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Abstract

To assess generalization, machine learning scien-

tists typically either (i) bound the generalization

gap and then (after training) plug in the empir-

ical risk to obtain a bound on the true risk; or

(ii) validate empirically on holdout data. How-

ever, (i) typically yields vacuous guarantees for

overparameterized models; and (ii) shrinks the

training set and its guarantee erodes with each re-

use of the holdout set. In this paper, we leverage

unlabeled data to produce generalization bounds.

After augmenting our (labeled) training set with

randomly labeled data, we train in the standard

fashion. Whenever classifiers achieve low error

on the clean data but high error on the random

data, our bound ensures that the true risk is low.

We prove that our bound is valid for 0-1 empiri-

cal risk minimization and with linear classifiers

trained by gradient descent. Our approach is es-

pecially useful in conjunction with deep learning

due to the early learning phenomenon whereby

networks fit true labels before noisy labels but

requires one intuitive assumption. Empirically,

on canonical computer vision and NLP tasks,

our bound provides non-vacuous generalization

guarantees that track actual performance closely.

This work enables practitioners to certify gen-

eralization even when (labeled) holdout data is

unavailable and provides insights into the relation-

ship between random label noise and generaliza-

tion. Code is available at https://github.com/acmi-

lab/RATT generalization bound.

1. Introduction

Typically, machine learning scientists establish generaliza-

tion in one of two ways. One approach, favored by learning

theorists, places an a priori bound on the gap between the

empirical and true risks, usually in terms of the complex-
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ity of the hypothesis class. After fitting the model on the

available data, one can plug in the empirical risk to obtain

a guarantee on the true risk. The second approach, favored

by practitioners, involves splitting the available data into

training and holdout partitions, fitting the models on the

former and estimating the population risk with the latter.

Surely, both approaches are useful, with the former provid-

ing theoretical insights and the latter guiding the develop-

ment of a vast array of practical technology. Nevertheless,

both methods have drawbacks. Most a priori generaliza-

tion bounds rely on uniform convergence and thus fail to

explain the ability of overparameterized networks to gener-

alize (Zhang et al., 2016; Nagarajan & Kolter, 2019b). On

the other hand, provisioning a holdout dataset restricts the

amount of labeled data available for training. Moreover,

risk estimates based on holdout sets lose their validity with

successive re-use of the holdout data due to adaptive over-

fitting (Murphy, 2012; Dwork et al., 2015; Blum & Hardt,

2015). However, recent empirical studies suggest that on

large benchmark datasets, adaptive overfitting is surprisingly

absent (Recht et al., 2019).

In this paper, we propose Randomly Assign, Train and Track

(RATT), a new method that leverages unlabeled data to pro-

vide a post-training bound on the true risk (i.e., the popula-

tion error). Here, we assign random labels to a fresh batch

of unlabeled data, augmenting the clean training dataset

with these randomly labeled points. Next, we train on this

data, following standard risk minimization practices. Fi-

nally, we track the error on the randomly labeled portion of

training data, estimating the error on the mislabeled portion

and using this quantity to upper bound the population error.

Counterintuitively, we guarantee generalization by guaran-

teeing overfitting. Specifically, we prove that Empirical

Risk Minimization (ERM) with 0-1 loss leads to lower er-

ror on the mislabeled training data than on the mislabeled

population. Thus, if despite minimizing the loss on the com-

bined training data, we nevertheless have high error on the

mislabeled portion, then the (mislabeled) population error

will be even higher. Then, by complementarity, the (clean)

population error must be low. Finally, we show how to ob-

tain this guarantee using randomly labeled (vs mislabeled

data), thus enabling us to incorporate unlabeled data.

To expand the applicability of our idea beyond ERM on 0-1
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Leveraging Unlabeled Data to Guarantee Generalization

We focus first on binary classification. Assume we have a

clean dataset S „ Dn of n points and a randomly labeled

dataset rS „ rDm of m pă nq points with labels in rS are

assigned uniformly at random. We show that with 0-1 loss

minimization on the union of S and rS, we obtain a classifier

whose error on D is upper bounded by a function of the

empirical errors on clean data ES (lower is better) and on

randomly labeled data E rS (higher is better):

Theorem 1. For any classifier pf obtained by ERM (1) on

dataset SY rS, for any δ ą 0, with probability at least 1´δ,

we have

EDp pfq ď ESp pfq ` 1 ´ 2E rSp pfq

`
´?

2E rSp pfq ` 2 ` m

2n

¯ c
logp4{δq

m
. (2)

In short, this theorem tells us that if after training on both

clean and randomly labeled data, we achieve low error on

the clean data but high error (close to 1{2) on the randomly

labeled data, then low population error is guaranteed. Note

that because the labels in rS are assigned randomly, the error

E rSpfq for any fixed predictor f (not dependent on rS) will be

approximately 1/2. Thus, if ERM produces a classifier that

has not fit to the randomly labeled data, then p1 ´ 2E rSp pfqq
will be approximately 0, and our error will be determined by

the fit to clean data. The final term accounts for finite sample

error—notably, it (i) does not depend on the complexity of

the hypothesis class; and (ii) approaches 0 at a Op1{?
mq

rate (for m ă n).

Our proof strategy unfolds in three steps. First, in Lemma 1

we bound EDp pfq in terms of the error on the mislabeled

subset of rS. Next, in Lemmas 2 and 3, we show that the

error on the mislabeled subset can be accurately estimated

using only clean and randomly labeled data.

To begin, assume that we actually knew the original labels

for the randomly labeled data. By rSC and rSM , we denote

the clean and mislabeled portions of the randomly labeled

data, respectively (with rS “ rSM Y rSC). Note that for

binary classification, a lower bound on mislabeled popu-

lation error ED1 p pfq directly upper bounds the error on the

original population EDp pfq. Thus we only need to prove

that the empirical error on the mislabeled portion of our

data is lower than the error on unseen mislabeled data, i.e.,

E rSM
p pfq ď ED1 p pfq “ 1 ´ E rSM

p pfq (upto Op1{?
mq).

Lemma 1. Assume the same setup as in Theorem 1. Then

for any δ ą 0, with probability at least 1 ´ δ over the

random draws of mislabeled data rSM , we have

EDp pfq ď 1 ´ E rSM
p pfq `

c
logp1{δq

m
. (3)

Proof Sketch. The main idea of our proof is to regard the

clean portion of the data (SY rSC ) as fixed. Then, there exists

a classifier f˚ that is optimal over draws of the mislabeled

data rSM . Formally,

f˚ :“ argmin
fPF

E qDpfq,

where qD is a combination of the empirical distribution

over correctly labeled data S Y rSC and the (population)

distribution over mislabeled data D1. Recall that pf :“
argminfPF E

SY rSpfq. Since, pf minimizes 0-1 error on

S Y rS, we have E
SY rSp pfq ď E

SY rSpf˚q. Moreover, since

f˚ is independent of rSM , we have with probability at least

1 ´ δ that

E rSM
pf˚q ď ED1 pf˚q `

c
logp1{δq

m
.

Finally, since f˚ is the optimal classifier on qD, we have

E qDpf˚q ď E qDp pfq. Combining the above steps and using

the fact that ED “ 1´ED1 , we obtain the desired result.

While the LHS in (3) depends on the unknown portion rSM ,

our goal is to use unlabeled data (with randomly assigned

labels) for which the mislabeled portion cannot be read-

ily identified. Fortunately, we do not need to identify the

mislabeled points to estimate the error on these points in

aggregate E rSM
p pfq. Note that because the label marginal is

uniform, approximately half of the data will be correctly

labeled and the remaining half will be mislabeled. Conse-

quently, we can utilize the value of E rSp pfq and an estimate

of E rSC
p pfq to lower bound E rSM

p pfq. We formalize this as

follows:

Lemma 2. Assume the same setup as Theorem 1. Then

for any δ ą 0, with probability at least 1 ´ δ over the ran-

dom draws of rS, we have

∣

∣

∣
2E rSp pfq ´ E rSC

p pfq ´ E rSM
p pfq

∣

∣

∣
ď

2E rSp pfq
b

logp4{δq
2m

.

To complete the argument, we show that due to the ex-

changeability of the clean data S and the clean portion of

the randomly labeled data SC , we can estimate the error on

the latter E rSC
p pfq by the error on the former ESp pfq.

Lemma 3. Assume the same setup as Theorem 1. Then

for any δ ą 0, with probability at least 1 ´ δ over the

random draws of rSC and S, we have

∣

∣

∣
E rSC

p pfq ´ ESp pfq
∣

∣

∣
ď

`
1 ` m

2n

˘ b
logp2{δq

m
.

Lemma 3 establishes a tight bound on the difference of

the error of classifier pf on rSC and on S. The proof uses

Hoeffding’s inequality for randomly sampled points from a

fixed population (Hoeffding, 1994; Bardenet et al., 2015).

Having established these core components, we can now

summarize the proof strategy for Theorem 1. We bound the
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population error on clean data (the term on the LHS of (2))

in three steps: (i) use Lemma 1 to upper bound the error on

clean distribution EDp pfq, by the error on mislabeled training

data E rSM
p pfq; (ii) approximate E rSM

p pfq by E rSC
p pfq and the

error on randomly labeled training data (i.e., E rSp pfq) using

Lemma 2; and (iii) use Lemma 3 to estimate E rSC
p pfq using

the error on clean training data (ESp pfq).

Comparison with Rademacher bound Our bound in

Theorem 1 shows that we can upper bound the clean pop-

ulation error of a classifier by estimating its accuracy on

the clean and randomly labeled portions of the training data.

Next, we show that our bound’s dominating term is upper

bounded by the Rademacher complexity (Shalev-Shwartz &

Ben-David, 2014), a standard distribution-dependent com-

plexity measure.

Proposition 1. Fix a randomly labeled dataset rS „ rDm.

Then for any classifier f P F (possibly dependent on rS)2

and for any δ ą 0, with probability at least 1 ´ δ over

random draws of rS, we have

1 ´ 2E rSpfq ď Eǫ,x

«
sup
fPF

ˆř
i ǫifpxiq
m

˙ff
`

d
2 logp 2

δ
q

m
,

where ǫ is drawn from a uniform distribution over t´1, 1um
and x is drawn from Dm

X .

In other words, the proposition above highlights that the

accuracy on the randomly labeled data is never larger than

the Rademacher complexity of F w.r.t. the underlying dis-

tribution over X , implying that our bound is never looser

than a bound based on Rademacher complexity. The proof

follows by application of the bounded difference condition

and McDiarmid’s inequality (McDiarmid, 1989). We now

discuss extensions of Theorem 1 to regularized ERM and

multiclass classification.

Extension to regularized ERM Consider any function

R : F Ñ R, e.g., a regularizer that penalizes some mea-

sure of complexity for functions in class F . Consider the

following regularized ERM:

pf :“ argmin
fPF

ESpfq ` λRpfq , (4)

where λ is a regularization constant. If the regularization

coefficient is independent of the training data S Y rS, then

our guarantee (Theorem 1) holds. Formally,

Theorem 2. For any regularization function R, assume we

perform regularized ERM as in (4) on S Y rS and obtain

a classifier pf . Then, for any δ ą 0, with probability at

2We restrict F to functions which output a label in Y “
t´1, 1u.

least 1 ´ δ, we have EDp pfq ď ESp pfq ` 1 ´ 2E rSp pfq `´?
2E rSp pfq ` 2 ` m

2n

¯ b
logp1{δq

m
.

A key insight here is that the proof of Theorem 1 treats the

clean data S as fixed and considers random draws of the

mislabeled portion. Thus a data-independent regularization

function does not alter our chain of arguments and hence,

has no impact on the resulting inequality. We prove this

result formally in App. A.

We note one immediate corollary from Theorem 2: when

learning any function f parameterized by w with L2-norm

penalty on the parameters w, the population error with pf is

determined by the error on the clean training data as long as

the error on randomly labeled data is high (close to 1{2).

Extension to multiclass classification Thus far, we have

addressed binary classification. We now extend these results

to the multiclass setting. As before, we obtain datasets S

and rS. Here, random labels are assigned uniformly among

all classes.

Theorem 3. For any regularization function R, assume we

perform regularized ERM as in (4) on S Y rS and obtain a

classifier pf . For a multiclass classification problem with k

classes, for any δ ą 0, with probability at least 1 ´ δ, we

have

EDp pfq ď ESp pfq ` pk ´ 1q
´
1 ´ k

k´1
E rSp pfq

¯

` c

d
logp 4

δ
q

2m
, (5)

for some constant c ď p2k `
?
k ` m

n
?
k

q.

We first discuss the implications of Theorem 3. Besides

empirical error on clean data, the dominating term in the

above expression is given by pk ´ 1q
´
1 ´ k

k´1
E rSp pfq

¯
. For

any predictor f (not dependent on rS), the term E rSp pfq would

be approximately pk ´ 1q{k and for pf , the difference now

evaluates to the accuracy of the randomly labeled data. Note

that for binary classification, (5) simplifies to Theorem 1.

The core of our proof involves obtaining an inequality simi-

lar to (3). While for binary classification, we could upper

bound E rSM
with 1 ´ ED (in the proof of Lemma 1), for

multiclass classification, error on the mislabeled data and

accuracy on the clean data in the population are not so di-

rectly related. To establish an inequality analogous to (3),

we break the error on the (unknown) mislabeled data into

two parts: one term corresponds to predicting the true label

on mislabeled data, and the other corresponds to predicting

neither the true label nor the assigned (mis-)label. Finally,

we relate these errors to their population counterparts to

establish an inequality similar to (3).
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4. Generalization Bound for RATT with

Gradient Descent

In the previous section, we presented results with ERM on

0-1 loss. While minimizing the 0-1 loss is hard in general,

these results provide important theoretical insights. In this

section, we show parallel results for linear models trained

with Gradient Descent (GD).

To begin, we introduce the setup and some additional no-

tation. For simplicity, we begin discussion with binary

classification with X “ R
d. Define a linear function

fpx;wq :“ wTx for some w P R
d and x P X . Given

training set S, we suppose that the parameters of the linear

function are obtained via gradient descent on the following

L2 regularized problem:

LSpw;λq :“
nÿ

i“1

pwTxi ´ yiq2 ` λ ||w||22 , (6)

where λ ě 0 is a regularization parameter. Our choice

to analyze squared loss minimization for linear networks

is motivated in part by its analytical convenience, and fol-

lows recent theoretical work which analyze neural networks

trained via squared loss minimization in the Neural Tangent

Kernel (NTK) regime when they are well approximated by

linear networks (Jacot et al., 2018; Arora et al., 2019; Du

et al., 2019; Hu et al., 2019). Moreover, recent research sug-

gests that for classification tasks, squared loss minimization

performs comparably to cross-entropy loss minimization

(Muthukumar et al., 2020; Hui & Belkin, 2020).

For a given training set S, we use Spiq to denote the training

set S with the ith point removed. We now introduce one

stability condition:

Condition 1 (Hypothesis Stability). We have β hypothesis

stability if our training algorithm A satisfies the following

for all i P t1, 2, . . . , nu:

ES,px,yqPD

“∣
∣E pfpxq, yq ´ E

`
fpiqpxq, y

˘∣
∣

‰
ď β

n
,

where fpiq :“ fpA, Spiqq and f :“ fpA, Sq.

This condition is similar to a notion of stability called hy-

pothesis stability (Bousquet & Elisseeff, 2002; Kearns &

Ron, 1999; Elisseeff et al., 2003). Intuitively, Condition 1

states that empirical leave-one-out error and average pop-

ulation error of leave-one-out classifiers are close. This

condition is mild and does not guarantee generalization. We

discuss the implications in more detail in App. B.3.

Now we present the main result of this section. As

before, we assume access to a clean dataset S “
tpxi, yiquni“1 „ Dn and randomly labeled dataset rS “
tpxi, yiqun`m

i“n`1 „ rDm. Let X “ rx1, x2, ¨ ¨ ¨ , xm`ns and

y “ ry1, y2, ¨ ¨ ¨ , ym`ns. Fix a positive learning rate η such

that η ď 1{
´ˇ̌̌̌
XTX

ˇ̌̌̌
op

` λ2
¯

and an initialization w0 “ 0.

Consider the following gradient descent iterates to minimize

objective (6) on S Y rS:

wt “ wt´1 ´ η∇wLSY rSpwt´1;λq @t “ 1, 2, . . . . (7)

Then we have twtu converge to the limiting solution pw “`
XTX ` λI

˘´1
XTy. Define pfpxq :“ fpx; pwq.

Theorem 4. Assume that this gradient descent algorithm

satisfies Condition 1 with β “ Op1q. Then for any δ ą 0,

with probability at least 1 ´ δ over the random draws of

datasets rS and S, we have:

EDp pfq ď ESp pfq ` 1 ´ 2E rSp pfq `
d

4

δ

ˆ
1

m
` 3β

m ` n

˙

`
´?

2E rSp pfq ` 1 ` m

2n

¯ c
logp4{δq

m
.

(8)

With a mild regularity condition, we establish the same

bound on GD training with squared loss, notably the same

dominating term on the population error, as in Theorem 1.

In App. B.2, we present the extension to multiclass classifi-

cation, where we again obtain a result parallel to Theorem 3.

Proof Sketch. Because squared loss minimization does not

imply 0-1 error minimization, we cannot use arguments

from Lemma 1. This is the main technical difficulty. To

compare the 0-1 error at a train point with an unseen point,

we use the closed-form expression for pw. We show that

the train error on mislabeled points is less than the popula-

tion error on the distribution of mislabeled data (parallel to

Lemma 1).

For a mislabeled training point pxi, yiq in rS, we show that

I
“
yix

T
i pw ď 0

‰
ď I

“
yix

T
i pwpiq ď 0

‰
, (9)

where pwpiq is the classifier obtained by leaving out the ith

point from the training set. Intuitively, this condition states

that the train error at a training point is less than the leave-

one-out error at that point, i.e. the error obtained by remov-

ing that point and re-training. Using Condition 1, we then

relate the average leave-one-out error (over the index i of

the RHS in (9)) to the population error on the mislabeled

distribution to obtain an inequality similar to (3).

Extensions to kernel regression Since the result in The-

orem 4 does not impose any regularity conditions on the

underlying distribution over X ˆ Y , our guarantees extend

straightforwardly to kernel regression by using the transfor-

mation x Ñ φpxq for some feature transform function φ.

Furthermore, recent literature has pointed out a concrete con-

nection between neural networks and kernel regression with



Leveraging Unlabeled Data to Guarantee Generalization

the so-called Neural Tangent Kernel (NTK) which holds

in a certain regime where weights do not change much

during training (Jacot et al., 2018; Du et al., 2019; 2018;

Chizat et al., 2019). Using this concrete correspondence, our

bounds on the clean population error (Theorem 4) extend to

wide neural networks operating in the NTK regime.

Extensions to early stopped GD Often in practice, gradi-

ent descent is stopped early. We now provide theoretical ev-

idence that our guarantees may continue to hold for an early

stopped GD iterate. Concretely, we show that in expectation,

the outputs of the GD iterates are close to that of a problem

with data-independent regularization (as considered in The-

orem 2). First, we introduce some notation. By LSpwq,

we denote the objective in (6) with λ “ 0. Consider the

GD iterates defined in (7). Let rwλ “ argminw LSpw;λq.

Define ftpxq :“ fpx;wtq as the solution at the tth iterate

and rfλpxq :“ fpx; rwλq as the regularized solution. Let κ be

the condition number of the population covariance matrix

and let smin be the minimum positive singular value of the

empirical covariance matrix.

Proposition 2 (informal). For λ “ 1
tη

, we have

Ex„DX

”
pftpxq ´ rfλpxqq2

ı
ď cpt, ηq ¨ Ex„DX

“
ftpxq2

‰
,

where cpt, ηq « κ ¨minp0.25, 1
s2

min
t2η2

q. An equivalent guar-

antee holds for a point x sampled from the training data.

The proposition above states that for large enough t, GD

iterates stay close to a regularized solution with data-

independent regularization constant. Together with our guar-

antees in Theorem 4 for regularization solution with λ “ 1
tη

,

Proposition 2 shows that our guarantees with RATT may

hold on early stopped GD. See the formal result in App. B.4.

Remark Proposition 2 only bounds the expected squared

difference between the tth gradient descent iterate and a

corresponding regularized solution. The expected squared

difference and the expected difference of classification er-

rors (what we wish to bound) are not related, in general.

However, they can be related under standard low-noise (mar-

gin) assumptions. For instance, under the Tsybakov noise

condition (Tsybakov et al., 1997; Yao et al., 2007), we can

lower-bound the expression on the LHS of Proposition 2

with the difference of expected classification error.

Extensions to deep learning Note that the main lemma

underlying our bound on (clean) population error states that

when training on a mixture of clean and randomly labeled

data, we obtain a classifier whose empirical error on the

mislabeled training data is lower than its population error on

the distribution of mislabeled data. We prove this for ERM

on 0-1 loss (Lemma 1). For linear models (and networks in

NTK regime), we obtained this result by assuming hypothe-

sis stability and relating training error at a datum with the

leave-one-out error (Theorem 4). However, to extend our

bound to deep models we must assume that training on the

mixture of random and clean data leads to overfitting on the

random mixture. Formally:

Assumption 1. Let pf be a model obtained by training with

an algorithm A on a mixture of clean data S and randomly

labeled data rS. Then with probability 1´δ over the random

draws of mislabeled data rSM , we assume that the following

condition holds:

E rSM
p pfq ď ED1 p pfq ` c

c
logp1{δq

2m
,

for a fixed constant c ą 0.

Under Assumption 1, our results in Theorem 1, 2 and 3

extend beyond ERM with the 0-1 loss to general learning

algorithms. We include the formal result in App. B.5. Note

that given the ability of neural networks to interpolate the

data, this assumption seems uncontroversial in the later

stages of training. Moreover, concerning the early phases of

training, recent research has shown that learning dynamics

for complex deep networks resemble those for linear mod-

els (Nakkiran et al., 2019; Hu et al., 2020), much like the

wide neural networks that we do analyze. Together, these

arguments help to justify Assumption 1 and hence, the ap-

plicability of our bound in deep learning. Motivated by our

analysis on linear models trained with gradient descent, we

discuss conditions in App. B.6 which imply Assumption 1

for constant values δ ą 0. In the next section, we em-

pirically demonstrate applicability of our bounds for deep

models.

5. Empirical Study and Implications

Having established our framework theoretically, we now

demonstrate its utility experimentally. First, for linear mod-

els and wide networks in the NTK regime where our guar-

antee holds, we confirm that our bound is not only valid,

but closely tracks the generalization error. Next, we show

that in practical deep learning settings, optimizing cross-

entropy loss by SGD, the expression for our (0-1) ERM

bound nevertheless tracks test performance closely and in

numerous experiments on diverse models and datasets is

never violated empirically.

Datasets To verify our results on linear models, we con-

sider a toy dataset, where the class conditional distribution

ppx|yq for each label is Gaussian. For binary tasks, we use

binarized CIFAR-10 (first 5 classes vs rest) (Krizhevsky &

Hinton, 2009), binary MNIST (0-4 vs 5-9) (LeCun et al.,

1998) and IMDb sentiment analysis dataset (Maas et al.,

2011). For multiclass setup, we use MNIST and CIFAR-10.
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Dataset Model Pred. Acc Test Acc. Best Acc.

MNIST
MLP 93.1 97.4 97.9

ResNet 96.8 98.8 98.9

CIFAR10
MLP 48.4 54.2 60.0

ResNet 76.4 88.9 92.3

Table 1. Results on multiclass classification tasks. With pred. acc.

we refer to the dominating term in RHS of (5). At the given sample

size and δ “ 0.1, the remaining term evaluates to 30.7, decreasing

our predicted accuracy by the same. We note that test acc. denotes

the corresponding accuracy on unseen clean data. Best acc. is the

best achievable accuracy with just training on just the clean data

(and same hyperparamters except the stopping point). Note that

across all tasks our predicted bound is tight and the gap between the

best accuracy and test accuracy is small. Exact hyperparameters

are included in App. C.

performance is 88.04 (and the best achievable performance

on unseen data is 92.45). Additionally, we observe that our

method tracks the performance from the beginning of the

training and not just towards the end.

Finally, we verify our multiclass bound on MNIST and CI-

FAR10 with deep MLPs and ResNets (see results in Table 1

and per-epoch curves in App. C). As before, we fix the

amount of unlabeled data at 20% of the clean dataset to

minimize cross-entropy loss via SGD. In all four settings,

our bound predicts non-vacuous performance on unseen

data. In App. C, we investigate our approach on CIFAR100

showing that even though our bound grows pessimistic with

greater numbers of classes, the error on the mislabeled data

nevertheless tracks population accuracy.

6. Discussion and Connections to Prior Work

Implicit bias in deep learning Several recent lines of

research attempt to explain the generalization of neural net-

works despite massive overparameterization via the implicit

bias of gradient descent (Soudry et al., 2018; Gunasekar

et al., 2018a;b; Ji & Telgarsky, 2019; Chizat & Bach, 2020).

Noting that even for overparameterized linear models, there

exist multiple parameters capable of overfitting the training

data (with arbitrarily low loss), of which some generalize

well and others do not, they seek to characterize the favored

solution. Notably, Soudry et al. (2018) find that for linear

networks, gradient descent converges (slowly) to the max

margin solution. A complementary line of work focuses on

the early phases of training, finding both empirically (Rol-

nick et al., 2017; Arpit et al., 2017) and theoretically (Arora

et al., 2019; Li et al., 2020; Liu et al., 2020) that even in

the presence of a small amount of mislabeled data, gradi-

ent descent is biased to fit the clean data first during initial

phases of training. However, to best our knowledge, no

prior work leverages this phenomenon to obtain general-

ization guarantees on the clean data, which is the primary

focus of our work. Our method exploits this phenomenon

to produce non-vacuous generalization bounds. Even when

we cannot prove a priori that models will fit the clean data

well while performing badly on the mislabeled data, we

can observe that it indeed happens (often in practice), and

thus, a posteriori, provide tight bounds on the population

error. Moreover, by using regularizers like early stopping or

weight decay, we can accentuate this phenomenon, enabling

our framework to provide even tighter guarantees.

Generalization bounds Conventionally, generalization

in machine learning has been studied through the lens of

uniform convergence bounds (Blumer et al., 1989; Vapnik,

1999). Representative works on understanding generaliza-

tion in overparameterized networks within this framework

include Neyshabur et al. (2015; 2017b;a; 2018); Dziugaite &

Roy (2017); Bartlett et al. (2017); Arora et al. (2018); Li &

Liang (2018); Zhou et al. (2018); Allen-Zhu et al. (2019a);

Nagarajan & Kolter (2019a). However, uniform conver-

gence based bounds typically remain numerically loose rel-

ative to the true generalization error. Several works have

also questioned the ability of uniform convergence based

approaches to explain generalization in overparameterized

models (Zhang et al., 2016; Nagarajan & Kolter, 2019b).

Subsequently, recent works have proposed unconventional

ways to derive generalization bounds (Negrea et al., 2020;

Zhou et al., 2020). In a similar spirit, we take departure from

complexity-based approaches to generalization bounds in

our work. In particular, we leverage unlabeled data to derive

a post-hoc generalization bound. Our work provides guaran-

tees on overparameterized networks by using early stopping

or weight decay regularization, preventing a perfect fit on

the training data. Notably, in our framework, the model can

perfectly fit the clean portion of the data, so long as they

nevertheless fit the mislabeled data poorly.

Leveraging noisy data to provide generalization guaran-

tees In parallel work, Bansal et al. (2020) presented an

upper bound on the generalization gap of linear classifiers

trained on representations learned via self-supervision. Un-

der certain noise-robustness and rationality assumptions on

the training procedure, the authors obtained bounds depen-

dent on the complexity of the linear classifier and indepen-

dent of the complexity of representations. By contrast, we

present generalization bounds for supervised learning that

are non-vacuous by virtue of the early learning phenomenon.

While both frameworks highlight how robustness to random

label corruptions can be leveraged to obtain bounds that

do not depend directly on the complexity of the underlying

hypothesis class, our framework, methodology, claims, and

generalization results are very different from theirs.

Other related work. A long line of work relates early

stopped GD to a corresponding regularized solution (Fried-
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man & Popescu, 2003; Yao et al., 2007; Suggala et al.,

2018; Ali et al., 2018; Neu & Rosasco, 2018; Ali et al.,

2020). In the most relevant work, Ali et al. (2018) and

Suggala et al. (2018) address a regression task, theoretically

relating the solutions of early-stopped GD and a regularized

problem, obtained with a data-independent regularization

coefficient. Towards understanding generalization numer-

ous stability conditions have been discussed (Kearns & Ron,

1999; Bousquet & Elisseeff, 2002; Mukherjee et al., 2006;

Shalev-Shwartz et al., 2010). Hardt et al. (2016) studies the

uniform stability property to obtain generalization guaran-

tees with early-stopped SGD. While we assume a benign

stability condition to relate leave-one-out performance with

population error, we do not rely on any stability condition

that implies generalization.

7. Conclusion and Future work

Our work introduces a new approach for obtaining general-

ization bounds that do not directly depend on the underlying

complexity of the model class. For linear models, we prov-

ably obtain a bound in terms of the fit on randomly labeled

data added during training. Our findings raise a number of

questions to be explored next. While our empirical find-

ings and theoretical results with 0-1 loss hold absent further

assumptions and shed light on why the bound may apply

for more general models, we hope to extend our proof that

overfitting (in terms classification error) to the finite sample

of mislabeled data occurs with SGD training on broader

classes of models and loss functions. We hope to build on

some early results (Nakkiran et al., 2019; Hu et al., 2020)

which provide evidence that deep models behave like linear

models in the early phases of training. We also wish to

extend our framework to the interpolation regime. Since

many important aspects of neural network learning take

place within early epochs (Achille et al., 2017; Frankle

et al., 2020), including gradient dynamics converging to

very small subspace (Gur-Ari et al., 2018), we might imag-

ine operationalizing our bounds in the interpolation regime

by discarding the randomly labeled data after initial stages

of training.
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Supplementary Material

Throughout this discussion, we will make frequently use of the following standard results concerning the exponential

concentration of random variables:

Lemma 4 (Hoeffding’s inequality for independent RVs (Hoeffding, 1994)). Let Z1, Z2, . . . , Zn be independent bounded

random variables with Zi P ra, bs for all i, then

P

˜
1

n

nÿ

i“1

pZi ´ E rZisq ě t

¸
ď exp

ˆ
´ 2nt2

pb ´ aq2
˙

and

P

˜
1

n

nÿ

i“1

pZi ´ E rZisq ď ´t

¸
ď exp

ˆ
´ 2nt2

pb ´ aq2
˙

for all t ě 0.

Lemma 5 (Hoeffding’s inequality for sampling with replacement (Hoeffding, 1994)). Let Z “ pZ1, Z2, . . . , ZN q be a

finite population of N points with Zi P ra.bs for all i. Let X1, X2, . . . Xn be a random sample drawn without replacement

from Z . Then for all t ě 0, we have

P

˜
1

n

nÿ

i“1

pXi ´ µq ě t

¸
ď exp

ˆ
´ 2nt2

pb ´ aq2
˙

and

P

˜
1

n

nÿ

i“1

pXi ´ µq ď ´t

¸
ď exp

ˆ
´ 2nt2

pb ´ aq2
˙
,

where µ “ 1
N

řN
i“1 Zi.

We now discuss one condition that generalizes the exponential concentration to dependent random variables.

Condition 2 (Bounded difference inequality). Let Z be some set and φ : Zn Ñ R. We say that φ satisfies the bounded

difference assumption if there exists c1, c2, . . . cn ě 0 s.t. for all i, we have

sup
Z1,Z2,...,Zn,Z

1
i
PZn`1

∣

∣φpZ1, . . . , Zi, . . . , Znq ´ φpZ1, . . . , Z
1
i, . . . , Znq

∣

∣ ď ci .

Lemma 6 (McDiarmid’s inequality (McDiarmid, 1989)). Let Z1, Z2, . . . , Zn be independent random variables on set Z
and φ : Zn Ñ R satisfy bounded difference inequality (Condition 2). Then for all t ą 0, we have

P pφpZ1, Z2, . . . , Znq ´ E rφpZ1, Z2, . . . , Znqs ě tq ď exp

ˆ
´ 2t2řn

i“1 c
2
i

˙

and

P pφpZ1, Z2, . . . , Znq ´ E rφpZ1, Z2, . . . , Znqs ď ´tq ď exp

ˆ
´ 2t2řn

i“1 c
2
i

˙
.

A. Proofs from Sec. 3

Additional notation Let m1 be the number of mislabeled points ( rSM ) and m2 be the number of correctly labeled points

( rSC). Note m1 ` m2 “ m.
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A.1. Proof of Theorem 1

Proof of Lemma 1. The main idea of our proof is to regard the clean portion of the data (S Y rSC) as fixed. Then, there

exists an (unknown) classifier f˚ that minimizes the expected risk calculated on the (fixed) clean data and (random draws

of) the mislabeled data rSM . Formally,

f˚ :“ argmin
fPF

E qDpfq , (10)

where
qD “ n

m ` n
S ` m2

m ` n
rSC ` m1

m ` n
D1 .

Note here that qD is a combination of the empirical distribution over correctly labeled data S Y rSC and the (population)

distribution over mislabeled data D1. Recall that

pf :“ argmin
fPF

E
SY rSpfq . (11)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (11), we have

E
SY rSp pfq ď E

SY rSpf˚q . (12)

Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability at least 1 ´ δ that

E rSM
pf˚q ď ED1 pf˚q `

d
logp1{δq
2m1

. (13)

Finally, since f˚ is the optimal classifier on qD, we have

E qDpf˚q ď E qDp pfq . (14)

Now to relate (12) and (14), we multiply (13) by m1

m`n
and add n

m`n
ESpfq ` m2

m`n
E rSC

pfq both the sides. Hence, we can

rewrite (13) as follows:

E
SY rSpf˚q ď E qDpf˚q ` m1

m ` n

d
logp1{δq
2m1

. (15)

Now we combine equations (12), (15), and (14), to get

E
SY rSp pfq ď E qDp pfq ` m1

m ` n

d
logp1{δq
2m1

, (16)

which implies

E rSM
p pfq ď ED1 p pfq `

d
logp1{δq
2m1

. (17)

Since rS is obtained by randomly labeling an unlabeled dataset, we assume 2m1 « m 3. Moreover, using ED1 “ 1 ´ ED we

obtain the desired result.

Proof of Lemma 2. Recall E rSpfq “ m1

m
E rSM

pfq ` m2

m
E rSC

pfq. Hence, we have

2E rSpfq ´ E rSM
pfq ´ E rSC

pfq “
ˆ
2m1

m
E rSM

pfq ´ E rSM
pfq

˙
`

ˆ
2m2

m
E rSC

pfq ´ E rSC
pfq

˙
(18)

“
ˆ
2m1

m
´ 1

˙
E rSM

pfq `
ˆ
2m2

m
´ 1

˙
E rSC

pfq . (19)

3Formally, with probability at least 1 ´ δ, we have pm ´ 2m1q ď
a
m logp1{δq{2.
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Since the dataset is labeled uniformly at random, with probability at least 1´ δ, we have
`
2m1

m
´ 1

˘
ď

b
logp1{δq

2m
. Similarly,

we have with probability at least 1´ δ,
`
2m2

m
´ 1

˘
ď

b
logp1{δq

2m
. Using union bound, with probability at least 1´ δ, we have

2E rS ´ E rSM
pfq ´ E rSC

pfq ď
c

logp2{δq
2m

´
E rSM

pfq ` E rSC
pfq

¯
. (20)

With re-arranging E rSM
pfq ` E rSC

pfq and using the inequality 1 ´ a ď 1
1`a

, we have

2E rS ´ E rSM
pfq ´ E rSC

pfq ď 2E rS

c
logp2{δq

2m
. (21)

Proof of Lemma 3. In the set of correctly labeled points S Y rSC , we have S as a random subset of S Y rSC . Hence, using

Hoeffding’s inequality for sampling without replacement (Lemma 5), we have with probability at least 1 ´ δ

E rSC
p pfq ´ E

SY rSC
p pfq ď

d
logp1{δq
2m2

. (22)

Re-writing E
SY rSC

p pfq as m2

m2`n
E rSC

p pfq ` n
m2`n

ESp pfq, we have with probability at least 1 ´ δ

ˆ
n

n ` m2

˙ ´
E rSC

p pfq ´ ESp pfq
¯

ď
d

logp1{δq
2m2

. (23)

As before, assuming 2m2 « m, we have with probability at least 1 ´ δ

E rSC
p pfq ´ ESp pfq ď

´
1 ` m2

n

¯ c
logp1{δq

m
ď

´
1 ` m

2n

¯ c
logp1{δq

m
. (24)

Proof of Theorem 1. Having established these core intermediate results, we can now combine above three lemmas to prove

the main result. In particular, we bound the population error on clean data (EDp pfq) as follows:

(i) First, use (17), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1 ´ δ{4, we

have

EDp pfq ď 1 ´ E rSM
p pfq `

c
logp4{δq

m
. (25)

(ii) Second, use (21), to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and

error on whole randomly labeled dataset, i.e., with probability at least 1 ´ δ{2, we have

´E rSM
pfq ď E rSC

pfq ´ 2E rS ` 2E rS

c
logp4{δq

2m
. (26)

(iii) Finally, use (24) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,

with probability 1 ´ δ{4, we have

E rSC
p pfq ď ´ESp pfq `

´
1 ` m

2n

¯ c
logp4{δq

m
. (27)

Using union bound on the above three steps, we have with probability at least 1 ´ δ:

EDp pfq ď ESp pfq ` 1 ´ 2E rSp pfq `
´?

2E rS ` 2 ` m

2n

¯ c
logp4{δq

m
. (28)
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A.2. Proof of Proposition 1

Proof of Proposition 1. For a classifier f : X Ñ t´1, 1u, we have 1 ´ 2 I rfpxq ‰ ys “ y ¨ fpxq. Hence, by definition of

E , we have

1 ´ 2E rSpfq “ 1

m

mÿ

i“1

yi ¨ fpxiq ď sup
fPF

1

m

mÿ

i“1

yi ¨ fpxiq . (29)

Note that for fixed inputs px1, x2, . . . , xmq in rS, py1, y2, . . . ymq are random labels. Define φ1py1, y2, . . . , ymq :“
supfPF

1
m

řm
i“1 yi ¨ fpxiq. We have the following bounded difference condition on φ1. For all i,

sup
y1,...ym,y1

i
Pt´1,1um`1

∣

∣φ1py1, . . . , yi, . . . , ymq ´ φ1py1, . . . , y1
i, . . . , ymq

∣

∣ ď 1{m. (30)

Similarly, we define φ2px1, x2, . . . , xmq :“ Eyi„Ut´1,1u

“
supfPF

1
m

řm
i“1 yi ¨ fpxiq

‰
. We have the following bounded

difference condition on φ2. For all i,

sup
x1,...xm,x1

i
PXm`1

∣

∣φ2px1, . . . , xi, . . . , xmq ´ φ1px1, . . . , x
1
i, . . . , xmq

∣

∣ ď 1{m. (31)

Using McDiarmid’s inequality (Lemma 6) twice with Condition (30) and (31), with probability at least 1 ´ δ, we have

sup
fPF

1

m

mÿ

i“1

yi ¨ fpxiq ´ Ex,y

«
sup
fPF

1

m

mÿ

i“1

yi ¨ fpxiq
ff

ď
c

2 logp2{δq
m

. (32)

Combining (29) and (32), we obtain the desired result.

A.3. Proof of Theorem 2

Proof of Theorem 2 follows similar to the proof of Theorem 1. Note that the same results in Lemma 1, Lemma 2, and

Lemma 3 hold in the regularized ERM case. However, the arguments in the proof of Lemma 1 change slightly. Hence, we

state the lemma for regularized ERM and prove it here for completeness.

Lemma 7. Assume the same setup as Theorem 2. Then for any δ ą 0, with probability at least 1´ δ over the random draws

of mislabeled data rSM , we have

EDp pfq ď 1 ´ E rSM
p pfq `

c
logp1{δq

m
. (33)

Proof. The main idea of the proof remains the same, i.e. regard the clean portion of the data (S Y rSC ) as fixed. Then, there

exists a classifier f˚ that is optimal over draws of the mislabeled data rSM .

Formally,

f˚ :“ argmin
fPF

E qDpfq ` λRpfq , (34)

where
qD “ n

m ` n
S ` m1

m ` n
rSC ` m2

m ` n
D1 .

That is, qD a combination of the empirical distribution over correctly labeled data S Y rSC and the (population) distribution

over mislabeled data D1. Recall that

pf :“ argmin
fPF

E
SY rSpfq ` λRpfq . (35)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (11), we have

E
SY rSp pfq ` λRp pfq ď E

SY rSpf˚q ` λRpf˚q . (36)
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Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability at least 1 ´ δ that

E rSM
pf˚q ď ED1 pf˚q `

d
logp1{δq
2m1

. (37)

Finally, since f˚ is the optimal classifier on qD, we have

E qDpf˚q ` λRpf˚q ď E qDp pfq ` λRp pfq . (38)

Now to relate (36) and (38), we can re-write the (37) as follows:

E
SY rSpf˚q ď E qDpf˚q ` m1

m ` n

d
logp1{δq
2m1

. (39)

After adding λRpf˚q on both sides in (39), we combine equations (36), (39), and (38), to get

E
SY rSp pfq ď E qDp pfq ` m1

m ` n

d
logp1{δq
2m1

, (40)

which implies

E rSM
p pfq ď ED1 p pfq `

d
logp1{δq
2m1

. (41)

Similar as before, since rS is obtained by randomly labeling an unlabeled dataset, we assume 2m1 « m. Moreover, using

ED1 “ 1 ´ ED we obtain the desired result.

A.4. Proof of Theorem 3

To prove our results in the multiclass case, we first state and prove lemmas parallel to those used in the proof of balanced

binary case. We then combine these results to obtain the result in Theorem 3.

Before stating the result, we define mislabeled distribution D1 for any D. While D1 and D share the same marginal

distribution over inputs X , the conditional distribution over labels y given an input x „ DX is changed as follows: For any

x, the Probability Mass Function (PMF) over y is defined as: pD1 p¨|xq :“ 1´pDp¨|xq
k´1

, where pDp¨|xq is the PMF over y for

the distribution D.

Lemma 8. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1´ δ over the random draws

of mislabeled data rSM , we have

EDp pfq ď pk ´ 1q
´
1 ´ E rSM

p pfq
¯

` pk ´ 1q
c

logp1{δq
m

. (42)

Proof. The main idea of the proof remains the same. We begin by regarding the clean portion of the data (S Y rSC ) as fixed.

Then, there exists a classifier f˚ that is optimal over draws of the mislabeled data rSM .

However, in the multiclass case, we cannot as easily relate the population error on mislabeled data to the population accuracy

on clean data. While for binary classification, we could lower bound the population accuracy 1´ ED with the empirical error

on mislabeled data E rSM
(in the proof of Lemma 1), for multiclass classification, error on the mislabeled data and accuracy on

the clean data in the population are not so directly related. To establish (42), we break the error on the (unknown) mislabeled

data into two parts: one term corresponds to predicting the true label on mislabeled data, and the other corresponds to

predicting neither the true label nor the assigned (mis-)label. Finally, we relate these errors to their population counterparts

to establish (42).

Formally,

f˚ :“ argmin
fPF

E qDpfq ` λRpfq , (43)
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where

qD “ n

m ` n
S ` m1

m ` n
rSC ` m2

m ` n
D1 .

That is, qD is a combination of the empirical distribution over correctly labeled data S Y rSC and the (population) distribution

over mislabeled data D1. Recall that

pf :“ argmin
fPF

E
SY rSpfq ` λRpfq . (44)

Following the exact steps from the proof of Lemma 7, with probability at least 1 ´ δ, we have

E rSM
p pfq ď ED1 p pfq `

d
logp1{δq
2m1

. (45)

Similar to before, since rS is obtained by randomly labeling an unlabeled dataset, we assume k
k´1

m1 « m.

Now we will relate ED1 p pfq with EDp pfq. Let yT denote the (unknown) true label for a mislabeled point px, yq (i.e., label

before replacing it with a mislabel).

Epx,yqP„D1

”
I

”
pfpxq ‰ y

ıı
“ Epx,yqP„D1

”
I

”
pfpxq ‰ y ^ pfpxq ‰ yT

ıı

l jh n
I

` Epx,yqP„D1

”
I

”
pfpxq ‰ y ^ pfpxq “ yT

ıı

l jh n
II

. (46)

Clearly, term 2 is one minus the accuracy on the clean unseen data, i.e.,

II “ 1 ´ Ex,y„D

”
I

”
pfpxq ‰ y

ıı
“ 1 ´ EDp pfq . (47)

Next, we relate term 1 with the error on the unseen clean data. We show that term 1 is equal to the error on the unseen clean

data scaled by k´2
k´1

, where k is the number of labels. Using the definition of mislabeled distribution D1, we have

I “ 1

k ´ 1

˜
Epx,yqP„D

«
ÿ

iPY^i‰y

I

”
pfpxq ‰ i ^ pfpxq ‰ y

ıff¸
“ k ´ 2

k ´ 1
EDp pfq . (48)

Combining the result in (47), (48) and (46), we have

ED1 p pfq “ 1 ´ 1

k ´ 1
EDp pfq . (49)

Finally, combining the result in (49) with equation (45), we have with probability 1 ´ δ,

EDp pfq ď pk ´ 1q
´
1 ´ E rSM

p pfq
¯

` pk ´ 1q
d

k logp1{δq
2pk ´ 1qm . (50)

Lemma 9. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1´ δ over the random draws

of rS, we have
∣

∣

∣
kE rSp pfq ´ E rSC

p pfq ´ pk ´ 1qE rSM
p pfq

∣

∣

∣
ď 2k

c
logp4{δq

2m
.
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Proof. Recall E rSpfq “ m1

m
E rSM

pfq ` m2

m
E rSC

pfq. Hence, we have

kE rSpfq ´ pk ´ 1qE rSM
pfq ´ E rSC

pfq “ pk ´ 1q
ˆ

km1

pk ´ 1qmE rSM
pfq ´ E rSM

pfq
˙

`
ˆ
km2

m
E rSC

pfq ´ E rSC
pfq

˙

“ k

„ˆ
m1

m
´ k ´ 1

k

˙
E rSM

pfq `
ˆ
m2

m
´ 1

k

˙
E rSC

pfq

.

Since the dataset is randomly labeled, we have with probability at least 1 ´ δ,
`
m1

m
´ k´1

k

˘
ď

b
logp1{δq

2m
. Similarly, we

have with probability at least 1 ´ δ,
`
m2

m
´ 1

k

˘
ď

b
logp1{δq

2m
. Using union bound, we have with probability at least 1 ´ δ

kE rSpfq ´ pk ´ 1qE rSM
pfq ´ E rSC

pfq ď k

c
logp2{δq

2m

´
E rSM

pfq ` E rSC
pfq

¯
. (51)

Lemma 10. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1 ´ δ over the random

draws of rSC and S, we have
∣

∣

∣
E rSC

p pfq ´ ESp pfq
∣

∣

∣
ď 1.5

c
k logp2{δq

2m
.

Proof. In the set of correctly labeled points S Y rSC , we have S as a random subset of S Y rSC . Hence, using Hoeffding’s

inequality for sampling without replacement (Lemma 5), we have with probability at least 1 ´ δ

E rSc
p pfq ´ E

SY rSC
p pfq ď

d
logp1{δq
2m2

. (52)

Re-writing E
SY rSC

p pfq as m2

m2`n
E rSC

p pfq ` n
m2`n

ESp pfq, we have with probability at least 1 ´ δ

ˆ
n

n ` m2

˙ ´
E rSc

p pfq ´ ESp pfq
¯

ď
d

logp1{δq
2m2

. (53)

As before, assuming km2 « m, we have with probability at least 1 ´ δ

E rSc
p pfq ´ ESp pfq ď

´
1 ` m2

n

¯ c
k logp1{δq

2m
ď

ˆ
1 ` 1

k

˙ c
k logp1{δq

2m
. (54)

Proof of Theorem 3. Having established these core intermediate results, we can now combine above three lemmas. In

particular, we bound the population error on clean data (EDp pfq) as follows:

(i) First, use (50), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1 ´ δ{4, we

have

EDp pfq ď pk ´ 1q
´
1 ´ E rSM

p pfq
¯

` pk ´ 1q
d

k logp4{δq
2pk ´ 1qm . (55)

(ii) Second, use (51) to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and

error on whole randomly labeled dataset, i.e., with probability at least 1 ´ δ{2, we have

´pk ´ 1qE rSM
pfq ď E rSC

pfq ´ kE rS ` k

c
logp4{δq

2m
. (56)
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(iii) Finally, use (54) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,

with probability 1 ´ δ{4, we have

E rSC
p pfq ď ´ESp pfq `

´
1 ` m

kn

¯ c
k logp4{δq

2m
. (57)

Using union bound on the above three steps, we have with probability at least 1 ´ δ:

EDp pfq ď ESp pfq ` pk ´ 1q ´ kE rSp pfq ` p
a
kpk ´ 1q ` k `

?
k ` m

n
?
k

q
c

logp4{δq
2m

. (58)

Simplifying the term in RHS of (58), we get the desired result. in the final bound.
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B. Proofs from Sec. 4

We suppose that the parameters of the linear function are obtained via gradient descent on the following L2 regularized

problem:

LSpw;λq :“
nÿ

i“1

pwTxi ´ yiq2 ` λ ||w||22 , (59)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “ tpxi, yiquni“1 „ Dn and randomly

labeled dataset rS “ tpxi, yiqun`m
i“n`1 „ rDm. Let X “ rx1, x2, ¨ ¨ ¨ , xm`ns and y “ ry1, y2, ¨ ¨ ¨ , ym`ns. Fix a positive

learning rate η such that η ď 1{
´ˇ̌̌̌
XTX

ˇ̌̌̌
op

` λ2
¯

and an initialization w0 “ 0. Consider the following gradient descent

iterates to minimize objective (59) on S Y rS:

wt “ wt´1 ´ η∇wLSY rSpwt´1;λq @t “ 1, 2, . . . (60)

Then we have twtu converge to the limiting solution pw “
`
XTX ` λI

˘´1
XTy. Define pfpxq :“ fpx; pwq.

B.1. Proof of Theorem 4

We use a standard result from linear algebra, namely the Shermann-Morrison formula (Sherman & Morrison, 1950) for

matrix inversion:

Lemma 11 (Sherman & Morrison (1950)). Suppose A P R
nˆn is an invertible square matrix and u, v P R

n are column

vectors. Then A ` uvT is invertible iff 1 ` vTAu ‰ 0 and in particular

pA ` uvT q´1 “ A´1 ´ A´1uvTA´1

1 ` vTA´1u
. (61)

For a given training set S Y rSC , define leave-one-out error on mislabeled points in the training data as

E
LOOp rSM q “

ř
pxi,yiqP rSM

Epfpiqpxiq, yiq
∣

∣

∣

rSM

∣

∣

∣

,

where fpiq :“ fpA, pS Y rSqpiqq. To relate empirical leave-one-out error and population error with hypothesis stability

condition, we use the following lemma:

Lemma 12 (Bousquet & Elisseeff (2002)). For the leave-one-out error, we have

E

„´
ED1 p pfq ´ E

LOOp rSM q

¯2


ď 1

2m1

` 3β

n ` m
. (62)

Proof of the above lemma is similar to the proof of Lemma 9 in Bousquet & Elisseeff (2002) and can be found in App. D.

Before presenting the proof of Theorem 4, we introduce some more notation. Let Xpiq denote the matrix of covariates with

the ith point removed. Similarly, let ypiq be the array of responses with the ith point removed. Define the corresponding

regularized GD solution as pwpiq “
´
XT

piqXpiq ` λI
¯´1

XT
piqypiq. Define pfpiqpxq :“ fpx; pwpiqq.

Proof of Theorem 4. Because squared loss minimization does not imply 0-1 error minimization, we cannot use arguments

from Lemma 1. This is the main technical difficulty. To compare the 0-1 error at a train point with an unseen point, we use

the closed-form expression for pw and Shermann-Morrison formula to upper bound training error with leave-one-out cross

validation error.

The proof is divided into three parts: In part one, we show that 0-1 error on mislabeled points in the training set is lower than

the error obtained by leave-one-out error at those points. In part two, we relate this leave-one-out error with the population

error on mislabeled distribution using Condition 1. While the empirical leave-one-out error is an unbiased estimator of

the average population error of leave-one-out classifiers, we need hypothesis stability to control the variance of empirical
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leave-one-out error. Finally, in part three, we show that the error on the mislabeled training points can be estimated with just

the randomly labeled and clean training data (as in proof of Theorem 1).

Part 1 First we relate training error with leave-one-out error. For any training point pxi, yiq in rS Y S, we have

Ep pfpxiq, yiq “ I
“
yi ¨ xT

i pw ă 0
‰

“ I

”
yi ¨ xT

i

`
XTX ` λI

˘´1
XTy ă 0

ı
(63)

“ I

»
———–yi ¨ xT

i

´
XT

piqXpiq ` xT
i xi ` λI

¯´1

l jh n
I

pXT
piqypiq ` yi ¨ xiq ă 0

fi
ffiffiffifl . (64)

Letting A “
´
XT

piqXpiq ` λI
¯

and using Lemma 11 on term 1, we have

Ep pfpxiq, yiq “ I

„
yi ¨ xT

i

„
A´1 ´ A´1xix

T
i A

´1

1 ` xT
i A

´1xi


pXT

piqypiq ` yi ¨ xiq ă 0


(65)

“ I

„
yi ¨

„
xT
i A

´1p1 ` xT
i A

´1xiq ´ xT
i A

´1xix
T
i A

´1

1 ` xT
i A

´1xi


pXT

piqypiq ` yi ¨ xiq ă 0


(66)

“ I

„
yi ¨

„
xT
i A

´1

1 ` xT
i A

´1xi


pXT

piqypiq ` yi ¨ xiq ă 0


. (67)

Since 1 ` xT
i A

´1xi ą 0, we have

Ep pfpxiq, yiq “ I

”
yi ¨ xT

i A
´1pXT

piqypiq ` yi ¨ xiq ă 0
ı

(68)

“ I

”
xT
i A

´1xi ` yi ¨ xT
i A

´1pXT
piqypiqq ă 0

ı
(69)

ď I

”
yi ¨ xT

i A
´1pXT

piqypiqq ă 0
ı

“ Ep pfpiqpxiq, yiq . (70)

Using (70), we have

E rSM
p pfq ď E

LOOp rSM q
:“

ř
pxi,yiqP rSM

Ep pfpiqpxiq, yiq
∣

∣

∣

rSM

∣

∣

∣

. (71)

Part 2 We now relate RHS in (71) with the population error on mislabeled distribution. To do this, we leverage Condition 1

and Lemma 12. In particular, we have

E
SY rSM

„´
ED1 p pfq ´ E

LOOp rSM q

¯2


ď 1

2m1

` 3β

m ` n
. (72)

Using Chebyshev’s inequality, with probability at least 1 ´ δ, we have

E
LOOp rSM q ď ED1 p pfq `

d
1

δ

ˆ
1

2m1

` 3β

m ` n

˙
. (73)

Part 3 Combining (73) and (71), we have

E rSM
p pfq ď ED1 p pfq `

d
1

δ

ˆ
1

2m1

` 3β

m ` n

˙
. (74)
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Compare (74) with (17) in the proof of Lemma 1. We obtain a similar relationship between E rSM
and ED1 but with a

polynomial concentration instead of exponential concentration. In addition, since we just use concentration arguments to

relate mislabeled error to the errors on the clean and unlabeled portions of the randomly labeled data, we can directly use the

results in Lemma 2 and Lemma 3. Therefore, combining results in Lemma 2, Lemma 3, and (74) with union bound, we

have with probability at least 1 ´ δ

EDp pfq ď ESp pfq ` 1 ´ 2E rSp pfq `
´?

2E rSp pfq ` 1 ` m

2n

¯ c
logp4{δq

m
`

d
4

δ

ˆ
1

m
` 3β

m ` n

˙
. (75)

B.2. Extension to multiclass classification

For multiclass problems with squared loss minimization, as standard practice, we consider one-hot encoding for the

underlying label, i.e., a class label c P rks is treated as p0, ¨, 0, 1, 0, ¨, 0q P R
k (with c-th coordinate being 1). As before, we

suppose that the parameters of the linear function are obtained via gradient descent on the following L2 regularized problem:

LSpw;λq :“
nÿ

i“1

ˇ̌̌̌
wTxi ´ yi

ˇ̌̌̌2
2

` λ

kÿ

j“1

||wj ||2
2
, (76)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “ tpxi, yiquni“1 „ Dn and randomly

labeled dataset rS “ tpxi, yiqun`m
i“n`1 „ rDm. Let X “ rx1, x2, ¨ ¨ ¨ , xm`ns and y “ rey1

, ey2
, ¨ ¨ ¨ , eym`n

s. Fix a positive

learning rate η such that η ď 1{
´ˇ̌̌̌
XTX

ˇ̌̌̌
op

` λ2
¯

and an initialization w0 “ 0. Consider the following gradient descent

iterates to minimize objective (59) on S Y rS:

wj
t “ wj

t´1 ´ η∇wj
L
SY rSpwt´1;λq @t “ 1, 2, . . . and j “ 1, 2, . . . , k . (77)

Then we have twj
tu for all j “ 1, 2, ¨ ¨ ¨ , k converge to the limiting solution pwj “

`
XTX ` λI

˘´1
XTyj . Define

pfpxq :“ fpx; pwq.

Theorem 5. Assume that this gradient descent algorithm satisfies Condition 1 with β “ Op1q. Then for a multiclass

classification problem wth k classes, for any δ ą 0, with probability at least 1 ´ δ, we have:

EDp pfq ď ESp pfq ` pk ´ 1q
ˆ
1 ´ k

k ´ 1
E rSp pfq

˙

`
ˆ
k `

?
k ` m

n
?
k

˙ c
logp4{δq

2m
`

a
kpk ´ 1q

d
4

δ

ˆ
1

m
` 3β

m ` n

˙
. (78)

Proof. The proof of this theorem is divided into two parts. In the first part, we relate the error on the mislabeled samples

with the population error on the mislabeled data. Similar to the proof of Theorem 4, we use Shermann-Morrison formula to

upper bound training error with leave-one-out error on each pwj . Second part of the proof follows entirely from the proof of

Theorem 3. In essence, the first part derives an equivalent of (45) for GD training with squared loss and then the second part

follows from the proof of Theorem 3.

Part-1: Consider a training point pxi, yiq in rS Y S. For simplicity, we use ci to denote the class of i-th point and use yi as

the corresponding one-hot embedding. Recall error in multiclass point is given by Ep pfpxiq, yiq “ I
“
ci R argmaxxT

i pw
‰
.

Thus, there exists a j ‰ ci P rks, such that we have

Ep pfpxiq, yiq “ I
“
ci R argmaxxT

i pw
‰

“ I
“
xT
i pwci ă xT

i pwj

‰
(79)

“ I

”
xT
i

`
XTX ` λI

˘´1
XTyci ă xT

i

`
XTX ` λI

˘´1
XTyj

ı
(80)

“ I

»
———–xT

i

´
XT

piqXpiq ` xT
i xi ` λI

¯´1

l jh n
I

´
XT

piqyci piq ` xi ´ XT
piqyjpiq

¯
ă 0

fi
ffiffiffifl . (81)



Leveraging Unlabeled Data to Guarantee Generalization

Letting A “
´
XT

piqXpiq ` λI
¯

and using Lemma 11 on term 1, we have

Ep pfpxiq, yiq “ I

„
xT
i

„
A´1 ´ A´1xix

T
i A

´1

1 ` xT
i A

´1xi

 ´
XT

piqyci piq ` xi ´ XT
piqyjpiq

¯
ă 0


(82)

“ I

„„
xT
i A

´1p1 ` xT
i A

´1xiq ´ xT
i A

´1xix
T
i A

´1

1 ` xT
i A

´1xi

 ´
XT

piqyci piq ` xi ´ XT
piqyjpiq

¯
ă 0


(83)

“ I

„„
xT
i A

´1

1 ` xT
i A

´1xi

 ´
XT

piqyci piq ` xi ´ XT
piqyjpiq

¯
ă 0


. (84)

Since 1 ` xT
i A

´1xi ą 0, we have

Ep pfpxiq, yiq “ I

”
xT
i A

´1
´
XT

piqyci piq ` xi ´ XT
piqyjpiq

¯
ă 0

ı
(85)

“ I

”
xT
i A

´1xi ` xT
i A

´1XT
piqyci piq ´ xT

i A
´1XT

piqyjpiq ă 0
ı

(86)

ď I

”
xT
i A

´1XT
piqyci piq ´ xT

i A
´1XT

piqyjpiq ă 0
ı

“ Ep pfpiqpxiq, yiq . (87)

Using (87), we have

E rSM
p pfq ď E

LOOp rSM q
:“

ř
pxi,yiqP rSM

Ep pfpiqpxiq, yiq
∣

∣

∣

rSM

∣

∣

∣

. (88)

We now relate RHS in (71) with the population error on mislabeled distribution. Similar as before, to do this, we leverage

Condition 1 and Lemma 12. Using (73) and (88), we have

E rSM
p pfq ď ED1 p pfq `

d
1

δ

ˆ
1

2m1

` 3β

m ` n

˙
. (89)

We have now derived a parallel to (45). Using the same arguments in the proof of Lemma 8, we have

EDp pfq ď pk ´ 1q
´
1 ´ E rSM

p pfq
¯

` pk ´ 1q
d

k

δpk ´ 1q

ˆ
1

2m1

` 3β

m ` n

˙
. (90)

Part-2: We now combine the results in Lemma 9 and Lemma 10 to obtain the final inequality in terms of quantities that

can be computed from just the randomly labeled and clean data. Similar to the binary case, we obtained a polynomial

concentration instead of exponential concentration. Combining (90) with Lemma 9 and Lemma 10, we have with probability

at least 1 ´ δ

EDp pfq ď ESp pfq ` pk ´ 1q
ˆ
1 ´ k

k ´ 1
E rSp pfq

˙

`
ˆ
k `

?
k ` m

n
?
k

˙ c
logp4{δq

2m
`

a
kpk ´ 1q

d
4

δ

ˆ
1

m
` 3β

m ` n

˙
. (91)

B.3. Discussion on Condition 1

The quantity in LHS of Condition 1 measures how much the function learned by the algorithm (in terms of error on unseen

point) will change when one point in the training set is removed. We need hypothesis stability condition to control the

variance of the empirical leave-one-out error to show concentration of average leave-one-error with the population error.

Additionally, we note that while the dominating term in the RHS of Theorem 4 matches with the dominating term in ERM

bound in Theorem 1, there is a polynomial concentration term (dependence on 1{δ instead of logp
a
1{δq) in Theorem 4.
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Since with hypothesis stability, we just bound the variance, the polynomial concentration is due to the use of Chebyshev’s

inequality instead of an exponential tail inequality (as in Lemma 1). Recent works have highlighted that a slightly stronger

condition than hypothesis stability can be used to obtain an exponential concentration for leave-one-out error (Abou-Moustafa

& Szepesvári, 2019), but we leave this for future work for now.

B.4. Formal statement and proof of Proposition 2

Before formally presenting the result, we will introduce some notation. By LSpwq, we denote the objective in (59) with

λ “ 0. Assume Singular Value Decomposition (SVD) of X as
?
nUS1{2V T . Hence XTX “ V SV T . Consider the GD

iterates defined in (60). We now derive closed form expression for the tth iterate of gradient descent:

wt “ wt´1 ` η ¨ XT py ´ Xwt´1q “ pI ´ ηV SV T qwk´1 ` ηXTy . (92)

Rotating by V T , we get

rwt “ pI ´ ηSq rwk´1 ` ηry, (93)

where rwt “ V Twt and ry “ V TXTy. Assuming the initial point w0 “ 0 and applying the recursion in (93), we get

rwt “ S´1pI ´ pI ´ ηSqkqry , (94)

Projecting solution back to the original space, we have

wt “ V S´1pI ´ pI ´ ηSqkqV TXTy . (95)

Define ftpxq :“ fpx;wtq as the solution at the tth iterate. Let rwλ “ argminw LSpw;λq “ pXTX ` λIq´1XTy “
V pS ` λIq´1V TXTy. and define rfλpxq :“ fpx; rwλq as the regularized solution. Assume κ be the condition number of

the population covariance matrix and let smin be the minimum positive singular value of the empirical covariance matrix. Our

proof idea is inspired from recent work on relating gradient flow solution and regularized solution for regression problems

(Ali et al., 2018). We will use the following lemma in the proof:

Lemma 13. For all x P r0, 1s and for all k P N, we have (a) kx
1`kx

ď 1 ´ p1 ´ xqk and (b) 1 ´ p1 ´ xqk ď 2 ¨ kx
kx`1

.

Proof. Using p1 ´ xqk ď 1
1`kx

, we have part (a). For part (b), we numerically maximize
p1`kxqp1´p1´xqkq

kx
for all k ě 1

and for all x P r0, 1s.

Proposition 3 (Formal statement of Proposition 2). Let λ “ 1
tη

. For a training point x, we have

Ex„S

”
pftpxq ´ rfλpxqq2

ı
ď cpt, ηq ¨ Ex„S

“
ftpxq2

‰
,

where cpt, ηq :“ minp0.25, 1
s2

min
t2η2

q. Similarly for a test point, we have

Ex„DX

”
pftpxq ´ rfλpxqq2

ı
ď κ ¨ cpt, ηq ¨ Ex„DX

“
ftpxq2

‰
.

Proof. We want to analyze the expected squared difference output of regularized linear regression with regularization

constant λ “ 1
ηt

and the gradient descent solution at the tth iterate. We separately expand the algebraic expression for squared

difference at a training point and a test point. Then the main step is to show that
“
S´1pI ´ pI ´ ηSqkq ´ pS ` λIq´1

‰
ĺ

cpη, tq ¨ S´1pI ´ pI ´ ηSqkq.

Part 1 First, we will analyze the squared difference of the output at a training point (for simplicity, we refer to S Y rS as S),
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i.e.,

Ex„S

„´
ftpxq ´ rfλpxq

¯2


“ ||Xwt ´ X rwλ||22 (96)

“
ˇ̌̌̌
XV S´1pI ´ pI ´ ηSqtqV TXTy ´ XV pS ` λIq´1V TXTy

ˇ̌̌̌2
2

(97)

“
ˇ̌̌̌
XV

`
S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

˘
V TXTy

ˇ̌̌̌
2

(98)

“ yTV X

¨
˚̊
˝S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

l jh n
I

˛
‹‹‚

2

SV TXTy . (99)

We now separately consider term 1. Substituting λ “ 1
tη

, we get

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1 “ S´1
`
pI ´ pI ´ ηSqtq ´ pI ` S´1λq´1

˘
(100)

“ S´1
`
pI ´ pI ´ ηSqtq ´ pI ` pStηq´1q´1

˘
l jh n

A

. (101)

We now separately bound the diagonal entries in matrix A. With si, we denote ith diagonal entry of S. Note that since

η ď 1{ ||S||op, for all i, ηsi ď 1. Consider ith diagonal term (which is non-zero) of the diagonal matrix A, we have

Aii “ 1

si

ˆ
1 ´ p1 ´ siηqt ´ tηsi

1 ` tηsi

˙
“ 1 ´ p1 ´ siηqt

si

¨
˚̊
˚̊
˝
1 ´ tηsi

p1 ` tηsiqp1 ´ p1 ´ siηqtql jh n
II

˛
‹‹‹‹‚

(102)

ď 1

2

„
1 ´ p1 ´ siηqt

si


. (Using Lemma 13 (b))

Additionally, we can also show the following upper bound on term 2:

1 ´ tηsi

p1 ` tηsiqp1 ´ p1 ´ siηqtq “ p1 ` tηsiqp1 ´ p1 ´ siηqtq ´ tηsi

p1 ` tηsiqp1 ´ p1 ´ siηqtq (103)

ď 1 ´ p1 ´ siηqt ´ tηsip1 ´ siηqt
p1 ` tηsiqp1 ´ p1 ´ siηqtq (104)

ď 1

tηsi
. (Using Lemma 13 (a))

Combining both the upper bounds on each diagonal entry Aii, we have

A ĺ c1pη, tq ¨ S´1pI ´ pI ´ ηSqtq , (105)

where c1pη, tq “ minp0.5, 1
tsiη

q. Plugging this into (99), we have

Ex„S

„´
ftpxq ´ rfλpxq

¯2


ď cpη, tq ¨ yTV X
`
S´1pI ´ pI ´ ηSqtq

˘2
SV TXTy (106)

“ cpη, tq ¨ yTV X
`
S´1pI ´ pI ´ ηSqtq

˘
S

`
S´1pI ´ pI ´ ηSqtq

˘
V TXTy (107)

“ cpη, tq ¨ ||Xwt||22 (108)

“ cpη, tq ¨ Ex„S

”
pftpxqq2

ı
, (109)

where cpη, tq “ minp0.25, 1
t2s2

i
η2

q.
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Part 2 With Σ, we denote the underlying true covariance matrix. We now consider the squared difference of output at an

unseen point:

Ex„DX

„´
ftpxq ´ rfλpxq

¯2


“ Ex„DX

“ˇ̌̌̌
xTwt ´ xT rwλ

ˇ̌̌̌
2

‰
(110)

“
ˇ̌̌̌
xTV S´1pI ´ pI ´ ηSqtqV TXTy ´ xTV pS ` λIq´1V TXTy

ˇ̌̌̌
2

(111)

“
ˇ̌̌̌
xTV

`
S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

˘
V TXTy

ˇ̌̌̌
2

(112)

“ yTV X
`
S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

˘
V T

ΣV (113)
`
pI ´ pI ´ ηSqtq ´ pS ` λIq´1

˘
V TXTy (114)

ď σmax ¨ yTV X

¨
˚̊
˝S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

l jh n
I

˛
‹‹‚

2

V TXTy , (115)

where σmax is the maximum eigenvalue of the underlying covariance matrix Σ. Using the upper bound on term 1 in (105),

we have

Ex„DX

„´
ftpxq ´ rfλpxq

¯2


ď σmax ¨ cpη, tq ¨ yTV X
`
S´1pI ´ pI ´ ηSqtq

˘2
V TXTy (116)

“ κ ¨ cpη, tq ¨ σmin ¨
ˇ̌̌̌
V

`
S´1pI ´ pI ´ ηSqtq

˘
V TXTy

ˇ̌̌̌2
2

(117)

ď κ ¨ cpη, tq ¨
“
V

`
S´1pI ´ pI ´ ηSqtq

˘
V TXT

‰T
Σ (118)

“
V

`
S´1pI ´ pI ´ ηSqtq

˘
V TXT

‰
y (119)

“ κ ¨ cpη, tq ¨ Ex„DX

“ˇ̌̌̌
xTwt

ˇ̌̌̌
2

‰
. (120)

B.5. Extension to deep learning

Under Assumption B.6, we present the formal result parallel to Theorem 3.

Theorem 6. Consider a multiclass classification problem with k classes. Under Assumption 1, for any δ ą 0, with

probability at least 1 ´ δ, we have

EDp pfq ď ESp pfq ` pk ´ 1q
´
1 ´ k

k´1
E rSp pfq

¯
` c

d
logp 4

δ
q

2m
, (121)

for some constant c ď ppc ` 1qk `
?
k ` m

n
?
k

q.

The proof follows exactly as in step (i) to (iii) in Theorem 3.

B.6. Justifying Assumption 1

Motivated by the analysis on linear models, we now discuss alternate (and weaker) conditions that imply Assumption 1. We

need hypothesis stability (Condition 1) and the following assumption relating training error and leave-one-error:

Assumption 2. Let pf be a model obtained by training with algorithm A on a mixture of clean S and randomly labeled data
rS. Then we assume we have

E rSM
p pfq ď E

LOOp rSM q ,

for all pxi, yiq P rSM where pfpiq :“ fpA, S Y rSM piqq and E
LOOp rSM q

:“
ř

pxi,yiqP rSM
Ep pfpiqpxiq,yiq

| rSM |
.

Intuitively, this assumption states that the error on a (mislabeled) datum px, yq included in the training set is less than the

error on that datum px, yq obtained by a model trained on the training set S ´ tpx, yqu. We proved this for linear models
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trained with GD in the proof of Theorem 5. Condition 1 with β “ Op1q and Assumption 2 together with Lemma 12 implies

Assumption 1 with a polynomial residual term (instead of logarithmic in 1{δ):

ESM
p pfq ď ED1 p pfq `

d
1

δ

ˆ
1

m
` 3β

m ` n

˙
. (122)
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C. Additional experiments and details

C.1. Datasets

Toy Dataset Assume fixed constants µ and σ. For a given label y, we simulate features x in our toy classification setup as

follows:

x :“ concat rx1, x2s where x1 „ N py ¨ µ, σ2Idˆdq and x1 „ N p0, σ2Idˆdq .

In experiements throughout the paper, we fix dimention d “ 100, µ “ 1.0, and σ “
?
d. Intuitively, x1 carries the

information about the underlying label and x2 is additional noise independent of the underlying label.

CV datasets We use MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky & Hinton, 2009). We produce a binary

variant from the multiclass classification problem by mapping classes t0, 1, 2, 3, 4u to label 1 and t5, 6, 7, 8, 9u to label ´1.

For CIFAR dataset, we also use the standard data augementation of random crop and horizontal flip. PyTorch code is as

follows:

(transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip())

NLP dataset We use IMDb Sentiment analysis (Maas et al., 2011) corpus.

C.2. Architecture Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used PyTorch (Paszke et al., 2019) and Keras with

Tensorflow (Abadi et al., 2016) backend for experiments.

Linear model For the toy dataset, we simulate a linear model with scalar output and the same number of parameters as the

number of dimensions.

Wide nets To simulate the NTK regime, we experiment with 2´layered wide nets. The PyTorch code for 2-layer wide

MLP is as follows:

nn.Sequential(

nn.Flatten(),

nn.Linear(input dims, 200000, bias=True),

nn.ReLU(),

nn.Linear(200000, 1, bias=True)

)

We experiment both (i) with the second layer fixed at random initialization; (ii) and updating both layers’ weights.

Deep nets for CV tasks We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as follows:

nn.Sequential(nn.Flatten(),

nn.Linear(input dim, 5000, bias=True),

nn.ReLU(),

nn.Linear(5000, 5000, bias=True),

nn.ReLU(),

nn.Linear(5000, 5000, bias=True),

nn.ReLU(),

nn.Linear(1024, num label, bias=True)

)

For MNIST, we use 1000 nodes instead of 5000 nodes in the hidden layer. We also experiment with convolutional nets.

In particular, we use ResNet18 (He et al., 2016). Implementation adapted from: https://github.com/kuangliu/

pytorch-cifar.git.

Deep nets for NLP We use a simple LSTM model with embeddings intialized with ELMo embeddings (Peters et al.,

2018). Code adapted from: https://github.com/kamujun/elmo_experiments/blob/master/elmo_

experiment/notebooks/elmo_text_classification_on_imdb.ipynb
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D. Proof of Lemma 12

Proof of Lemma 12. Recall, we have a training set S Y rSC . We defined leave-one-out error on mislabeled points as

E
LOOp rSM q “

ř
pxi,yiqP rSM

Epfpiqpxiq, yiq
∣

∣

∣

rSM

∣

∣

∣

,

where fpiq :“ fpA, pS Y rSqpiqq. Define S1 :“ S Y rS. Assume px, yq and px1, y1q as i.i.d. samples from D1. Using Lemma

25 in Bousquet & Elisseeff (2002), we have

E

„´
ED1 p pfq ´ E

LOOp rSM q

¯2


ďES1,px,yq,px1,y1q

”
Ep pfpxq, yqEp pfpx1q, y1q

ı
´ 2ES1,px,yq

”
Ep pfpxq, yqEpfpiqpxiq, yiq

ı

` m1 ´ 1

m1

ES1

“
Epfpiqpxiq, yiqEpfpjqpxjq, yjq

‰
` 1

m1

ES1

“
Epfpiqpxiq, yiq

‰
. (123)

We can rewrite the equation above as :

E

„´
ED1 p pfq ´ E

LOOp rSM q

¯2


ď ES1,px,yq,px1,y1q

”
Ep pfpxq, yqEp pfpx1q, y1q ´ Ep pfpxq, yqEpfpiqpxiq, yiq

ı

l jh n
I

` ES1

”
Epfpiqpxiq, yiqEpfpjqpxjq, yjq ´ Ep pfpxq, yqEpfpiqpxiq, yiq

ı

l jh n
II

` 1

m1

ES1

“
Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq

‰

l jh n
III

. (124)

We will now bound term III. Using Cauchy-Schwarz’s inequality, we have

ES1

“
Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq

‰2 ď ES1

“
Epfpiqpxiq, yiq

‰2
ES1

“
1 ´ Epfpjqpxjq, yjq

‰2
(125)

ď 1

4
. (126)

Note that since pxi, yiq, pxj , yjq, px, yq, and px1, y1q are all from same distribution D1, we directly incorporate the bounds

on term I and II from the proof of Lemma 9 in Bousquet & Elisseeff (2002). Combining that with (126) and our definition

of hypothesis stability in Condition 1, we have the required claim.


