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Abstract— A fundamental challenge in control applications
stems from the lack of a sufficiently detailed system model
that can be used for systematic controller design and tuning
under uncertainty. This paper presents a fully data-driven
robust controller design approach based on any finite set of
closed-loop performance measures. We first present a method
for emulating the unknown plant dynamics using a Gaussian
process (GP) model learned from input-output data. By running
closed-loop simulations under realizations of the GP model
using posterior sampling, the impact of system uncertainties
on the closed-loop performance measures is quantified. We
then formulate the robust controller design problem as a
constrained Bayesian optimization (CBO) problem defined in
terms of the GP-emulated performance measures. To ensure a
sufficient number of samples are used to estimate the worst-
case performance measures, we derive a bound on the joint
probability of violation that is independent of the number or
probability distribution of the uncertainties. The advantages
of the proposed approach are illustrated on a benchmark
control problem, which demonstrates guaranteed probabilistic
estimates on the worst-case performance measures are provided
at every iteration of CBO.

I. INTRODUCTION

Systematic design and validation of arbitrary control
structures is generally a challenging task. Controller tuning
typically relies on extensive trial-and-error simulations or
experimentation [1]. Design parameters of a controller often
affect multiple closed-loop performance measures in non-
convex and non-smooth ways, implying closed-form expres-
sions relating these parameters to performance are not readily
available. In addition, the effects of system uncertainties must
be accounted for in controller tuning to ensure robust and
satisfactory closed-loop performance is attained in the face
of uncertainties [2].

To address these challenges, there has been a growing
interest in applying data-driven optimization methods to
automate the tuning procedure. Bayesian optimization (BO)
[3] has been used for solving black-box controller tuning
optimization problems [4]–[8]. In particular, constrained BO
(CBO) [9] has been shown to effectively deal with the
black-box, expensive-to-evaluate and noisy nature of closed-
loop performance measures, while explicitly accounting for
(nonlinear) constraints on design specifications [10].
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Nonetheless, these works do not provide formal guarantees
on the quality of the resulting “optimal” set of tuning
parameters. Solution guarantees are especially useful when
designing controllers, e.g., for safety-critical applications in
which it is imperative to ensure the closed-loop system does
not violate constraints, or other performance requirements,
given the best available model of uncertainty. In [11], we
presented an approach for providing probabilistic guarantees
on the optimally designed controller based on recent the-
oretical results for non-convex scenario optimization [12].
The proposed approach involved two key stages: (i) first
generating a set of “good” candidate designs using CBO
and (ii) selecting the best design from this set using non-
convex scenario optimization that provides a distribution-
independent bound on the probability of constraint violation.

In our previous work [11], we assumed that a sufficiently
detailed system model is available for controller tuning
purposes. However, construction of such a simulator may
be difficult in practice. Thus, the first contribution of this
work is to develop a fully data-driven robust controller design
approach based on any finite set of closed-loop performance
measures. This is achieved by constructing a Gaussian
process (GP) emulator of the system, i.e., a probabilistic
model for the state transition function, that can be applied
recursively to simulate the closed-loop state distribution over
time. Yet, an important challenge with the GP representation
of the dynamics is its infinite-dimensional nature, meaning
it is not possible to exactly compute the worst-case objective
or constraint violations appearing in a robust controller
design problem. As such, our second contribution is the
development of a novel joint probabilistic performance level,
which simultaneously estimates the worst-case performance
measures using a set of independent random samples that
can be generated using a GP posterior sampling method [13].
We establish a bound on the number of samples needed to
ensure the worst-case performance estimates jointly achieve
a pre-specified probability of accuracy. The derived bound,
which is an extension of [14], is completely independent
of the number of uncertainties as well as their underlying
probability distribution. Using this derived bound, along with
the posterior GP sampling method, worst-case estimates of
closed-loop performance measures are incorporated into the
CBO framework to a priori ensure the worst-case estimates
satisfy desired probabilistic properties at every iteration. We
refer to the proposed approach as probabilistically robust BO
(PRBO), as it alleviates the need for the post verification of
the optimally designed controller needed in [11]. Advantages
of PRBO are demonstrated on a benchmark problem.
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II. PROBLEM STATEMENT

Consider uncertain, discrete-time systems of the form

x+ = f(x,u,d), (1)

where x ∈ Rnx is the current system state, x+ ∈ Rnx is the
successor state, u ∈ Rnu is the control input, and d ∈ Rnd
is an unknown disturbance. The dynamics of the system,
defined by the function f : Rnx × Rnu × Rnd → Rnx , are
unknown and are to be learned from data. We assume that
noisy measurements of the state are available

y = f(x,u,d) + v, (2)

where y ∈ Rnx is the measurement of the successor state
perturbed by Gaussian noise v ∼ N (0,Σv) with zero mean
and diagonal covariance matrix Σv = diag(σ2

v1 , . . . , σ
2
vnx

).
Assumption 1: The state x and disturbance d are measur-

able at the current time step for all times. /
Remark 1: The measured state assumption can be satisfied

by defining the state vector in terms of past inputs and
outputs [15]. In addition, d can be interpreted as a measured
time-varying disturbance that is unknown in the future, which
is included for the sake of generality. The effect of all other
unmeasured disturbances is lumped into v in (2).

For notational simplicity, we define the concatenated vec-
tor z = (x,u,d) ∈ Rnz with nz = nx + nu + nd. It
is assumed a finite number M of noisy measurements are
available from (2). This data can be represented by

Z = [z(1), . . . , z(M)]> ∈ RM×nz , (3a)

Y = [y(1), . . . ,y(M)]> ∈ RM×ny , (3b)

where z(i) and y(i) denote the corresponding ith input and
output data point, respectively. Thus, we consider multiple
sources of uncertainty, including the initial condition x0, the
future disturbance sequence {d0,d1, . . .}, and the unknown
dynamics f(x,u,d). We look to train a probabilistic model
using the available training data D = {Z,Y} from (3). Gaus-
sian process (GP) regression models are one such example,
which generalizes the Gaussian probability distribution to
distributions over functions [16]. Let f |D denote the random
function with posterior distribution p(f |D); Section III dis-
cusses how such a GP state-space model can be learned.

Given a controller u = κ(x,d; θ), parametrized by design
variables θ ∈ Θ in a bounded set Θ ⊂ Rnθ , and substituting
this expression into (1), we arrive at the closed-loop system

xk+1 = f(xk, κ(xk,dk; θ),dk), (4)

where xk and dk are the state and disturbance at time step
k, respectively. The only restriction on the control law κ(·)
is that it is time-invariant and defined for every (x,d; θ) ∈
Rnx × Rnd × Θ; it can otherwise be a non-convex and/or
implicitly-defined function. Note that a single trajectory of
the closed-loop system over a finite number of time steps T is
completely determined by the choice of θ and the realization
of the uncertainties w = {x0,d0, . . . ,dT−1, f |D}.

Assumption 2: The uncertain variables w ∈ W follow a
probability distribution PrW defined over a bounded sup-
port W , from which independent and identically distributed
(i.i.d.) samples can be drawn. /

We now define the robust controller design problem as

min
θ∈Θ

max
w∈W

φ1(θ,w), (5a)

s.t. φi(θ,w) ≤ 0, ∀w ∈ W , ∀i ∈ {2, . . . , P}, (5b)

where φ1 : Θ × W → (−∞,∞) is a measurable function
that defines the controller objective, φi : Θ × W → R
encodes the ith performance constraint for a given choice of
design variables and uncertainty realization, and P is the total
number of performance functions. The functions {φi(·)}Pi=1

will typically be related to, e.g., tracking error, violation of
critical safety or quality constraints, or economic costs.

The robust design problem (5) falls into the class of semi-
infinite programming problems, which are challenging to
solve, especially when {φi(·,w)}Pi=1 are non-convex for any
w ∈ W . Even when θ ∈ Θ is fixed, we cannot exactly
compute worst-case performance and constraint violations

Φi(θ) = max
w∈W

φi(θ,w), ∀i = 1, . . . , P, (6)

because this requires the exact solution to generally non-
convex maximization problems [1]. Although a variety of
guaranteed reachability methods, such as Taylor models [17],
are available, they not only require additional assumptions
about the knowledge and structure of the uncertainty w and
the functions {φi(θ,w)}Pi=1, but may also produce highly
conservative bounds. We look to overcome these challenges
by employing randomized algorithms [14] that approximate
the worst-case measures (6) via random sampling

Φi(θ) ≈ Φ̂iN (θ) = max
j=1,...,N

φi(θ,w
(j)), (7)

where w(1),w(2), . . . ,w(N) are N i.i.d. samples from PrW .
Using this randomized approach, we can cast (5) as a sim-
ulation optimization (SO) problem that involves an “outer”
optimization over θ and an “inner” stochastic simulation to
approximate {Φi(θ)}Pi=1. To this end, two challenges must
be addressed: (i) how can uncertainty samples {w(i)}Ni=1 be
generated such that they include random multivariate func-
tions f |D?; and (ii) how should N be selected to provide joint
probabilistic guarantees on the accuracy of {Φ̂iN (θ)}Pi=1?

We address the first challenge by using a posterior sam-
pling approach for GPs (Section III). We then address the
second challenge by deriving a guaranteed bound on N that
is independent of the number of uncertain parameters, the
size of the support set W , and the probability distribution
PrW (Section IV). Lastly, these reliable scenario estimates
are incorporated into a constrained SO framework for robust
controller design (Section V).

III. SCENARIO SAMPLING FOR DYNAMIC GAUSSIAN
PROCESS EMULATORS

A. Gaussian process regression
Here, we use GPs to learn unknown latent functions f :

Rnx → R from noisy measurements y = f(z) + v, where
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v ∼ N (0, σ2
v) is a zero-mean Gaussian noise with variance

σ2
v . Let a function f(z) be distributed as a GP with mean

function m(z) and covariance function k(z, z′)

f(z) ∼ GP(m(z), k(z, z′)). (8)

The GP prior distribution can then be defined by an initial
choice of m(z) and k(z, z′), which depend generally on a
set of hyperparameters Ψc, i.e., m(z|Ψc) and k(z, z′|Ψc).
Often the mean is specified to be zero m(z|Ψc) = 0 [18],
[19], which can be achieved by normalizing the data before
training. When the function is modeled as a member of the
space of smooth functions C∞, the squared exponential (SE)
covariance function can be selected

k(z, z′|Ψc) = ζ2 exp

(
−1

2
(z− z′)>Λ−2(z− z′)

)
, (9)

where z, z′ ∈ Rnz are arbitrary inputs, ζ2 is the covariance
magnitude, and Λ = diag(λ1, . . . , λnz ) is a diagonal scaling
matrix. Under the assumption m(z) = 0 and an SE covari-
ance function in (9), the hyperparameters consist of Ψc =
[ζ, λ1, . . . , λnz ]>. Due to the additive property of Gaussian
distributions, we can derive a GP for the measurement

y ∼ GP(0, k(z, z′|Ψc) + σ2
vδzz′), (10)

where δzz′ is the Kronecker delta function that is equal to
1 when z = z′ and zero otherwise. Whenever the noise
variance σ2

v is unknown, it can be included in the joint set
of hyperparameters of the prior denoted by Ψ = [Ψ>c , σ

2
v ]>.

Once the hyperparameters are estimated, the combined
data D can be used to infer the posterior distribution f(z)|D.
The training data and f(·) at any arbitrary test input z must
be jointly Gaussian. Hence, we can use the conditional dis-
tribution rule for multivariate normal distributions to derive

f(z)|D ∼ N (µf (z;D), σ2
f (z;D)), (11)

where

µf (z;D) = k>(z)Σ−1
Y Y, (12a)

σ2
f (z;D) = k(z, z)− k>(z)Σ−1

Y k(z), (12b)

and k(z) = [k(z, z(1)), . . . , k(z, z(M))]>. The posterior
mean µf (z;D) represents our best prediction of the unknown
function f(z) at any z, whereas the posterior variance
σ2
f (z;D) is a measure of uncertainty in this prediction.
A useful feature of GPs is that they can be recursively

updated in a straightforward manner when new data becomes
available. Let the new input and output be denoted by z+

and y+, respectively, and let D+ = (D, (z+, y+)). Then, the
updated mean and variance function are

µ+
f (z;D+) = k+>(z)Σ+−1

Y Y+, (13a)

σ2+
f (z;D+) = k+(z, z)− k+>(z)Σ+−1

Y k+(z), (13b)

where

k+(z) = [k>(z), k(z, z+)]>, (14a)

Y+ = [Y>, y+]>, Z+ = [Z>, z+>]>, (14b)

Σ+−1
Y =

[
ΣY k>(z+)

k(z+) k(z+, z+) + σ2
v

]−1

. (14c)

B. State-space model construction

The GP regression in Section III-A can be used to learn
unknown dynamic models of the form (1) using the system
measurements (2), as long as separate (independent) GPs are
constructed for each output dimension of f(·), i.e.,

f(x,u,d) = f(z) = [f1(z), . . . , fnx(z)]>. (15)

To build a GP for each function fi(z) for i = 1, . . . , nx, we
use a subset of the measurements Yi = [y

(1)
i , . . . , y

(M)
i ]>,

with Y = [Y1, . . . ,Ynx ] representing the full observation
matrix. Following the notation introduced in (11) and (12),
the posterior Gaussian distribution of the multi-input, multi-
output f(·) at any test input z is specified as [20]

f(z)|D ∼ N (µf (z;D),Σf (z;D)), (16)

where

µf (z;D) = [µf1(z;D1), . . . , µfnx (z;Dnx)]>, (17a)

Σf (z;D) = diag(σ2
f1(z;D1), . . . , σ2

fnx
(z;Dnx)), (17b)

and µfi(z;Di) and σ2
fi

(z;Di) denote the posterior GP mean
and variance functions for fi(·), respectively, built from the
datasets Di = {Z,Yi} for all i = 1, . . . , nx.

Expression (16) can be interpreted as a fully data-driven
“emulator” of the process that can be used for closed-loop
simulation. If a prior system model is available, it can
be incorporated by using the GP to describe the models’
prediction error, as discussed, e.g., in [21]. As noted in
Remark 1, we can apply the proposed emulation procedure
to input-output models through a proper choice of state
definition. Although larger state dimensions will increase the
complexity of GP training, the recently developed GPyTorch
[22] package is able to train GPs with M > 106 data points.

C. Monte Carlo posterior sampling

Since GPs are distributions over functions, a random sam-
ple of a GP must yield a deterministic function. Generating a
full Monte Carlo (MC) sample requires sampling an infinite-
dimensional stochastic process, which cannot be done exactly
and thus one must resort to, e.g., spectral sampling [23].
On the other hand, if the GP MC sample only needs to
be known at a finite number of points, we can derive an
exact i.i.d. sampling procedure. The latter case corresponds
to dynamic state-space models over a finite-time horizon.
As such, we follow a similar procedure to that introduced
in [13] to generate the corresponding closed-loop state and
input sequences, which is summarized in Algorithm 1.

In Algorithm 1, we start with a random sample of the
initial state x

(i)
0 and the disturbance d

(i)
0 . Given these sam-

ples, the control law can be evaluated to obtain u
(i)
0 , which

allows us to define the posterior distribution p(x1|z(i)
0 ,D) in

terms of the GP (16) evaluated at z
(i)
0 = (x

(i)
0 ,u

(i)
0 ,d

(i)
k−1).

Since the posterior is evaluated at a single test point z
(i)
0 ,

a realization x
(i)
1 can be obtained by sampling from the

aforementioned normal distribution. To obtain a realization
of x

(i)
2 , however, we must now condition on the realization
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Algorithm 1 Trajectory sampling for GP state-space models.
Input: The probability distribution PrW , the initial GP

mean µf (z;D) and covariance Σf (z;D), the dataset D, the
controller κ(·), and the number of time steps T .

Initialize: Draw x
(i)
0 according to PrW and set D0 = D.

1: for k = 1 to T do
2: Draw d

(i)
k−1 according to PrW .

3: Evaluate u
(i)
k−1 = κ(x

(i)
k−1,d

(i)
k−1; θ).

4: Concatenate z
(i)
k−1 = (x

(i)
k−1,u

(i)
k−1,d

(i)
k−1).

5: Draw x
(i)
k ∼ N (µf (z

(i)
k−1;Dk−1),Σf (z

(i)
k−1;Dk−1)).

6: Update dataset Dk = {[Z>, z(i)>
k−1 ]>, [Y>,x

(i)>
k ]>}.

Output: MC sample of the state and control sequences
X(i) = [x

(i)
0 , . . . ,x

(i)
T ]> and U(i) = [u

(i)
0 , . . . ,u

(i)
T−1]>.

x
(i)
1 because this is part of the sampled function path. That is,

if we happen to return to the input value z
(i)
t = z

(i)
0 at a later

time point t > 0, this GP sample should produce the same
state x

(i)
t+1 = x

(i)
1 . This can be achieved by treating x

(i)
1 as a

new perfectly measured training point. This process is thus
repeated until the final time step T is reached, as described
in Algorithm 1 via Dk in lines 5 and 6, which is recursively
updated using the sampled state at each step. The recursive
operations for a scalar GP function are shown in (13), which
can be straightforwardly extended to vector functions using
the procedure outlined in Section III-B.

Remark 2: The GP model for f(z)|D has infinite support
and, thus, does not satisfy Assumption 2. To ensure the
uncertainty is bounded in practice, we truncate the samples
in line 5 of Algorithm 1 within a specified confidence region.
A similar strategy has been used in [21]. The truncation
changes the distribution of f(z)|D so that it is no longer
a true GP, which correspondingly changes PrW so that it
satisfies Assumption 2. However, since the results developed
in this paper apply to any PrW , this change does to impact
our subsequent theoretical analysis.

IV. SAMPLE COMPLEXITY BOUND FOR JOINT
PROBABILISTIC PERFORMANCE LEVELS

Using the procedure described in Section III, we can
construct the required multi-sample {w(1), . . . ,w(N)} to
approximate the performance functions using (7). However,
a theoretical challenge arises from selecting the number of
samples N . To this end, we present a novel joint proba-
bilistic validation procedure. Let us first define a set of joint
probabilistic performance levels.

Definition 1 (Joint probabilistic performance levels): We
define γ1, . . . , γP ∈ R as joint probabilistic performance
levels with violation probability ε ∈ (0, 1) for {φi(·)}Pi=1 if

PrW

{
P⋃
i=1

{φi(θ̂,w) > γi}

}
≤ ε (18)

for any given feasible design parameter θ̂ ∈ Θ. /
Expression (18) implies that, for any set of P performance

functions, {γi}Pi=1 are chosen such that all functions are

simultaneously below these levels with probability at least
1−ε. Theorem 1 provides a way to compute joint probabilis-
tic performance levels with high confidence. This theorem
is a generalization of the result presented in [24] for the
particular case of P = 1.

Theorem 1: Let {φ1(θ,w), . . . , φP (θ,w)} be a finite set
of performance functions and {w(1), . . . ,w(N)} be a set of
N i.i.d. samples drawn from W with probability PrW . Also,
define γiN = maxj=1,...,N φi(θ̂,w

(j)) for any given design
parameter θ̂ ∈ Θ and for all i = 1, . . . , P . If

N ≥
log
(
P
δ

)
log
(

1
1− ε

P

) , (19)

then {γiN}Pi=1 are joint probabilistic performance levels with
probability no smaller than 1− δ, i.e.,

PrWN

{
PrW

{
P⋃
i=1

{φi(θ̂,w) > γiN}

}
≤ ε

}
≥ 1− δ, (20)

where PrWN = PrW × · · · × PrW is the product of the
individual probability measures.

Proof: Given any γ ∈ R, the probability of event
φi(θ̂,w) > γ is denoted by Ei(γ) = PrW{φi(θ̂,w) > γ}.
Using Theorem 3.1 of [24], we have

PrWN {Ei(γiN ) > ε̃} ≤ (1− ε̃)N ,

for any given ε̃ ∈ (0, 1) and i ∈ {1, . . . , P}. Now consider
the probability δF that the empirical performance levels
{γiN}Pi=1 are not joint probabilistic performance levels with
violation probability ε. We can establish an upper bound on
δF using the probability bounds on {Ei(γiN ) > ε̃}

δF = PrWN

{
PrW

{
P⋃
i=1

{φi(θ̂,w) > γiN}

}
> ε

}
,

≤ PrWN

{
P∑
i=1

Ei(γ
i
N ) > ε

}
,

≤ PrWN

{
P⋃
i=1

{
Ei(γ

i
N ) >

ε

P

}}
,

≤
P∑
i=1

PrWN

{
Ei(γ

i
N ) >

ε

P

}
,

≤ P
(

1− ε

P

)N
≤ δ.

To derive the second line, we have used Boole’s inequality
on the inner joint violation probability. The third line follows
from the fact that the sum of P random variables can only
be greater than ε if at least one of them is greater than ε/P ,
which is a necessary but not a sufficient condition. The fourth
line follows from another application of Boole’s inequality,
and the fifth line is the direct application of the previously
derived inequality with ε̃ = ε/P , ∀i = 1, . . . , P . Provided
that (19) holds, δF must be less than or equal to δ, which
establishes the stated claim.
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The derived bound (19) is independent of the number
of uncertainties, the size of the support set W , and the
probability distribution PrW . As such, Theorem 1 can be
applied to infinite-dimensional uncertainties such as w and
truncated GP models in accordance with Remark 2. The
effect of the cardinality P of the performance functions
on sample complexity N can be large, as it divides ε
in the logarithm in the denominator. However, N remains
substantially smaller than even single performance (P = 1)
alternatives such as the Chernoff bound.

V. CONTROLLER DESIGN VIA PROBABILISTICALLY
ROBUST BAYESIAN OPTIMIZATION (PRBO)

In this section, we address the controller design problem
(5) via the SO paradigm on the equivalent problem

min
θ∈Θ

Φ1(θ) s.t. Φi(θ) ≤ 0, ∀i ∈ {2, . . . , P} (21)

using the probabilistic estimates provided in (7). Since no
assumptions are made about the structure of (21), this
problem cannot be solved with established gradient-based
optimization algorithms. Instead, we rely on a particularly
data-efficient black-box optimization strategy referred to as
Bayesian optimization (BO) [3], which only requires the
ability to sample the objective (and constraints when they are
present) at arbitrary query points θ ∈ Θ. A major advantage
of BO is that these objective and/or constraint evaluations
can produce stochastic outputs, meaning it can be applied
under the stochastic estimates (7). Whenever the number of
samples is selected to satisfy Theorem 1, we refer to the
method as probabilistically robust BO (PRBO) since every
iteration produces joint probabilistic performance levels.

BO is a sequential model-based approach for solving
(21), in which we prescribe a prior belief over the set of
possible objective and constraint functions that is refined us-
ing Bayesian posterior updating. Equipped with probabilistic
models for the objectives and any unknown constraints, we
can induce sequential acquisition functions αn : Θ→ R that
leverage uncertainty in the posterior distributions to guide
exploration. The acquisition function should be chosen in
a way that represents how promising each θ ∈ Θ would
be if it were evaluated next. Thus, the proposed PRBO
algorithm consists of the following steps at every iteration
n ∈ {1, 2, . . .}:
1. Select next design θn+1 = argmaxθ∈Θαn(θ;Mn);
2. Evaluate worst-case performance functions (7) to obtain
{Φ̂iN,n+1}Pi=1 with an N satisfying Theorem 1;

3. Augment data Mn+1 = {Mn, (Φ̂
1
N,n+1, . . . , Φ̂

P
N,n+1)};

4. Update probabilistic models of performance functions.
A wide variety of probabilistic “surrogate” models can

be used to represent the objective and constraint functions,
including parametric and non-parametric models. The latter
is often preferred due to their ability to represent any function
given a sufficiently large dataset. GP regression models are
the most popular models to use in BO, especially since
they result in analytic expressions for the Bayesian posterior
update, as shown in Section III.

Several different acquisition functions have been proposed,
including lower confidence bound, Thompson sampling,
knowledge gradient, and expected improvement (see, e.g.,
[3] for more details). Regardless of the choice of the un-
constrained acquisition function, denoted by αunc

n : Θ → R,
the latter acquisition functions do not directly account for
constraints. An intuitive extension proposed in [9] is to
define improvement as occurring only when constraints are
satisfied. This implies that αn(·) can be defined as

αn(θ;Mn) = αunc
n (θ;M1

n)
P∏
i=2

Pr{Φi(θ) ≤ 0|Mi
n}, (22)

where Mi
n denotes the collection of the ith performance

function evaluations at BO iteration n. The probability terms
can be computed analytically for a GP model, as shown
in [9]. Since the terms in (22) are cheap to evaluate, this
maximization can be carried out efficiently using any of
the readily available global optimization metaheuristics. Note
that, whenever we do not have any feasible data points, it
can be useful to neglect the αunc

n (θ;M1
n) factor and directly

maximize the probability of constraint satisfaction. This
search is purely exploitative and will either discover that a
particular region of Θ is feasible, or its probability will drop
and the algorithm will search for a more promising region.

VI. NUMERICAL EXAMPLE

The proposed PRBO approach for robust controller design
is demonstrated on a modified benchmark double integrator
problem from [21]. The system dynamics are given by

x+ =

[
1 1
0 1

]
x +

[
1
1

]
u +

[
1
0

]
1

2

3∑
i=1

βi(x), (23)

where

β1(x) = 1− cos
(

1.6
π [x]1

)
,

β2(x) = sin
(

1.3
π [x]2

)
,

β3(x) = − sin
(

0.7
π [x]1[x]2

)
,

which represents the true, but unknown dynamics f(·) in (1).
Note that no additional disturbances d are considered. We
assume that the states and inputs are constrained by (x,u) ∈
X × U , where X = {x ∈ R2 : −10 ≤ [x]1 ≤ 10, −10 ≤
[x]2 ≤ 10} and U = {u ∈ R : −5 ≤ u ≤ 5}.

Since the dynamics (23) are unknown, we must first con-
struct a GP emulator of the system dynamics, as described
in Section III using a Matern covariance function (ν = 3/2).
We assume that M = 300 measurements of the form (2)-(3),
with σ2

v = 10−4 known, have been collected using randomly
generated input sequences. We adapted code from [23] to
train the hyperparameters of the GP emulator. To demonstrate
the emulator can capture the true behavior of the (unknown)
system, we performed a set of validation runs for a randomly
selected open-loop input sequence in Fig. 1. In particular, we
show system trajectories for 1000 GP posterior realizations
(red) and the true system behavior (blue). Although the GP
state-space model produces a distribution that contains the
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Fig. 1: Gaussian process emulation of the unknown system
dynamics. The red profiles show 1000 Gaussian process
posterior state realizations for the given input profile. The
blue profile represents the true behavior of the system.

true system, its uncertainty estimates grow substantially over
time since (23) is not open-loop stable. This suggests the
need for a well-designed controller to achieve desired levels
of performance.

To design a controller for the unknown system (23), we
consider P = 2 performance measures. The first measure
quantifies the control performance in terms of the average
setpoint tracking error of the first state

φ1(θ,w) =
1

T

T∑
k=1

∥∥[xk]1 − rk
∥∥

1
, (25)

where rk ∈ R is the reference value for the first state at
time k over a finite-horizon of T = 20 steps. The second
performance measure is the worst-case constraint violation
over the entire simulation time, i.e.,

φ2(θ,w) = max
k∈{0,...,T}

max
l∈{1,2}

gl(xk), (26)

where g1(xk) = [xk]1−10 and g2(xk) = −10−[xk]1 are the
violation of the upper and lower bounds for the first state at
time k, respectively. Given these performance measures, we
selected the controller κ(·) to be a model predictive control
(MPC) law that uses the mean GP prediction model. The
MPC controller solves the following nonlinear optimization
problem at every sample time k ∈ {0, . . . , T − 1}

min
xi|k,ui|k

∑Np−1
i=0 `k(xi|k,ui|k; θ`) + `f (xNp|k), (27)

s.t. xi+1|k = µf ([x
>
i|k,u

>
i|k]>;D),

(xi+1|k,ui|k) ∈ Xmpc(θb)× U ,
x0|k = xk, ∀i = 0, . . . , Np − 1,

where Np = 4 is the prediction horizon; xi|k and ui|k are,
respectively, the predicted state and control input at i time
steps ahead of current time k; `f (x) = 0 is the terminal cost;
`k(x,u; θl) = ‖[x]1 − rk‖22 + 1

θ`
‖u‖22 is the stage cost with

θ` representing a tunable weight coefficient; and

Xmpc(θb) = {x ∈ R2 : −10 + θb ≤ [x]1 ≤ 10− θb}
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Fig. 2: The minimum feasible worst-case performance es-
timate as a function of the number of PRBO iterations.
The thick blue line represents the mean value averaged over
5 independent PRBO runs, whereas the bars denote the
corresponding minimum and maximum values.

is the state constraints parametrized by a backoff tuning
parameter θb. Let {u?0|k(xk; θ), . . . ,u?Np−1|k(xk; θ)} denote
the set of optimal control inputs for (27), then the MPC
law is defined by κ(xk; θ) = u?0|k(xk; θ), where θ =

(θ`, θb) ∈ Θ = [10−3, 102] × [0, 20] can influence both
performance measures (25) and (26). The MPC problem (27)
was formulated in CasADi [25] and solved using IPOPT [26].

The closed-loop system takes the form of (4), with a
fixed initial condition x0 = [−7.5,−4.5]>. Since the feasible
region of (5) cannot be determined exactly, we instead use
the probabilistic feasibility result established in Theorem 1.
In particular, we assert a controller design is feasible if (18)
is satisfied for ε = 0.1 and δ = 10−4. Thus, according
to (19), a particular θ ∈ Θ results in a feasible controller
whenever γ2

N = maxj=1,...,N φ2(θ,w(j)) ≤ 0 over a set
of N = 194 i.i.d. samples. Given these specifications, the
PRBO approach in Section V was applied to find the optimal
set of tuning parameters. To solve the PRBO problem,
we used the ADMM-Bayesian Optimization algorithm [27].
The performance of the PRBO approach over 40 iterations,
averaged over five independent runs, is shown in Fig. 2.
We observe that the worst-case performance consistently
improves as the number of iterations increases, suggesting
PRBO can efficiently determine high-performance designs.

Next, we verify the “optimal” tuning parameters obtained
via PRBO, i.e., θ? = (4.87, 0.8), produce a controller that
meets the performance requirements (25) and (26). Fig. 3
shows the closed-loop state trajectories for N = 194 GP
posterior realizations of the closed-loop dynamics. Not only
has the MPC controller significantly reduced uncertainty
compared to the previous open-loop runs (Fig. 1), but all
of the GP posterior realizations satisfy constraints and yield
satisfactory setpoint tracking. For comparison purposes, we
also demonstrate the closed-loop state trajectories for a
nominal tuning θ0 = (10, 0), which results in significant
constraint violations. It is evident that PRBO consistently
finds “optimal” tuning parameters in approximately 20 se-
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Fig. 3: The closed-loop state profiles based on N = 194
Gaussian process emulations of the closed-loop dynamics.
The red profile corresponds to the MPC controller with
nominal tuning, whereas the blue profile corresponds to the
optimally tuned MPC via PRBO. The shaded regions are +/-
two standard deviations around the mean.

quential iterations. These results illustrate the effectiveness
of the proposed PRBO approach.

VII. CONCLUSIONS

This paper presented a data-driven approach for the ro-
bust design of arbitrary controllers. The main features of
the proposed approach include: (i) accounting for system
uncertainties in controller tuning through worst-case esti-
mation of performance measures, and (ii) providing guar-
antees that the worst-case performance estimates jointly
achieve a pre-specified probability of accuracy. Incorporation
of these features into a constrained Bayesian optimization
framework yields a fully data-driven and probabilistically
robust controller design approach that circumvents the need
for additional post verification of the designed controllers.
Our future work will focus on investigating multi-objective
formulations of the robust controller design problem.
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