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Abstract

To assess generalization, machine learning scien-
tists typically either (i) bound the generalization
gap and then (after training) plug in the empir-
ical risk to obtain a bound on the true risk; or
(ii) validate empirically on holdout data. How-
ever, (i) typically yields vacuous guarantees for
overparameterized models; and (ii) shrinks the
training set and its guarantee erodes with each re-
use of the holdout set. In this paper, we leverage
unlabeled data to produce generalization bounds.
After augmenting our (labeled) training set with
randomly labeled data, we train in the standard
fashion. Whenever classifiers achieve low error
on the clean data but high error on the random
data, our bound ensures that the true risk is low.
We prove that our bound is valid for 0-1 empiri-
cal risk minimization and with linear classifiers
trained by gradient descent. Our approach is es-
pecially useful in conjunction with deep learning
due to the early learning phenomenon whereby
networks fit true labels before noisy labels but
requires one intuitive assumption. Empirically,
on canonical computer vision and NLP tasks,
our bound provides non-vacuous generalization
guarantees that track actual performance closely.
This work enables practitioners to certify gen-
eralization even when (labeled) holdout data is
unavailable and provides insights into the relation-
ship between random label noise and generaliza-
tion. Code is available at https://github.com/acmi-
lab/RATT _generalization_bound.

1. Introduction

Typically, machine learning scientists establish generaliza-
tion in one of two ways. One approach, favored by learning
theorists, places an a priori bound on the gap between the
empirical and true risks, usually in terms of the complex-
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ity of the hypothesis class. After fitting the model on the
available data, one can plug in the empirical risk to obtain
a guarantee on the true risk. The second approach, favored
by practitioners, involves splitting the available data into
training and holdout partitions, fitting the models on the
former and estimating the population risk with the latter.

Surely, both approaches are useful, with the former provid-
ing theoretical insights and the latter guiding the develop-
ment of a vast array of practical technology. Nevertheless,
both methods have drawbacks. Most a priori generaliza-
tion bounds rely on uniform convergence and thus fail to
explain the ability of overparameterized networks to gener-
alize (Zhang et al., 2016; Nagarajan & Kolter, 2019b). On
the other hand, provisioning a holdout dataset restricts the
amount of labeled data available for training. Moreover,
risk estimates based on holdout sets lose their validity with
successive re-use of the holdout data due to adaptive over-
fitting (Murphy, 2012; Dwork et al., 2015; Blum & Hardt,
2015). However, recent empirical studies suggest that on
large benchmark datasets, adaptive overfitting is surprisingly
absent (Recht et al., 2019).

In this paper, we propose Randomly Assign, Train and Track
(RATT), a new method that leverages unlabeled data to pro-
vide a post-training bound on the true risk (i.e., the popula-
tion error). Here, we assign random labels to a fresh batch
of unlabeled data, augmenting the clean training dataset
with these randomly labeled points. Next, we train on this
data, following standard risk minimization practices. Fi-
nally, we track the error on the randomly labeled portion of
training data, estimating the error on the mislabeled portion
and using this quantity to upper bound the population error.

Counterintuitively, we guarantee generalization by guaran-
teeing overfitting. Specifically, we prove that Empirical
Risk Minimization (ERM) with 0-1 loss leads to lower er-
ror on the mislabeled training data than on the mislabeled
population. Thus, if despite minimizing the loss on the com-
bined training data, we nevertheless have high error on the
mislabeled portion, then the (mislabeled) population error
will be even higher. Then, by complementarity, the (clean)
population error must be low. Finally, we show how to ob-
tain this guarantee using randomly labeled (vs mislabeled
data), thus enabling us to incorporate unlabeled data.

To expand the applicability of our idea beyond ERM on 0-1
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Figure 1. Predicted lower bound on the clean population error
with ResNet and MLP on binary CIFAR. Results aggregated over 5
seeds. “*’ denotes the best test performance achieved when training
with only clean data and the same hyperparameters (except for
the stopping point). The bound predicted by RATT (RHS in (2))
closely tracks the population accuracy on clean data.

error, we prove corresponding results for a linear classifier
trained by gradient descent to minimize squared loss. Fur-
thermore, leveraging the connection between early stopping
and ¢5-regularization in linear models (Ali et al., 2018; 2020;
Suggala et al., 2018), our results extend to early-stopped
gradient descent. Because we make no assumptions on the
data distribution, our results on linear models hold for more
complex models such as kernel regression and neural net-
works in the Neural Tangent Kernel (NTK) regime (Jacot
et al., 2018; Du et al., 2018; 2019; Allen-Zhu et al., 2019b;
Chizat et al., 2019).

Addressing practical deep learning models, our guarantee
requires an additional (reasonable) assumption. Our experi-
ments show that the bound yields non-vacuous guarantees
that track test error across several major architectures on
a range of benchmark datasets for computer vision and
Natural Language Processing (NLP). Because, in practice,
overparameterized deep networks exhibit an early learning
phenomenon, fitting clean data before mislabeled data (Liu
et al., 2020; Arora et al., 2019; Li et al., 2019), our pro-
cedure yields tight bounds in the early phases of learning.
Experimentally, we confirm the early learning phenomenon
in standard Stochastic Gradient Descent (SGD) training
and illustrate the effectiveness of weight decay combined
with large initial learning rates in avoiding interpolation to
mislabeled data while maintaining fit on the training data,
strengthening the guarantee provided by our method.

To be clear, we do not advocate RATT as a blanket replace-
ment for the holdout approach. Our main contribution is to
introduce a new theoretical perspective on generalization
and to provide a method that may be applicable even when
the holdout approach is unavailable. Of interest, unlike
generalization bounds based on uniform-convergence that
restrict the complexity of the hypothesis class (Neyshabur

et al., 2018; 2015; 2017b; Bartlett et al., 2017; Nagarajan
& Kolter, 2019a), our post hoc bounds depend only on the
fit to mislabeled data. We emphasize that our theory does
not guarantee a priori that early learning should take place
but only a posteriori that when it does, we can provide non-
vacuous bounds on the population error. Conceptually, this
finding underscores the significance of the early learning
phenomenon in the presence of noisy labels and motivates
further work to explain why it occurs.

2. Preliminaries

By ||, and {:, -» we denote the Euclidean norm and inner
product, respectively. For a vector v € R?, we use vj to
denote its ™ entry, and for an event E we let I[E] denote
the binary indicator of the event.

Suppose we have a multiclass classification problem with
the input domain X < R? and label space Y =
{1,2,...,k}'. By D, we denote the distribution over X’ x ).
A dataset S := {(z;,y;)}_; ~ D™ contains n points sam-
pled i.i.d. from D. By S, 7, and §, we denote the (uni-
forml empirical distribution over points in datasets S, 7T,
and S, respectively. Let F be a class of hypotheses map-
ping X to R*. A training algorithm A: takes a dataset S
and returns a classifier f(.A,S) € F. When the context
is clear, we drop the parentheses for convenience. Given
a classifier f and datum (z,y), we denote the 0-1 error
(i.e., classification error) on that point by £(f(z),y) =
I [y ¢ arg max, ey fj(:r)], We express the population er-
ror on D as Ep(f) 1= Eqy)~p [E(f(x),y)] and the em-
pirical error on S as Es(f) := K )~s[E(f(2),y)] =
% Z?=1 5(f(f'3i)a Yi).

Throughout, we consider a random label assignment proce-
dure: draw x ~ Dy (the underlying distribution over X'),
and then assign a label sampled uniformly at random. We
denote a randomly labeled dataset by S := {(x;,v:)}12q ~
D™, where D is the distribution of randomly labeled data.
By D’, we denote the mislabeled distribution that corre-
sponds to selecting examples (z,y) according to D and
then re-assigning the label by sampling among the incorrect
labels y' # y (renormalizing the label marginal).

3. Generalization Bound for RATT with ERM

We now present our generalization bound and proof sketches
for ERM on the 0-1 loss (full proofs in App. A). For any
dataset 1", ERM returns the classifier fthat minimizes the
empirical error:

f:: arg min E7(f) . (D
fer

"For binary classification, we use ) = {—1, 1}.
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We focus first on binary classification. Assume we have a
clean dataset S ~ D™ of n points and a randomly labeled
dataset S ~ D™ of m (< n) points with labels in .S are
assigned uniformly at random. We show that with 0-1 loss
minimization on the union of S and S, we obtain a classifier
whose error on D is upper bounded by a function of the
empirical errors on clean data £s (lower is better) and on
randomly labeled data £z (higher is better):

Theorem 1. For any classifier f obtained by ERM (1) on
dataset S U S, for any § > 0, with probability at least 1 — 6,
we have

Ep(f) <&s(f) +1—2E5(F)

+ (Vees(P +2+ o) Log(4/0)

m

2

In short, this theorem tells us that if after training on both
clean and randomly labeled data, we achieve low error on
the clean data but high error (close to 1/2) on the randomly
labeled data, then low population error is guaranteed. Note
that because the labels in S are assigned randomly, the error
E5(f) for any fixed predictor f (not dependent on S) will be
approximately 1/2. Thus, if ERM produces a classifier that
has not fit to the randomly labeled data, then (1 — 2& g(f))
will be approximately 0, and our error will be determined by
the fit to clean data. The final term accounts for finite sample
error—notably, it (i) does not depend on the complexity of
the hypothesis class; and (ii) approaches 0 at a O(1/4/m)
rate (for m < n).

Our proof strategy unfolds in three steps. First, in Lemma 1
we bound Ep( 7 ) in terms of the error on the mislabeled
subset of § . Next, in Lemmas 2 and 3, we show that the
error on the mislabeled subset can be accurately estimated
using only clean and randomly labeled data.

To begin, assume that we actually knew the original labels
for the randomly labeled data. By S¢ and Sy, we denote
the clean and mislabeled portions of the randomly labeled
data, respectively (with S = Sy, U SC) Note that for
binary classification, a lower bound on mislabeled popu-
lation error Ep ( f ) directly upper bounds the error on the
original population Ep( I3 ). Thus we only need to prove
that the empirical error on the mislabeled portion of our
data isAlower than the error on unseen mislabeled data, i.e.,
€5, () <&p(f) = 1= &g, () (wpto O(1/y/m)).
Lemma 1. Assume the same setup as in Theorem 1. Then
for any 6 > 0, with probability at least 1 — § over the
random draws of mislabeled data Sy, we have

log(1/0)

~ ~

En(f) <1-E, () + (3)

Proof Sketch. The main idea of our proof is to regard the
clean portion of the data (Su S¢) as fixed. Then, there exists

a classifier f * that is optimal over draws of the mislabeled
data Sj;. Formally,

f* = argmin E5(f),
fer

where D is a combination of the empirical distribution
over correctly labeled data S U S and the (population)
distribution over mislabeled data D’. Recall that f =
argming.z Eg 5(f). Since, f minimizes 0-1 error on

S U S, we have gsu§(f) < Eg,5(f*). Moreover, since

f* is independent of Sy, we have with probability at least
1 — ¢ that

log(1/3)

Es,, () <Ep(f*) +
Finally, since f* is the optimal classifier on 25, we have
Ex(f*) < Ex(f). Combining the above steps and using
the fact that Ep = 1 — Epr, we obtain the desired result. [

While the LHS in (3) depends on the unknown portion S M
our goal is to use unlabeled data (with randomly assigned
labels) for which the mislabeled portion cannot be read-
ily identified. Fortunately, we do not need to identify the
mislabeled points to estimate the error on these points in
aggregate £ S0 ( ]? ). Note that because the label marginal is
uniform, approximately half of the data will be correctly
labeled and the remaining half will be mislabeled. Conse-
quently, we can utilize the value of £ g(f) and an estimate
of £ S

o ) to lower bound & 5, ( 7). We formalize this as
follows:

Lemma 2. Assume the same setup as Theorem 1. Then
for any § > 0, with probability at least 1 — § over the ran-
285(f) —€5.(f) — &5, (f)| <

dom draws of §, we have

265(F)/ =5

To complete the argument, we show that due to the ex-
changeability of the clean data S and the clean portion of
the randomly labeled data S, we can estimate the error on

the latter E5_( 3 ) by the error on the former Eg( 3 ).

Lemma 3. Assume the same setup as Theorem 1. Then
for any 6 > 0, with probability at least 1 — § over the

random draws of Sc: and S, we have s, (H—&s(f| <
1+ ) B

Lemma 3 establishes a tight bound on the difference of
the error of classifier f on S and on S. The proof uses
Hoeffding’s inequality for randomly sampled points from a
fixed population (Hoeffding, 1994; Bardenet et al., 2015).

Having established these core components, we can now
summarize the proof strategy for Theorem 1. We bound the
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population error on clean data (the term on the LHS of (2))
in three steps: (i) use Lemma 1 to upper bound the error on
clean distribution Ep(f), by the error on mislabeled training

data £z ( f ); (i) approximate €5 ( f )by E5.( f ) and the

~

error on randomly labeled training data (i.e., £5(f)) using
(

~

Lemma 2; and (iii) use Lemma 3 to estimate £ 3 ) using

the error on clean training data (Es( f ).

Comparison with Rademacher bound Our bound in
Theorem 1 shows that we can upper bound the clean pop-
ulation error of a classifier by estimating its accuracy on
the clean and randomly labeled portions of the training data.
Next, we show that our bound’s dominating term is upper
bounded by the Rademacher complexity (Shalev-Shwartz &
Ben-David, 2014), a standard distribution-dependent com-
plexity measure.

Proposition 1. Fix a randomly labeled dataset S ~ ﬁ:”
Then for any classifier f € F (possibly dependent on S)*
and for any 6 > 0, with probability at least 1 — ¢ over
random draws of S, we have

1—285(f) < Ecy |sup (W)} n 210g(%)7

feF m m

where € is drawn from a uniform distribution over {—1,1}™
and z is drawn from D.

In other words, the proposition above highlights that the
accuracy on the randomly labeled data is never larger than
the Rademacher complexity of F w.r.t. the underlying dis-
tribution over X, implying that our bound is never looser
than a bound based on Rademacher complexity. The proof
follows by application of the bounded difference condition
and McDiarmid’s inequality (McDiarmid, 1989). We now
discuss extensions of Theorem 1 to regularized ERM and
multiclass classification.

Extension to regularized ERM Consider any function
R : F — R, e.g., a regularizer that penalizes some mea-
sure of complexity for functions in class F. Consider the
following regularized ERM:

~

f=argmin&s(f) + AR(f), 4)
feF

where A is a regularization constant. If the regularization
coefficient is independent of the training data S' U S, then
our guarantee (Theorem 1) holds. Formally,

Theorem 2. For any regularization function R, assume we
perform regularized ERM as in (4) on S U S and obtain
a classifier f. Then, for any § > 0, with probability at

>We restrict F to functions which output a label in J) =

{—1,1}.

~ ~ ~

least 1 — 6, we have Ep(f) < Es(f) + 1 —2E5(f) +
(VaEs(f) + 2+ g2) 2.

A key insight here is that the proof of Theorem 1 treats the
clean data S as fixed and considers random draws of the
mislabeled portion. Thus a data-independent regularization
function does not alter our chain of arguments and hence,
has no impact on the resulting inequality. We prove this
result formally in App. A.

We note one immediate corollary from Theorem 2: when
learning any function f parameterized by w with Lo-norm
penalty on the parameters w, the population error with f is
determined by the error on the clean training data as long as
the error on randomly labeled data is high (close to 1/2).

Extension to multiclass classification Thus far, we have
addressed binary classification. We now extend these results
to thg multiclass setting. As before, we obtain datasets S
and S. Here, random labels are assigned uniformly among
all classes.

Theorem 3. For any regularization function R, assume we
perform regularized ERM as in (4) on S U S and obtain a
classifier f. For a multiclass classification problem with k
classes, for any § > 0, with probability at least 1 — 6, we
have

eo(f) <&s(P) + (k—1) (1- 585(D)

log(3)

+c
2m

; &)

for some constant ¢ < (2k + Vk + nL\/E)

We first discuss the implications of Theorem 3. Besides
empirical error on clean data, the dominating term in the

above expression is given by (k — 1) (1 - %Eg(f» For
any predictor f (not dependent on S ), the term & &( f ) would

be approximately (k — 1)/k and for 7, the difference now
evaluates to the accuracy of the randomly labeled data. Note
that for binary classification, (5) simplifies to Theorem 1.

The core of our proof involves obtaining an inequality simi-
lar to (3). While for binary classification, we could upper
bound &£ S with 1 — &p (in the proof of Lemma 1), for
multiclass classification, error on the mislabeled data and
accuracy on the clean data in the population are not so di-
rectly related. To establish an inequality analogous to (3),
we break the error on the (unknown) mislabeled data into
two parts: one term corresponds to predicting the true label
on mislabeled data, and the other corresponds to predicting
neither the true label nor the assigned (mis-)label. Finally,
we relate these errors to their population counterparts to
establish an inequality similar to (3).
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4. Generalization Bound for RATT with
Gradient Descent

In the previous section, we presented results with ERM on
0-1 loss. While minimizing the 0-1 loss is hard in general,
these results provide important theoretical insights. In this
section, we show parallel results for linear models trained
with Gradient Descent (GD).

To begin, we introduce the setup and some additional no-
tation. For simplicity, we begin discussion with binary
classification with X = RY. Define a linear function
fla;w) = wlz for some w € R? and z € X. Given
training set S, we suppose that the parameters of the linear
function are obtained via gradient descent on the following
L5 regularized problem:

Ls(w;A) =Y (wha; —y)? + Mwly . (©6)
i=1

where A > 0 is a regularization parameter. Our choice
to analyze squared loss minimization for linear networks
is motivated in part by its analytical convenience, and fol-
lows recent theoretical work which analyze neural networks
trained via squared loss minimization in the Neural Tangent
Kernel (NTK) regime when they are well approximated by
linear networks (Jacot et al., 2018; Arora et al., 2019; Du
et al., 2019; Hu et al., 2019). Moreover, recent research sug-
gests that for classification tasks, squared loss minimization
performs comparably to cross-entropy loss minimization
(Muthukumar et al., 2020; Hui & Belkin, 2020).

For a given training set S, we use S(;) to denote the training
set S with the i point removed. We now introduce one
stability condition:

Condition 1 (Hypothesis Stability). We have (8 hypothesis

stability if our training algorithm A satisfies the following
SJorallie {1,2,...,n}:

S

ES,(m,y)ED Ug (f($)7y) -& (f(l)(x)’y) H <

where f;y 1= f(A,Squ)) and f:= f(A,S).

)

This condition is similar to a notion of stability called hy-
pothesis stability (Bousquet & Elisseeff, 2002; Kearns &
Ron, 1999; Elisseeff et al., 2003). Intuitively, Condition 1
states that empirical leave-one-out error and average pop-
ulation error of leave-one-out classifiers are close. This
condition is mild and does not guarantee generalization. We
discuss the implications in more detail in App. B.3.

Now we present the main result of this section. As
before, we assume access to a clean dataset S~ =
{(zi,y:)}~; ~ D™ and randomly labeled dataset S =
{(zi, )} ~ D™ Let X = [x1, 22, , Tyin] and
Y = [y1,Y2,"** , Ym+n]- Fix a positive learning rate n such

thatn < 1/ (| X7 X|,, + A?) and an initialization wy = 0.
Consider the following gradient descent iterates to minimize
objective (6) on S U S:

wy = wi—1 — NV Llg gwi—1;A) VE=1,2,.... (7)

Then we have {w,} converge to the limiting solution @ =
(XTX +A\I) "' XTy. Define f(x) := f(x; D).

Theorem 4. Assume that this gradient descent algorithm
satisfies Condition 1 with 8 = O(1). Then for any § > 0,

with probability at least 1 — & over the random draws of
datasets S and S, we have:

5D(J/C\)<5S(A)+1—25§(f)+\/§ (1+ 33 )

m m+n

m

®)

+ (\/iﬁg(f) +1+4 %) log(4/9)

With a mild regularity condition, we establish the same
bound on GD training with squared loss, notably the same
dominating term on the population error, as in Theorem 1.
In App. B.2, we present the extension to multiclass classifi-
cation, where we again obtain a result parallel to Theorem 3.

Proof Sketch. Because squared loss minimization does not
imply O-1 error minimization, we cannot use arguments
from Lemma 1. This is the main technical difficulty. To
compare the 0-1 error at a train point with an unseen point,
we use the closed-form expression for w. We show that
the train error on mislabeled points is less than the popula-
tion error on the distribution of mislabeled data (parallel to
Lemma 1).

For a mislabeled training point (;,y;) in S, we show that
I[yiz] @ < 0] <1 [yx] ;) < 0], 9)

where @, is the classifier obtained by leaving out the i
point from the training set. Intuitively, this condition states
that the train error at a training point is less than the leave-
one-out error at that point, i.e. the error obtained by remov-
ing that point and re-training. Using Condition 1, we then
relate the average leave-one-out error (over the index ¢ of
the RHS in (9)) to the population error on the mislabeled
distribution to obtain an inequality similar to (3). [

Extensions to kernel regression Since the result in The-
orem 4 does not impose any regularity conditions on the
underlying distribution over X x )/, our guarantees extend
straightforwardly to kernel regression by using the transfor-
mation x — ¢(z) for some feature transform function ¢.
Furthermore, recent literature has pointed out a concrete con-
nection between neural networks and kernel regression with
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the so-called Neural Tangent Kernel (NTK) which holds
in a certain regime where weights do not change much
during training (Jacot et al., 2018; Du et al., 2019; 2018;
Chizat et al., 2019). Using this concrete correspondence, our
bounds on the clean population error (Theorem 4) extend to
wide neural networks operating in the NTK regime.

Extensions to early stopped GD Often in practice, gradi-
ent descent is stopped early. We now provide theoretical ev-
idence that our guarantees may continue to hold for an early
stopped GD iterate. Concretely, we show that in expectation,
the outputs of the GD iterates are close to that of a problem
with data-independent regularization (as considered in The-
orem 2). First, we introduce some notation. By Lg(w),
we denote the objective in (6) with A = 0. Consider the
GD iterates defined in (7). Let Wy = argmin, Ls(w;A).
Define f;(x) := f(x;w;) as the solution at the " iterate
and f\(x) := f(x; @) as the regularized solution. Let  be
the condition number of the population covariance matrix
and let Sy, be the minimum positive singular value of the
empirical covariance matrix.

Proposition 2 (informal). For A\ = t%} we have

Epupy | (fil@) = Fa@))?] < clt.n) - Eanny [£i()?]

where c(t,n) ~ k- min(0.25, ﬁ) An equivalent guar-

antee holds for a point x sampled from the training data.

The proposition above states that for large enough ¢, GD
iterates stay close to a regularized solution with data-
independent regularization constant. Together with our guar-
antees in Theorem 4 for regularization solution with A\ = #,
Proposition 2 shows that our guarantees with RATT may
hold on early stopped GD. See the formal result in App. B.4.

Remark Proposition 2 only bounds the expected squared
difference between the ¢ gradient descent iterate and a
corresponding regularized solution. The expected squared
difference and the expected difference of classification er-
rors (what we wish to bound) are not related, in general.
However, they can be related under standard low-noise (mar-
gin) assumptions. For instance, under the Tsybakov noise
condition (Tsybakov et al., 1997; Yao et al., 2007), we can
lower-bound the expression on the LHS of Proposition 2
with the difference of expected classification error.

Extensions to deep learning Note that the main lemma
underlying our bound on (clean) population error states that
when training on a mixture of clean and randomly labeled
data, we obtain a classifier whose empirical error on the
mislabeled training data is lower than its population error on
the distribution of mislabeled data. We prove this for ERM
on 0-1 loss (Lemma 1). For linear models (and networks in
NTK regime), we obtained this result by assuming hypothe-
sis stability and relating training error at a datum with the

leave-one-out error (Theorem 4). However, to extend our
bound to deep models we must assume that training on the
mixture of random and clean data leads to overfitting on the
random mixture. Formally:

Assumption 1. Let f be a model obtained by training with
an algorithm A on a mixture of clean data S and randomly
labeled data S. Then with probability 1 — 0 over the random
draws of mislabeled data Sy, we assume that the following
condition holds:

A~ ~

s, () <ép(f) +e log(1/9)

2m

)

for a fixed constant ¢ > 0.

Under Assumption 1, our results in Theorem 1, 2 and 3
extend beyond ERM with the 0-1 loss to general learning
algorithms. We include the formal result in App. B.5. Note
that given the ability of neural networks to interpolate the
data, this assumption seems uncontroversial in the later
stages of training. Moreover, concerning the early phases of
training, recent research has shown that learning dynamics
for complex deep networks resemble those for linear mod-
els (Nakkiran et al., 2019; Hu et al., 2020), much like the
wide neural networks that we do analyze. Together, these
arguments help to justify Assumption 1 and hence, the ap-
plicability of our bound in deep learning. Motivated by our
analysis on linear models trained with gradient descent, we
discuss conditions in App. B.6 which imply Assumption 1
for constant values 6 > 0. In the next section, we em-
pirically demonstrate applicability of our bounds for deep
models.

5. Empirical Study and Implications

Having established our framework theoretically, we now
demonstrate its utility experimentally. First, for linear mod-
els and wide networks in the NTK regime where our guar-
antee holds, we confirm that our bound is not only valid,
but closely tracks the generalization error. Next, we show
that in practical deep learning settings, optimizing cross-
entropy loss by SGD, the expression for our (0-1) ERM
bound nevertheless tracks test performance closely and in
numerous experiments on diverse models and datasets is
never violated empirically.

Datasets To verify our results on linear models, we con-
sider a toy dataset, where the class conditional distribution
p(z|y) for each label is Gaussian. For binary tasks, we use
binarized CIFAR-10 (first 5 classes vs rest) (Krizhevsky &
Hinton, 2009), binary MNIST (0-4 vs 5-9) (LeCun et al.,
1998) and IMDb sentiment analysis dataset (Maas et al.,
2011). For multiclass setup, we use MNIST and CIFAR-10.
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Figure 2. We plot the accuracy and corresponding bound (RHS in (1)) at 6 = 0.1. for binary classification tasks. Results aggregated over
3 seeds. (a) Accuracy vs fraction of unlabeled data (w.r.t clean data) in the toy setup with a linear model trained with GD. (b) Accuracy vs
fraction of unlabeled data for a 2-layer wide network trained with SGD on binary MNIST. With SGD and no regularization (red curve in
(b)), we interpolate the training data and hence the predicted lower bound is 0. However, with early stopping (or weight decay) we obtain
tight guarantees. (c) Accuracy vs gradient iteration on IMDb dataset with unlabeled fraction fixed at 0.2. In plot (¢), “*’ denotes the best
test accuracy with the same hyperparameters and training only on clean data. See App. C for exact hyperparameter values.

Architectures To simulate the NTK regime, we experi-
ment with 2-layered wide networks both (i) with the sec-
ond layer fixed at random initialization; (ii) and updating
both layers’ weights. For vision datasets (e.g., MNIST and
CIFAR10), we consider (fully connected) multilayer per-
ceptrons (MLPs) with ReLU activations and ResNet18 (He
et al., 2016). For the IMDb dataset, we train Long Short-
Term Memory Networks (LSTMs; Hochreiter & Schmid-
huber (1997)) with ELMo embeddings (Peters et al., 2018)
and fine-tune an off-the-shelf uncased BERT model (Devlin
et al., 2018; Wolf et al., 2020).

Methodology To bound the population error, we require
access to both clean and unlabeled data. For toy datasets,
we obtain unlabeled data by sampling from the underlying
distribution over X. For image and text datasets, we hold
out a small fraction of the clean training data and discard
their labels to simulate unlabeled data. We use the random
labeling procedure described in Sec. 2. After augmenting
clean training data with randomly labeled data, we train in
the standard fashion. See App. C for experimental details.

Underparameterized linear models On toy Gaussian
data, we train linear models with GD to minimize cross-
entropy loss and mean squared error. Varying the fraction of
randomly labeled data we observe that the accuracy on clean
unseen data is barely impacted (Fig. 2(a)). This highlights
that in low dimensional models adding randomly labeled
data with the clean dataset (in toy setup) has minimal effect
on the performance on unseen clean data. Moreover, we find
that RATT offers a tight lower bound on the unseen clean
data accuracy. We observe the same behavior with Stochas-
tic Gradient Descent (SGD) training (ref. App. C). Observe
that the predicted bound goes up as the fraction of unlabeled
data increases. While the accuracy as dictated by the dom-
inating term in the RHS of (2) decreases with an increase

in the fraction of unlabeled data, we observe a relatively
sharper decrease in O, (1/4/m) term of the bound, leading
to an overall increase in the predicted accuracy bound. In
this toy setup, we also evaluated a kernel regression bound
from Bartlett & Mendelson (2002) (Theorem 21), however,
the predicted kernel regression bound remains vacuous.

Wide Nets Next, we consider MNIST binary classifica-
tion with a wide 2-layer fully-connected network. In ex-
periments with SGD training on MSE loss without early
stopping or weight decay regularization, we find that adding
extra randomly label data hurts the unseen clean perfor-
mance (Fig. 2(b)). Additionally, due to the perfect fit on the
training data, our bound is rendered vacuous. However, with
early stopping (or weight decay), we observe close to zero
performance difference with additional randomly labeled
data. Alongside, we obtain tight bounds on the accuracy on
unseen clean data paying only a small price to negligible for
incorporating randomly labeled data. Similar results hold
for SGD and GD and when cross-entropy loss is substituted
for MSE (ref. App. O).

Deep Nets We verify our findings on (i) ResNet-18 and
5-layer MLPs trained with binary CIFAR (Fig. 1); and (ii)
ELMo-LSTM and BERT-Base models fine-tuned on the
IMDb dataset (Fig. 2(c)). See App. C for additional results
with deep models on binary MNIST. We fix the amount of
unlabeled data at 20% of the clean dataset size and train all
models with standard hyperparameters. Consistently, we
find that our predicted bounds are never violated in prac-
tice. And as training proceeds, the fit on the mislabeled
data increases with perfect overfitting in the interpolation
regime rendering our bounds vacuous. However, with early
stopping, our bound predicts test performance closely. For
example, on IMDb dataset with BERT fine-tuning we pre-
dict 79.8 as the accuracy of the classifier, when the true
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Dataset Model Pred. Acc Test Acc. Best Acc.
MLP 93.1 97.4 97.9

MNIST  pesNet 6.8 98.8 98.9
MLP 48.4 54.2 60.0

CIFARIO pecNet  76.4 88.9 92.3

Table 1. Results on multiclass classification tasks. With pred. acc.
we refer to the dominating term in RHS of (5). At the given sample
size and § = 0.1, the remaining term evaluates to 30.7, decreasing
our predicted accuracy by the same. We note that test acc. denotes
the corresponding accuracy on unseen clean data. Best acc. is the
best achievable accuracy with just training on just the clean data
(and same hyperparamters except the stopping point). Note that
across all tasks our predicted bound is tight and the gap between the
best accuracy and test accuracy is small. Exact hyperparameters
are included in App. C.

performance is 88.04 (and the best achievable performance
on unseen data is 92.45). Additionally, we observe that our
method tracks the performance from the beginning of the
training and not just towards the end.

Finally, we verify our multiclass bound on MNIST and CI-
FAR10 with deep MLPs and ResNets (see results in Table 1
and per-epoch curves in App. C). As before, we fix the
amount of unlabeled data at 20% of the clean dataset to
minimize cross-entropy loss via SGD. In all four settings,
our bound predicts non-vacuous performance on unseen
data. In App. C, we investigate our approach on CIFAR100
showing that even though our bound grows pessimistic with
greater numbers of classes, the error on the mislabeled data
nevertheless tracks population accuracy.

6. Discussion and Connections to Prior Work

Implicit bias in deep learning Several recent lines of
research attempt to explain the generalization of neural net-
works despite massive overparameterization via the implicit
bias of gradient descent (Soudry et al., 2018; Gunasekar
et al., 2018a;b; Ji & Telgarsky, 2019; Chizat & Bach, 2020).
Noting that even for overparameterized linear models, there
exist multiple parameters capable of overfitting the training
data (with arbitrarily low loss), of which some generalize
well and others do not, they seek to characterize the favored
solution. Notably, Soudry et al. (2018) find that for linear
networks, gradient descent converges (slowly) to the max
margin solution. A complementary line of work focuses on
the early phases of training, finding both empirically (Rol-
nick et al., 2017; Arpit et al., 2017) and theoretically (Arora
et al., 2019; Li et al., 2020; Liu et al., 2020) that even in
the presence of a small amount of mislabeled data, gradi-
ent descent is biased to fit the clean data first during initial
phases of training. However, to best our knowledge, no
prior work leverages this phenomenon to obtain general-
ization guarantees on the clean data, which is the primary

focus of our work. Our method exploits this phenomenon
to produce non-vacuous generalization bounds. Even when
we cannot prove a priori that models will fit the clean data
well while performing badly on the mislabeled data, we
can observe that it indeed happens (often in practice), and
thus, a posteriori, provide tight bounds on the population
error. Moreover, by using regularizers like early stopping or
weight decay, we can accentuate this phenomenon, enabling
our framework to provide even tighter guarantees.

Generalization bounds Conventionally, generalization
in machine learning has been studied through the lens of
uniform convergence bounds (Blumer et al., 1989; Vapnik,
1999). Representative works on understanding generaliza-
tion in overparameterized networks within this framework
include Neyshabur et al. (2015; 2017b;a; 2018); Dziugaite &
Roy (2017); Bartlett et al. (2017); Arora et al. (2018); Li &
Liang (2018); Zhou et al. (2018); Allen-Zhu et al. (2019a);
Nagarajan & Kolter (2019a). However, uniform conver-
gence based bounds typically remain numerically loose rel-
ative to the true generalization error. Several works have
also questioned the ability of uniform convergence based
approaches to explain generalization in overparameterized
models (Zhang et al., 2016; Nagarajan & Kolter, 2019b).
Subsequently, recent works have proposed unconventional
ways to derive generalization bounds (Negrea et al., 2020;
Zhou et al., 2020). In a similar spirit, we take departure from
complexity-based approaches to generalization bounds in
our work. In particular, we leverage unlabeled data to derive
a post-hoc generalization bound. Our work provides guaran-
tees on overparameterized networks by using early stopping
or weight decay regularization, preventing a perfect fit on
the training data. Notably, in our framework, the model can
perfectly fit the clean portion of the data, so long as they
nevertheless fit the mislabeled data poorly.

Leveraging noisy data to provide generalization guaran-
tees In parallel work, Bansal et al. (2020) presented an
upper bound on the generalization gap of linear classifiers
trained on representations learned via self-supervision. Un-
der certain noise-robustness and rationality assumptions on
the training procedure, the authors obtained bounds depen-
dent on the complexity of the linear classifier and indepen-
dent of the complexity of representations. By contrast, we
present generalization bounds for supervised learning that
are non-vacuous by virtue of the early learning phenomenon.
While both frameworks highlight how robustness to random
label corruptions can be leveraged to obtain bounds that
do not depend directly on the complexity of the underlying
hypothesis class, our framework, methodology, claims, and
generalization results are very different from theirs.

Other related work. A long line of work relates early
stopped GD to a corresponding regularized solution (Fried-
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man & Popescu, 2003; Yao et al., 2007; Suggala et al.,
2018; Ali et al., 2018; Neu & Rosasco, 2018; Ali et al.,
2020). In the most relevant work, Ali et al. (2018) and
Suggala et al. (2018) address a regression task, theoretically
relating the solutions of early-stopped GD and a regularized
problem, obtained with a data-independent regularization
coefficient. Towards understanding generalization numer-
ous stability conditions have been discussed (Kearns & Ron,
1999; Bousquet & Elisseeff, 2002; Mukherjee et al., 2006;
Shalev-Shwartz et al., 2010). Hardt et al. (2016) studies the
uniform stability property to obtain generalization guaran-
tees with early-stopped SGD. While we assume a benign
stability condition to relate leave-one-out performance with
population error, we do not rely on any stability condition
that implies generalization.

7. Conclusion and Future work

Our work introduces a new approach for obtaining general-
ization bounds that do not directly depend on the underlying
complexity of the model class. For linear models, we prov-
ably obtain a bound in terms of the fit on randomly labeled
data added during training. Our findings raise a number of
questions to be explored next. While our empirical find-
ings and theoretical results with 0-1 loss hold absent further
assumptions and shed light on why the bound may apply
for more general models, we hope to extend our proof that
overfitting (in terms classification error) to the finite sample
of mislabeled data occurs with SGD training on broader
classes of models and loss functions. We hope to build on
some early results (Nakkiran et al., 2019; Hu et al., 2020)
which provide evidence that deep models behave like linear
models in the early phases of training. We also wish to
extend our framework to the interpolation regime. Since
many important aspects of neural network learning take
place within early epochs (Achille et al., 2017; Frankle
et al., 2020), including gradient dynamics converging to
very small subspace (Gur-Ari et al., 2018), we might imag-
ine operationalizing our bounds in the interpolation regime
by discarding the randomly labeled data after initial stages
of training.
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Supplementary Material

Throughout this discussion, we will make frequently use of the following standard results concerning the exponential
concentration of random variables:

Lemma 4 (Hoeffding’s inequality for independent RVs (Hoeffding, 1994)). Let Z,, Zs, ..., Z,, be independent bounded
random variables with Z; € [a, b] for all i, then

P <; Y(Zi—E[Z]) = t) < exp (-U)z’_lta)ﬁ

i=1
]P) (
forallt = 0.

Lemma 5 (Hoeffding’s inequality for sampling with replacement (Hoeffding, 1994)). Let Z = (Zy,Zs,...,ZN) be a
finite population of N points with Z; € [a.b] for all i. Let X1, X, ... X,, be a random sample drawn without replacement
from Z. Then for all t = 0, we have

and

Z(Zi ~E[Z]) < —t) < exp <—(b2fta)2)

S|

1 & Int?
PN (Xi—p)=t]<exp(———s
(nz( #) ) p( <b—a>>

and

S|

1

]P( zi(Xiu) < t) < exp (%),

where |1 = + Zz]\;1 Z;.

We now discuss one condition that generalizes the exponential concentration to dependent random variables.
Condition 2 (Bounded difference inequality). Let Z be some set and ¢ : Z"™ — R. We say that ¢ satisfies the bounded

difference assumption if there exists c1, ca, ... cy = 0 s.t. for all i, we have

sup (20, Ziy e Zy) = (21, 2 T < 6
21,22, 2y, Zj€ENH1

Lemma 6 (McDiarmid’s inequality (McDiarmid, 1989)). Let Z1, Zs, ..., Z,, be independent random variables on set Z
and ¢ : Z™ — R satisfy bounded difference inequality (Condition 2). Then for all t > 0, we have

2
P(¢(Z1,22,...,2n) —E[d(Z1, Z2, ..., Zn)] 2 1) < exp <Z712t2)

i=1Ci

and

2 2
P((b(Zl, ZQ, ey Zn) - E[¢(Z1, 227 .. ,Zn)] < _t) < eXp <_Znt02) .
=11
A. Proofs from Sec. 3

Additional notation Let m; be the number of mislabeled points (§ ) and mg be the number of correctly labeled points
(S¢). Note m1 + mo = m.
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A.1. Proof of Theorem 1

Proof of Lemma 1. The main idea of our proof is to regard the clean portion of the data (S U §C) as fixed. Then, there
exists an (unknown) classifier f * that minimizes the expected risk calculated on the (fixed) clean data and (random draws
of) the mislabeled data S;. Formally,

[* = argminE5(f), (10)
feF

where
n mo

m+n m +

D=

~ m
Sc + ! D .
n m+n

Note here that D is a combination of the empirical distribution over correctly labeled data S U §C and the (population)
distribution over mislabeled data D’. Recall that

- in€. «(f). 11
f ar}ger;nn sus(f) (11)

Since, fminimizes 0-1erroron S U S, using ERM optimality on (11), we have

Moreover, since f* is independent of S M, using Hoeffding’s bound, we have with probability at least 1 — § that

(%) < € (1%) + | 280D (13)

2m1

s

M

Finally, since f* is the optimal classifier on 25, we have

Es(f*) < E5(f). (14)

Now to relate (12) and (14), we multiply (13) by =t and add -7, Es(f) + 775 € S (f) both the sides. Hence, we can
rewrite (13) as follows:

Now we combine equations (12), (15), and (14), to get

~ my log(1/4)

Esus(N <&+ = =50 (16)
which implies
~ ~ log(1/6
&, () <&o/(f) + %p (17)

Since S is obtained by randomly labeling an unlabeled dataset, we assume 2m; ~ m . Moreover, using Epr = 1 — Ep we

obtain the desired result. O
Proof of Lemma 2. Recall E5(f) = “2&5 (f) + 72E5_(f). Hence, we have
265(0) ~ E3, (1)~ E5. (1) = (265, (1)~ 6,0 + (225, (1) ~ £5,() 1s)
2 2
= (Zl - 1) &, () + (:ZQ - 1) Es. () (19)

3Formally, with probability at least 1 — §, we have (m — 2m1) < 1/mlog(1/6)/2.
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Since the dataset is labeled uniformly at random, with probability at least 1 — §, we have (221 - 1) <4/ %. Similarly,
we have with probability at least 1 — 6, (2m2 - 1) <4/ %. Using union bound, with probability at least 1 — §, we have

log(2/9)

2m

285 — €5, (f) — €5, () < (5§M (f) + é’gc(f)) - (20)

With re-arranging &g (f) + €5, (f) and using the inequality 1 —a < T2 we have

log(2/8)

o 21

265 — €5, (f) — €5, (f) < 265
O

Proof of Lemma 3. In the set of correctly labeled points S U §c, we have S as a random subset of S U §C. Hence, using
Hoeffding’s inequality for sampling without replacement (Lemma 5), we have with probability at least 1 — §

2 2 log(1/9)
E5.(f) —&s05.(f) < Tomg (22)
Re-writing £ 5 (f) as S 2 (f f) + sl f), we have with probability at least 1 — &
n ~ ~ log(1/4)
N _ < =17, 2
(n . mQ) (s, (D —&s(D) <[ 75,2 23)
As before, assuming 2mo ~ m, we have with probability at least 1 — §
P moy [log(1/0) _ ¢, my [loa(1/5)
Es.(f) —&s( )<(1+ n) - <(1+2n) el (24)
O

Proof of Theorem 1. Having established these core intermediate results, we can now combine above three lemmas to prove
the main result. In particular, we bound the population error on clean data (Ep(f)) as follows:

(i) First, use (17), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1 — §/4, we
have

~

En(f) <1 &5 (F)+ /B9

m

(25)

(i) Second, use (21), to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and
error on whole randomly labeled dataset, i.e., with probability at least 1 — 6/2, we have

log(4/0)

2m (26)

—5§M (f) < Egc f) - 25 5
(iii) Finally, use (24) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,
with probability 1 — §/4, we have

~

s, (f) < —&s() + (1 + ﬁ) log(4/9) 27)

2n m

Using union bound on the above three steps, we have with probability at least 1 — §:

Ep(f) < Es(f) +1—285(F) + (\ﬁs +24 o ) log(4/0) 08)

m
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A.2. Proof of Proposition 1

Proof of Proposition 1. For a classifier f : X — {—1,1}, we have 1 — 21 [f(x) # y] = v - f(«). Hence, by definition of
£, we have

1—2E4( nll; Sup nyl ;). (29)

Note that for fixed inputs (z1,Za,..., &) in S, (y1, Y2, .. .Ym) are random labels. Define ¢1(y1,y2,-.-,Ym) =
SUDfer = 2oy Yi - f(2:). We have the following bounded difference condition on ¢;. For all i,

sup ’¢1(y177y177ym)_¢1(y177y;77ym)’<1/m (30)
Yi,e - Ym,yie{—1,1}m+1

Similarly, we define ¢o (w1, T2, .., Tm) = By, < (—1.13 [supfef # PSRV f(:yl)] We have the following bounded
difference condition on ¢5. For all i,

sup ’¢2(gc1,...,xi,...,a:m)—¢1(gc1,...,x§,...,a:m)’gl/m. (31)

Ty, Ty, rieX™mHL

Using McDiarmid’s inequality (Lemma 6) twice with Condition (30) and (31), with probability at least 1 — §, we have

. 2log(2/6
bup*Zyz (@) ylsupZyz z]< M- (32)

m

Combining (29) and (32), we obtain the desired result. O]

A.3. Proof of Theorem 2

Proof of Theorem 2 follows similar to the proof of Theorem 1. Note that the same results in Lemma 1, Lemma 2, and
Lemma 3 hold in the regularized ERM case. However, the arguments in the proof of Lemma 1 change slightly. Hence, we
state the lemma for regularized ERM and prove it here for completeness.

Lemma 7. Assume the same setup as Theorem 2. Then for any 6 > 0, with probability at least 1 — & over the random draws
of mislabeled data Sy, we have

A A log(1/9)

En(f) <1-&s,(F)+4/ 20 (33)

Proof. The main idea of the proof remains the same, i.e. regard the clean portion of the data (S v §c) as fixed. Then, there
exists a classifier f* that is optimal over draws of the mislabeled data Sy;.

Formally,
FH o= argmin E5(f) + AR(f) , (34)
feF
where < n mr 3 m
D= S+—-38c+—2D.
m+n m+n m+n

That is, D a combination of the empirical distribution over correctly labeled data S' U §c and the (population) distribution
over mislabeled data D’. Recall that

~

fri=argminEg s(f) + AR(f). (35)
feF

Since, fminimizes 0-1erroron S U S, using ERM optimality on (11), we have

~

Esos(F) + AR(f) < Es_5(f*) + AR(f*). (36)
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Moreover, since f* is independent of S ., using Hoeffding’s bound, we have with probability at least 1 — § that

(1) < € (F%) + 4 [ 282/ 37

Es .
S 2m1

M

Finally, since f* is the optimal classifier on D, we have

~ ~

Es(f*) + AR(f*) < E5(f) + AR(f) . (38)

Now to relate (36) and (38), we can re-write the (37) as follows:

Eos(f*) < E5(F) + T, (loell/) (39)

m+n 2ma

After adding AR(f*) on both sides in (39), we combine equations (36), (39), and (38), to get

~ my log(1/0)

EsusN < &N + = [ =5 (40)
which implies
- A log(1/6
s, (f) <&p(f) + %{). (41)

Similar as before, since S is obtained by randomly labeling an unlabeled dataset, we assume 2m, ~ m. Moreover, using
Epr = 1 — Ep we obtain the desired result. O

A.4. Proof of Theorem 3

To prove our results in the multiclass case, we first state and prove lemmas parallel to those used in the proof of balanced
binary case. We then combine these results to obtain the result in Theorem 3.

Before stating the result, we define mislabeled distribution D’ for any D. While D’ and D share the same marginal
distribution over inputs X', the conditional distribution over labels y given an input x ~ Dy is changed as follows: For any
x, the Probability Mass Function (PMF) over y is defined as: pp/(+|x) := 17’,:#_(1“), where pp(+|z) is the PMF over y for

the distribution D.

Lemma 8. Assume the same setup as Theorem 3. Then for any 6 > 0, with probability at least 1 — & over the random draws
of mislabeled data S\, we have

en() < (k—1) (1— &, (F)) + (b — 1)y L) @)

m

Proof. The main idea of the proof remains the same. We begin by regarding the clean portion of the data (S v §c) as fixed.
Then, there exists a classifier f* that is optimal over draws of the mislabeled data Sy;.

However, in the multiclass case, we cannot as easily relate the population error on mislabeled data to the population accuracy
on clean data. While for binary classification, we could lower bound the population accuracy 1 — Ep with the empirical error
on mislabeled data £ Sur (in the proof of Lemma 1), for multiclass classification, error on the mislabeled data and accuracy on
the clean data in the population are not so directly related. To establish (42), we break the error on the (unknown) mislabeled
data into two parts: one term corresponds to predicting the true label on mislabeled data, and the other corresponds to
predicting neither the true label nor the assigned (mis-)label. Finally, we relate these errors to their population counterparts
to establish (42).

Formally,

f*i=argminE5(f) + AR(f), (43)
feF
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where

~ n m ~ m
D = S+ ! Sc + 2
m+n m+n m+n

D

That is, D is a combination of the empirical distribution over correctly labeled data S U gc and the (population) distribution
over mislabeled data D’. Recall that

f:: ar)gcl;:lingsug(f)Jr)\R(f)- “44)

Following the exact steps from the proof of Lemma 7, with probability at least 1 — §, we have

2 2 log(1/0)

£, (D < e D)+ @)

Similar to before, since S is obtained by randomly labeling an unlabeled dataset, we assume %ml A m.

Now we will relate Ep/ (f) with Ep( 7 ). Let yT denote the (unknown) true label for a mislabeled point (z,y) (i.e., label
before replacing it with a mislabel).

Eae~n [1[F(@) # 3] | = Euewn [1]F) 2y 7 Fla) 2 7]

~

-

~~
I
+ By [1[f@) 2y 1 Fl@) = y"]] . (46)
. ~ -
it
Clearly, term 2 is one minus the accuracy on the clean unseen data, i.e.,
M=1-E,,p [11 [f(:z:);éy“ —1-&()). (47)

Next, we relate term 1 with the error on the unseen clean data. We show that term 1 is equal to the error on the unseen clean
data scaled by £= o 1, where k is the number of labels. Using the definition of mislabeled distribution D', we have

I= ﬁ (E(m,y)€~D [ Z I [f(x) #1A f(x) # y]}) = %51)(/\)- (48)

€Y NIFEY

Combining the result in (47), (48) and (46), we have

e (f) =1~ én(f). (49)

Finally, combining the result in (49) with equation (45), we have with probability 1 — §,

Enlf) < (k= 1) (1= €5,,(P) + (b~ Dy 52 (50)

O

Lemma 9. Assume the same setup as Theorem 3. Then for any 6 > 0, with probability at least 1 — § over the random draws
of S, we have

~ ~

KEs(P) = €5, (F) = (k= V&, ()] < 2k log(4/9)

2m
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Proof. Recall E5(f) = 15, (f) + 52E5,,(f). Hence, we have

m

k:ml

KE5(1) — (k= D3, () = €, (1) = (b= 1) ( Gro—gs, (1) = €5, ()
+ (265,00 - 5.0

—k [(T:; — k;1> Es,, () + (:Lf - ;) 5§C(f)] :

Since the dataset is randomly labeled, we have with probability at least 1 — 4, (% — %) < %. Similarly, we
have with probability at least 1 — 4, (% - %) <4/ %. Using union bound, we have with probability at least 1 — §
log(2/3)
RES(f) = (k= 1)E5, (f) = €3, (F) < | =5 (&5, (F) + E5.(F) - (5

O

Lemma 10. Assume the same setup as Theorem 3. Then for any 6 > 0, with probability at least 1 — § over the random
draws of S¢ and S, we have
~ ~ klog(2/6
Es.(N) —Es(D| <15 klog(2/3)

2m

Proof. In the set of correctly labeled points S U §c, we have S as a random subset of S U gc. Hence, using Hoeffding’s
inequality for sampling without replacement (Lemma 5), we have with probability at least 1 — §

- - log(1/6
£5.(F) ~ Eau, () < |22

(52)

c

~ ~ ~

Re-writing £ 5 (f) as ;7% E5 (f) + Es(f), we have with probability at least 1 — §

mo+n

mo+n

(n +”m2) (530(]?) - Ss(f)> <4/ 102%5) . (53)

As before, assuming kmgy ~ m, we have with probability at least 1 — ¢

R e N N G

E n 2m k 2m

O

Proof of Theorem 3. Having established these core intermediate results, we can now combine above three lemmas. In

~

particular, we bound the population error on clean data (£p(f)) as follows:

(i) First, use (50), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1 — §/4, we
have

klog(4/9)

20k — ym " (53)

Ep(f) < (k—1) (1 - 5§M(f)) 4 (k—1)

(i) Second, use (51) to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and
error on whole randomly labeled dataset, i.e., with probability at least 1 — 6/2, we have

—(k — 1)551\4 (f) < ggc (f) - kgg +k 10g2(:;/6) . (56)
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(iii) Finally, use (54) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,
with probability 1 — ¢/4, we have

~ m klog(4/9)
Es. (D < —Es(D+ (1+ 1= )\ =2 L= (57)
Using union bound on the above three steps, we have with probability at least 1 — §:
~ ~ ~ m log(4/0)
é’p(f)<€3(f)+(k—l)—ké’g(f)+(«/k;(k—1)+k+\/ﬁ+n—\/%) — (58)

Simplifying the term in RHS of (58), we get the desired result. in the final bound. O
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B. Proofs from Sec. 4

We suppose that the parameters of the linear function are obtained via gradient descent on the following L, regularized
problem:

Ls(w;A) =Y (Wl —y:)® + Muwlj (59)
i=1

where A > 0 is a regularization parameter. We assume access to a clean dataset S = {(z;, y;)}"_; ~ D™ and randomly
labeled dataset S = {(x;, y;) fjﬁrl ~Dm Let X = [21,22,  ,Zmin] and Yy = [Y1,Y2, * , Ym+n]- FiX a positive

learning rate 7 such that n < 1/ <||X X ||0p + )\2) and an initialization wy = 0. Consider the following gradient descent

iterates to minimize objective (59) on S U S:
wy = wp—1 —NVulg swi—1;A) VE=1,2,... (60)
Then we have {w;} converge to the limiting solution & = (X7 X + /\I)_1 XTy. Define f(z) := f(z;0).

B.1. Proof of Theorem 4

We use a standard result from linear algebra, namely the Shermann-Morrison formula (Sherman & Morrison, 1950) for
matrix inversion:

Lemma 11 (Sherman & Morrison (1950)). Suppose A € R™*™ is an invertible square matrix and u,v € R™ are column
vectors. Then A + wv™ is invertible iff 1 + vT Au # 0 and in particular

A T AL

Ty—1 _ g—1_
(A+w' )" =A TS oTA Ty

(61)

For a given training set .S U S¢, define leave-one-out error on mislabeled points in the training data as

Diwsyiredn €0 (23), i)
§M)

gLOO(gM)

)

where f(;) = f(A, (S U S )(i))- To relate empirical leave-one-out error and population error with hypothesis stability
condition, we use the following lemma:

Lemma 12 (Bousquet & Elisseeff (2002)). For the leave-one-out error, we have

E|(ep ()€ e L 30 62
( o (f) — L00(§M)> S oy + ntm (62)
Proof of the above lemma is similar to the proof of Lemma 9 in Bousquet & Elisseeff (2002) and can be found in App. D.
Before presenting the proof of Theorem 4, we introduce some more notation. Let X ;) denote the matrix of covariates with
the i point removed. Similarly, let Y(;) be the array of responses with the i point removed. Define the corresponding

1 .
regularized GD solution as @(;) = (X(jg)X(i) + )\I) X (- Define f(z) == f(z; @)

Proof of Theorem 4. Because squared loss minimization does not imply 0-1 error minimization, we cannot use arguments
from Lemma 1. This is the main technical difficulty. To compare the 0-1 error at a train point with an unseen point, we use
the closed-form expression for @ and Shermann-Morrison formula to upper bound training error with leave-one-out cross
validation error.

The proof is divided into three parts: In part one, we show that 0-1 error on mislabeled points in the training set is lower than
the error obtained by leave-one-out error at those points. In part two, we relate this leave-one-out error with the population
error on mislabeled distribution using Condition 1. While the empirical leave-one-out error is an unbiased estimator of
the average population error of leave-one-out classifiers, we need hypothesis stability to control the variance of empirical
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leave-one-out error. Finally, in part three, we show that the error on the mislabeled training points can be estimated with just
the randomly labeled and clean training data (as in proof of Theorem 1).

Part 1 First we relate training error with leave-one-out error. For any training point (x;,y;) in S U S, we have

~ N -1
E(f(xy),y) =1 [yi cxl W < O] =1 [yi al (XTX + /\I) XTy < 0] (63)
—1
— |y a7 (X(Ti)X(i) +oTz; + )\I) (XEyy +vi-2:) <0 . (64)
. ~ -

I

Letting A = (Xg;)X(i) + )\I) and using Lemma 11 on term 1, we have

E(f(wi),yi) =T v i [Al - %] (X(yye) + v wi) < 0] (65)
1y, [xiTAl(l + miﬁ;;i;f:AlxixiTAl] (X g+ 3120 < O] )
=1 yz : [%] (XY +yi-a) < 0] : (67)

Since 1 + 27 A=1x; > 0, we have
E(f(xi),pi) =T [yz ~a] AN X Gy + oy ) < 0] (68)
=1 [xiTA_lmi +yi - x;fFA_l(X(:g)y(i)) < O] (69)
<1y 2T AN X we) < 0] = £y (@), vi) (70)

Using (70), we have

Es,,(F) < Eoo@y) = RS MG OGO . (71)

5]

Part 2 We now relate RHS in (71) with the population error on mislabeled distribution. To do this, we leverage Condition 1
and Lemma 12. In particular, we have

~ 2 1 36
]ESUS'M (gD/(f) - gLOO(gM)> < 277711 + m+n : (72)
Using Chebyshev’s inequality, with probability at least 1 — §, we have
~ 1 1 35
5LOO(§J\/1) S ED’(f) + \/5 <2m1 + p—y n) . (73)

Part 3 Combining (73) and (71), we have

€3, (F) < Ep(f) + \/(15 (1 T ) : (74)
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Compare (74) with (17) in the proof of Lemma 1. We obtain a similar relationship between £ Sy and &p but with a
polynomial concentration instead of exponential concentration. In addition, since we just use concentration arguments to
relate mislabeled error to the errors on the clean and unlabeled portions of the randomly labeled data, we can directly use the
results in Lemma 2 and Lemma 3. Therefore, combining results in Lemma 2, Lemma 3, and (74) with union bound, we
have with probability at least 1 — ¢

En(f) < Es(f) +1—-285(f) + (xﬁs( +1+ «/10g4/5 \/ m+n>. (75)

O

B.2. Extension to multiclass classification

For multiclass problems with squared loss minimization, as standard practice, we consider one-hot encoding for the
underlying label, i.e., a class label c € [k] is treated as (0, -, 0, 1,0, -,0) € R¥ (with c-th coordinate being 1). As before, we
suppose that the parameters of the linear function are obtained via gradient descent on the following Lo regularized problem:

n k
= Sz =yl A w2 (76)
1=1

j=1
where A > Oisa regularization parameter. We assume access to a clean dataset S = {(z;,v;)}"_; ~ D" and randomly
labeled dataset S = {(z;,y;)}" fm L~ D™ Let X = [@1,22,+ , Tman] and y = [ey,, €40, 5 €y, . ] Fix a positive
learning rate 7 such thatn < 1/ <||X X || + )\2) and an initialization wy = 0. Consider the following gradient descent

iterates to minimize objective (59) on S U S:

wi' =w;" =V, Lo (w5 A) VE=1,2,...andj =1,2,... k. (77)

Then we have {w;'} for all j = 1,2,--- ,k converge to the limiting solution @; = (X7X + )\I)_1 XTy,. Define
f@) == fla; D).

Theorem 5. Assume that this gradient descent algorithm satisfies Condition 1 with B = O(1). Then for a multiclass
classification problem wth k classes, for any § > 0, with probability at least 1 — §, we have:

~ ~

o) < 5P+ (b -1) (1~ Eges()

<k+\r+n\/>>\/1og4/5 \/7\/ m+n>. (78)

Proof. The proof of this theorem is divided into two parts. In the first part, we relate the error on the mislabeled samples
with the population error on the mislabeled data. Similar to the proof of Theorem 4, we use Shermann-Morrison formula to
upper bound training error with leave-one-out error on each 7. Second part of the proof follows entirely from the proof of
Theorem 3. In essence, the first part derives an equivalent of (45) for GD training with squared loss and then the second part
follows from the proof of Theorem 3.

Part-1: Consider a training point (z;, y;) in S U S. For simplicity, we use c; to denote the class of i-th point and use y; as

the corresponding one-hot embedding. Recall error in multiclass point is given by & (f(scl), yi) =1 |c; ¢ argmaxa] ).

Thus, there exists a j # ¢; € [k], such that we have
S(]?(acl)7 yi) =1 [ci ¢ arg max :UZT@] =1 [x-T@c < gc-TtT)j] (79)
— 1ol (XX + A1) X"y, <ol (XTX + A1) Xy (80)

T T T -t T T
— 1|4 (X(i)X(i) +oTz; + )\I) (X(i)yc,,(i) +a - X{y; @) <0]. 1)
S ~ B
i I
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Letting A = (X (7;)X () + M ) and using Lemma 11 on term 1, we have

g(f(l‘i)»yi) =1 xlT [A—l — ‘M] (X(I;)yci(i) +z; — Xg;)yj(i)) < O] (82)
- _[ziTAl(l . xfli;;iliAlxixiTAl] (X (i ¥ei iy + 21 — X5y @) < 0] (83)
Since 1 + 2z A~1z; > 0, we have
E(fl).u) = T|aT A (XTwesy + 2~ Xyuigy) < 0] (85)
— 1ol A Y+ 2T AT X e, ) — 2T AT Xy < 0) (86)
<1 [‘T?A_lx(j;)yci (i) ~ xiTA_IX(:C)yj(i) < 0] = 5<ﬁi) (i), 9i) - (87)

Using (87), we have

€5, (f) < ELoo@a = (88)

~

Z(ziﬂyi)egM 5(J?(z‘) (i), y:)
SM‘

We now relate RHS in (71) with the population error on mislabeled distribution. Similar as before, to do this, we leverage
Condition 1 and Lemma 12. Using (73) and (88), we have

~ ~ 1 1 38
~ < ’ — —_— .
€5, (f) 5D(f)+\/5 <2m1+m+n> (89)
We have now derived a parallel to (45). Using the same arguments in the proof of Lemma 8, we have
~ ~ k 1 38
<(k-1)(1-E&5 k-1 . 0
En(f) < (k=1) (1-&5,(F) +( %(k =) (le + = n) ©0)

Part-2: We now combine the results in Lemma 9 and Lemma 10 to obtain the final inequality in terms of quantities that
can be computed from just the randomly labeled and clean data. Similar to the binary case, we obtained a polynomial
concentration instead of exponential concentration. Combining (90) with Lemma 9 and Lemma 10, we have with probability
atleast 1 — 9

En(F) < Es(F) + (k— 1) (1 - kfg(f))

k-1
+ <k+x/E+ H%) «/bg;i/é) +\/m\/§ (nl1 + m?’fn). o1)
O

B.3. Discussion on Condition 1

The quantity in LHS of Condition 1 measures how much the function learned by the algorithm (in terms of error on unseen
point) will change when one point in the training set is removed. We need hypothesis stability condition to control the
variance of the empirical leave-one-out error to show concentration of average leave-one-error with the population error.

Additionally, we note that while the dominating term in the RHS of Theorem 4 matches with the dominating term in ERM
bound in Theorem 1, there is a polynomial concentration term (dependence on 1/§ instead of log(4/1/0)) in Theorem 4.
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Since with hypothesis stability, we just bound the variance, the polynomial concentration is due to the use of Chebyshev’s
inequality instead of an exponential tail inequality (as in Lemma 1). Recent works have highlighted that a slightly stronger
condition than hypothesis stability can be used to obtain an exponential concentration for leave-one-out error (Abou-Moustafa
& Szepesvari, 2019), but we leave this for future work for now.

B.4. Formal statement and proof of Proposition 2

Before formally presenting the result, we will introduce some notation. By Lg(w), we denote the objective in (59) with
A = 0. Assume Singular Value Decomposition (SVD) of X as v/nUS"?2V”T. Hence X7 X = VSV, Consider the GD
iterates defined in (60). We now derive closed form expression for the ¢ iterate of gradient descent:

wi=wi 1 +1- X (y—Xwi_1) =T —nVSVHwp_ 1 +nXTy. 92)
Rotating by V7', we get
wy = (I —nS)Wx—1 +ny, 93)
where @y = VTw; and § = VT XTy. Assuming the initial point wy = 0 and applying the recursion in (93), we get
By = ST = (I-n8)"), (94)
Projecting solution back to the original space, we have
w, = VS I —(I-nS)"\VTXTy. (95)
Define fi(x) := f(x;w,) as the solution at the 1 iterate. Let Wy = argmin, Ls(w;\) = (XTX + A1 XTy =
V(S + M)~ VT XTy. and define fy(x) := f(z;@)) as the regularized solution. Assume # be the condition number of
the population covariance matrix and let sy, be the minimum positive singular value of the empirical covariance matrix. Our

proof idea is inspired from recent work on relating gradient flow solution and regularized solution for regression problems
(Ali et al., 2018). We will use the following lemma in the proof:

Lemma 13. For all x € [0,1] and for all k € N, we have (a) 1&’;“3 <l-(1—2)fand(b)1 - (1—-z)F<2- kfil

Proof. Using (1 — 2)F < ﬁ, we have part (a). For part (b), we numerically maximize w forallk > 1
and for all z € [0, 1]. O

Proposition 3 (Formal statement of Proposition 2). Let A = % For a training point x, we have

Eons | (@) = A@)?] < eltm) - Bavs [fu(@)?] |

where c(t,n) := min(0.25, ﬁ) Similarly for a test point, we have
Eopn | (fi(0) = In@)?| < - elt,n) By [ful@)?] -

Proof. We want to analyze the expected squared difference output of regularized linear regression with regularization
constant A = % and the gradient descent solution at the ¢ iterate. We separately expand the algebraic expression for squared

difference at a training point and a test point. Then the main step is to show that [S™!(I — (I —nS)*) — (S + AI)7!] <
c(n,t) - STHI = (I = n8)").

Part 1 First, we will analyze the squared difference of the output at a training point (for simplicity, we refer to .S U S as 9),
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i.e.,
~ 2 - 12
Bues | (7o) = @) | = X0 - X4 %6)
— |XVS I~ (I -nS) )V X Ty — XV (§+ M) 'V Xyl 97)
=XV (ST' T - (T —nS9)") — (S+ X)) VIXTyl, (98)
2
=yTVvX |8 I - T -1n8))—(S+XI)"1| SVIXTy. (99)

I

We now separately consider term 1. Substituting A = ti, we get
n

STI-T-nS)")—(S+AD)'=S"({T-T-nS)")—T+S'N) (100)
=S (I —-T=nS)") =T +(Stn)~)7) . (101)
TA,- ~

We now separately bound the diagonal entries in matrix A. With s;, we denote i" diagonal entry of S. Note that since

n < 1/ 5],y forall 4, ns; < 1. Consider i™ diagonal term (which is non-zero) of the diagonal matrix A, we have

1 tns; 1—(1—sm)t tns;

A= (1= (= sy - ) Lol e (102)

5 1+ tns; i (1+tns;)(1— (1 —sin)")

~ ~- -~

I
1[1—(1-sm)t
< 3 [(877)] ) (Using Lemma 13 (b))
Sq

Additionally, we can also show the following upper bound on term 2:

L tns; _ (14 tns;)(1 — (1 — s;m)t) — tns; (103)
(1+tns;)(1— (1= sim)") (L+tns;) (1= (1 = sim)")
1— (1 —sin)" —tnsi(1 — sin)*
(L+tnsi)(1— (1 —sim)?)
< 1 .
tns;

(104)

(Using Lemma 13 (a))

Combining both the upper bounds on each diagonal entry A;;, we have

A<ci(nt)-SHI—(I-n8), (105)

where ¢1(7,t) = min(0.5, ﬁ) Plugging this into (99), we have
Eyes [(ft(x) - J?A(I)r] <cnt)-y VX (STHI - (I-nS)))" SVIXTy (106)
=cnt)-y" VX (ST~ (I-28)")) S (ST I~ (I -nS)"))VIXTy (107
= c(n,t) - | X w3 (108)
= c(n1) - Eons | (fi(2))?] | (109)

where ¢(n,t) = min(0.25, 5—— ).

? tQS?’I’]Q
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Part2 With X, we denote the underlying true covariance matrix. We now consider the squared difference of output at an
unseen point:

~ 2

Eorpy [(ft( ) — fA(w)) ] = Eynpy [|oTwr — 2" @2, ] (110)
=|a"VSTI I - (I —nS) )WV XTy—2"V(S+ )"V XTyl, (111)

="V (STHI - (I —nS)") — (S + A7) VIXTy|, (112)

=y'VX (ST - T -nS)") - (S+ ) H)VIZV (113)

(I—T =09 —(S+A) ) VTXTy (114)

2
SOm Y VX | ST -T-78)")—(S+AD)7| vixTy, (115)

& ~ ~

I

where o,y is the maximum eigenvalue of the underlying covariance matrix ¥. Using the upper bound on term 1 in (105),
we have

Esps [(ft( ) - e ))2} Oma - ¢(n.1) -y VX (ST~ (I -n8))* VX Ty (116)
= k(1) - omin - [V (S7HT — (I —0S))) VIXTy], (117)

<k-cnt)-[V (ST - (I -n8)")) VIXT]"x (118)

[V (ST'I - (I —-n9)")) VIXT]y (119)

=kr-c(nt) Ezup, [HwT’wt ”2] . (120)

O

B.5. Extension to deep learning

Under Assumption B.6, we present the formal result parallel to Theorem 3.

Theorem 6. Consider a multiclass classification problem with k classes. Under Assumption 1, for any § > 0, with
probability at least 1 — §, we have

Ep(f) < &P+ (k= 1) (1= rEs(D) + oy ), (121

2m

Sor some constant ¢ < ((c + 1)k + vk + nL\/E)

The proof follows exactly as in step (i) to (iii) in Theorem 3.

B.6. Justifying Assumption 1

Motivated by the analysis on linear models, we now discuss alternate (and weaker) conditions that imply Assumption 1. We
need hypothesis stability (Condition 1) and the following assumption relating training error and leave-one-error:

Assumption 2. Let f be a model obtained by training with algorithm A on a mixture of clean S and randomly labeled data
S. Then we assume we have

~

( ) LOO(S[W) ?

g ) g Z w;y;)€8 E(fay (@i),wi)
for all (x;,y;) € Sy where f(;) := f(A,S U Snm i) ) and ELOO(S ) (24,94) SI|W§M| () .

Intuitively, this assumption states that the error on a (mislabeled) datum (z, y) included in the training set is less than the
error on that datum (z, y) obtained by a model trained on the training set S — {(z, y)}. We proved this for linear models
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trained with GD in the proof of Theorem 5. Condition 1 with 5 = (O(1) and Assumption 2 together with Lemma 12 implies
Assumption 1 with a polynomial residual term (instead of logarithmic in 1/4):

5sM(A)<5DI(f)+\/(1S(1+ 35 ) (122)

m m+n
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C. Additional experiments and details
C.1. Datasets

Toy Dataset Assume fixed constants y and o. For a given label y, we simulate features x in our toy classification setup as
follows:

x:= concat [z1,25] where x; ~ N(y-p,0%I4xq) and 21 ~ N(0,02I4xq) .

In experiements throughout the paper, we fix dimention d = 100, = 1.0, and 0 = +/d. Intuitively, z; carries the
information about the underlying label and x5 is additional noise independent of the underlying label.

CV datasets We use MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky & Hinton, 2009). We produce a binary
variant from the multiclass classification problem by mapping classes {0, 1,2, 3,4} to label 1 and {5, 6,7, 8,9} to label —1.
For CIFAR dataset, we also use the standard data augementation of random crop and horizontal flip. PyTorch code is as
follows:

(transforms.RandomCrop (32, padding=4),
transforms.RandomHorizontalFlip())

NLP dataset We use IMDDb Sentiment analysis (Maas et al., 2011) corpus.

C.2. Architecture Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used PyTorch (Paszke et al., 2019) and Keras with
Tensorflow (Abadi et al., 2016) backend for experiments.

Linear model For the toy dataset, we simulate a linear model with scalar output and the same number of parameters as the
number of dimensions.

Wide nets To simulate the NTK regime, we experiment with 2—layered wide nets. The PyTorch code for 2-layer wide
MLP is as follows:

nn.Sequential (
nn.Flatten(),
nn.Linear (input_dims, 200000, bias=True),
nn.RelLU(),
nn.Linear (200000, 1, bias=True)
)

We experiment both (i) with the second layer fixed at random initialization; (ii) and updating both layers’ weights.
Deep nets for CV tasks We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as follows:

nn.Sequential (nn.Flatten(),
nn.Linear (input_dim, 5000, bias=True),

nn.RelLU(),
nn.Linear (5000, 5000, bias=True),
nn.RelLU(),

nn.Linear (5000, 5000, bias=True),
nn.RelLU(),
nn.Linear (1024, num_label, bias=True)

)

For MNIST, we use 1000 nodes instead of 5000 nodes in the hidden layer. We also experiment with convolutional nets.
In particular, we use ResNet18 (He et al., 2016). Implementation adapted from: https://github.com/kuangliu/
pytorch-cifar.git.

Deep nets for NLP We use a simple LSTM model with embeddings intialized with ELMo embeddings (Peters et al.,
2018). Code adapted from: https://github.com/kamujun/elmo_experiments/blob/master/elmo_
experiment/notebooks/elmo_text_classification_on_imdb.ipynb
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We also evaluate our bounds with a BERT model. In particular, we fine-tune an off-the-shelf uncased BERT model (Devlin
et al., 2018). Code adapted from Hugging Face Transformers (Wolf et al., 2020): https://huggingface.co/
transformers/v3.1.0/custom_datasets.html.

C.3. Additonal experiments

Results with SGD on underparameterized linear models

Underparameterized model

100
B MSE  —« Test

90 I CE -e- Predicted bound
a R ——
© 80 == b i *
=} =—""
g 70
<

60

50

0.0 0.1 0.2 0.3 0.4
Fraction of unlabeled data

Figure 3. We plot the accuracy and corresponding bound (RHS in (1)) at § = 0.1 for toy binary classification task. Results aggregated
over 3 seeds. Accuracy vs fraction of unlabeled data (w.r.t clean data) in the toy setup with a linear model trained with SGD. Results
parallel to Fig. 2(a) with SGD.

Results with wide nets on binary MNIST

100 MNIST 100 x\“‘MNIST 100
e
90 $====="%====zz$ooo03 90 .,_::;:::::::ZI.': _____ 2 90
> > r >
® 80 ® 80 @ 80
S S S
g 70 o 70 g 70
< s GD —— Test < B SGD —— Test < B SGD —— Test
601 mmm Early stop —e- Predicted bound 601 mmm Early stop —e- Predicted bound 601 mmm Early stop -~ Predicted bound
B Weight decay B Weight decay BN Weight decay
50 50 50
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Fraction of unlabeled data Fraction of unlabeled data Fraction of unlabeled data
(a) GD with MSE loss (b) SGD with CE loss (c) SGD with MSE loss

Figure 4. We plot the accuracy and corresponding bound (RHS in (1)) at & = 0.1 for binary MNIST classification. Results aggregated
over 3 seeds. Accuracy vs fraction of unlabeled data for a 2-layer wide network on binary MNIST with both the layers training in (a,b)
and only first layer training in (c). Results parallel to Fig. 2(b) .

Results on CIFAR 10 and MNIST We plot epoch wise error curve for results in Table 1(Fig. 5 and Fig. 6). We observe
the same trend as in Fig. 1. Additionally, we plot an oracle bound obtained by tracking the error on mislabeled data which
nevertheless were predicted as true label. To obtain an exact emprical value of the oracle bound, we need underlying true
labels for the randomly labeled data. While with just access to extra unlabeled data we cannot calculate oracle bound, we
note that the oracle bound is very tight and never violated in practice underscoring an importamt aspect of generalization
in multiclass problems. This highlight that even a stronger conjecture may hold in multiclass classification, i.e., error on
mislabeled data (where nevertheless true label was predicted) lower bounds the population error on the distribution of
mislabeled data and hence, the error on (a specific) mislabeled portion predicts the population accuracy on clean data. On
the other hand, the dominating term of in Theorem 3 is loose when compared with the oracle bound. The main reason, we
believe is the pessimistic upper bound in (45) in the proof of Lemma 8. We leave an investigation on this gap for future.

Results on CIFAR 100 On CIFAR100, our bound in (5) yields vacous bounds. However, the oracle bound as explained
above yields tight guarantees in the initial phase of the learning (i.e., when learning rate is less than 0.1) (Fig. 7).
C.4. Hyperparameter Details

Fig. 1 We use clean training dataset of size 40, 000. We fix the amount of unlabeled data at 20% of the clean size, i.e. we
include additional 8, 000 points with randomly assigned labels. We use test set of 10, 000 points. For both MLP and ResNet,



Leveraging Unlabeled Data to Guarantee Generalization

100 T 100 i
90 —— Testaccuracy 90 !
. i

go ~~— Predicted bound 80 .
i

70 70 _/’ \"/\\/AV\/{
60
50 ;
40 !
30
20

10

i
|
i
|
—— Oracle bound !
i
1
i
i
i

Accuracy
Accuracy

—— Test accuracy
-=-~- Predicted bound |
—— Oracle bound Y

'
0 10 20 30 40 50
Epoch

(b) ResNet

Figure 5. Per epoch curves for CIFAR10 corresponding results in Table 1. As before, we just plot the dominating term in the RHS of
(5) as predicted bound. Additionally, we also plot the predicted lower bound by the error on mislabeled data which nevertheless were
predicted as true label. We refer to this as “Oracle bound”. See text for more details.
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Figure 6. Per epoch curves for MNIST corresponding results in Table 1. As before, we just plot the dominating term in the RHS of (5) as
predicted bound. Additionally, we also plot the predicted lower bound by the error on mislabeled data which nevertheless were predicted
as true label. We refer to this as “Oracle bound”. See text for more details.

we use SGD with an initial learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at 5 x 10~%. After
100 epochs, we decay the learning rate to 0.01. We use SGD batch size of 100.

Fig. 2 (a) We obtain a toy dataset according to the process described in Sec. C.1. We fix d = 100 and create a dataset of
50, 000 points with balanced classes. Moreover, we sample additional covariates with the same procedure to create randomly
labeled dataset. For both SGD and GD training, we use a fixed learning rate 0.1.

Fig. 2 (b) Similar to binary CIFAR, we use clean training dataset of size 40, 000 and fix the amount of unlabeled data at
20% of the clean dataset size. To train wide nets, we use a fixed learning of 0.001 with GD and SGD. We decide the weight
decay parameter and the early stopping point that maximizes our generalization bound (i.e. without peeking at unseen data ).
We use SGD batch size of 100.

Fig. 2 (¢) With IMDD dataset, we use a clean dataset of size 20, 000 and as before, fix the amount of unlabeled data at 20%
of the clean data. To train ELMo model, we use Adam optimizer with a fixed learning rate 0.01 and weight decay 10~ to
minimize cross entropy loss. We train with batch size 32 for 3 epochs. To fine-tune BERT model, we use Adam optimizer
with learning rate 5 x 10~° to minimize cross entropy loss. We train with a batch size of 16 for 1 epoch.

Table 1 For multiclass datasets, we train both MLP and ResNet with the same hyperparameters as described before. We
sample a clean training dataset of size 40, 000 and fix the amount of unlabeled data at 20% of the clean size. We use SGD
with an initial learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at 5 x 10~%. After 30 epochs for
ResNet and after 50 epochs for MLP, we decay the learning rate to 0.01. We use SGD with batch size 100. For Fig. 7, we
use the same hyperparameters as CIFAR10 training, except we now decay learning rate after 100 epochs.

In all experiments, to identify the best possible accuracy on just the clean data, we use the exact same set of hyperparamters
except the stopping point. We choose a stopping point that maximizes test performance.
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Figure 7. Predicted lower bound by the error on mislabeled data which nevertheless were predicted as true label with ResNet18 on
CIFAR100. We refer to this as “Oracle bound”. See text for more details. The bound predicted by RATT (RHS in (5)) is vacuous.

C.5. Summary of experiments

Classification type Model category Model Dataset
Low dimensional Linear model Toy Gaussain dataset
Overparameterlzed 2-layer wide net Binary MNIST
linear nets
Binary MNIST
Binar MLP Binary CIFAR
’ Deep nets ResNet Binary MNIST
p Binary CIFAR
ELMo-LSTM model IMDb Sentiment Analysis
BERT pre-trained model | IMDb Sentiment Analysis
MNIST
MLP CIFAR10
Multiclass Deep nets MNIST
ResNet CIFAR10
CIFAR100
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D. Proof of Lemma 12

Proof of Lemma 12. Recall, we have a training set S U §C- We defined leave-one-out error on mislabeled points as

. Z(zbyi)egM g(f(?) (m2)7 yl)

& = =
SM(

LOO(§1\4)

7

where f;) = f(A, (S U §)(i)). Define S’ := S U S. Assume (z,y) and (2/,7') as i.i.d. samples from D’. Using Lemma
25 in Bousquet & Elisseeff (2002), we have

~ ~

| (609~ i0031) | <Esttam oo [EF@LDEFN )] = 21 [ECF@ 0E o 0.0

m1—1

Esr [E(fay (i), y)E(Fiy (25),95)] + mil]ES’ [E(fiy(z),u:)] - (123)

my
We can rewrite the equation above as :

E [(su(f) - é‘wo(mﬂ < B (o) o) | EF @), EFE), o) = EF(@),0)EFoy (), 90)]

kS

+ Bs [0 (@), (), 7) = EF@) 9)EFeoy (i), )

>
—

I
1
+ EES’ [E(fy (@), ys) — Efay (i), w) E(f ) (@), 95)] - (124)

~~
11

We will now bound term III. Using Cauchy-Schwarz’s inequality, we have

Es [E(fe) (@), 9i) — EFeiy (@), 9)E oy (), 9)]” < Bsr [E(fy (@), wi) | B [L = Efiyp (), )" (125)
< i_ (126)

Note that since (x;,y;), (xj,v;), (x,y), and (2’,%’) are all from same distribution D’, we directly incorporate the bounds
on term I and II from the proof of Lemma 9 in Bousquet & Elisseeff (2002). Combining that with (126) and our definition
of hypothesis stability in Condition 1, we have the required claim.

O



