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ABSTRACT

Cellular cryo-Electron Tomography (cryo-ET) provides three-
dimensional views of structural and spatial information
of various macromolecules in cells in a near-native state.
Subtomogram classification is a key step for recognizing
and differentiating these macromolecular structures. In re-
cent years, deep learning methods have been developed for
high-throughput subtomogram classification tasks; however,
conventional supervised deep learning methods cannot rec-
ognize macromolecular structural classes that do not exist in
the training data. This imposes a major weakness since most
native macromolecular structures in cells are unknown and
consequently, cannot be included in the training data. There-
fore, open set learning which can recognize unknown macro-
molecular structures is necessary for boosting the power of
automatic subtomogram classification. In this paper, we
propose a method called Margin-based Loss for Unsuper-
vised Domain Alignment (MLUDA) for open set recognition
problems where only a few categories of interest are shared
between cross-domain data. Through extensive experiments,
we demonstrate that MLUDA performs well at cross-domain
open-set classification on both public datasets and medical
imaging datasets. So our method is of practical importance.

Index Terms— Cryo-Electron Tomography, Open-set
learning

1. INTRODUCTION

In recent years, cryo-electron tomography (cryo-ET) has
emerged as a revolutionary 3D structural biology imaging
technique. Cryo-ET captures the 3D native structure and spa-
tial distribution of macromolecules inside cells at nanometer
resolutions [1]. A key step in the analysis of cryo-ET data
is recognizing each macromolecule through subtomogram
classification. A subtomogram is a 3D cubic subvolume
of a tomogram that contains a single macromolecule. The
subtomogram classification task is essentially a 3D grey scale
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image classification process. However, the high structural
complexity, low signal-to-noise ratio and imaging limits have
made such classification very difficult. Nowadays, the ad-
vance of automatic image acquisition has made it possible
for an electron microscope to, within several days, quickly
produce hundreds of tomograms that together contain mil-
lions of structurally highly heterogeneous macromolecules
[2]. In such case, the traditional subtomogram alignment
based subtomogram classification techniques [3] become too
slow to process such large amounts of data. Recently, Con-
volutional Neural Network (CNN) based supervised deep
learning has significantly improved the throughput of subto-
mogram classification [4, 5]. However, as a supervised learn-
ing approach, it cannot be directly used for recognizing the
macromolecules whose structural classes do not exist in the
training data. This becomes a major hurdle for the usefulness
of this approach because most of the native macromolecular
structures are unknown, as evidenced by genome sequencing
[6], mass spectroscopy [7], and cross-species variation [8].
Therefore, it is crucial to develop a deep learning method
to recognize unknown macromolecular structures. Open-set
learning is an important technique to solve this problem.
Another major challenge is, even for the macromolecules of
known structures, the high quality annotation of correspond-
ing subtomograms is very computation and labor intensive.
Acquiring real Cryo-EM (Cryogenic electron microscopy)
images is expensive, so there may not be sufficient data to
train the machine learning model, but with the help of sim-
ulated data or annotated data captured from a separate data
source, we can roughly make a class prediction. To solve this
problem, domain adaptation is needed.

Image classification has two cases, closed set and open set
recognition. A closed set recognition task indicates the source
and target datsets contain identical classes. Open set recog-
nition is different than the closed set recognition; in open
set recognition, all labels in the target domain appear in the
source domain. We denote the ”known” classes as the labeled
samples shared among the source and target data, and the ”un-
known” class as the unlabeled class which may or may not be



Fig. 1. Siamese network as our backbone architecture.

shared between the source and target data. An open set clas-
sifier should reject samples from unknown classes while cor-
rectly classifying samples from known classes. In traditional
classification tasks, the discriminative power enhances this
ability by increasing intra-class compactness and the inter-
class separability. Such as, center loss [9], LM-softmax [10]
and ArcFace [11]. In previous works, cross-domain open set
recognition task were solved by iterative minimizing the dis-
tances of the transformation assignments, adversarial learning
and etc. [12, 13, 14]. Following JDDA’s work [15], in this
paper, we create a margin-based loss called Margin-based
Loss for Unsupervised Domain Alignment (MLUDA) to
solve the cross-domain open set recognition on cryo-ET data.
Within the MLUDA, we adapt unsupervised domain align-
ment techniques in order to minimize the domain discrepancy.

2. METHOD

The regular cross-entropy loss outputs a vector to represent
the probability distributions of a set of potential outcomes and
is widely used in deep learning classification tasks. However,
the cross-entropy loss can only separate but not discriminate
the deeply learned features. Learning the representative fea-
tures by creating new loss functions is very effective in the
close-set classification task. Open set recognition also needs
strong generalization; we solve this by learning representative
features from a discriminative loss function. But for cross-
domain open set recognition, the feature space from the two
domains is not aligned, so additionally, we introduce a do-
main adaptation alignment method. Together, these additions
help solve the cross-domain open set recognition task.

2.1. Problem Formulation

Suppose we are given a labeled source data set Ds =
{(xsi , ysi )ns

i=1} from the source domain where each data
point xsi is a cubic 3 dimensional grey scale image ie xsi ∈
RH×H×H×1. Furthermore, we have that each xsi belongs
to a known macromolecule class in Cknown or an unknown
class in Cunknown where |Cknown| = k − 1 and |Cunknown|
is not known. We let the labels 1, ..., k − 1 represent the

known classes, and the label k represent all unknown classes.
Our goal is to label a new target data set Dt = {(xti)

nt
i=1}

from a potentially different domain by correctly assigning
each xti ∈ Cknown the label corresponding to its class from
{1, ..., k− 1} and assigning each xti ∈ Cunknown the label k.

2.2. Margin-based Discrimination Loss

Center loss [9] can boost the discriminative power of the ex-
tracted features in neural networks by learning a vector-like
center from deep features and combining it with the cross-
entropy loss. Let xj be the deep feature from the last layer in
the Siamese network source branch and let cj be the center of
its class. Center loss is defined as the l2 differences between
the deep features and its class center in Equation 1.

Lcenter =
1

2

n∑
i=1

‖xji − c
j‖22 (1)

We define a margin-based discriminative loss for the deep
features from known classes. We set m1 as the intra-class
margin which specifies a maximum distance between deep
features with its corresponding class center and m2 as the
inter-class margin which specifies a minimum distance be-
tween different classes. Let Hs

k = {(hsi )
ns
k

i=1} be the set of
learned deep features for the data point that belong to the class
k. Each learned feature representation hsi should be within
some distance m1 from its class’s center. Furthermore, each
class center should be at least some distancem2 from all other
class centers. With this in mind, we formulate the margin-
based discriminative loss, Equation 2:

Ld(Hs
k) =

ns
k∑

i=1

max(0, ‖hsi − cyi‖22 −m2
1)

+

ns
k∑

i=1

max(0,m2
2 − ‖ci − cj‖22)

(2)

Intuitively, the inter-class distance should be larger than
the intra-class distance, thus we require m1 > m2. In the
first term of 2, cyi ∈ Rd denotes the yi-th class center of
the deep feature yi. In the second term, ci and cj represent
the class centers for two arbitrary (randomly selected) macro-
molecule classes i and j. The second term of Equation 2 uses
these class centers for the arbitrarily selected classes i and j
to measure inter-class separability. We update the class cen-
ters iteratively with each batch. We use Equations 3 and 4 to
update each class center, where yi is the class of the ith data
point in the batch, cj is cluster j’s center, hsi is the deep fea-
ture representation of the ith data point in the batch, and δ is
an indicator function.

∆ctj =

∑b
i=1 δ(yi = j)(cj − hsi )
1 +

∑b
i=1 δ(yi = j)

(3)

ct+1
j = ctj − γ ·∆ctj (4)



Equation 2 can classify the shared classes. However,
for unknown classes the classifier also needs to separate the
points from each of the known classes. Following the idea
of margin-based loss, we specify a distance between the la-
beled known classes and the unlabeled unknown data. The
margin-based cognition loss is defined by Equation 5 where
{(hsi )}

ns
unk

i=1 is the set of deep features for the unknown data
from the source domain, min(‖hsi − cj‖22) measures the clos-
est distance from each unknown sample to all the known class
centers, andm3 assigns the unknown class margin which pro-
vides a minimum length from each unknown macromolecule
to any known class center.

Lc(H
s
unk) =

ns
unk∑
i=1

max(0,m2
3 −min(‖hsi − cj‖22)) (5)

2.3. Deep CORAL: Unsupervised Domain Alignment

For a cross-domain open set recognition task, the classifier
also needs to decrease the domain discrepancy. Deep CORAL
provides a simple but efficient method to match distributions
of the middle features in the CNN by minimising the covari-
ance of the source and target features [16]. The CORAL loss
is expressed as the distance between the second-order statis-
tics (covariances) of the source and target features as shown
in Equation 6.

LCORAL = CORAL(Hs, Ht)

=
1

4L2
‖Cov(Hs)− Cov(Ht)‖2F

(6)

where Hs and Ht denote the deep features from the out-
put of the bottleneck layer. ‖ ·‖2F is the squared matrix Frobe-
nius norm. The covariance matrices of the source and target
data are given by Equation 7. h is the number of batch data
and 1 is a column vector with all elements equal to 1. The cal-
culation of the coral loss does not need the target labels as ref-
erence, so it is an unsupervised method for aligning two do-
mains. Minimizing the correlation alignment (CORAL) can
adjust shared weights and reduce the domain discrepancy.

Cov(H) =
1

h− 1
(H>H − 1

h
(1>H)>(1>H)) (7)

2.4. Training Procedure

Let Hi be the shared feature in the last fully connected layer.
Combining all the losses from Equations 2 5 6 with the soft-
max loss in 8 to reformulate our MLUDA as Equation 9. The
softmax is formulated to make the posterior probability of
sample xi.

Lsoftmax =
1

N

N∑
i=1

− logHi (8)

L = Lsoftmax + λ1(Ld + Lc) + λ2LCORAL (9)

And, our MLUDA function can be trained by minimizing
the weighted combination of Lsoftmax, Ld, Lc and LCORAL.
Where λ1 and λ2 are trade-off parameters used to balance
the contribution of each loss. λ2 should be lower than λ1 to
make sure margin-based loss dominate the total loss. The λ2
is almost identical in different experiments. But the λ1 need
to use trial and error to find the best value. In Figure 1, the
flowchart shows the training process where the loss will be
calculated after the fc2 layer in the Siamese network.

3. EXPERIMENTS AND RESULTS

We conducted two experiments to verify our method for
cross-domain classification on the popular 3D dataset and the
real Cryo EM dataset for practical usage.

3.1. Ablation Experiments on 3D MNIST

3D MNIST contains 3D point clouds generated from the orig-
inal images of the MNIST dataset. 1 In this experiment, we
use the first five classes as the source dataset and the last five
classes as the target dataset. We extract the last features from
our Network and used t-distributed stochastic neighbor em-
bedding (TSNE) to display the feature space. We ablated each
part of our loss and tested their performances separately. As
Figure 2 shows, our method can clearly separate the class in
the feature space in this cross-domain scenario. (a) means we
only use cross entropy as the loss function. (b) means we use
cross entropy loss and the Intra-class center as the total loss.
In (c), we use cross entropy term and the margin-based dis-
crimination loss we descibed in section 2.2. (d) is our method.

DOI EMPIAR Name

10133 Glutamate dehydrogenase single particle
10131 Rabbit muscle aldolase single particle
10143 T20S proteasome single particle
10135 DNAB helicase-helicase loader single particle
10173 Insulin-bound insulin receptor single particle
10172 Hemagglutinin single particle
10169 Apoferritin single particle

Table 1. Experimental macromolecular complexes names

3.2. Experiments on Real Cryo-EM Tomogram

Real Dataset: We use The Noble Single Particle Dataset [17].
This dataset has 7 classes. We apply the Difference of Gaus-
sian (DOG) particle picking process in order to extract the
subtomogramss of size 283 [18] followed by manual selec-
tion. We denote the real dataset as R. The digital object iden-
tifier (DOI) of our real dataset in Electron Microscopy Public
Image Archive (EMPIAR) is shown in Table 1.

1https://www.kaggle.com/daavoo/3d-mnist
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Fig. 2. Feature spaces of different ablation methods.

Simulated Dataset: we use the same structures of macro-
molecular complexes to generate simulated subtomograms.
First we generate volume of 403 voxels with a resultion of
0.92 nm using the PDB2VOL program from Situs [19] pack-
age as the density map for each class. Then We apply the
AITom platform to generate the simulated dataset with the
same class [20]. There are two significant aspects we focus
on when simulating the subtomograms: missing wedge ef-
fects and noises. We generated 500 subtomograms for each
class with SNR = 10 and missing weight = 10. We denote the
simulated dataset as S3. We also generate two other simulated
datasets. One, denoted as S1, has the same real 7 complexes
classes with SNR = 3 and missing weight = 10. The other not
only has the 7 real experimental macromolecular complexes
classes but also has another 20 new classes of subtomograms
which generated by PDB2VOL program with SNR = 7 and
missing weight = 10. We donoted this simulated dataset as
S2.

Method All OS OS* UNK

Lsoftmax 0.6070 0.4370 0.4403 0.8156
Lcenter[9] 0.5916 0.4341 0.4633 0.7811
JDDA[15] 0.6214 0.4804 0.4846 0.7922

Our 0.6513 0.5112 0.5141 0.8232

Table 2. Experiment results of S1 −→ S2

We perform the experiment between two simulated
datasets, which denoted as S1 −→ S2. In S3, we keep
first 6 classes. For the target dataset, we use 4 classes as the

Method All OS OS* UNK

Lsoftmax 0.1638 0.2582 0.2651 0.0999
Lcenter[9] 0.1404 0.2281 0.0323 0.2345
JDDA[15] 0.3506 0.3113 0.3105 0.4027

Our 0.3605 0.4292 0.4304 0.2691

Table 3. Experiment results of S3 −→ R

known classes and the last two class as the unknown classes
from S. We test the performance on R, which has the same
4 known classes but 3 unknown classes. This experiment
denoted as S3 −→ R. Our method is a new application to
the cross domain classification task on Cryo-EM. Due to
huge domain shifts and the complexity of 3D classification,
classic classification methods cannot achieve decent results.
So, we compare our method with a discriminative learning
feature loss (Center Loss), and an Unsupervised Deep Do-
main Adaptation method (JDDA). As a standard open set
recognition experiment, we define four metrics for verifica-
tion. There are: 1. Overall test accuracy (ALL), 2. Accuracy
averaged over all classes (OS), 3. Accuracy measured only on
the known samples of the target domain (OS*), 4. Unknown
class accuracy (UNK). In Table 2, our method achieves the
best performance among all methods between two simulated
datasets. As Table 3 shows, our results are best in the ALL,
OS and OS* in real dataset.
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5. CONCLUSION

Classification is a fundamental task in biomedical image anal-
ysis. The open set scenario is a more challenging problem
when only a few classes share between the source data and
target data. A more common situation in analyzing cryo-ET
data is the cross-domain open set recognition because two
datasets may be collected from different electron microscopes
with various imaging conditions and resulting SNRs. In this
paper, we introduce a novel loss for cross-domain open set
recognition in cryo-ET. The proposed loss function has prac-
tical significance. The experiments show that our method has
strong discriminative power to classify the known classes and
achieve decent result on real dataset. Our method is an im-
portant step toward the systematic recognition of unknown
structural classes in situ cryo-ET image analysis.
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