture, or market size, while firm strategy (e.g., the strategic priorities of 

suppliers or OEMs and their relationships in the value chain) and the location of firms can shape 

innovation (Nemet, 2009; Surana et al., 2020; Von Hippel, 1994). OEMs and their end products have 

been extensively studied in extant literature on energy innovation (Awate et al., 2015; Garud and Karnoe, 

2003), but research trying to understand the activities of hundreds of specialized suppliers remains 

limited to a few studies (e.g., Zhang and Gallagher, 2016; Haakonsson and Slepniov, 2018; Hipp and 

Binz, 2020; Surana et al., 2020). Understanding the activities of suppliers is particularly important in 

general (see Ambos et al., 2021 for a review) and specifically in clean energy technologies such as wind 

turbines that are complex products and systems where innovation takes place at the component-level, 

involving hundreds of suppliers (Huenteler et al., 2016a; IEA Wind, 2013, 2001).  

This paper analyzes if supplier-OEM relationships in the GVC of clean energy manufacturing 

(supply) and the proximity to deployment (demand) over time promote or suppress long-term 

innovation activities of suppliers. In particular, we introduce the temporal dimension of innovation, 

where we define short-term innovation as likely to be in the market within 0-10 years, and long-term 

innovation as technologies that have a possible impact in the market at least 10-20 years into the future. 

Specifically, we focus on wind energy suppliers and study how different types of domestic or 

international manufacturing relationships (i.e., between suppliers and OEMs) in the GVC and demand-

pull in major wind energy markets (shifting over time from Europe to China) shape long-term 

innovation. To do so, we first map the GVC of wind energy, examining the supplier-OEM 

manufacturing relationships between 2006 and 2016. For each supplier and OEM, we analyze the filed 

patents with a novel measure for the temporal dimension of innovation, where we map the innovation 

needs and timelines identified by global research-industry consortia (IEA Wind, 2013, 2001) to the 

content of patent descriptions identified through natural language processing methods (i.e., term 

frequency analysis and topic modelling). Finally, we quantify the link between supplier-OEM 
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manufacturing relationships, their proximity to deployment of wind energy, and their impact on long-

term innovation efforts. We focus on the home-country of the supplier and OEM to assess whether the 

relationship is local (e.g., Chinese supplier with Chinese OEM) or international (e.g., Chinese supplier 

with OEM from Europe). To relate this to deployment, we distinguish two time windows in our 

statistical analysis: (a) 2006 to 2012, when the European wind energy market showed high increases in 

new installed wind energy capacity; and (b) 2012 to 2016, when the Chinese wind energy market clearly 

dominated annual installations (IRENA, 2021).  

Our analysis suggests that European wind energy suppliers did not reduce their long-term 

innovation activities because of manufacturing shifts to China, in part because of the importance of the 

large local market. From 2006-2012, when the European wind energy market dominated global 

installations, long-term innovation activities increased for European suppliers (by 87.4% for relationships 

with European OEMs). From 2012-2016, when China had developed a policy-driven, large, and 

attractive wind market, long-term innovation increased for international relationships for both European 

suppliers (by 80.7% with non-European OEMs, including Chinese) and for Chinese suppliers (by 67.2%, 

with non-Chinese OEMs). Overall, our findings suggest that international relationships combined with 

local demand matter more for long-term innovation than the country of origin of the supplier, i.e., 

whether their home country is an emerging or a developed economy.  

These findings have several implications for research and public policy. First, we introduce a novel, 

temporal dimension to the direction of innovation that complements established perspectives on 

measuring novelty or radicalness (e.g., Arts et al., 2021; Kelly et al., 2018; Verhoeven et al., 2016). The 

temporal dimension can be particularly important for assessing and advancing clean energy innovation in 

the context of mission-oriented policies. Second, our analysis is one of the few that centers on suppliers 

rather than OEMs (Gao and Rai, 2019; Haakonsson and Slepniov, 2018; Hipp and Binz, 2020; Surana et 

al., 2020; Zhang and Gallagher, 2016). Assessing the drivers of innovation in the full GVC is essential for 

understanding the contribution of all types of firms to long-term innovation. Third, our assessment of the 
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drivers of long-term innovation in relation to the location of suppliers in the GVC, their relationships 

(i.e., their local or international relationships with OEMs), and the location of demand expands prior 

notions on the direction of innovation in developed vs. emerging economies (especially China) (Fuchs et 

al., 2011; Fuchs and Kirchain, 2010; Helveston and Nahm, 2019; Lam et al., 2017; Sivaram et al., 2018). 

Instead of reductions in longer-term innovation activities due to manufacturing shifts in technology-

intensive industries, our findings provide novel evidence for previous claims on how increases in the 

globalization of value chains in emerging economies may be able to drive long-term innovation when 

combined with strong local markets (Fuchs, 2014). Finally, to meet climate, economic, and development 

goals for green growth while ensuring long-term innovation, we suggest that policymakers continue to 

strengthen collaborations between research and the large number of industry stakeholders that must cut 

emissions, enable large markets through stable policy-induced incentives, and foster international 

supplier-OEM collaborations with China and other emerging economies with large or growing markets. 

The rest of the paper is structured as follows. Section 2 provides an overview of the literature on 

the direction of innovation and its drivers in the global value chain. Section 3 provides the case context. 

Section 4 presents our data and methodological approach. Section 5 presents results. Section 6 discusses 

our findings and the contributions to research. Section 7 concludes with implications for public policy. 

 

2 THEORETICAL BACKGROUND 

We first review the research on measuring energy innovation and the need for including a temporal 

dimension to the direction of innovation (2.1) and follow with the (largely qualitative) literature on how 

suppliers in the GVC of clean energy technologies can shape the direction of innovation (2.2). 

 

2.1 THE TEMPORAL DIMENSION OF INNOVATION  
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The direction of innovation in clean energy technologies can refer to various types of innovation: e.g., 

carbon-intensive vs. low-carbon technologies (Anadon, 2012; Mazzucato and Semieniuk, 2018; Schmidt 

et al., 2012) or incremental vs. radical innovation (also related to breakthrough or exploratory 

innovation) (Hoppmann et al., 2013; Li, Heimeriks and Alkemade, 2021; Nemet, 2009). With consensus 

on the need for low-carbon innovation, energy innovation scholars have often pointed to the need for 

novelty: i.e., promoting radical innovations for meeting net-zero climate goals, rather than only focusing 

on incremental innovation that delivers small improvements in the performance of existing clean energy 

technologies (Nemet, 2009; Sivaram et al., 2018; Wilson, 2018). However, these novelty-oriented aspects 

have overlooked the importance of the temporal perspective—i.e., whether the focus of technological 

developments over time is aligned with what is needed for simultaneously meeting different societal and 

competitiveness goals for net-zero emissions and green growth. 

Research to date from the general innovation literature, applied to energy innovation, offers 

valuable insights for measuring and analyzing novelty and radical innovation.1 For example, scholars 

have proxied non-incremental innovations in wind technology by using highly cited patents (Nemet, 

2009), developed novelty measures for solar technologies based on the similarities of patent codes (Li, 

Heimeriks and Alkemade, 2021 as proposed by Verhoeven, Bakker and Veugelers (2016), and studied 

breakthrough solar innovations considering novelty and relevance based on topics generated from 

natural language processing (Sun et al., 2021 based on Dahlin and Behrens, 2005). However, these 

novelty-oriented measures of innovation have two limitations in their ability to provide insights regarding 

the expected time-horizon for specific technologies to reach commercialization. First, important 

 
1  In the broader innovation literature, the novelty dimension of innovation has been assessed based on patent data using 
different indicators. Prominent measurements for radicalness or novelty are based on (1) the number of forward 
citations (Ahuja and Lampert, 2001; Phene et al., 2006; Singh and Fleming, 2010); (2) the centrality of patents in the 
citation network (Corredoira and Banerjee, 2015; Verspagen, 2007); (3) the introduction of new combination of patent 
codes (Verhoeven et al., 2016); (4) new combination of keywords (Arts et al., 2021) or topics (Kaplan and Vakili, 2015) 
based on natural language processing; and (5), more advanced measurements combine novelty and impact, 
investigating how similar patents are compared to previous and future patents based on co-citation or text based 
similarity measures (Dahlin and Behrens, 2005; Kelly et al., 2018). 
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characteristics may get obscured in large patent datasets. For example, analyzing the average 

characteristics of a full set of patents (i.e., all patents from universities, research institutes, industry, or 

individuals) overlooks features from the subset of patents of industry stakeholders well-positioned to 

quickly commercialize technology improvements. Similarly, the novelty indicators that are sector-

agnostic in identifying general radical innovations (e.g., Verhoeven, Bakker and Veugelers, 2016) may not 

be targeted enough for developing meaningful policy implications for specific industries, green growth, 

and competitiveness considering the heterogeneity in energy technologies2 (Huenteler et al., 2016b; IEA, 

2020; Malhotra and Schmidt, 2020; Meng et al., 2021; Wilson et al., 2020). Second, patent citations as 

indicators of novelty, as often used in the innovation literature, have several drawbacks. Patent citations 

may vary based on different citation practices in different patent offices or the individual patent 

examiner, they could depend on the strategic decisions of firms in what they cite as prior art, and most 

important, they can only be analyzed several years ex-post (Jaffe and Rassenfosse, 2017).  

The temporal approach we develop to understand the direction of innovation builds on—and 

expands—methods in innovation studies and other novelty literature. It analyzes the content of patents 

and links them closely to both societal needs (e.g., climate change goals) and industry motivations (e.g., 

specific technology targets). It is distinct from existing novelty measures in two ways. First, technology 

development for long-term climate goals may not always link to radical innovation. Radical innovation, 

or the new combination of existing scientific principles, is often measured as the first combination of 

patent codes (Verhoeven et al., 2016). But these approaches would not classify technologies such as 

offshore wind as a radical innovation in the early 2000s. Even though onshore wind was still not cost-

competitive at that time, offshore wind was hardly in the horizon and thus, developing capabilities in 

 
2  For example, innovation in some technologies may be in processes (e.g. in solar photovoltaics) while others may be in 
components or products (e.g. in wind) (Huenteler et al., 2016b). And even within a specific low carbon technology 
(e.g. solar) the focus of innovation may be in incumbent technologies (e.g. silicon solar cells) or in new technologies 
(e.g. perovskite solar cells). 
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offshore wind technologies was important for meeting longer-term climate and competitiveness goals.3 

Second, for suppliers and OEMs, research efforts would be designed to yield profits or competitive 

advantage based on temporal needs and requirements, and not on the potentially transformational 

impact on markets. For long-term innovation, the difference to novelty relates to how much suppliers 

‘think ahead’ in terms of meeting societal goals through their innovative activities, and the need to 

balance considering how long-term innovation aligns (or not) with the anticipated future needs of their 

OEM partners. Short-term innovation is connected to the OEM’s current market needs. In relation to 

novelty, it may be linked to both incremental innovation with regard to improvements in existing 

products, or to radical innovation when working on a component for a specific OEM that can 

potentially have a transformational impact on markets (Hoppmann et al., 2013; Nemet, 2009; Tushman 

and Anderson, 1986).  

Evaluating the direction of clean energy innovation centering on a temporal dimension is therefore 

crucial for developing policy and management approaches to deliver the time-dependent, technology-

specific innovation needs to meet climate, economic, and development goals and to avoid lock-ins and 

limiting future technology options (e.g. (IEA, 2020; IEA Wind, 2013).  

2.2 SUPPLIERS AND INNOVATION IN GLOBAL VALUE CHAINS 

In addition to measuring the temporal dimension of innovation, it is important to understand what 

drives long-term innovation, especially in the context of GVCs (Ambos et al., 2021; Pietrobelli and 

Rabellotti, 2011; Van Assche, 2017). GVCs represent the multifaceted patterns of internationalization 

and fragmented innovation and manufacturing in modern technologies (Gereffi et al., 2005; Pietrobelli 

 
3  For example, the codes indicating offshore wind, i.e., F03D (wind motors) and B63B (ships or other waterborne 
vessels; related equipment), appear together in a patent with priority year as early as 1973 (JPS51135399U), and in our 
filtered database, already before 2006 (see, for example, DE10055973A1, EP1101935A2, JP2004019470A). Relying on 
the first combination of patent codes for novelty would not classify all of these as novel, even though they would be a 
long-term innovation as offshore wind was not commercially viable in the early 2000s. 
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and Rabellotti, 2011; Taglioni and Winkler, 2016; The World Bank, 2017; Zhang and Gallagher, 2016). 

These GVCs comprise a few leading firms, or OEMs, that integrate and deliver end products and the 

hundreds of suppliers that deliver components to the OEMs. While either OEMs or only their suppliers 

have been extensively studied in the broader GVC literature, a recent review by Ambos et al. (2021) 

emphasizes the need to center on the suppliers and their interactions with OEMs (rather than the OEMs 

only) in shaping the direction of innovation in the GVCs.  

We expand this broader OEM-centric perspective by evaluating the drivers of long-term 

innovation at the level of suppliers based on three related dimensions discussed in the GVC and 

manufacturing literature. First, the relationship between the OEMs and their suppliers, known as the 

GVC governance, can drive innovation (e.g., Gereffi, Humphrey and Sturgeon, 2005; Pietrobelli and 

Rabellotti, 2011; Buciuni and Pisano, 2021). Suppliers respond to the different strategies or needs of the 

OEMs they work with—for example, whether the OEMs ‘make’ (in-house) or ‘buy’ (arm’s length), the 

complexity of components involved, the extent of competition with other suppliers, the size of markets, 

proximity to consumers that provide co-location cost benefits, and other cost drivers (Baldwin and 

Venables, 2013; Cattaneo et al., 2013; Novak and Eppinger, 2001; Surana et al., 2020; Taglioni and 

Winkler, 2016).  

Second, suppliers’ innovation activities can depend on how they source knowledge, for example by 

connecting to a global network of OEMs or of other suppliers (Ambos et al., 2021). Suppliers working 

with multiple OEMs from different countries may have more capacity to absorb external knowledge 

through knowledge transfer and learning that spur long-term innovation —and have pressures to meet 

international standards—when compared with suppliers only supplying to one OEM or only domestic 

OEMs (Pietrobelli and Rabellotti, 2011). Suppliers with stronger technological capabilities, especially 

those from industrialized countries such as the U.S. or Europe, are perhaps more likely to engage in 

long-term innovation (Haakonsson and Slepniov, 2018; Surana et al., 2020). Suppliers might also benefit 

differently in terms of gaining knowledge from working with different OEMs. OEMs from industrialized 
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countries tend to have stronger technology capabilities and locate in more central positions in the global 

knowledge network of a technology than their peers from emerging countries (Awate et al., 2012; Zhou 

et al., 2016). In addition, their OEM interaction may otherwise shape their Research and development 

(R&D) priorities towards long-term or short-term innovation. Suppliers from emerging economies like 

China may therefore be influenced by their interactions in the course of supplying components to OEMs 

from industrialized countries. The learning process to meet technology standards or policy goals may 

increase their long-term innovation as they are exposed to new technological developments (Ambos and 

Ambos, 2011; Pietrobelli and Rabellotti, 2011; Zhang and Gallagher, 2016). 

Third, the proximity of manufacturing (supply) and deployment (demand) can facilitate long-term 

innovations given the geographical dispersion of GVCs (Fuchs and Kirchain, 2010; Pisano and Shih, 

2012, 2009; Yang et al., 2016). For example, prior research on the optoelectronics industry has suggested 

that manufacturing shifts from the U.S. to the ‘East’ had unfavorable consequences on more ‘advanced’ 

technological innovation that could have reduced costs in the longer-term—both in the home country 

(i.e., the U.S.) and for the technology in general (Fuchs and Kirchain, 2010). This lowering of a firm’s 

capability to innovate could be explained by reduced communications between development and 

production when production activities are moved to a different country and reduced (Tyre and von 

Hippel, 1997; Von Hippel, 1994), constrained and small global markets, as well as the low strength or 

enforcement of intellectual property rights (Fuchs, 2014). As previously mentioned, differences across 

industrial and cost structures, shippability, as well as policy and manufacturing contexts may affect how 

manufacturing shifts influence the focus of research. 

While the supplier-centric GVC lens we take in this paper offers a comprehensive approach to 

analyze the drivers of innovation in clean energy technologies, it would be insufficient without also 

accounting for the impact of public policies as well-established drivers of energy innovation indicators, 

especially market-pull deployment policies (see systematic reviews in Grubb et al., 2021; Penasco et al., 

2021; Popp, 2019). Research has highlighted the importance of demand-pull through a stable domestic 
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market, enabled by public policies, for advancing innovation and technological improvements in clean 

energy industries through economies of scale and learning by doing (Dechezleprêtre and Glachant, 2014; 

Lewis, 2011; Lewis and Wiser, 2007; Quitzow et al., 2014; Sagar and van der Zwaan, 2006). Although 

demand-pull alone may not lead to non-incremental innovations in clean energy (Nemet 2009), it could 

make a difference and accelerate rather than reduce innovation in the case of manufacturing shifts to 

emerging economies. This is because the proximity between firms and growing (instead of small, 

constrained) markets might facilitate the communications and interactions needed to help advance 

technical problem-solving (Fuchs, 2014; Von Hippel, 1994). This could be particularly relevant in the 

context of clean energy technologies, especially complex products and systems such as wind energy, 

where technologies are not as easily shippable and need to be adapted to local physical conditions or 

regulations (Schmidt and Huenteler, 2016). Thus, the proximity to lead markets might also facilitate the 

long-term innovations of suppliers in the clean energy industry.  

In sum, we expect that the origin and technological capabilities of suppliers, relations with 

international OEMs, and the proximity to lead markets will shape the direction of innovation of 

suppliers, especially the temporal dimension, in the GVC of the clean energy industry.  

 

3 RESEARCH SETTING: THE GLOBAL WIND ENERGY INDUSTRY  

The wind energy industry is an important, relevant, and suitable empirical setting for analyzing the 

temporal dimension of innovation in the context of supply-side developments along the GVC—

including both suppliers and OEMs—and its proximity to demand, for the following three reasons. 

First, wind energy represents one of the key renewable technologies for meeting climate goals and 

is one of the most mature clean energy technologies today. Despite its maturity, the temporal dimension 

of innovation matters for wind energy. R&D activities have led to larger turbines that have enabled cost-

effective deployment of onshore wind energy (e.g., Enevoldsen and Xydis, 2019). However, innovation 
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is still needed to ensure continually larger turbines, low materials use, efficient manufacturing, grid 

stability, or operation in new settings (e.g., buildings, low wind speeds) (IEA, 2020). In addition, offshore 

wind energy is still not deployed at scale outside early markets, such as the UK, and innovation is needed 

to enhance installation processes, foundation designs, operation under different conditions (e.g., 

hurricanes), and transmission connections with demand regions (IEA, 2020).  

Second, the wind energy industry has experienced shifts in location in terms of demand and supply 

in the last decades, shaped by public policy, with an increasingly prominent role of China. Deployment 

(demand) in the rapidly expanding wind energy industry shifted from Europe and the US to China 

between 2006 and 2016 (our study period, see Figure 1)4. This shift started in 2010 but clearly stabilized 

and dominated after 2012, where the Chinese wind energy market became the fastest growing globally 

(see Figure 1a and 1b)5, enabled by systemic policy incentives for deployment as well as manufacturing 

and innovation (Surana and Anadon, 2015; Zhu et al., 2022). Trends in the supply of wind energy 

technologies paralleled trends in demand. OEMs from countries such as Denmark, Germany, 

Netherlands, and the U.S.—with extensive R&D activities—initially dominated with around 97% of the 

global market share in 2000 (BTM Consult, 2001). The growing demand in new markets (such as China 

and India) led to the rise of new OEMs in these emerging economies. By 2012, domestic OEMs (and a 

few joint ventures) served 80% of the Chinese market and over 50% of the Indian market, while the rest 

was served by foreign subsidiaries (Surana and Anadon, 2015). The rise of domestic OEMs in large 

emerging markets meant that the share of European and US OEMs in total global turbine sales declined 

over time; by 2016 four of the largest Chinese OEMs held 25% of the global market share (Ren21, 

 
4  The annual new installed global wind capacity grew from around 15 GW in 2006 to 51 GW in 2016 (IRENA, 2021). In 
2006, over 80% of the cumulative global wind capacity was in Europe (65%) and the US (15%) with only a small 
amount in China (3%). However, by 2016, the Chinese wind market had grown so rapidly that it accounted for 32% of 
global wind capacity (IRENA, 2021). 

5  Most of the installations were in the technologically mature onshore wind technologies. In terms of emerging large-scale 
offshore wind, Europe (and specifically the UK) showed highest installations.  
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2017). And with the OEM shifts to China, suppliers also followed as they emerged or evolved in 

working with different international OEMs (Surana et al., 2020). Thus, wind is an interesting case from 

the perspective of understanding the relationships between changes in manufacturing location and the 

temporal dimension of innovation.  

 
Figure 1: Evolution of key wind energy markets (2006-2016) based on (a) annual installed wind 

energy capacity (GW) and (b) share of global installed wind energy capacity (%). 

 

Third, suppliers are central to innovation in wind energy. Wind turbines are complex products with 

high-level system integration and structural interactions between different components, and innovation 

takes place at the component rather than the process-level (Huenteler et al., 2016a; Malhotra and 

Schmidt, 2020; Schmidt and Huenteler, 2016). Prior research on wind energy innovation has highlighted 

the importance of public policies, locational factors and collaboration, focusing on countries or OEMs 

(Awate et al., 2015; Garud and Karnoe, 2003; Gosens and Lu, 2014; Haakonsson and Kirkegaard, 2016; 

Lema and Lema, 2012; Lewis, 2011; Nemet, 2009; Qiu and Anadon, 2012; Surana and Anadon, 2015). 

But despite the crucial roles of suppliers in developing these components, the extent to which their 

research focuses on different types of innovation remains a major gap.  

4 METHODOLOGY 

Our approach for understanding the drivers of long-term innovation in the global wind industry 

comprises three steps: setting up a database on wind GVCs (4.1), developing a novel measure for the 
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temporal dimension of innovation (long-term and short-term) by analyzing the content of patents (4.2), 

and generating measures and variables to analyze where innovation occurs, how it changes over time, 

and how the location of suppliers in the GVC is associated with long-term innovation (4.3). 

4.1 DATA GENERATION ON INDUSTRY-SPECIFIC GVCs 

We use a global database of component suppliers to major OEM for wind turbines, building on Surana et 

al., (2020). The database is based on industry reports from Navigant Consulting (2006, 2008, 2010, 2012, 

and 2014) (Navigant Research, 2014), complemented with additional data and verification from Orbis, 

Amadeus, or Bloomberg or the suppliers’ webpages. The database includes information on 358 major 

component suppliers such as firm size, founding year, or geographical location. The database also 

includes similar information on the OEMs that suppliers deliver nine components to, and the 

relationships of the supplier firms with OEMs (either as in-house development of components for the 

OEMs or as external or outsourced from OEM to the supplier). The database assumes that each 

supplier-OEM relationship is reported for a 3-year horizon, therefore covering a study period from 2006 

to 2016. The dataset also includes a metric of technology complexity applied at the component level 

representing the differences across wind energy components (Surana et al., 2020). 

The location of suppliers and OEMs is based on the headquarter addresses in the case of larger 

companies with multiple facilities (mostly in the case of OEMs). Additionally, wind companies 

experienced multiple mergers and acquisitions in the timeframe of our study (e.g., Suzlon, REPower, and 

Senvion). The dataset considers them as individually operating companies if they are not integrated and 

continued to operate under a different brand (Awate et al., 2015).  

The OEMs were firms with the greatest global market shares between 2006 and 2016 and were 

based in Germany (Siemens, Nordex, Enercon, REPower/Senvion), Denmark (Vestas), Spain (Gamesa), 

the U.S. (General Electric), Japan (Mitsubishi), China (Goldwind, Mingyang, Dongfang, United Power), 

and India (Suzlon). The majority of suppliers (38.5% of 358 suppliers) are from Europe (i.e., Austria, 
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Belgium, Czech Republic, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, 

Poland, Portugal, Slovakia, Spain, Sweden, Switzerland, UK), which we treated as one ‘region’ due to 

physical proximity between the countries and the EU trading zone. The aggregate of European suppliers 

consists primarily of German, Spanish, and Danish suppliers, where we found no major differences to 

the European average. Chinese suppliers also dominate our sample, accounting for 34.6% of all 

suppliers. A smaller share of suppliers originated from the U.S. (9.5%), India (5.6%), Japan (2.0%), and 

other countries (9.8%, e.g., in Turkey, Brazil, Egypt, South Korea, Australia, Indonesia) (see Figure 2).  

 

Figure 2: Home country of suppliers in our dataset. n represents the number of firms. 

Given the centrality of the European and Chinese markets in the global wind energy sector and 

the fact that approximately two-thirds of the suppliers included in our sample originate from Europe and 

China, we present detailed findings for these two markets in Section 5.  

4.2 THE TEMPORAL DIMENSION OF INNOVATION 

We identified the anticipated long-term and short-term research priorities using expert reports 

published by the International Energy Agency’s Implementing Agreement for Co-operation in the 

Research, Development, and Deployment of Wind Energy Systems (or IEA-Wind), in 2001 and 2013 

(IEA Wind, 2013, 2001). IEA-Wind comprises key stakeholders involved in wind energy planning–
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including national government agencies (such as the U.S. Department of Energy) and industry 

associations (such as the Chinese Wind Energy Association). IEA-Wind conducts periodic assessments 

of experts to determine research, development, and demonstration needs for wind energy, which are 

published in reports. From these reports, we identified innovations expected to lead to 

commercialization in the short-to-mid-term (0–10 years) and long-term (10–20 years) (see Table A1).  

After identifying the research and innovation needs, we analyzed the content of patents to identify 

what firms and inventors aim to achieve from innovation in terms of the focus of technology. To do so, 

we first obtained global patent data from all reported patent offices from the Derwent Innovations 

Index, accessed through Web of Science, using a rigorous keyword search covering all global wind 

energy patents between 1998 and 2018 (i.e., two years after the last supplier-OEM relationship in our 

dataset). The keyword search was based on prior work published by Huenteler, Ossenbrink, et al., (2016) 

and Huenteler, Schmidt, et al., (2016). Our initial dataset (of all wind patents) comprised over 70,000 

patents of which 12,975 patents corresponded to a supplier or an OEM in our GVC dataset. The 

remaining patents involved individuals, universities or research institutes, and other firms that are not 

directly or actively involved in the wind GVC (e.g., Airbus, OEMs with small global market shares (e.g., 

World Wind India), start-ups, spin-offs, entrepreneurial firms, or those that design or maintain wind 

turbines (e.g., Aerodyn or Availon)). These were not included in our primary analysis (Section 5.2) but 

were instead compared with our sample in the sensitivity analyses (Section 5.3). We extracted patent 

information (e.g., title, abstract including translated abstracts, description, technology classification, 

priority country where the patent was first filed, and date of application) on each of the firms. Our 

search methodology limited patent results to wind energy technologies and components even for 

suppliers and OEMs that engage in multiple industries (e.g., large conglomerates like Siemens and GE). 

Our approach does (purposefully) not include all patenting activity that contributes to wind energy 

innovation but is not specific to wind energy (e.g., in jet engines, unless the patent is tagged with a wind-

relevant classification code or keyword). However, we expect our approach to be thorough in capturing 
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the innovation across the wind industry as our analysis emphasizes on the content of the patent in its 

specified linkages to wind-related R&D. Then, we used the text from the title and description (until the 

independent claim) of each patent to create a text corpus for natural language processing (NLP) using R 

(version 3.6.2). We assigned a greater weight to the title (through repetition) with the assumption that the 

keywords presented in the title are most representative of the focus of innovative activity. The patent 

information was prepared for text-based analysis using the text mining package tm (Feinerer et al., 2008) 

for pre-processing of the text corpus in the title and description text; (e.g., by removing redundant words 

in patent language such as ‘section’ or ‘description’, which are likely to be present in most patents, but do 

not add any significant meaning to the technical content of the invention). We also applied standard data 

cleaning approaches such as stemming words, removing punctuation and numbers, and removing stop 

words (commonly occurring words such as ‘an’, ‘the’, ‘if’ etc.).  

We used multiple natural language processing methods on the text corpus developed above to 

identify the focus of innovation and manually matched it to the temporal dimension of innovation 

(based on the IEA-Wind outlook, Table A1). We linked patents to long-term innovation if any one of the 

rigorous approaches mentioned below distinctly pointed towards long-term innovation. First, we used 

probabilistic topic modeling with Latent Dirichlet Allocation (LDA) to identify clusters of similar topics, 

using the topicmodels package for NLP (Grün and Hornik, 2011). LDA discovers similar topics in multiple 

documents (in this case patents) and automatically classifies documents under these topics by assigning a 

probability for each document to be associated with each topic. The topicmodels package allowed us to 

differentiate the technological focus of innovation in patents by clubbing together topics with similar 

word occurrences (Chan, 2015; Kim et al., 2014). We used 45 topics after assessing for the optimal 

number of topics (based on Deveaud, SanJuan and Bellot, 2014), given the size of the corpus and the 

level of detail in the long-term innovation directions. Using the IEA-wind reports (see Table A1), we 

identified topics clearly associated with long-term research areas with at least 30% probability of being 

associated with long-term research needs. Second, we used the international patent classification (IPC) 
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system to identify long-term innovation. We identified the various IPC codes appearing in our dataset 

and manually mapped the IPC class with general topic areas, where we classified some as long-term 

research (see Table A1 and Table A2). Third, we used another NLP technique, i.e., term frequency 

analysis, of the content of patents, where we counted keywords likely to be associated with long-term 

innovation needs (based on Table A1 and with more contextual details available in the IEA reports). For 

example, we specifically searched for keywords associated with offshore wind to classify those as long-

term innovation during the time period considered, based on information in the IEA reports [Table A3]. 

In addition, we conducted a sensitivity check by comparing our approach with existing measures of 

novelty (e.g., Verhoeven, Bakker and Veugelers (2016), see also Sections 2.1 and 5.3).  

4.3 MEASURES AND VARIABLES 

4.3.1. Dependent variables 

Our main dependent variable is long-term patenting activity, which we estimate as the annual number of 

long-term patents per supplier and per year. We also report the findings for short-term patenting activity 

using the same approach to identify changes in trajectories. To generate the variables, we matched and 

analyzed the patents to individual suppliers (i.e., where the supplier was an assignee on the patent) per 

year (see Section 3.2). While patents are by no means a complete reflection of the extent of R&D or 

innovation activities in a company, they are a well-established measure for indicating the focus of 

innovation within a company that is validated in an external examination process (Griliches, 1990; Hall et 

al., 2005; Howell, 2017). Moreover, they are especially relevant in industries with longer product life 

cycles (e.g., energy), which explains the high reliance on patents as measures of innovation in the wind 

energy context (Huenteler et al., 2016a, 2016b; Nemet, 2009). To account for the time-span between 

starting an innovation project and filing for a patent, we used time-lags based on the number of patents 

in the two years that followed the observation of the independent variables (t+1 and t+2). Both long-

term and short-term patenting activity are count variables.  

4.3.2. Independent variables 
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Our main independent variables are the international and local relationships of the suppliers with the OEMs, 

based on the home country of both. To quantify the relationships between supplier firms and OEMs 

over different reported time periods (i.e., 2006 and 2014), we used network analysis techniques (Taglioni 

and Winkler, 2016), specifically degree centrality. The degree centrality for each supplier captures the 

number of relationships of the supplier (‘node’) and is the simplest network measure that allows more 

intuitive interpretation of results (Doblinger et al., 2019). A relationship describes inter-firm linkages 

between a supplier and an OEM based on market transactions of supplying products or goods (e.g., 

Titan Wind (supplier) supplied to Vestas (OEM) in 2014-2016). A local relationship refers to suppliers 

supplying to OEMs that are headquartered in the same country as the supplier, whereas an OEM 

headquartered in a different country is treated as an international relationship. As we are interested in 

understanding if and how access to international knowledge shapes innovation outcomes in terms of 

long-term patenting, we used the headquarter of the OEMs and suppliers as explained above. As OEMs 

also have manufacturing and R&D locations in other countries than their headquarter or home-country, 

we control for this potential impact in our statistical models (see Section 4.3.3 and 4.4). 

4.3.3 Control Variables  

We included several control variables in our statistical models at the level of the supplier-year. Pre-sample 

patents account for the diminishing importance of earlier knowledge. We included prior patents of the 

suppliers in terms of the pre-sample patent stock as a control variable, annually depreciated at a rate of 

15 percent (e.g., Popp, 2004; Qiu and Anadon, 2012). Following Schilling and Phelps (2007), we included 

the annually depreciated value of pre-sample patents (before 2006 or before entering the sample) to 

control for unobserved heterogeneity in firm patenting activity. We split the variable in three groups (no 

prior patents, one or two patents, and three or more prior patents). Specialization accounts for potential 

effects from whether the supplier specialized in wind energy (=1) or was active in other sectors outside 

of the wind industry (=0). Size estimates the number of employees, based on last available data of full-

time employees (or equivalents) as time varying data is not available for many private firms. We split the 
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variable in two groups of less and more than 250 employees, following the common definition of SMEs 

(European Commision, 2021). Age represents the time interval since the founding year of the supplier. 

We split the variable in three groups (<10 employees, 10-50 employees, >50 employees). Technology 

complexity represents the complexity of the component(s) in which the supplier is active accounting for 

potential differences that result from distinct internationalization and patenting behaviors prevalent in 

different components (e.g., towers vs. gearboxes). Outsourcing or insourcing strategies applied by the 

OEMs indicate how dependent each supplier is on the OEM, reflecting the governance approaches for 

procuring components from suppliers (Nieto and Rodríguez, 2011; Surana et al., 2020). This is a 

continuous variable ranging from 0 (only in-house relationships) to 1 (only outsourced relationships). 

R&D/Manufacturing locations of large OEMs are often in countries different from the one they are 

headquartered in. This is a factor variable that distinguishes the following five cases: (i) European OEM 

with R&D/manufacturing location(s) in a developing country; (ii) European OEM with 

R&D/manufacturing location(s) in an industrialized country only; (iii) Chinese OEM with 

R&D/manufacturing locations(s) in industrialized country; (iv) Chinese OEM with R&D/manufacturing 

in developing country only; (v) Mixed. Cumulative installed capacity captures the cumulative learning effects 

and the knowledge stock that develops over time within the global wind industry due to increases in 

global deployment (Qiu and Anadon, 2012). The variable consists of the annual cumulative installed 

capacity (MW) of wind energy as reported by IRENA (2006-2016).  

4.4 STATISTICAL MODELS 

To estimate the impact of international and local relationships on long-term (and short-term) patenting 

activity, we conducted a set of Negative Binomial Regression analyses from 2006 to 2016 using statistical 

modeling in Stata (version 16). We use negative binomial regressions because our dependent variables are 

based on the count of patenting activity and because of overdispersion when estimating Poisson 

regressions. In the regression results, the long-term and short-term patenting activity (Yi(t+1, t+2)) for 

supplier i is estimated using the following Negative Binomial Regression model: 
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[1] log$Y!(#$%,#$')& = β) + β%local	relationships!# + β'international	relationships!# +

β*specialized!# + β+	component	complexity!# + β,presample	patents! + β-size! + β.age! +

β/OEM	outsource!# + β0OEM	strategy!# + β%)cumulative	installed	capacity!# + ε! 

where b1-2 are the coefficients of interest, b3-10 the coefficients of the control variables including the 

continuous linear time trend (cumulative installed capacity per year). We clustered the standard errors by 

supplier in all models. While we present the direct coefficients in the models, they can be converted to 

incidence rate ratios between suppliers by calculating exp(b). Given the importance of the large and 

stable Chinese wind energy market after 2012 (see Section 3), we distinguish between pre- and post-2012 

developments in our statistical models by presenting findings separately for these two time periods using 

sample splits. Moreover, in the negative binomial regression models, we focus on comparing the findings 

for European and Chinese suppliers during these two time periods and refer to the findings for all global 

suppliers in the Appendix (see Table A4). 

 
5 RESULTS 

5.1. DESCRIPTIVE RESULTS 

In total, we have an unbalanced panel of 1,867 observations of 358 suppliers from 2006-2016. Our 

descriptive analysis shows the following key features, which we present for Chinese and European 

suppliers. The total number of patents was lower in China compared to Europe. Figure 3 shows the 

annual long-term and short-term wind patents filed by suppliers in China and Europe. These graphs 

suggest that while the overall patenting activity, especially for long-term innovation, was higher in 

Europe, there was an upward trend in China during the last three years of our observation period (2014-

2016). We also observe an overall decline in patenting activity in Europe after 2011-2012 coinciding with 

a period of industry consolidation (e.g., through mergers and acquisitions), relatively low gas prices, as 

well as with the general reduction of renewable energy patents after 2012 (Probst et al., 2021). Although 
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the total number of suppliers active in the market decreased in the study period, the remaining suppliers 

intensified their patenting activities.  

 
 
 

Figure 3: The number of long-term and short-term wind patents filed in China and Europe by (a) 
OEMs and (b) suppliers. Figures show three-year rolling averages.  
 

We summarize the descriptive statistics and correlations in Table 1. A supplier had on average 

1.25 international and 1.33 home-country relationships. Moreover, the 358 suppliers were 41.3 years old 

on average (ranging from 4 to 311 years). Overall, a supplier filed for 1.29 long-term patents per year 

(ranging from 0 to 107), and 2.12 short-term patents (ranging from 0 to 165). Table 2 shows the 

correlations between our variables, which are not highly correlated.  

**-----ADD TABLE 1 ABOUT HERE-----** 

**-----ADD TABLE 2 ABOUT HERE-----** 

5.2 RESULTS FROM NEGATIVE BINOMIAL REGRESSION ANALYSES 
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We present our regression results in Table 3 and plot the coefficients in Figures 4a (long-term 

innovation) and 4b (short-term innovation). In Table 3, we use sample splits in Models 1-2 for European 

suppliers, and Models 3-4 for Chinese suppliers. The same set of explanatory and control variables 

presented in Equation 1 in Section 4.4 are used in all cases.  

Figures 4a and 4b as well as Model 1 in Table 3 imply that for European suppliers, local 

relationships (i.e., European supplier-European OEM) are significantly positively associated with long-

term and short-term patenting activity before 2012. As negative binomial regressions model the log of 

incident counts, long-term patenting increased by 87.4% for every additional local relationship (β = 

0.628, p-value = 0.000, Model 1), yet this long-term patenting advantage became insignificant when 

market growth shifted to China after 2012. Interestingly, the opposite holds for international 

relationships. Long-term patenting is negative but insignificantly associated with every additional 

international relationship (i.e., European supplier-non European OEM) before 2012. Yet after 2012, 

long-term patenting activity increased by 80.7% with every additional international relationship (β = 

0.592, p-value = 0.006, Model 2). Short-term patenting significantly increased with every additional local 

relationship irrespective of where market growth was stronger (β = 0.497, p-value = 0.020, Model 1 

(before 2012); β = 0.401, p-value = 0.0028, Model 2 (after 2012)), whereas international relationships are 

not significantly associated with short-term patenting before and after 2012 (Models 1 and 2). This 

implies that European suppliers benefit from collaborating with European OEMs for generating more 

long-term and short-term innovation. However, when considering that global market demands shifted 

2012 onwards, primarily to China, we note that internationalization was a key driver for long-term 

patenting within European suppliers. 

For Chinese suppliers, a comparison of Models 3 and 4 (Figures 4a and b) implies that despite 

the growing local market in China after 2012, local relationships (i.e., Chinese suppliers – Chinese 

OEMs) were not associated with higher long-term or short-term patents. However, after 2012, we 

observe that long-term patenting increased by 67.2% with every additional international relationship (β = 
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0.514, p-value = 0.002, Model 4), whereas short-term patenting increased at a similar level (67.8%) for 

every additional international relationship (β = 0.518, p-value = 0.027, Model 4). This implies that 

Chinese suppliers increased their long-term and short-term innovation activities based on international 

relationships, but only after the Chinese market was more attractive for international OEMs after 2012. 

There are, however, no patenting advantages when collaborating with Chinese OEMs. 

 

Figure 4: Comparison of coefficients for European and Chinese suppliers, before and after 2012, for 
(a) long-term innovation and (b) short-term innovation. A significant negative association is depicted 
at the left side of the grey line, positive at the right. Significance of the relationships is indicated if 
estimation and confidence interval are on one side of the grey line.  

 

***-----ADD TABLE 3 ABOUT HERE-----*** 

 

 

5.3 SENSITIVITY ANALYSES 

We conducted several additional analyses to evaluate the robustness of our findings, including comparing 

our temporal dimension to a measure for the novelty of innovation, alternative model specifications, an 

additional control variable on the country of priority of the patent, an instrumental variable analysis, and 

a comparison of our sample to the one of other actors active in wind innovation. 
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We compared the findings with our metric on long-term and short-term patenting activities to a 

measure of novelty6, based on the concept that radical innovations result from the new combination of 

existing scientific principles (Arthur, 2007; Fleming, 2001; Hargadon, 2002). However, we use this only 

as a sensitivity test because all long-term innovations may not be radical (see Section 2.1).7 When 

comparing the findings from negative binomial regressions using the same models (see Equation 1) for 

the alternative measure based on IPC group codes, we get comparable, but not the same findings (see 

Table A5 in the Appendix). One of the main differences is that the novelty measure reveals a positive, 

yet insignificant association between international relationships and long-term patenting for Chinese 

suppliers after 2012 (β = 0.307, p-value = 0.138, Model 4), which was significantly positive using our 

temporal-dimension. Moreover, for both Chinese and European suppliers, the novelty approach reveals 

a negative and significant association between international relationships and long-term innovation 

before 2012, which was insignificant in the models based on our temporal dimension approach. 

Although both metrics are correlated and offer an ex-ante assessment of the focus of innovation, the 

small but clear differences suggest that our industry-specific assessment of the temporal dimension of 

innovation offers more nuanced insights.  

We also estimated alternative model specifications. We started by estimating logit regressions to 

understand the differences between applying for the first long-term or short-term patent when compared 

to the drivers affecting the annual total number of patents, which revealed comparable estimates (see 

Table A6). We next estimated the percentage of international relationships by dividing international 

relationships by all relationships (sum of local and international). These findings, again, show similar 

trends (see Table A7), but it is hard to disentangle the likely effects of international vs. local 

 
6  We use the approach proposed by Verhoeven, Bakker and Veugelers (2016) that uses patent classification group codes 
(8-digit level in the IPC system) to proxy the scientific principles that patents focus on. When a pair of such codes 
combines for the first time compared to previous patents, it is classified as a highly novel or radical innovation. 

7  Taking the example of offshore wind within our dataset, only 23.76% of the patents classified as long-term with our 
approach were classified as radical with this approach. A comparison of the correlations between the two measures 
(long-term patenting vs. radicalness) still showed high and significant values (long-term patents: r = 0.833, p-value = 
0.000; short-term-patents: r = 0.962, p-value = 0.000). 
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relationships. Here, we observe that there is an insignificant, but negative association between the 

percentage of international relationships and long-term patenting (β = -0.994, p-value = 0.192, Model 2). 

Hence, it is the absolute increase in international relationships that seems to drive long-term patenting 

activities (see Table 3), and not the shift of suppliers’ strategies towards more international activities at 

the cost of local relationships.  

Moreover, we investigate if the country of priority of the patent affects our findings to 

understand if patents filed in China are different from the ones in other countries (Lam et al., 2017). We 

estimated our main models including an additional control variable for the percentage share of Chinese 

long-term and short-term patents (i.e., with priority in China) in the total patents per supplier (see Table 

A8). The key findings are the same, showing how both European and Chinese suppliers significantly 

increased their long-term patenting activity in response to relationships with international OEMs. We 

only observe differences to Table 3 regarding the role of relationships with Chinese OEMs for Chinese 

suppliers, which were positive yet insignificant in the main model, and turn out to be relevant for long-

term patenting after 2012 when including the fraction of Chinese patents (Table A8, Model 4). Hence, 

accounting for the potential differences between Chinese and other patents does not affect our main 

findings on the drivers of long-term innovation before and after market shifts to China but displays 

more nuances regarding the role of local relationships.  

We addressed potential endogeneity concerns that more patenting activities lead to more 

relationships through various approaches. We include time-lags between the relationship and the 

outcome in terms of patents (t+1 and t+2, see Section 4.3.1). We also include the pre-sample patents, 

i.e., the number of patents that each supplier acquired before 2006, in all our models that allows us to 

account for the possibility that patents lead to more supplier-OEM relationships in the first place. We 

also conducted an instrumental variable regression (IV) analysis (2SLS) by using trade agreements 

between countries as an instrument. We collected the trade agreements on goods and services in our 

time period from the World Trade Organization webpage (WTO, 2021). The relevance criterion holds 



30 
 

because trade agreements are likely to have a positive impact on the ease of engaging in 

internationalization endeavors. The exogeneity assumption is also likely to be met because a trade 

agreement between two countries is unlikely to affect or lead to adaptations of type and amount of 

patents (typically affected by factors such as prior patents, financing, age, size, etc.). While trade 

agreements are a weak instrument when focusing on the time-period between 2006 and 2012 (F= 2.20) 

for European suppliers, this instrument is strong in the second observation window between 2012 and 

2016 (F= 25.21 for both long-term and short-term patenting activity) (Stock and Watson, 2007). The 

results from the 2SLS analysis suggested similar findings of a significant positive association of 

international relationships for long-term innovation (β = 3.44, p-value = 0.000) (see Table A9).8 

Finally, we examined whether our focus on long-term innovation in suppliers and OEMs in the 

GVC reflected broader wind technology innovation trends, including the activities from other actors. We 

collected additional information on other actors innovating across wind components, especially 

universities and research institutes, and applied our methodology (see Section 4.2) to assess if those 

actors have distinct developments over time when compared with our sample. However, we observe a 

comparable share of long-term vs. short-term patents of suppliers and OEMs (see Figure A1) with the 

one of research institutes and universities (see Figure A2)9. Given that we observe similar trends in 

patenting activity for both suppliers and OEMs and that these stakeholders are known to collaborate 

with universities and knowledge intensive firms (Haakonsson and Kirkegaard, 2016; Haakonsson and 

 
8  Please note that we are only able to use this instrumental variable approach for our findings for the sub-sample of 
European firms, as there is hardly any variance in the sub-sample of Chinese suppliers (there are no relevant trade 
agreements applying to Chinese suppliers within our observation time window). 

9  We also calculated the shares of more and less novel patents using the novelty measure described in the first 
robustness check for all European and Chinese wind energy patents of all actors, including individuals and other firms 
that are not directly or actively involved in the wind GVC. We did this additional step using the novelty metric rather 
than the temporal dimension approach because the methodological and computational approach required to develop 
and run the topic models classifying more than 77,000 patents into long-term and short-term and organizing them 
around various types of innovators (e.g., OEMs, suppliers, universities, individuals) requires a dedicated research 
approach and methodological contribution that was beyond the scope of this work. Figure A3 displays the shares for 
all Chinese and European patents, which again did not show major changes between the shares of low and high 
novelty over time.  
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Slepniov, 2018), we expect that their ability to innovate in the long-term can also be a good proxy for 

how they integrate and improve any long-term innovations developed by other actors. 

 

6 DISCUSSION 

Our study highlights how a combination of location of manufacturing, GVC governance, the proximity 

of suppliers and OEMs for learning effects, and policy-induced demand-pull supported innovation in 

clean energy technology suppliers for meeting long-term climate goals. Our analysis suggests that, in this 

policy-induced industry, internationalization has a positive association with long-term innovation, as 

value chains become increasingly globalized and manufacturing shifts to emerging economies such as 

China. For European suppliers, local relationships with European OEMs were associated with an 87.4% 

increase in long-term innovation activities, but only before 2012, when the European wind energy 

market dominated global new wind energy installations. As the Chinese market became more attractive 

after 2012, European suppliers with international OEM relationships were associated with an 80.7% 

increase in their long-term innovation activities. International relationships and markets were thus a key 

driver for long-term patenting within European suppliers. For Chinese suppliers, relationships with 

international OEMs increased their long-term innovation activities by 67.2%, but only after 2012 when 

the Chinese market became attractive for international OEMs. Meanwhile, also after 2012, there were no 

long-term patenting advantages of local relationships, i.e., with Chinese OEMs. Overall, our findings 

suggest that manufacturing shifts to China did not suppress long-term innovation in the wind energy 

industry. These findings allow us to contribute in the following three ways to research on clean energy 

innovation and GVCs.  

6.1 THE TEMPORAL DIMENSIONS OF INNOVATION 

Our study introduces a temporal dimension to the direction of innovation that can more 

effectively assess innovation in the context of long-term societal goals, including net-zero emissions, 

economic competitiveness, and development. The temporal perspective complements existing 
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discussions on accelerating innovation that have so far focused on low-carbon vs. high-carbon or radical 

vs. incremental innovation (e.g., Anadon, 2012; Schmidt et al., 2012; Mazzucato and Semieniuk, 2018; Li, 

Heimeriks and Alkemade, 2021; Nemet, 2009). By introducing a different level of analysis (i.e., the long-

term and short-term impact of clean energy innovation) at a granular technology and component level 

(e.g., not just the wind turbine but all the parts and processes that comprise the turbine and its 

operation), our approach can concretely assess progress and trends in individual technologies relative to 

long-term societal goals. In that, we contribute to research on quantifying energy innovation focused on 

monitoring and evaluating existing efforts (e.g., Johnstone, Haščič and Popp, 2010; Popp, Hascic and 

Medhi, 2011; Bettencourt, Trancik and Kaur, 2013; Choi and Anadon, 2014; Huenteler, Schmidt, et al., 

2016). Our approach can potentially also support efforts to improve representations of technological 

innovation in integrated assessment and other models, given our focus on the temporal dimensions and 

volumes of innovation (e.g., Anadón, Baker and Bosetti, 2017; Meng et al., 2021). Our novel approach 

opens new pathways to developing new and automatized datasets to understand the direction of 

innovation through advanced machine learning tools. The metric for the temporal dimension of 

innovation can also be applied to other technologies or sectors beyond clean energy as we build on, and 

complement, existing approaches in the broader novelty literature (e.g., (Arts et al., 2021; Kelly et al., 

2018; Verhoeven et al., 2016) (see also Section 6.3). 

6.2 THE ROLE OF SUPPLIERS IN SHAPING INNOVATION IN GVCs 

Our research on innovation in GVCs centers on suppliers rather than the OEMs, which offers 

compelling new evidence of their important role in shaping the direction of innovation. In that, we 

address three major gaps by: (i) focusing on suppliers (and components) that have been generally 

overlooked in the broader GVC innovation literature (see e.g., Ambos et al., 2021), (ii) mapping and 

empirically assessing the GVC of a rapidly expanding modern industry, where despite growing questions 

around globalization of supply and demand GVCs remain ‘heavily debated but hardly measured’ 
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(OECD, 2018), and (iii) showing how international relationships do not only help emerging economy 

firms to implement cost reductions, but also promote long-term innovation.  

Our empirical evidence of the importance of suppliers in shaping the direction of innovation in 

GVCs advances emerging theories on innovation in global value chains (Cattaneo et al., 2013; 

Haakonsson and Kirkegaard, 2016; Haakonsson and Slepniov, 2018; Jurowetzki et al., 2018; Pietrobelli 

and Rabellotti, 2011; Surana et al., 2020; Zhang and Gallagher, 2016), especially for technologies 

associated with complex products and systems (see also Section 6.3). While these theories link 

innovation to the governance of the GVC, firm strategies or competences, mostly from the OEM 

perspective, our paper is one of the few quantitative assessments of suppliers that also differentiates by 

location (see also Surana et al., 2020). In that, our work specifically adds to discussions that clean energy 

innovation in China is primarily linked to cost reductions or to reducing dependence on foreign 

knowledge and investment (e.g., Gosens and Lu, 2014; Lam, Branstetter and Azevedo, 2017; Sivaram, 

Dabiri and Hart, 2018). Our findings indicate that international relationships may not only shape cost 

reductions (Tang and Popp, 2016), but also support long-term innovation for Chinese suppliers. 

However, when comparing the shares of long-term vs. short-term patents (see Figure A1b), our results 

suggest that there might still be a stronger short-term orientation among Chinese suppliers when 

compared with European suppliers, especially after 2010. 

 

6.3 THE DIRECTION OF INNOVATION AND MANUFACTURING SHIFTS  

Our comprehensive evaluation of the location of GVC (i.e., both suppliers and OEMs in Europe 

and China) and their local or international relationships adds to previous research that emphasizes the 

importance of proximity between manufacturing location and demand for innovation (Fuchs and 

Kirchain, 2010; Von Hippel, 1994). However, we also offer new insights that differ from prior findings 

on the direction or emphasis of innovation in developed vs. emerging economies. We show how 
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proximity between demand and supply can drive long-term innovation in a policy-induced, 

internationally dispersed value chain —and not suppress more advanced innovation as suggested in the 

optoelectronics industry (e.g., Fuchs and Kirchain, 2010; Yang, Nugent and Fuchs, 2016). In the study 

period, wind energy technologies were often not cost competitive with conventional energy supply and 

needed government interventions to scale up. European wind energy suppliers were operating in a 

context of growing market sizes abroad, even stronger than in their home markets. On the contrary, the 

studied firms in optoelectronics faced a trade-off after offshoring their manufacturing activities between 

meeting the needs of the current market more competitively and investing in future market needs due to 

constrained market sizes (Fuchs, 2014). In optoelectronics and other industries such as automotive, 

manufacturing and R&D initially occurred in the country with the highest market value and later moved 

to emerging economies for low-cost production to supply new, global markets (Vernon, 1966; Fuchs and 

Kirchain, 2010). In the case of clean energy, supply shifts to China occurred also because of Chinese 

policy-induced incentives for clean energy, which enabled large and stable demand, supported domestic 

R&D, and helped develop domestic manufacturing to meet local and global demands (Surana and 

Anadon, 2015; Zhang and Gallagher, 2016). With the large Chinese market demands, international 

relationships in the GVC ensured learning effects resulting from the proximity of manufacturing to the 

users of turbines (Nemet, 2009; Sagar and van der Zwaan, 2006; Tang and Popp, 2016; Von Hippel, 

1994), yet without the tradeoffs resulting from constrained market sizes. Thus, for scholars working on 

manufacturing and GVCs, our approach illustrates the need to account for local market sizes and 

growing demand in emerging economies and supplier relationships, which might spur rather than 

suppress long-term innovation.  

However, this interpretation of continued long-term innovation despite market shifts to China 

also needs to be considered in the light of the technology. Wind energy technologies are complex 

components and systems that require local adaptations and are characterized by high shipment costs and 

lumpiness (Huenteler et al., 2016a; Malhotra and Schmidt, 2020; Wilson et al., 2020), which might spur 
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local R&D. Other technologies with similar characteristics in terms of design intensity or customization 

could include concentrating solar power, green hydrogen technologies, long-duration energy storage, 

decarbonized industrial process technologies, carbon capture and storage, carbon dioxide removal, and 

modular nuclear reactors see (Malhotra and Schmidt, 2020). Many of these have similar industry 

structures (with multiple suppliers, and few OEMs), are harder to scale up, and urgently need long-term 

innovation. For other clean energy technologies with different characteristics, primarily solar energy 

where deployment policies are of similar importance, our findings on the drivers of long-term innovation 

might not be fully applicable given lower shipment costs and process-driven engineering challenges 

(independent of the location) instead of local adaptations (Huenteler et al., 2016b; Malhotra and 

Schmidt, 2020). As solar energy technologies are similar to optoelectronics (in that innovation challenges 

are process-driven yet not characterized by small, constrained markets given the strong presence of 

deployment policies), we encourage future research to take a time perspective on solar energy innovation 

and explore if and how long-term innovation is affected by manufacturing shifts to emerging or 

developing economies.  

 

7 POLICY IMPLICATIONS AND CONCLUSIONS 

This paper emphasizes the need for understanding the temporal dimension of clean energy 

innovation given the need for meeting long-term societal goals and to avoid locking in technologies that 

may be inferior. For policymakers, this calls for the design of green industrial or mission-oriented policy 

considering the full GVC, targeting diverse timelines rather than focusing on scaling up R&D or 

deployment activities in isolation. Such approaches are indeed gaining traction, for example in the U.S. 

battery supply chain policy (U.S. Department of Energy, 2021). In this context, our research offers three 

major policy implications.  
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First, our research emphasizes previous insights that public research funding needs to incentivize 

innovation in line with long-term societal goals. This means in one sense, not simply focusing on 

breakthroughs, but also supporting long-term evolutionary changes in existing technologies. It also adds 

the explicit aspect that firms could view long-term outcomes as not only separate from short-term 

market competitiveness, but something that firms themselves also see strategic value in. International 

forums (e.g. IEA’s Technology Collaboration Programs, Mission Innovation) provide important 

platforms for governments, research organizations, and industry to discuss innovation needs for clean 

energy and climate technologies where long-term innovation is needed (e.g. hydrogen, negative 

emissions, and carbon removal technologies), and to ensure that R&D spending is allocated with a long-

term outlook (UNFCCC, 2021) and enabling future options.  

Second, policymakers need to ensure that their decarbonization ambitions increase and enable large 

demand across the many sectors that need to cut emissions, but that these also come with policy 

stability. Consistent signaling and transparency from governments about long-term or short-term targets 

and national climate strategies is a critical part of ensuring that the future competitive landscape is 

communicated clearly to innovating firms. This helps link their internal prioritization and resource 

allocation with the solidifying vision of, for example, 2050 net zero goals and associated policy pathways. 

In contrast, repeated policy reversals and a lack of long-term goals can be detrimental to creating this 

type of strategic clarity. For example, large number of suppliers in China compared to the relatively few 

number of suppliers in other countries with large wind markets (such as the U.S. or India) suggest that 

demand alone is not enough and that policy flipflops can restrict local industry development (e.g., 

Barradale, 2010; Surana and Anadon, 2015). Increasing the ambition for clean energy deployment and 

communicating policy pathways transparently and clearly can increase confidence, even in a not-

perfectly-certain policy future. This can help develop a local industry as suppliers emerge, innovate 

because of the learning effects from proximity to users, and in turn become more competitive.  
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Third, in the specific case of China, creating collaborations on clean energy may provide a more 

effective strategy to deliver on long-term clean energy goals than competing (see also Helveston and 

Nahm, 2019). China has been central to manufacturing in general in the last decades, and to clean energy 

in particular. While tensions exist between China and many other countries in manufacturing and exports 

of various technologies, China continues to be one of the largest markets for clean energy. Restricting 

international supply networks (e.g., through tariffs) has limited demonstrated benefits (Sharma et al., 

2022). Instead, they can hurt firms’ long-term innovation in clean energy technologies, which then limits 

their competitiveness to compete in global markets.  

Our work has two main limitations. One, we use the headquarter location of component supplier 

(or OEM) rather than the location of manufacturing (e.g., supplier subsidiaries in other countries) 

because of incomplete publicly available data on manufacturing especially for smaller firms (Surana et al., 

2020). The internationalization of R&D and the co-location of international R&D with manufacturing 

activities might affect the direction of innovation (Ambos et al., 2021). Two, our measure for long-term 

and short-term innovation is sensitive to industry context or technology characteristics and requires 

additional verification. Ideally, an evaluation after 10 or 20 years would help in determining the actual 

contributions to research areas currently identified as being ‘long-term innovation,’ something which can 

only be fully determined in retrospective. We see exciting opportunities for future research to further 

develop our approach on quantifying the temporal dimension of innovation and applying it to study the 

relationships between the location of manufacturing, demand, and the temporal dimension of 

innovations in other clean energy technologies.  
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TABLE 1: Descriptive statistics 
Variable  Obs  Mean  Std. Dev.  Min  Max 
Long-term patents 1867 1.284 6.385 0 107 
Short-term patents 1867 2.126 8.626 0 165 
Intern. relationship 1867 1.245 1.483 0 8 
Local relationship 1867 1.329 1.372 0 11 
Specialized 1867 0.242 0.428 0 1 
Pre-sample patents (range) 1867 0.572 0.802 0 2 
Component complexity 1867 0.398 0.488 -0.42 1.73 
Size (range) 1867 0.606 0.489 0 1 
Age (range) 1867 1.193 0.498 0 2 
OEM outsource 1867 0.917 0.262 0 1 
Cumulative installed capacity (MW) 1867 242287 103096 14753 408721 
 
 
TABLE 2: Correlations 

 Long-term 
patents 

Short-term 
patents 

Intern. 
relationship 

Local 
relationship 

Specialized 
Pre-sample 
patents 
(range) 

Component 
complexity 

Size 
(range) 

Age (range) 
OEM 

outsource 

Cumulative 
installed 
capacity 

Long-term patents 1                     
Short-term patents 0.713*** 1          

Intern. relationship 0.0373 0.0306 1         

Local relationship 0.161*** 0.167*** 0.0552** 1        

Specialized 0.0376 0.0871*** 0.0965*** 0.0855*** 1       

Pre-sample patents 
(range) 

0.289*** 0.289*** 0.0807*** 0.209*** 0.0425 1      

Component 
complexity 

0.177*** 0.174*** -0.0422 0.0878*** 0.0365 0.329*** 1     

Size (range) 0.124*** 0.146*** 0.198*** 0.114*** -0.131*** 0.217*** 0.144*** 1    

Age (range) 0.0359 0.0766*** -0.0655*** 0.0193 -0.201*** 0.116*** 0.183*** 0.220*** 1   

OEM outsource -0.0351 -0.0998*** 0.160*** 0.0259 -0.206*** -0.0013 -0.0836*** 0.0107 0.0226 1  

Cumulative installed 
capacity 

-0.0662*** -0.0166 0.0932*** 0.00572 0.00232 0.124*** -0.0692*** -0.03 -0.0561** -0.0497** 1 

Observations 1867                     
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 3: Results from negative binomial regressions 
 

  Long-term patenting activity Short-term patenting activity  

  

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

Main effects         
Intern. relationship -0.807 0.592*** 0.125 0.514*** -0.499 0.369 -0.117 0.518** 
  (0.245) (0.006) (0.570) (0.002) (0.363) (0.108) (0.570) (0.027) 
  [0.694] [0.214] [0.220] [0.163] [0.549] [0.230] [0.206] [0.235] 
Local relationship 0.628*** 0.151 -0.503 0.320 0.497** 0.401** 0.235 0.197 
  0.000  (0.263) (0.330) (0.277) (0.020) (0.028) (0.545) (0.500) 
  [0.125] [0.135] [0.516] [0.295] [0.214] [0.182] [0.388] [0.292] 
Controls         
Specialized 1.602* 2.128*** 0.616 -0.595 1.425* 1.851** 1.243 -0.259 
  (0.085) 0.000  (0.663) (0.206) (0.090) (0.012) (0.110) (0.489) 
  [0.931] [0.488] [1.414] [0.470] [0.842] [0.735] [0.777] [0.374] 
Component complexity 1.274*** 0.750 -0.119 -0.293 0.266 1.522*** -1.002 0.159 
  (0.006) (0.124) (0.921) (0.650) (0.600) (0.002) (0.164) (0.755) 
  [0.462] [0.487] [1.192] [0.646] [0.507] [0.483] [0.720] [0.508] 
Pre-sample patents (range) 1.983*** 0.861** 2.777*** 1.128*** 2.073*** 1.118*** 1.232*** 1.043*** 
  0.000  (0.019) (0.005) 0.000  0.000  0.000  (0.005) 0.000  
  [0.345] [0.368] [0.985] [0.298] [0.357] [0.277] [0.438] [0.232] 
Size (range) 1.209* 1.665*** 16.163*** 0.107 -1.248 -0.013 1.371 0.525 
  (0.098) (0.005) 0.000  (0.825) (0.103) (0.981) (0.123) (0.268) 
  [0.730] [0.594] [0.707] [0.485] [0.765] [0.530] [0.889] [0.473] 
Age (range) -1.729** 0.270 0.886 -0.114 0.149 0.781* 1.257 0.593 
  (0.026) (0.516) (0.716) (0.866) (0.841) (0.051) (0.174) (0.310) 
  [0.775] [0.416] [2.433] [0.674] [0.739] [0.400] [0.925] [0.584] 
OEM outsource 0.519 2.191 -5.169*** -1.032 3.407*** 1.865** -3.654*** -1.289 
  (0.686) (0.103) (0.001) (0.302) (0.009) (0.044) 0.000  (0.371) 
  [1.283] [1.344] [1.605] [1.000] [1.305] [0.924] [0.722] [1.441] 
Cum. installed capacity 0.000*** -0.000*** 0.000 0.000 0.000* -0.000*** 0.000 0.000 
  (0.009) 0.000  (0.881) (0.301) (0.062) 0.000  (0.539) (0.671) 
  [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
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lnalpha 0.688** 0.984*** 0.077 1.183*** 1.151*** 1.165*** 1.272*** 1.361*** 
  (0.029) (0.003) (0.937) (0.002) (0.001) 0.000  0.000  0.000  
  [0.315] [0.331] [0.964] [0.379] [0.353] [0.330] [0.309] [0.200] 
Constant -4.622*** -5.987*** -15.842*** -3.655** -6.419*** -6.225*** 0.511 -2.151 
  (0.002) 0.000  0.000  (0.022) 0.000  0.000  (0.722) (0.276) 
  [1.515] [1.127] [2.765] [1.591] [1.396] [1.449] [1.439] [1.975] 
Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.241 0.24 0.382 0.147 0.16 0.197 0.122 0.0724 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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APPENDIX 
Table A1: Long-term and short-term wind energy research needs (in the period of analysis). Source: IEA reports and authors' 
assessment 

Description 
IEA report 
assessment 

Authors' 
assessment 

Atmospheric flow modeling Long-term Long-term 
Marine environment Long-term Long-term 
Floating offshore wind plants Long-term Long-term 
Blade control system Long-term Long-term 
Blade materials Long-term Long-term 
Advanced generator, superconductor, medium speed Long-term Long-term 
Offshore support, floating foundation Long-term Long-term 
Power plant control, optimization, reliability, lifetime Long-term Long-term 
Adv manufacturing, carbon fiber, segmented blades, automation, anti-
fatigue, recyclable Long-term Long-term 
Improve reliability, more lifetime for components, less temperature 
cycling Long-term Long-term 
Smart grid Long-term Long-term 
Turbine design tools for onshore and offshore Medium-term Long-term 
Blade sensor and control devices Medium-term Long-term 
Offshore installation and logistics, vessel Medium-term Long-term 
Transmission infrastructure, HVDC Medium-term Long-term 
Offshore transmission Medium-term Long-term 
Studies for flexible reserve, demand side response, storage integration Medium-term Long-term 
Power plant design and optimization Medium-term Long-term 
Noise reduction, or increased tip speed Medium-term Long-term 
Direct drive, drivetrain design Medium-term Long-term 
System design and scaling Medium-term Long-term 
Scaling, large turbines Medium-term Long-term 
Flexible rotor, large rotor Medium-term Long-term 
Siting Medium-term Short-term 
Power plant flow modeling Medium-term Short-term 
Wind forecast Medium-term Short-term 
Power production forecast Medium-term Short-term 
Different operating conditions, cold weather, tropical weather etc. Medium-term Short-term 
Power electronics, high efficiency Medium-term Short-term 
Light material and steel replacement for towers Medium-term Short-term 
Operational data, failure rate, repair time Medium-term Short-term 
O&M diagnostic, failure more, modeling damage on cracks, repairing 
techniques Medium-term Short-term 
Component and system testing facility Medium-term Short-term 
Building integrated small wind Medium-term Short-term 
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Distributed wind Medium-term Short-term 
Manufacturing of small wind turbines Medium-term Short-term 
Distributed wind, SCADA for small wind and smart grid integration Medium-term Short-term 
Resource assessment, wind atlas Short-term Short-term 
Characterizing icing, ice Short-term Short-term 
Remote sensing, lidar, sodar, radar Short-term Short-term 
Electricity market Short-term Short-term 
Grid code, compliance testing, voltage source convertor Short-term Short-term 
Voltage and frequency control systems to monitor and predict voltage 
dips Short-term Short-term 
Small turbine testing Short-term Short-term 
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Table A2: Topics identified in the IPC description and corresponding mapping to the temporal dimension of innovation. Note: 
patent sub-group codes are listed inside the parentheses next to the main-group codes 
 

Topics 
identified in the 
IPC description 

IPC codes Temporal 
dimension 
of 
innovation 

Offshore wind B63B-021 (50); B63B-035 (44); E02B-017 (00); E02D-027 (52); F03B-013 (10, 
12, 14, 26); F03D-013 (25); F16D-001 (06); H02G-001 (10) 

Long-term 

Blade and 
control system 

F01D-007 (00, 02); F01D-017 (00, 02, 06); F03B-015 (00, 06) Long-term 

Wind and energy 
storage 

F03D-009 (11, 12, 17, 18, 19) Long-term 

Testing 
components 

G01M-013 (02, 021, 028) Long-term 

Meteorology G01S-017 (95); G01W-001 (00, 02, 06, 10, 16) Long-term 

Wind and other 
technologies 
(hybrid) 

H02S-010 (12); H02S-040 (32) Long-term 

Forgings B21C-037 (29); B21D-001 (08); B21D-003 (16); B21D-039 (03); B21D-047 (00); 
B21K-023 (04); B21K-025 (00); B22C-009 (00); B22D-007 (00); B22D-019 (00, 
04); B22D-025 (02); B22F-003 (00); B24B-000 (00); B24B-009 (20); B24B-019 
(14, 26); B24B-027 (00); B24B-029 (00); B24B-041 (06); B24B-049 (00); B24B-
051 (00); B24B-055 (02); B24C-001 (10); B24D-005 (02); C21C-001 (10); C21D-
001 (06, 09, 10, 18, 20, 26, 28, 42); C21D-006 (00); C21D-007 (06); C21D-009 
(32, 40); C22C-037 (04); C22C-038 (00, 02, 04, 06, 18, 22, 24, 26, 28, 40, 42, 44, 
46, 48, 50, 60); C23C-008 (26, 32, 80); C23C-014 (00, 06, 08); C23F-013 (00, 02); 
C23F-015 (00) 

Short-term 

Bearings B21D-053 (10); F03B-011 (06); F03D-001 (00, 02, 06); F03D-003 (00, 02, 04); 
F04D-029 (04, 056); F16C-000 (00); F16C-003 (02, 08); F16C-011 (04); F16C-
013 (02, 04); F16C-017 (00, 02, 03, 04, 06, 08, 10, 12, 20, 24, 26); F16C-019 (00, 
02, 04, 06, 08, 10, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 49, 50, 52, 54, 
55, 56); F16C-021 (00); F16C-023 (00, 02, 04, 06, 08); F16C-025 (02, 04, 06, 08); 
F16C-027 (00, 04, 06); F16C-032 (00, 04, 06); F16C-033 (00, 02, 04, 06, 08, 10, 
12, 14, 20, 30, 32, 34, 36, 37, 372, 38, 40, 41, 42, 44, 46, 48, 49, 50, 51, 52, 54, 56, 
58, 60, 62, 64, 66, 72, 74, 76, 78, 80); F16C-035 (00, 02, 04, 06, 063, 067, 07, 073, 
077, 08); F16C-037 (00); F16C-039 (02, 04, 06); F16C-041 (00, 02, 04); F16C-043 
(00, 02, 04, 06) 

Short-term 

Installation, 
maintenance, or 
construction 

B25B-005 (14); B25B-011 (00, 02); B25B-021 (00); B25B-023 (14); B25B-027 
(00, 02, 06, 14); B25B-029 (02); B25J-005 (00); B25J-009 (16); B25J-011 (00); 
B25J-019 (02); B26D-001 (00, 06, 08); B26D-003 (00, 02, 10); B26D-007 (06, 
08); B27B-025 (00); B66B-000 (00); B66B-005 (00); B66B-007 (02); B66B-009 
(00, 02, 16, 187); B66B-011 (00, 02, 04, 06); B66C-000 (00); B66C-001 (00, 08, 
10, 12, 16, 18, 22, 24, 42, 44, 54, 62, 66); B66C-005 (02); B66C-013 (00, 04, 06, 
08, 16, 18, 46); B66C-017 (00, 04, 06); B66C-019 (00); B66C-023 (00, 02, 16, 18, 
20, 26, 28, 30, 32, 34, 36, 62, 72, 52); B66D-001 (00, 26, 36, 60); B66D-003 (00); 
B66F-003 (24, 35, 46); B66F-011 (00, 04); B66F-019 (00); E02B-017 (02); E02D-
000 (00); E02D-005 (22, 34, 54, 72, 74, 80); E02D-007 (00, 26); E02D-011 (00); 
E02D-013 (00, 04); E02D-023 (00); E02D-027 (00, 10, 12, 16, 32, 42, 44, 50); 
E02D-035 (00); E02D-037 (00); E02F-009 (12); E04B-001 (00, 04, 16, 18, 19, 21, 
24, 342, 343, 35, 38, 41, 58, 61, 62, 66, 92, 98); E04C-002 (04, 20); E04C-003 (00, 
08, 30); E04C-005 (06, 08, 12, 16); E04F-011 (022); E04F-021 (00); E04G-000 
(00); E04G-001 (00, 20, 36); E04G-003 (00, 24, 28, 30, 32); E04G-005 (00); 
E04G-011 (20); E04G-013 (02); E04G-021 (00, 02, 04, 12, 14, 16, 18, 24, 32); 

Short-term 
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E04G-023 (00); E04H-000 (00); E04H-001 (00, 12); E04H-003 (00); E04H-005 
(02, 04); E04H-009 (04, 14); E04H-014 (00); E05B-065 (00); E05D-005 (02); 
E06B-001 (00, 52, 60); E06B-003 (70); E06B-005 (00); E06C-007 (18); E06C-
009 (00, 02); E21B-033 (00, 13, 134); E21B-041 (00); F03D-009 (02, 10, 30); 
F03D-013 (00, 10, 35, 30, 20, 40); F03D-080 (50, 55); F16B-000 (00); F16B-001 
(00, 02); F16B-002 (00); F16B-004 (00); F16B-005 (00, 02); F16B-007 (00, 18, 
20); F16B-011 (00); F16B-019 (02); F16B-031 (02, 06); F16B-033 (00); F16B-035 
(00, 04, 06); F16B-037 (00, 14); F16B-039 (10); F16B-041 (00); F16B-043 (00); 
H02G-000 (00); H02G-001 (08); H02G-003 (00, 02, 04, 22, 30, 32, 38); H02G-
005 (00, 02, 06); H02G-007 (12); H02G-009 (00, 02, 06); H02G-011 (00, 02); 
H02G-013 (00); H02G-015 (007, 02); H02K-015 (00, 02, 03, 04, 06, 085, 10, 12, 
14, 16) 

Transport 
(except for 
offshore wind) 

B60P-003 (00, 022, 40, 41); B60P-007 (00, 06, 08, 12, 13, 135); B60T-008 (50); 
B60T-013 (10, 22, 66, 68); B60W-010 (04, 10); B61B-007 (00); B61B-012 (02); 
B61B-013 (00); B61D-000 (00); B61D-003 (14, 16); B62B-003 (04, 10); B62D-
021 (14); B62D-053 (00, 04); B63B-001 (04, 10, 12); B63B-003 (48, 56); B63B-
009 (00, 06); B63B-011 (00); B63B-015 (00); B63B-019 (08, 12, 16, 197); B63B-
021 (00, 56); B63B-022 (00, 02, 04, 18, 20); B63B-025 (00, 18, 28); B63B-027 (00, 
10, 12, 14, 16); B63B-029 (02); B63B-035 (00, 34); B63B-039 (00, 03, 06, 08); 
B63B-043 (06); B63B-059 (04); B63C-011 (04); B63H-000 (00); B63H-001 (00, 
06, 14, 20, 26, 28); B63H-003 (00, 06, 08, 10); B63H-005 (00, 125); B63H-007 
(00, 02); B63H-009 (02); B63H-011 (00); B63H-021 (17, 20); B63H-023 (12, 24); 
B63H-025 (00, 06, 38, 40, 42); B63J-003 (02, 04); B63J-099 (00) 

Short-term 

Tower E04H-012 (00, 02, 04, 06, 08, 10, 12, 14, 16, 18, 20, 22, 24, 28, 34) Short-term 

Sealing F01D-011 (00, 02, 04); F04D-029 (08); F16J-015 (00, 02, 06, 10, 16, 18, 32, 3204, 
3232, 3288, 34, 44, 447, 54) 

Short-term 

Safety F01D-019 (00); F01D-021 (00, 04, 12, 14, 20); H02H-001 (00, 04, 06); H02H-
003 (00, 02, 08, 087, 10, 16, 20, 22); H02H-005 (04); H02H-007 (00, 04, 06, 08, 
085, 09, 093, 10, 12, 122, 125, 18, 22, 24, 26, 30); H02H-009 (00, 02, 04, 06); 
H02H-011 (00) 

Short-term 

Nacelle F01D-025 (00, 02, 04, 06, 12, 14, 16, 24, 26, 28, 34, 36); F03B-011 (02); F03D-
011 (04); F03D-080 (30, 40); F04D-029 (40, 54, 56, 58, 60, 66, 68); F16M-001 
(00); F16M-005 (00); F16M-007 (00) 

Short-term 

Lubricant F01M-001 (02, 16); F01M-005 (00); F01M-011 (00, 04, 10); F16N-000 (00); 
F16N-001 (00); F16N-007 (00, 14, 20, 28, 32, 36, 38, 40); F16N-009 (02); F16N-
011 (00); F16N-013 (00, 02); F16N-017 (04); F16N-019 (00); F16N-021 (00); 
F16N-025 (00); F16N-029 (00, 02, 04); F16N-031 (00, 02); F16N-039 (00, 02, 04, 
06) 

Short-term 

Power converter 
and control 
system 

F03B-017 (00); F03D-007 (00, 02, 04, 06); F03D-080 (10, 20); F16P-003 (08); 
H02J-000 (00); H02J-001 (00, 08, 10, 12, 14); H02J-003 (00, 01, 02, 04, 06, 12, 
14, 16, 18, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50); H02J-004 (00); 
H02J-005 (00); H02J-007 (00, 02, 04, 10, 14, 32, 34, 35); H02J-009 (00, 02, 04, 
06, 08); H02J-011 (00); H02J-013 (00); H02J-015 (00); H02J-017 (00); H02M-007 
(483, 487, 49, 493, 537, 5387, 757, 797) 

Short-term 

Wind energy 
(general) 

F03D-000 (00); F03D-001 (04); F03D-011 (00); F03D-080 (00) Short-term 

Adapt to new 
conditions 

F03D-009 (00, 22) Short-term 

Measuring and 
testing 

F03D-017 (00); G01B-000 (00); G01B-003 (44); G01B-005 (00, 30); G01B-007 
(00, 02, 14, 16, 30); G01B-009 (02); G01B-011 (00, 02, 06, 14, 16, 24, 25, 26); 
G01B-015 (00, 02, 06); G01B-017 (02); G01B-021 (02, 08, 16, 22, 32); G01C-001 
(00); G01C-003 (00, 08); G01C-009 (00); G01C-019 (02); G01D-001 (14); 
G01D-003 (02, 08); G01D-005 (00, 12, 244, 26, 353); G01D-009 (00); G01D-
018 (00); G01D-021 (00, 02); G01F-001 (00); G01F-017 (00); G01F-023 (00, 26); 
G01F-025 (00); G01G-019 (14); G01H-001 (00, 06, 08, 12, 16); G01H-003 (00); 
G01H-009 (00); G01H-013 (00); G01H-017 (00); G01J-001 (04, 42); G01J-005 

Short-term 
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(00); G01K-001 (14); G01K-011 (32); G01K-013 (00, 08); G01L-001 (00, 04, 12, 
16, 18, 20, 22, 24, 25, 26); G01L-003 (00, 02, 10, 14, 24); G01L-005 (00, 12, 16, 
24); G01L-007 (00); G01L-009 (00); G01L-011 (02); G01L-025 (00); G01M-000 
(00); G01M-001 (00, 12, 16, 22, 28); G01M-003 (00, 26, 40); G01M-005 (00); 
G01M-007 (00, 02, 04, 06, 08); G01M-009 (00, 02, 06); G01M-011 (00, 08); 
G01M-013 (00, 04, 045); G01M-015 (00, 02, 12, 14); G01M-017 (007); G01M-
019 (00); G01M-099 (00); G01N-000 (00); G01N-001 (28); G01N-003 (00, 02, 
08, 12, 32, 34, 36); G01N-015 (06); G01N-017 (00, 02, 04); G01N-019 (02); 
G01N-021 (00, 27, 35, 3581, 47, 53, 55, 59, 64, 84, 88, 94, 95, 954); G01N-023 
(00, 04, 083, 201); G01N-025 (72); G01N-027 (00, 02, 22, 26, 60, 90); G01N-029 
(00, 04, 07, 11, 14, 22, 24, 26, 265, 44); G01N-033 (00, 20, 26, 28, 30, 32); G01P-
003 (00, 36, 44, 481, 487); G01P-005 (00, 02, 06, 14, 165, 20, 24, 26); G01P-013 
(00, 02, 04); G01P-015 (00, 18); G01P-021 (00, 02); G01R-000 (00); G01R-011 
(32, 56); G01R-013 (02); G01R-015 (18, 20); G01R-019 (00, 06, 10, 165, 25); 
G01R-021 (00, 06, 127, 133, 14); G01R-023 (00, 02, 16, 167, 20); G01R-025 (00); 
G01R-027 (00, 02, 08, 16); G01R-029 (00, 08); G01R-031 (00, 02, 08, 26, 28, 
327, 34, 36, 40, 42); G01R-033 (00, 02, 07, 12); G01S-001 (68); G01S-011 (02); 
G01S-013 (00, 08, 87, 88, 93, 95); G01S-017 (58, 88, 89) 

Cooling or 
heating 

F25D-021 (14) Short-term 

Program control 
and computing 
tools 

G06F-000 (00); G06F-001 (12, 26, 28, 30, 32); G06F-003 (00, 01); G06F-007 
(00); G06F-009 (00, 44, 445); G06F-011 (00, 20, 30); G06F-015 (00, 16, 173, 177, 
18); G06F-017 (00, 10, 18, 30, 40, 50, 60); G06F-019 (00); G06F-021 (44); 
G06G-007 (48, 54); G06K-009 (00); G06N-003 (08); G06N-020 (00); G06N-099 
(00); G06Q-010 (00, 04, 06); G06Q-030 (00); G06Q-050 (00, 04, 06, 10); G06T-
001 (00); G06T-007 (00, 70); G06T-011 (20) 

Short-term 

Cables H01B-005 (02); H01B-007 (00, 02, 04); H01B-009 (00); H01B-011 (00) Short-term 

Power 
electronics 

H01F-000 (00); H01F-003 (04); H01F-005 (04); H01F-006 (06); H01F-007 (02, 
06); H01F-013 (00); H01F-027 (00, 02, 06, 08, 10, 12, 16, 24, 25, 26, 28, 30, 32, 
38, 40); H01F-029 (04); H01F-030 (00, 12); H01F-037 (00); H01F-038 (00, 14, 
18); H01F-041 (00, 02, 08, 12); H01G-004 (38); H01H-001 (00); H01H-009 (54); 
H01H-019 (18); H01H-033 (59); H01H-047 (00); H01H-071 (10); H01H-083 
(00); H01L-021 (00, 48, 67); H01L-023 (34, 367, 427, 473, 62); H01L-025 (07, 11, 
18); H01L-031 (042); H01L-041 (09, 113); H01M-002 (10); H01M-004 (58); 
H01M-008 (00, 06, 18); H01M-010 (42, 44, 46, 48, 50); H01Q-001 (22, 28, 40, 
42, 50); H01Q-003 (02); H01Q-015 (00, 14); H01Q-017 (00); H01R-000 (00); 
H01R-011 (00, 01); H01R-013 (24, 533); H01R-039 (00, 08, 18, 24, 38, 46, 58, 
64); H01R-043 (00, 10, 14); H01T-001 (22); H01T-004 (00, 02, 08); H01T-019 
(00, 04); H02B-001 (00, 04, 20, 24, 28, 30, 32, 56); H02B-005 (00); H02B-007 
(00); H02B-013 (00, 02, 025); H02M-000 (00); H02M-001 (00, 08, 084, 088, 10, 
12, 14, 15, 32, 34, 36, 42, 44); H02M-003 (00, 02, 04, 135, 155, 157, 158, 24, 28, 
335, 337); H02M-005 (00, 04, 10, 22, 257, 293, 297, 40, 42, 44, 45, 451, 458); 
H02M-007 (00, 02, 04, 06, 10, 12, 162, 19, 21, 217, 219, 42, 44, 48, 497, 501, 53, 
538, 539, 5395, 66, 68, 72, 81); H02M-054 (58); H03D-009 (00); H03K-000 (00); 
H03K-007 (08); H03K-017 (04, 12, 16, 56) 

Short-term 

Gearbox B21D-053 (28); F01D-015 (12); F03D-015 (00, 10, 20); F03D-080 (70); F16D-
001 (00, 02, 033, 04, 05, 076, 08, 09, 091, 095, 10, 108); F16D-003 (00, 02, 18, 20, 
58); F16D-007 (00, 02); F16D-009 (06); F16D-011 (00, 10); F16D-031 (02); 
F16D-041 (06, 064, 067, 07); F16D-048 (06); F16D-055 (00, 02, 22, 224, 226); 
F16D-063 (00); F16D-065 (00, 02, 12, 14, 16, 18, 20, 38); F16D-066 (00, 02); 
F16D-069 (00, 02); F16D-121 (00, 02, 04, 24); F16D-125 (02); F16H-000 (00); 
F16H-001 (00, 02, 04, 06, 08, 10, 12, 16, 20, 22, 24, 26, 28, 32, 36, 46, 48); F16H-
003 (08, 44, 54, 62, 64, 70, 72); F16H-007 (00, 02); F16H-009 (00); F16H-013 
(08); F16H-019 (04); F16H-025 (02); F16H-035 (00, 02, 06, 08, 10, 18); F16H-
037 (02, 04, 06, 08); F16H-039 (02, 20); F16H-047 (02, 04, 06, 08); F16H-048 
(06, 11); F16H-053 (02); F16H-055 (06, 08, 12, 17, 18); F16H-057 (00, 01, 02, 

Not 
identified 
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021, 022, 023, 025, 027, 028, 029, 031, 033, 038, 08, 10, 12, 04); F16H-059 (00); 
F16H-061 (00, 4017, 4026, 4035, 4043, 4148, 4165, 4183, 42, 421, 423, 431, 433, 
46, 468, 475) 

Blade B21D-053 (78); B21K-003 (04); B29L-031 (08); B64C-011 (04, 06, 16, 24, 26, 
28); B64C-027 (00, 46); F01D-000 (00); F01D-001 (06, 18); F01D-005 (00, 02, 
08, 10, 12, 14, 16, 18, 22, 26, 28, 30, 32); F03B-003 (12, 14); F03D-003 (06); 
F03D-011 (02); F04D-029 (18, 26, 38, 34, 36) 

Not 
identified 

Material B29C-000 (00); B29C-031 (00, 04, 08); B29C-033 (00, 02, 04, 10, 12, 14, 16, 20, 
22, 26, 28, 30, 34, 38, 40, 42, 44, 50, 56, 68, 76); B29C-035 (00, 02, 04, 08, 16); 
B29C-037 (00); B29C-039 (00, 02, 10, 12, 18, 24, 26, 42, 44); B29C-041 (00, 04, 
20, 38, 42); B29C-043 (00, 10, 12, 18, 20, 22, 32, 34, 36, 52, 56, 58); B29C-044 
(00, 04, 12, 18, 34, 44, 50, 56); B29C-045 (00, 02, 14, 26, 42); B29C-047 (00, 02, 
76); B29C-051 (00, 10, 14, 16); B29C-053 (56, 58, 60, 62, 68, 80, 82); B29C-059 
(02); B29C-063 (00, 04, 22); B29C-064 (106); B29C-065 (00, 02, 08, 10, 14, 16, 
34, 36, 48, 50, 52, 54, 56, 62, 70, 72, 78, 80); B29C-067 (00, 20, 24); B29C-069 
(00); B29C-070 (00, 02, 04, 06, 08, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 34, 
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 70, 72, 74, 76, 78, 84, 86, 88); B29C-
071 (00); B29C-073 (00, 02, 04, 10, 12, 26, 30, 32, 34); B29D-000 (00); B29D-022 
(00); B29D-023 (00); B29D-024 (00); B29D-031 (00); B29D-099 (00); B29K-023 
(00); B29K-025 (00); B29K-027 (18); B29K-031 (00); B29K-063 (00); B29K-067 
(00); B29K-075 (00); B29K-101 (10, 12); B29K-105 (06, 00, 04, 06, 08, 10, 12, 
20, 24); B29K-307 (00, 04); B29K-309 (08); B29K-311 (14); B29K-705 (00); 
B29K-707 (04); B29K-709 (08); B29L-000 (00); B29L-009 (00); B29L-022 (00); 
B29L-031 (00, 30); B29L-31 (08, 30); B32B-000 (00); B32B-001 (00, 04, 08); 
B32B-003 (00, 02, 06, 08, 10, 14, 16, 20, 26, 28, 30); B32B-005 (00, 02, 04, 06, 08, 
10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32); B32B-007 (00, 02, 04, 08, 12); B32B-009 
(00, 04); B32B-015 (01, 04, 08, 14); B32B-017 (00, 02, 04, 06, 10); B32B-021 (04, 
14); B32B-025 (08, 10, 14); B32B-027 (00, 02, 04, 06, 08, 12, 20, 28, 30, 32, 36, 
38, 40); B32B-033 (00); B32B-037 (00, 02, 06, 10, 12, 14, 15, 18, 24, 26); B32B-
038 (00, 04, 08, 10, 18); B32B-041 (00); B32B-043 (00); B33Y-010 (00); B33Y-
080 (00); C02F-001 (44); C08F-002 (34); C08F-010 (00); C08F-210 (16); C08G-
018 (32, 42, 48, 66); C08G-059 (40, 50, 56); C08J-003 (24); C08J-005 (00, 04, 06, 
10, 12, 18, 24); C08J-007 (04, 12); C08J-009 (00, 12, 14, 36); C08K-003 (04, 08, 
22); C08K-007 (02, 06, 14, 22, 28); C08L-027 (18); C08L-033 (06); C08L-063 
(00); C08L-067 (00); C08L-075 (04); C08L-101 (00); C09D-007 (12); C09D-163 
(00); C09D-175 (04); C09J-005 (00); C09J-011 (04); C09J-175 (04); C09J-201 
(00); C10M-101 (02); C10M-105 (04, 18, 32); C10M-107 (02); C10M-115 (08); 
C10M-117 (00); C10M-125 (22, 24); C10M-129 (68); C10M-137 (04, 10); C10M-
169 (00, 02, 04); C10N-010 (02, 04); C10N-020 (00, 02); C10N-030 (00, 08); 
C10N-040 (02, 04); C10N-050 (10) 

Not 
identified 

Generator and 
control system 

F01D-009 (02); H02N-006 (00); H02P-000 (00); H02P-001 (54); H02P-003 (00, 
08, 12, 14, 18, 22, 24); H02P-004 (00); H02P-005 (00, 46); H02P-006 (00, 10, 18); 
H02P-007 (00, 06, 28, 298, 36, 635); H02P-009 (00, 02, 04, 06, 08, 10, 12, 14, 26, 
30, 36, 38, 40, 42, 44, 46, 48); H02P-011 (00, 06); H02P-013 (00, 06); H02P-021 
(00, 05, 06, 12, 13, 14, 22, 24); H02P-023 (00, 04, 14, 26); H02P-025 (02, 022, 20, 
22); H02P-027 (00, 04, 05, 06, 08, 14, 16); H02P-029 (00, 02, 024, 032, 50); 
H02P-101 (15); H02P-103 (20) 

Not 
identified 

Generator F01D-009 (04); F01D-015 (10); F01P-001 (00, 06); F01P-003 (00, 18); F01P-007 
(06); F02B-063 (04); F03D-009 (25, 28); F03D-080 (60); H02K-000 (00); H02K-
001 (00, 02, 04, 06, 08, 12, 14, 16, 17, 18, 20, 22, 24, 26, 27, 28, 30, 32); H02K-
003 (00, 02, 04, 12, 14, 16, 18, 20, 24, 28, 30, 32, 34, 38, 40, 46, 48, 487, 50, 51, 
52); H02K-005 (00, 04, 08, 10, 15, 16, 167, 173, 18, 20, 22, 24); H02K-007 (00, 
02, 06, 08, 09, 10, 102, 104, 106, 108, 116, 12, 14, 18, 20); H02K-009 (00, 02, 04, 
06, 08, 10, 12, 14, 16, 18, 19, 197, 20, 22, 26, 28); H02K-011 (00, 01, 02, 04, 042, 
049, 20, 25, 30, 33, 40); H02K-013 (00, 02); H02K-015 (08, 09); H02K-016 (00, 
02, 04); H02K-017 (00, 16, 30, 42, 44); H02K-019 (00, 02, 10, 12, 16, 22, 24, 26, 
28, 34, 36, 38); H02K-021 (00, 02, 04, 12, 14, 16, 22, 24, 40, 48); H02K-023 (02, 

Not 
identified 
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60); H02K-029 (00, 03); H02K-037 (20); H02K-041 (02, 03); H02K-049 (10); 
H02K-051 (00); H02K-055 (00, 02, 04); H02N-001 (12) 

Control system F02C-009 (00, 28); F02D-001 (06); F02D-009 (00); F02D-028 (00); F02D-029 
(06); F02D-041 (00); G05B-000 (00); G05B-009 (02, 03); G05B-011 (01, 36); 
G05B-013 (00, 02, 04); G05B-015 (00, 02); G05B-017 (02); G05B-019 (04, 042, 
048, 05, 18, 402, 406, 414, 418); G05B-021 (02); G05B-023 (00, 02); G05D-001 
(00); G05D-003 (00, 12); G05D-005 (00); G05D-007 (00, 06); G05D-009 (00); 
G05D-011 (00); G05D-017 (00, 02); G05D-019 (00, 02); G05D-022 (00, 02); 
G05D-023 (00, 19); G05F-001 (10, 12, 455, 618, 66, 67, 70); G05F-003 (04); 
G05F-005 (00, 04); G08B-001 (08); G08B-005 (00, 22, 38); G08B-021 (00, 18); 
G08B-023 (00); G08C-015 (00); G08C-017 (00, 02); G08C-019 (00); G08G-005 
(00, 04) 

Not 
identified 
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Table A3: Keyword search related to short-term and long-term innovation. Note that word stems have been trimmed 
as part of the data cleaning process. 
Keywords Temporal 

dimension of 
innovation 

ice, freez, frost, froz, ic, deic, lidar, sodar, sonar, radar, remot sens, remote sens, resolut, 
resource assess, atlas, wind tunnel, windtunnel, model, protocol, cost, econom, lcoe, cheap, 
inexpens, price, discount, budget, affordabl, instal, crane, truck, road, vehic, lorr, ladd, 
pulley, transport, logist, construct, assembl, lift, mount, arrang, gondola, repair, maint, mttr, 
mttf, dirt, debri, hardwareinloop, hardware in loop, cabl, wire, cord, enclosure, nacell, hous, 
casing, cabin, main fram, hub, brack, shell, plate, cast, molt metal, brack, flange, bolt, screw, 
lock, weather, cyclon, typhoon, storm, seism, rain, hail, snow, earthquake, earth quake, 
lightn, thunder, cold climat, warm climat, tropic, gust, low wind, data manag, data collect, 
manag* data, collect data, database, data base, data, processor, digit, analysis, analyze, 
condition, predict, monitor, diagno, failuremod, fialure mode, failure mode, statis, crack, 
defect, wrinkl, crack, dry glass, dri glass, fractur, flaw, deform, lubric, oil, grease, emulsif, 
foam, viscosity, surfac ten, surface ten, seal, cool, outlet, inlet, hole, switch, power conver, 
filter, inductor capacit, circuit, break, rectifi, inverter, thyrist, transist, transform, converter, 
fabricat, cost, bear, safety, fire, biodegradabl, bio degradabl, eco friendly, ecofriend, recycl, 
flax, bamboo, coir, timber, reus 

Short-term 

meteorolog, climatol, complex terrain, complex flow model, offshor, off shor, sea, marin, 
harbour, deepwater, float, water depth, coastal, buoy, shore, hybrid tower, tall tower, light 
material, lt blade, large blade, larg blade, light weigh, stiff, smart blade, load shed, load 
control, thick airfoil, thick air foil, activ flow, control surf, vortex, flexibl blade, flexibl rotor, 
adapt rotor, adapt blade, rotor control, advanc blade, advanc rotor, activ blade, rotor blade, 
turbine blade, turbin blade, gearbox, blade control, blade compress, mult blade, multi blade, 
multi rotor, mult rotor, bladeless, blade less, blade free, curv tip, glass fi, fiber glass, fibre 
glass, glassfib, fiberglass, fibreglass, pmc, thermoplast, thermo plast, aramid, aromatic 
polyamide, carbon fib, fiber woven, woven fiber, crystallin, nano, fiber carbon, fibre carbon, 
polyacrylonitril, acrylonitril, carbon nano, cnt, squirr, scig, dfig, doubli fed induct, doubl fed 
induct, direct current generator, dcgenerat, dc generat, super conduc, superconduc, 
synchron, temperaturcycl, temperatur cycl, temperature cycl, lifetime, life time, prepreg, pre 
preg, pre impreg, preimpreg, resin infus, epoxy infus, vaccuum infus, vacuum infus, mold, 
mould, addit manufact, additiv manufact, virtual grid, virtu* grid, smart, intellig, hvdc, high 
voltag direct current, high voltage direct current, high voltag dc, high voltage dc, energ* 
storag, batteri, fly wheel, flywheel, supercap, fuel cell, fuelcell, lithi, ultracap, grid storag, 
power storag, monopil, mono pil, direct driv, directdriv, neodym, boron, ferr, rare earth, 
rareearth, lanthanid, grid stab, power qual, voltage stab, voltag stab, frequency stab, freq 
stab, frequen stab, harmonic dist, harmon dist, brownout, brown out, power qual, low 
harmon, power rat, frequency control, freq control, frequen control, grid control, phase 
transfor, network voltag, voltage network, voltag network, control sys, system control, 
optim, reliab, drivetrain, drive train, direct drive, network, windfarm, powerpl, hydrogen, 
landscap, ornament, aesth, beaut, flor, faun, bird, specie, anima, bat, ecolog, fatal, scare, 
grass, wild, fish, organism, fright, foliage, nois, tip speed, loud, torque control, control 
torque, pitch control, control pitch, yaw control, control yaw, small turbin, rooftop, roof 
top, residen, grid, urban, integrat op, distribut gen, scada 

Long-term 

 
Table A4: Results from negative binomial regressions for all suppliers 

 Long-term patenting activity Short-term patenting activity 

  
(1) 

All suppliers 
before 2012 

(2) 
All suppliers after 

2012 

(1) 
All suppliers 
before 2012 

(2) 
All suppliers after 

2012 
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Main effects     
Intern. relationship -0.239 0.115 -0.103 0.152* 
  (0.552) (0.226) (0.573) (0.093) 
  [0.402] [0.095] [0.183] [0.091] 
Local relationship 0.422*** 0.291*** 0.266* 0.347*** 
  (0.005) (0.001) (0.094) 0.000  
  [0.150] [0.090] [0.159] [0.090] 
Controls     
Specialized 1.152* 1.302*** 1.330** 1.372** 
  (0.080) (0.002) (0.017) (0.018) 
  [0.657] [0.429] [0.559] [0.581] 
Component complexity 1.174*** 0.321 0.212 0.801*** 
  (0.005) (0.377) (0.628) (0.005) 
  [0.414] [0.364] [0.437] [0.285] 
Pre-sample patents (range) 1.946*** 1.161*** 1.559*** 1.138*** 
  0.000  0.000  0.000  0.000  
  [0.290] [0.208] [0.299] [0.168] 
Size (range) 1.845*** 0.810** 0.680 0.484 
  (0.001) (0.034) (0.193) (0.160) 
  [0.581] [0.382] [0.522] [0.344] 
Age (range) -1.490** 0.029 0.314 0.895*** 
  (0.031) (0.925) (0.573) (0.003) 
  [0.693] [0.304] [0.558] [0.298] 
OEM outsource -0.156 0.848 0.284 0.930 
  (0.844) (0.155) (0.741) (0.222) 
  [0.791] [0.597] [0.861] [0.761] 
Cum. installed capacity 0.000*** -0.000*** 0.000*** -0.000*** 
  (0.007) (0.003) 0.000  (0.001) 
  [0.000] [0.000] [0.000] [0.000] 
     
lnalpha 0.675** 1.456*** 1.374*** 1.410*** 
  (0.027) 0.000  0.000  0.000  
  [0.306] [0.211] [0.221] [0.180] 
Constant -5.499*** -3.730*** -3.614*** -3.295*** 
  0.000  0.000  (0.003) 0.000  
  [1.237] [0.740] [1.198] [0.926] 
Observations 509 1,358 509 1358 
OEM Strategy FE YES YES YES YES 
Country FE YES YES YES YES 
Year FE YES YES YES YES 
Pseudo R2 0.27 0.168 0.147 0.147 
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Table A5: Sensitivity analysis using innovation radicalness 

  Long-term patenting activity Short-term patenting activity  

  

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

Main effects         
Intern. relationship -1.097** 0.450** -0.934*** 0.307 -0.499 0.397* -0.076 0.552** 
  (0.024) (0.011) (0.005) (0.138) (0.424) (0.057) (0.723) (0.013) 
  [0.487] [0.176] [0.333] [0.207] [0.625] [0.208] [0.215] [0.223] 
Local relationship 0.723*** 0.149 -0.292 -0.145 0.570*** 0.327** 0.168 0.321 
  (0.001) (0.226) (0.482) (0.658) (0.001) (0.030) (0.656) (0.210) 
  [0.220] [0.123] [0.416] [0.327] [0.175] [0.150] [0.377] [0.256] 
Controls          
Specialized 2.512*** 1.480** 1.163 -0.944 0.922 1.933*** 1.183 -0.302 
  (0.007) (0.040) (0.182) (0.112) (0.260) (0.003) (0.140) (0.429) 
  [0.929] [0.720] [0.870] [0.593] [0.819] [0.662] [0.802] [0.381] 
Component complexity 0.991* 0.998** -0.947 0.207 0.612 1.288*** -0.826 0.136 
  (0.050) (0.040) (0.250) (0.686) (0.194) (0.005) (0.291) (0.792) 
  [0.506] [0.485] [0.823] [0.511] [0.472] [0.454] [0.782] [0.515] 
Pre-sample patents (range) 2.604*** 1.010*** 1.511*** 0.690*** 1.598*** 1.061*** 1.535*** 1.030*** 
  0.000  (0.001) (0.003) (0.001) 0.000  0.000  (0.003) 0.000  
  [0.452] [0.301] [0.504] [0.214] [0.346] [0.261] [0.516] [0.241] 
Size (range) -0.287 1.096** 16.155*** 0.603 -0.131 0.425 1.329 0.395 
  (0.725) (0.016) 0.000  (0.304) (0.867) (0.396) (0.152) (0.411) 
  [0.815] [0.453] [0.673] [0.587] [0.778] [0.501] [0.927] [0.480] 
Age (range) -1.001 0.410 0.081 0.294 -0.327 0.628* 1.445 0.555 
  (0.162) (0.278) (0.948) (0.571) (0.704) (0.079) (0.132) (0.346) 
  [0.717] [0.378] [1.243] [0.518] [0.860] [0.357] [0.958] [0.589] 
OEM outsource 2.033* 1.668  -2.671** 1.140 1.939** -3.738*** -0.695 
  (0.072) (0.206)  (0.043) (0.375) (0.041) 0.000  (0.581) 
  [1.129] [1.320]  [1.320] [1.285] [0.950] [0.782] [1.261] 
Cum. installed capacity 0.000 -0.000*** 0.000 0.000 0.000*** -0.000*** 0.000 0.000 
  (0.201) 0.000  (0.775) (0.160) (0.004) 0.000  (0.446) (0.395) 
  [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
         
lnalpha 0.892** 0.792 0.824 1.692*** 0.964*** 1.013*** 1.279*** 1.345*** 
  (0.012) (0.101) (0.184) 0.000  (0.008) (0.002) 0.000  0.000  
  [0.354] [0.483] [0.620] [0.410] [0.364] [0.335] [0.297] [0.198] 
Constant -6.779*** -4.886*** -16.621*** -1.540 -3.907*** -5.868*** 0.335 -3.045* 
  0.000  0.000  0.000  (0.302) (0.006) 0.000  (0.818) (0.088) 
  [1.724] [1.353] [1.603] [1.492] [1.423] [1.315] [1.456] [1.785] 
Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.222 0.26 0.233 0.0776 0.162 0.199 0.131 0.0804 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A6: Sensitivity analysis using logit regressions  

  Long-term patenting activity Short-term patenting activity  

  

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

Main effects         
Intern. relationship 0.025 0.625*** 0.349 0.569** 1.565* 0.640*** -0.258 0.370** 
  (0.987) (0.005) (0.527) (0.015) (0.087) (0.006) (0.302) (0.048) 
  [1.552] [0.221] [0.551] [0.235] [0.915] [0.231] [0.250] [0.188] 
Local relationship 0.548*** 0.267** -0.645 0.334 0.450** 0.666*** 0.076 0.333 
  (0.009) (0.039) (0.225) (0.146) (0.023) (0.001) (0.851) (0.117) 
  [0.210] [0.129] [0.532] [0.230] [0.198] [0.199] [0.405] [0.213] 
Controls          
Specialized 2.111** 2.097*** -0.122 0.215 0.763 1.447** 1.332* 0.685 
  (0.011) (0.002) (0.920) (0.696) (0.361) (0.040) (0.069) (0.168) 
  [0.830] [0.683] [1.223] [0.550] [0.835] [0.704] [0.733] [0.496] 
Component complexity 1.194** 0.285 -0.518 -0.553 -0.234 1.157** -0.198 -0.390 
  (0.043) (0.627) (0.689) (0.330) (0.630) (0.033) (0.798) (0.476) 
  [0.590] [0.586] [1.294] [0.568] [0.487] [0.543] [0.775] [0.548] 
Pre-sample patents (range) 1.931*** 0.934** 3.182*** 1.448*** 1.977*** 1.401*** 1.568*** 1.317*** 
  0.000  (0.024) (0.008) 0.000  0.000  (0.001) (0.003) 0.000  
  [0.553] [0.415] [1.209] [0.286] [0.530] [0.411] [0.524] [0.258] 
Size (range) 2.151** 1.897**  0.899 0.220 0.531 1.143 0.884* 
  (0.012) (0.025)  (0.132) (0.735) (0.365) (0.167) (0.075) 
  [0.860] [0.848]  [0.596] [0.651] [0.586] [0.827] [0.496] 
Age (range) -1.502* -0.058 0.948 0.078 -0.916 0.176 0.141 -0.142 
  (0.096) (0.908) (0.739) (0.894) (0.385) (0.732) (0.905) (0.780) 
  [0.903] [0.503] [2.841] [0.587] [1.055] [0.515] [1.177] [0.508] 
OEM outsource 1.136 2.078  0.605 1.906 0.414  1.220* 
  (0.406) (0.288)  (0.418) (0.241) (0.718)  (0.096) 
  [1.367] [1.957]  [0.747] [1.624] [1.144]  [0.733] 
Cum. installed capacity 0.000 -0.000** 0.000 0.000 0.000 -0.000* 0.000 0.000 
  (0.244) (0.013) (0.993) (0.310) (0.385) (0.066) (0.137) (0.986) 
  [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
         
Constant -7.898*** -6.969*** -5.089 -7.407*** -6.667*** -6.123*** -1.589 -5.005*** 
  (0.002) 0.000  (0.123) 0.000  (0.004) 0.000  (0.287) 0.000  
  [2.513] [1.822] [3.296] [1.818] [2.313] [1.398] [1.493] [1.309] 
Observations 237 534 118 424 237 534 148 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.555 0.41 0.436 0.3 0.446 0.476 0.196 0.234 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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Table A7: Sensitivity analysis using the percentage of international relationships to the sum of relationships  

  Long-term patenting activity Short-term patenting activity  

  

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

(1) 
European 
suppliers 
before 
2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 
2012 

(4) 
Chinese 
suppliers 
after 2012 

Main effects         
International percentage  -5.469*** -0.994 -1.198 1.454 -6.511*** -3.983*** -0.705 1.497 
  (0.007) (0.192) (0.546) (0.408) (0.006) (0.001) (0.313) (0.275) 
  [2.029] [0.761] [1.985] [1.757] [2.350] [1.246] [0.700] [1.371] 
Controls          
Specialized 1.494* 2.120*** 0.338 0.094 1.433** 1.760** 1.321* 0.185 
  (0.092) 0.000  (0.867) (0.859) (0.041) (0.011) (0.075) (0.608) 
  [0.888] [0.541] [2.022] [0.528] [0.701] [0.691] [0.742] [0.362] 
Component complexity 0.967** 0.633 0.101 0.305 0.003 1.209*** -1.093 -0.149 
  (0.021) (0.268) (0.950) (0.597) (0.995) (0.007) (0.102) (0.727) 
  [0.420] [0.572] [1.610] [0.576] [0.500] [0.449] [0.669] [0.427] 
Pre-sample patents (range) 2.111*** 1.419*** 2.733*** 1.287*** 2.238*** 1.625*** 1.193*** 1.103*** 
  0.000  0.000  (0.001) 0.000  0.000  0.000  (0.003) 0.000  
  [0.369] [0.369] [0.818] [0.310] [0.343] [0.258] [0.395] [0.231] 
Size (range) 1.104 1.882*** 17.554*** 0.447 -1.401* 0.196 1.407** 0.725 
  (0.131) (0.004) 0.000  (0.347) (0.065) (0.729) (0.049) (0.147) 
  [0.731] [0.651] [1.134] [0.475] [0.761] [0.566] [0.716] [0.500] 
Age (range) -2.004*** -0.370 0.581 0.100 0.216 0.400 1.105 0.546 
  (0.005) (0.423) (0.859) (0.893) (0.754) (0.328) (0.210) (0.336) 
  [0.711] [0.462] [3.261] [0.743] [0.690] [0.409] [0.880] [0.568] 
OEM outsource -0.822 2.721* -4.769*** -0.951 1.439 2.102** -3.746*** -1.560 
  (0.459) (0.067) 0.000  (0.292) (0.291) (0.019) 0.000  (0.137) 
  [1.110] [1.485] [0.931] [0.903] [1.361] [0.896] [0.579] [1.049] 
Cum. installed capacity -5.469*** -0.994 0.000 0.000 0.000 -0.000*** 0.000 0.000 
  (0.007) (0.192) (0.830) (0.288) (0.106) 0.000  (0.413) (0.451) 
  [2.029] [0.761] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
          
 0.815*** 1.253*** -0.063 1.465*** 1.130*** 1.258*** 1.261*** 1.421*** 
lnalpha (0.004) (0.001) (0.971) 0.000  (0.001) 0.000  0.000  0.000  
  [0.284] [0.385] [1.706] [0.283] [0.340] [0.343] [0.317] [0.199] 
  0.219 -3.737*** -16.862*** -3.342 -1.359 -2.358** 1.085 -1.306 
Constant (0.887) (0.002) (0.001) (0.105) (0.546) (0.020) (0.408) (0.448) 
  [1.534] [1.193] [5.284] [2.059] [2.252] [1.010] [1.310] [1.720] 
Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.225 0.205 0.377 0.124 0.165 0.184 0.123 0.0629 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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TABLE A8: Sensitivity analysis including the percentage of Chinese patents as control 
  Long-term patenting activity Short-term patenting activity  

  

(1) 
European 
suppliers 
before 2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 2012 

(4) 
Chinese 
suppliers 
after 2012 

(1) 
European 
suppliers 
before 2012 

(2) 
European 
suppliers 
after 2012 

(3) 
Chinese 
suppliers 
before 2012 

(4) 
Chinese 
suppliers 
after 2012 

Main effects         
Intern. relationship -0.676 0.451** 0.125 0.256*** -0.612 0.167 -0.117 0.066 
  (0.176) (0.015) (0.570) (0.001) (0.110) (0.279) (0.570) (0.529) 
  [0.500] [0.185] [0.220] [0.076] [0.383] [0.155] [0.206] [0.105] 
Local relationship 0.509*** 0.138 -0.503 0.272** 0.456** 0.311** 0.235 0.135 
  0.000  (0.271) (0.330) (0.040) (0.032) (0.025) (0.545) (0.433) 
  [0.117] [0.126] [0.516] [0.133] [0.212] [0.139] [0.388] [0.173] 
Controls         
Specialized 0.958 1.777*** 0.616 -0.540** 0.913 0.775* 1.243 -0.137 
  (0.188) 0.000  (0.663) (0.038) (0.203) (0.068) (0.110) (0.573) 
  [0.728] [0.462] [1.414] [0.260] [0.718] [0.425] [0.777] [0.244] 
Component complexity 1.066** 0.803* -0.119 -0.400 0.271 1.051*** -1.002 -0.074 
  (0.014) (0.054) (0.921) (0.240) (0.584) (0.006) (0.164) (0.757) 
  [0.432] [0.418] [1.192] [0.340] [0.494] [0.379] [0.720] [0.240] 
Pre-sample patents (range) 1.959*** 0.930*** 2.777*** 0.245 1.924*** 1.444*** 1.232*** 0.097 
  0.000  (0.009) (0.005) (0.150) 0.000  0.000  (0.005) (0.627) 
  [0.329] [0.358] [0.985] [0.170] [0.330] [0.296] [0.438] [0.201] 
Size (range) 2.072*** 2.117*** 16.163*** -0.521 -0.831 0.433 1.371 0.262 
  (0.010) 0.000  0.000  (0.122) (0.219) (0.381) (0.123) (0.305) 
  [0.800] [0.540] [0.689] [0.337] [0.676] [0.494] [0.889] [0.255] 
Age (range) -1.384* 0.415 0.886 -0.608*** 0.638 0.848** 1.257 -0.048 
  (0.052) (0.366) (0.716) (0.004) (0.341) (0.039) (0.174) (0.900) 
  [0.711] [0.459] [2.433] [0.212] [0.670] [0.411] [0.925] [0.378] 
OEM outsource -0.080 1.881 -5.169*** -1.161*** 2.736** 2.350 -3.654*** -1.180 
  (0.941) (0.363) (0.001) (0.010) (0.029) (0.348) 0.000  (0.163) 
  [1.086] [2.068] [1.605] [0.450] [1.250] [2.506] [0.722] [0.846] 
Cum. installed capacity 0.000*** -0.000*** 0.000 0.000 0.000* -0.000*** 0.000 0.000 
  (0.008) (0.001) (0.881) (0.286) (0.059) 0.000  (0.539) (0.185) 
  [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
 4.956*** 5.240***  6.245***     
% long-term Chin. patents (0.007) 0.000   0.000      
 [1.827] [1.256]  [1.017]     
     8.397** 8.525***  20.633*** 
% short-term Chin. patents     (0.016) 0.000   0.000  
     [3.473] [2.061]  [0.251] 
         
 0.606* 0.755*** 0.077 -1.419*** 1.057*** 0.615*** 1.272*** -0.645*** 
lnalpha (0.051) (0.003) (0.937) 0.000  (0.001) (0.004) 0.000  0.000  
  [0.310] [0.250] [0.964] [0.229] [0.308] [0.212] [0.309] [0.166] 
  -4.522*** -6.361*** -15.842*** -4.757*** -6.128*** -6.213*** 0.511 -19.247*** 
Constant (0.001) 0.000  0.000  0.000  0.000  (0.009) (0.722) 0.000  
  [1.329] [1.612] [2.765] [1.346] [1.338] [2.370] [1.439] [1.077] 
          
Observations 237 534 150 457 237 534 150 457 
OEM Strategy FE YES YES YES YES YES YES YES YES 
Pseudo R2 0.264 0.28 0.382 0.503 0.177 0.271 0.122 0.396 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; firm-clustered standard error in brackets. 
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TABLE A9: Results for 2SLS IV regression (instrument: Number of trade agreements)  
   
 Long-term patenting activity Short-term patenting activity 
 European suppliers 

 before 2012 
European suppliers 

 after 2012 
European 
suppliers 
 before 2012 

European 
suppliers 
 after 2012 

Main effect     
Intern. relationship 6.128 3.438*** 1.817 1.763** 
  (0.418) (0.000)  (0.643) (0.018) 
  [7.560] [0.786] [3.923] [0.748] 
Local relationship -0.730 -0.352 0.821 0.293 
 (0.811) (0.164) (0.604) (0.223) 
 [3.048] [0.253] [1.582] [0.241] 
Constant 0.016 -2.150*** -0.519 -1.113** 

 (0.990) (0.000)  (0.445) (0.029) 
 [1.307] [0.535] [0.678] [0.509] 
Observations 237 534 237 534 
Durbin (score) chi2(1) 0.756 (p = 0.385) 22.675 (p = 0.000) 0.002 (p = 0.969) 1.260 (p = 

0.262) 
Wu-Hausman F(1,1963) 0.745 (p = 0.389) 23.503 (p = 0.000) 0.002 (p = 0.970) 1.253 (p = 

0.263) 
Minimum eigenvalue statistic 2.20 25.21 2.20 25.21 
p-value in parentheses *** p<0.01, ** p<0.05, * p<0.1; standard error in brackets. 
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Figure A1: The share of long-term and short-term wind patents filed in China and Europe by (a) OEMs and (b) 
suppliers. Figures show three-year rolling averages. 

 
 
Figure A2: The share of long-term and short-term wind patents filed in China and Europe by universities and research 
institutions. Figure shows three year rolling averages 
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Figure A3: The share of high and low novelty wind patents from all wind energy actors in China and Europe. Figure shows 
three year rolling averages. 
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