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Abstract

Computing dense pixel-to-pixel image correspondences
is a fundamental task of computer vision. Often, the objec-
tive is to align image pairs from the same semantic cate-
gory for manipulation or segmentation purposes. Despite
achieving superior performance, existing deep learning
alignment methods cannot cluster images; consequently,
clustering and pairing images needed to be a separate la-
borious and expensive step.

Given a dataset with diverse semantic categories, we
propose a multi-task model, Jim-Net, that can directly
learn to cluster and align images without any pixel-level
or image-level annotations. We design a pair-matching
alignment unsupervised training algorithm that selectively
matches and aligns image pairs from the clustering branch.
Our unsupervised Jim-Net achieves comparable accuracy
with state-of-the-art supervised methods on benchmark 2D
image alignment dataset PF-PASCAL. Specifically, we ap-
ply Jim-Net to cryo-electron tomography, a revolutionary
3D microscopy imaging technique of native subcellular
structures. After extensive evaluation on seven datasets, we
demonstrate that Jim-Net enables systematic discovery and
recovery of representative macromolecular structures in
situ, which is essential for revealing molecular mechanisms
underlying cellular functions. To our knowledge, Jim-Net
is the first end-to-end model that can simultaneously align
and cluster images, which significantly improves the perfor-
mance as compared to performing each task alone.

1. Introduction

Image alignment that establishes dense pixel-to-pixel
correspondences between images is a fundamental research
area in computer vision [86]. Various algorithms have been
widely applied to important fields such as face recogni-
tion [25, 105], medical diagnosis [85, 21], remote sensing
[100, 60], and structural biology [74, 37]. These have suc-
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cessfully led to technological advances including Google
street view [5], and historic scientific discoveries including
the first image of a black hole [13] and atomic resolution
macromolecular structures [9, 106].

Since 2017, end-to-end deep learning methods emerged
for image alignment tasks and achieved superior perfor-
mance in terms of both accuracy and efficiency, especially
for the common scenario of image pairs with large transfor-
mation variations [91, 101]. In most cases, the objective of
image alignment is to align image pairs of the same seman-
tic category for feature localization [54, 90], image manip-
ulation [34, 4] or image segmentation purposes [81, 94, 46].
Nevertheless, the majority of image datasets contain diverse
semantic categories [35, 28, 87]. Existing supervised and
unsupervised deep learning image alignment approaches
only perform alignment and cannot predict the categorical
class of input images. As a result, they still need to catego-
rize the images as a separate step, either by manual group-
ing, which is tedious and time-consuming, or by computa-
tional methods, which may be prone to errors [44] due to
the large pose variations of objects (Figure 1).

Unsupervised categorization (clustering) has been ex-
tensively studied in machine learning settings where the
ground-truth categorical labels needed for supervised train-
ing are hard to acquire. The accuracy of traditional image
clustering algorithms is usually low because of their lim-
ited ability in learning representations of high-dimensional
visual features [31]. Recently, end-to-end deep image clus-
tering methods have achieved similar performance to super-
vised classification [15, 39, 96, 72] and demonstrated their
ability to extract meaningful semantic features. As men-
tioned above, most image datasets contain multiple seman-
tic categories but the majority of image alignment applica-
tions require categorical information of images. Therefore,
it is critical to have a model that can simultaneously cluster
and align images. Such a model will enable learning from
scratch the clustering and alignment of images from a com-
pletely unlabeled dataset with diverse semantic categories.

In particular, we motivate the importance of this prob-
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Figure 1. Illustration of Jim-Net: a multi-task learning model that can align an image pair and predict the cluster assignment of the source
image. The red arrows denote the alignment branch and the green arrows denote the clustering branch.

lem for in situ cryo-electron tomography (cryo-ET) with the
goal to subdivide heterogeneous macromolecular structures
into homogeneous structural subsets and align their poses.
Cryo-ET (detailed background description in Supplemen-
tary section S1) is a rapidly developing 3D variant of 2017
Nobel chemistry prize cryo-Electron Microscopy. Cryo-ET
has revolutionized structural biology by enabling systematic
3D visualization of subcellular structures [83]. The data is
collected in situ, meaning that the subcellular structures are
imaged in their native cytoplasm environment. Therefore,
the spatial organization of macromolecules and their inter-
actions with organelles can be revealed, which cannot be
done by any other imaging methods [11]. With this unique
strength, cryo-ET has continually provided new insights
into the structure and function of important biological pro-
cesses including bacterial effector secretion [20, 18, 19, 17]
and mammalian neural function [32, 10, 88, 7, 26].

More importantly, cryo-ET has been applied extensively
[65, 98, 50, 48, 45] to characterize the structure and repli-
cation of SARS-CoV-2 in host cells by localizing individ-
ual proteins with high precision, promoting both the scien-
tific understanding and treatment development of COVID-
19. However, cryo-ET data analysis is very challeng-
ing. Because of the structural heterogeneity and high noise
level, to recognize different structures, macromolecules im-
aged (represented as subtomograms: cubic subvolumes ex-
tracted from a tomogram) must be clustered into homoge-
neous groups and aligned. High-throughput methods that
can simultaneously align and cluster 3D cryo-ET macro-
molecules will substantially benefit the discovery and re-
covery of higher-resolution structures in situ [12].
Contributions: (i) We introduce the first end-to-end model,
Jim-Net ' (Joint image alignment and clustering Network),
to jointly perform image alignment and image clustering.
(i) To alleviate the requirement for annotated training data,
we design loss functions and a pair-matching alignment
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training algorithm to make Jim-Net fully unsupervised. (iii)
We incorporate coarse-to-fine alignment techniques to im-
prove the robustness to large geometric transformations.
This includes a novel layer for composing 3D transfor-
mations, which leads to fewer deformities and less gra-
dient vanishing/exploding as it acts as a residual connec-
tion to the coarse module. (iv) We incorporate spectral
pooling, stacked dilated convolution, and constrained cross-
correlation techniques to improve the robustness to noise for
both tasks. (v) Our unsupervised Jim-Net achieve compara-
ble alignment accuracy with state-of-the-art weakly super-
vised methods on benchmark dataset PE-PASCAL. (vi) Jim-
Net significantly improves the performance as compared to
baseline methods performing each task alone on cryo-ET
datasets.

2. Related Work
2.1. End-to-end image alignment

Image alignment is a challenging task [89] because it of-

ten focuses on large transformation variations which may
result in large changes in objects’ appearance (Figure 1).
Many traditional geometric methods have been proposed
for pairwise [27, 73, 63] or batch [66, 59] alignment.
However, their accuracy and efficiency are still limited
[2, 77]. Earlier works used pre-trained [68, 8] or learned
[102, 53, 92] feature extractors combined with traditional
feature matching methods to generate the dense correspon-
dence. In 2017, the first end-to-end model for image align-
ment was proposed [77]. With regard to the level of su-
pervision, the end-to-end image alignment methods can be
divided into five categories.
Supervised alignment requires labeled transformation pa-
rameters [77, 84] or keypoints [69, 24, 36, 56, 62, 61] to
train a network. However, the precise ground truth are hard
and time-consuming to prepare, either by exhaustively grid
searching the transformation parametric space, or by labo-
rious manual annotation.
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Semi-supervised: [55] combines Lo-norm loss for anno-
tated data and cycle consistency loss for unannotated data.
Weakly-supervised alignment methods only require cate-
gorically matched image pairs or foreground masks [58, 57]
for training. [78, 49] integrate a differentiable transforma-
tion module with [77]. [43] aligns image pairs by learn-
ing the forward and backward transformation to be consis-
tent. [80, 79] propose neighbourhood consensus networks
to learn feature correspondences from known matching and
non-matching image pairs.
Self-supervised: [89, 84] demonstrate that image align-
ment methods could be trained solely in a synthetic data
augmentation fashion by randomly transforming an image
and learning to regress to the transformation parameters.
Unsupervised: [103] aligns 3D images by a fully unsuper-
vised network trained by inputting arbitrary image pairs.
Yet, all of the methods only learn a single-task alignment
model, which cannot predict the semantic cluster assign-
ment of input images. For Jim-Net, we aim to learn a fully
unsupervised multi-task model that aligns image pairs and
predicts cluster assignments at the same time.

2.2. End-to-end unsupervised clustering

Image clustering is also a fundamental problem in com-
puter vision. Unsupervised deep image clustering is sub-
stantially more challenging than supervised classification
because neural networks must rely on adequate signals for
backpropagation [47]. We focus on end-to-end models as
they are mostly related to our method. JULE [95] pro-
posed a recurrent framework to merge close clusters to-
gether in a hierarchical agglomerative manner. [104] op-
timizes a probabilistic assignment network to improve the
image reconstruction by a mixture of autoencoders. Simi-
larly, [33] jointly optimizes reconstruction loss and a clus-
tering oriented loss based on encodings. DeepCluster [15]
clusters learned features using K-means and uses the clus-
ter labels to fine-tune the model to iteratively improve the
feature separation and clustering accuracy. PICA [39] in-
troduces a differentiable index to maximize the global parti-
tion confidence of clustering solution, which established the
state-of-the-art performance on several benchmark datasets,
including over 60% accuracy on CIFAR-10 [51].

Unlike these single-task clustering models, Jim-Net has
shared feature extractors to jointly learn two tasks, which
mutually reinforce each other for better feature learning.

3. Method

Our end-to-end model as shown in Figure 2, Jim-Net,
learns to propose cluster assignments and transformations
by alternating between an alignment and cluster assign-
ment predicting step and a clustering step. For alignment
and cluster predicting, a source image s and a target im-
age t are processed by an alignment module, M1 (Section
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3.1). Mpyy has two outputs, a transformed instance of the
source image s’, which has been aligned with ¢ in a way
that minimizes some alignment loss La; (Section 3.1.2),
and a deep feature representation of s, fy, :== F'(s,t). The
deep feature representation fy; is passed to a cluster assign-
ment prediction module Mcp that predicts which cluster s
was assigned to during the clustering phase. We backpro-
pogate on a categorical-crossentropy loss Lcg for Mcp and
an alignment loss Lap for My to jointly train Mcp, and
M a1, which share a feature extractor.

For clustering images through feature learning, Jim-Net
runs My on an image x paired with itself to produce deep
features f, := F'(x,x). This process is repeated for every
image in the dataset X. The resulting feature dataset fx|x
is clustered via a Gaussian Mixture Model (GMM) (Section
3.2) which is used as guidance to pair images and to train the
network. Each x is given a cluster assignment ¢,. A new,
paired dataset P == {(s,t,4;) : (s,t € X) A (£s = 4y)}
i.e. every pair has the same cluster assignment. The source
and target image pairs from P are used as inputs to train
M1, from the previous step. Once Jim-Net is trained, it can
be deployed to simultaneously align image pairs and predict
image assignment to semantically meaningful clusters.

3.1. Image alignment branch

The goal of image alignment is to take a source image s
and a target image ¢ and geometrically transform s into s’
in a way that minimizes some dissimilarity loss La(s',t).

Jim-Net employs a coarse-to-fine alignment architecture.
Coarse-to-fine alignment architectures propose an image
transformation, carry out the transformation, and use the
transformed image to propose a new transformation on the
already transformed image. This process stacks multiple
alignment-proposing functions for progressively finer trans-
formations. Intuitively, by dividing the transformation pro-
cess into multiple stages, the architecture can propose trans-
formations on different feature resolutions with fine-tuning
transformations at later stages, which has been shown to
improve the quality of the alignment [107, 16].

Formally, the coarse-to-fine approach can be described
by defining transformation functions 7", ..., 7("™) such
that 7 : Tx ®(# — T where Z is an image space and &)
is a parameter space for transformation 7(%); these trans-
formation functions may be different for different 7, e.g.
T could be an affine transformation while 72 could be
a thin plate spline transformation. We also define feature
extractors f() : T — F) where F) ..., F(™) are feature
spaces with possibly different resolutions. Next, we define
transformation parameter proposing functions (1), ..., (™)
that operate on the feature representations such that each
of the functions r® : FO x F& _ & which are
typically composed of a feature matching layer (Section
3.1.1) followed by a regressor. For conciseness, we de-
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Figure 2. Jim-Net workflow. The clustering and the alignment shares the feature extractors for the source image. The alignment branch
employs a coarse-to-fine alignment strategy. Different feature extractors are indexed (architecture in Supplementary Section S2).

fine image transforming functions ¢V, ..., ("™ such that
9 (s,1) = TO(s,r(£O(s), O(t))) to both propose
and perform the image transformations. We define the in-
termediate image transformation functions

) @OGE=D(s.t).t). if ;<
G<z>(8,t):{9 @V, H0<i<m

s, ifi =20
and the feature extraction
F(s,t) = fY(G(s,1)@...0 (G D (s,1)), ()

where @ is the concatenation operation. The entire coarse-
to-fine alignment module My is defined as Map(s,t) =
(F(s,t), Gt (s,t)). By choosing differentiable functions
TO e fO ) and ¢ (M) the entire
coarse-to-fine alignment module, My, is differentiable,
and thus, we can employ gradient based optimization tech-
niques. There are many transformation functions 7 (") that
satisfy the differentiablity requirement such as the spa-
tial transformer layer [42]. There are many feature ex-
tracting functions f @ .., fm and regression functions
(..., (™) that satisfy the differentiability requirement.

Fine transformation regularization loss: Intuitively, later
transformations should be for fine tuning and thus, should
be progressively smaller. We enforce this intuition by craft-
ing a regularization loss Lg to penalize large transforma-
tions, which should help stabilize and speed up training. For
3D rigid transformations (cryo-ET data) parameterized by
rotation matrix 24 and shift s, the L% regularization over
a unit sphere V is derived (Supplementary Section S2) as:

£a0)= [ IR +,) = ol

_dr 2
35

3)
(3 = Trace(Ry)) + [[s4/13)

3.1.1 Feature matching

Establishing correspondences between two feature repre-
sentations allows architectures to utilize regressors on an
integrated representation of the two images. Feature match-
ing is typically accomplished globally [77, 78, 103]. Global
feature matching can capture correspondences between any
two positions in two feature representations but is computa-
tionally expensive and requires lots of memory, so it is usu-
ally applied at coarse resolutions in early alignment stages
when images are geometrically distant. In contrast, local
feature matching [40, 41, 6] can only capture correspon-
dences between nearby positions in feature representations
but is spatially much more efficient at higher feature reso-
lutions, so it is integrated into late alignment stages when
images are already geometrically close.

Global feature matching: The correlation layer for global
feature matching [77] computes correlations between each
of the indices in the source and target’s feature represen-
tation. In 2D settings, it is defined for two h X w X ¢, Loy
normalized, feature representations f(*) and f(*) as follows:

COFE, FD)ij = (5, 1), )
where fi(;) and f,g? are the feature vectors (or channels)
for locations (i,7) and (k,1) in images f(*) and f(*) re-
spectively. Notice, that the output tensor has dimension
h x w x (h x w), which is large for high resolutions.
Local feature matching: For fine alignment, the correla-
tion layer for local feature matching computes the correla-
tions between indices at most r away from each other un-
der the L., norm. This considerably reduces the dimension
of the output and computation cost when 7 is small, which
makes using higher feature resolutions feasible. The local
correlation layer can be defined for L, normalized feature
representations f(*) and f(*) and radius 7 as follows:

CE(FO FO) 0 = <fi(;;)7 f{flw,l):% (5



where ||(k,1)||oo < 7. The output dimension of this map is
h x w x (2r + 1)2, where typically (2r + 1) < h, w.

3.1.2 Image alignment loss functions

An image alignment loss function, £y , numerically evalu-
ates how well two images are aligned. Unsupervised losses
that do not require correspondence maps were proposed in-
cluding contextual loss [67] and cycle-consistency loss [43].
The soft inlier loss for 2D image alignment is outlined in
Supplementary Section S2. For 3D cryo-ET data, we de-
sign a constrained cross-correlation loss inspired from tra-
ditional geometry-based subtomogram alignment methods.
Constrained cross-correlation loss: Cross-correlation and
its variants are commonly used to assess the alignment be-
tween two 3D subtomograms [23, 22, 3]. Considering (1)
the missing wedge effect introduced by the limited view-
angles to reconstruct the 3D tomogram and (2) the low
SNR due to the thickness of the cell sample, we imple-
ment a constrained cross-correlation measure as the loss
function for subtomogram alignment. This loss function is
constrained to observed regions in the Fourier space lower
than a frequency cut-off threshold. This is because the high-
frequency region is likely to be dominated by noise. The
constrained cross-correlation loss is defined as follows:

SN (sp — s*)(t — )

1—
VEN (51— 52 SN (1 - )2
(6)
where s is a source image and ¢ is a target image. s* and t*
denote the real space subtomogram with coefficients con-
strained to the intersection of two missing wedge regions
and the low-pass filter. s* (similarly for ¢*) is mathemati-
cally defined as: s* = R{F*[(Fs)-H - M- Tr,(My)]},
where R is the real part of a complex function; F is the
Fourier transform operator; 7g, is the 3D rotation opera-
tor with parameters from the network regressor; H is the
low-pass filter defined by H(£) = 1jj¢..<+(§), where §
is a 3D location of the Fourier coefficient in the Fourier
space, and ¢t is the frequency threshold for the low-pass fil-
ter; M (similarly for M,) is the binary mask indicating
the observed region of s due to the missing wedge effect as
defined by M (&) = Lje,|<|e, | tan (0) (§). Where 0 refers to
the tilt-angle range 46 in single-tilt cryo-ET.

Lcce(s,t) =

b

3.2. Image clustering branch

Manually categorizing images is slow and expensive, so
it is ideal to create methods that predict semantically mean-
ingful categories (or clustering assignments) without super-
vision. We accomplish this by using a GMM (Supplemen-
tary Section S2) on learned features as guidance to train
Jim-Net: (1) for alignment My, we use image pairs that
belong to the same GMM clusters as inputs; (2) for cluster
assignment prediction Mcp, we use cluster labels estimated
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by the GMM as training labels in each iteration. We note
that GMM clustering is only used in training. The trained
Jim-Net predicts cluster assignment directly.

Image pairing: GMM clustering considers feature covari-
ance information which is important for discriminating se-
mantic classes by neural networks [1, 99]. During the clus-
tering step, Jim-Net applies a GMM, G,, 5, to cluster the
feature representations of the images, fx|x. Intuitively,
if s is assigned the same cluster {5 = G, x(s) as t, then
s,t should be semantically similar, so they can be aligned
meaningfully. Following this intuition, Jim-Net creates a
source and target pair dataset P = {(s,t,4s) : (s,t €
X) A (€5 = £:)} as inputs to train Jim-Net (Algorithm 1).

Algorithm 1: Pair-matching alignment training

Input: Image dataset X
1 for m iterations:
2 Feature representations: fx|x + F(X, X)
3 GMM: Fit gﬂyg to fX\X
4 Cluster predictions: £x < G, s(fx|x)
5 Pairs: P+ {(s,t,4s) : (s,t € X) A (bs = 44)}
6 for (s, t, ;) € P:
7 Update model weights by loss L(s, t, £5)

Joint training:  Jim-Net learns feature extractors
fM, .., f(™) by jointly optimizing Lap and Lcg. By
jointly optimizing both L1 and Lcg, Jim-Net optimizes
f(l),...7 f(m) to output feature representations that are
useful for alignment and are easily separable. Optimizing
the clustering branch helps Jim-Net maintain semantically
meaningful categories, which are used to propose image
pairs that are amenable to reinforce the alignment branch.
We define the combined loss for Jim-Net as:

m

L(s,t,4s) = Loa(Mcp(F(s,1)), L)+ %LaL(GP(s,1),1),

i=1
(7
where coefficients vy, ..., ¥, determine the linear weight
placed on each of the intermediate alignments. The align-
ment module Mp,p, and the cluster predicting module Mcp
share feature extractors f(), ..., f(™) thus during backpro-
pogation the classification loss L¢g and the alignment losses
L v jointly influence the feature extractors’ update step. We
keep the regularization loss Lg(¢) as an optional parameter.
We design an end-to-end multi-task learning Convolu-
tional Neural Network (CNN) architecture (detailed illus-
tration in Supplementary Section S2) according to the pro-
posed model and algorithm.

4. Experimental Validation

We systematically evaluated Jim-Net on several datasets
for both tasks and analyzed the results (training and results
details in Supplementary Section S3).



Figure 3. Example of isosurface representation of Jim-Net alignment on SNR 100 dataset. A random subtomogram from each cluster was
chosen as the target subtomogram and the rest subtomograms from the same cluster were aligned to it.

Method

SNR 100

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

H-T align [93]
F&A align [23]
Gum-Net [103]

0.30+£0.68, 1.82+2.69
0.331+0.70, 1.93+2.86
0.41£0.70, 1.59+£2.63

1.22+1.07, 4.76+£4.56
1.3441.13, 5.39+4.90
0.62+0.69, 2.41£2.61

1.93+0.98, 7.26+4.77
1.9540.98, 7.54+4.94
0.87£0.74, 3.20£2.78

2.2240.77, 8.86+£4.72
2.2240.77, 8.99+4.81
1.13+0.75, 4.29£2.75

2.38+0.57, 11.33+£5.02
2.384+0.57, 11.32+4.92
1.50+0.78, 6.78+4.22

Jim-Net

0.29+0.53, 1.28+2.10

0.51£0.62, 2.12+2.47

0.801-0.73, 3.20+3.02

1.02+0.75, 4.12+3.12

1.58£0.77, 6.78+3.44

Table 1. Subtomogram alignment accuracy on benchmark datasets. In each cell (best results highlighted), the first term is the mean and
standard deviation of the rotation error and the second term, the translation error. Baseline results were directly taken from [103].

4.1. Benchmark datasets

Simulated cryo-ET subtomograms: [103] proposed five
benchmark realistically simulated cryo-ET datasets fol-
lowing standard procedure. They contain 3D grayscale
heterogeneous structures (spliceosome, RNA polymerase-
rifampicin complex, RNA polymerase II elongation com-
plex, ribosome, and capped proteasome) at five different
SNR levels (100, 0.1, 0.05, 0.03, 0.01). In addition, [103]
provided the results of two popular traditional geometry-
based subtomogram alignment methods on these datasets.
PF-PASCAL: This 2D RGB dataset [35] contains 1351 im-
age pairs from 20 semantic categories with challenging ob-
ject appearance variations. In our experiments, the dataset
contains 2702 single images as the paired information was
not used for training. We split it into training, validation,
and testing datasets the same way as proposed in [36].

4.2. Real cryo-ET datasets

Air-water interface single-particle: This dataset consists
of tomograms to study the macromolecule (purified through
biochemical means) distribution within vitrified ice and air-
water interface [71]. We manually picked 2800 subtomo-
grams. There are in total 400 rabbit muscle aldolase (Al),
400 glutamate dehydrogenase (GD), 400 DNAB helicase-
helicase loader (Hel), 400 T20S proteasome (T20S), 400
apoferitin (Ap), 400 hemagglutinin (Hem), and 400 insulin-
bounded insulin receptor (Ins) subtomograms. Each subto-
mogram is of size 32% with voxel spacing 8.75 A, imaged
with a 45° missing wedge.

Synechocystis cell: This dataset contains two cellular to-
mograms of the cyanobacterium Synechocystis to study
the photosynthetic machinery during the biogenesis of thy-
lakoid membranes [76]. We extract 12912 subtomograms
from the two tomograms using the difference of Gaussian
particle picking method. A subtomogram has size 32% with
voxel spacing 13.68 A, imaged with a 30° missing wedge.

4.3. Results

Cryo-ET Benchmark: For alignment, these simulated
datasets have ground truth 3D rigid-body transformation
parameters available. These ground truth transformation
parameters are unique as the structures chosen are asym-
metric. Similar to the single-task baseline methods [93,
23, 103], we evaluated the alignment accuracy by measur-
ing the translation error and rotation error separately, de-
fined as the L, distance between the estimated 3D transla-
tion, rotation matrix, and the ground truth, respectively. Ta-
ble 1 shows the alignment accuracy on the five simulated
datasets. Similar to Gum-Net, Jim-Net was instantiated
with random weights. Jim-Net achieved the overall best
performance, outperforming Gum-Net, the state-of-the-art
for subtomogram alignment.

For image clustering, the simulated datasets have pre-
specified labels for the macromolecular structures contained
in each subtomogram. We compared Jim-Net with three
single-task baseline methods: (1) DeepCluster [15], the
most popular unsupervised image clustering method, which
enabled end-to-end training of visual features on large-scale



datasets; (2) PICA [39], a recent end-to-end unsupervised
image clustering method that established the state-of-the-
art performance on several benchmark datasets; (3) Jim-
Net (cluster), an ablation baseline with the clustering branch
of Jim-Net only. DeepCluster and PICA were extended to
3D image data. We evaluated the clustering accuracy by
the percentage of correctly predicted subtomograms. We
used the Hungarian algorithm (linear assignment) [52] to
match cluster labels with ground truth to calculate the accu-
racy. Jim-Net achieved the best performance on all datasets
with large margins (Table 2), especially for datasets with
low SNR, showing the robustness of Jim-Net. We visual-
ized examples of Jim-Net alignment and clustering in Fig-
ure 3. We note that since the benchmark datasets contain
separate training, validation, and testing datasets, this en-
sures that there is no over-fitting by any of the learning-
based methods. Moreover, as Jim-Net is completely unsu-
pervised, when a new dataset is available for alignment and
clustering, a trained Jim-Net model can be readily applied
and fine-tuned on the new dataset as no annotated training
data is required.

Method SNR 100 | 0.1 0.05 | 0.03 | 0.01
DeepCluster [15] 68.7 48.8 | 394 | 34.0 | 27.2
PICA [39] 100 86.5 | 55.8 | 29.2 | 284
Jim-Net (cluster) 99.5 775 | 62.8 | 51.3 | 353
Jim-Net 100 99.7 | 96.1 | 85.5 | 48.1

Table 2. Subtomogram clustering accuracy (best results high-
lighted) on benchmark datasets.

Air-water interface single-particle This dataset has been
manually categorized into 7 different structural categories
of macromolecules. Therefore, we first evaluated the clus-
tering performance of Jim-Net as compared to baseline
methods (Table 3). A common problem of end-to-end unsu-
pervised clustering methods is the degeneration of clusters.
This phenomenon is also known as algorithm-agnostic triv-
ial solutions [39], of which the model learns discriminative
features between only a few clusters and results in low ac-
curacy of other clusters. Clearly, the degeneration of clus-
ters is only observed in baseline methods. Jim-Net obtained
high accuracy across all clusters because the shared feature
extractors between the alignment and clustering branches
learned robust features to avoid trivial solutions.

Method Al | GD | Hel | T20S | Ap | Hem | Ins | Overall
DeepCluster [15] | 12.5 | 100 0 97.3 0 99.0 | 950 | 57.7
PICA [39] 69.8 | 64.0 | 26.0 | 51.5 | 47.2 | 84.5 | 80.5 | 60.5
Jim-Net (cluster) | 75.0 | 100 | 35.0 | 99.7 | 98.0 | 90.2 | 100 85.4
Jim-Net 975|973 | 89.3 | 955 | 99.0 | 97.8 | 100 96.6
Resolution 353 | 178 | 31.5 | 425 | 17.6 | 28.6 | 175 -

Table 3. Clustering accuracy on air-water interface dataset. The
last raw shows the resolution of template estimation by Jim-Net.

Because of the difficulty of manual alignment and the
symmetry in some structures, there is no alignment ground

truth for real cryo-ET datasets. Instead, we evaluated Jim-
Net alignment by the standard alignment-based template
estimation [14]. Because Jim-Net predicts cluster assign-
ment, we are able to calculate resolution inside each clus-
ter, which cannot be accomplished by the previous unsu-
pervised alignment method [103]. Raw tomograms usu-
ally have a resolution worse than 70 A [30]. By aligning
and averaging multiple copies of the same type of macro-
molecules, the resolution can be improved to better than 40
A to sufficiently recognize different macromolecular struc-
tures. Table 3 reports the resolution as measured by the
gold-standard Fourier shell correlation [64]. Jim-Net align-
ment successfully attained resolution better than 40 A for
most structures.

Figure 4. A. a 2D slice of the 3D synechocystis cellular tomogram.
B. structures discovered by Jim-Net. C. structures embedded to the
tomogram space by Jim-Net alignment branch.

Synechocystis cell: As in situ cryo-ET images subcellu-
lar structures in their native cytoplasm environment, 3D
image alignment and clustering is critical for discovering
and recovering representative and abundant structures. The
12912 synechocystis cell subtomograms were clustered and
aligned by Jim-Net for template estimation. The results
(Figure 4) were evaluated by the resolution measurement
and interpreted by structural biology experts.

Several representative structures were discovered and re-
covered by alignment-based template estimation from clus-
ters. As shown in Figure 4, we recognized structures likely
to be (1) array-forming phycobilisomes that are thylakoid-
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bounded light-harvesting antennas for photosystem II of
photosynthetic electron flow; (2) free cytosolic 70S ribo-
somes that synthesize photosynthetic membrane proteins;
(3) membrane structures that correspond to cell membrane
single layer and thylakoid membrane carrying out the light
reactions of photosynthesis; (4) ice contaminants. The
structural discovery was validated by embedding them back
to the tomogram space. Moreover, on the ribosome struc-
ture, a basic macromolecule in all living cells, we measured
the resolution as 36.48 A. This is the first time to recover
in situ structures with resolution better than 40 A by a com-
pletely automatic and unsupervised method.

PF-PASCAL: The standard alignment metric, percentage
of correct keypoints (PCK), measures the number of key-
points with a transfer error below 0.1 [97]. We listed state-
of-the-art self- or weakly-supervised methods that reported
their PCK on PF-PASCAL in Table 4. The comparison
is fair as all methods used the same ResNet-101 [38] fea-
ture extraction backbone instantiated with ImageNet [82]
weights. A higher PCK indicates better alignment.

Method PCK
A2-Net (S) [84] 70.8
WeakAlign (W, L) [78] | 75.8
RTNs (W, L) [49] 75.9
NC-Net (W, L) [80] 78.9

SF-Net (W, M) [57, 58] | 81.9
DCC-Net (W, L) [40] | 82.3
Jim-Net (U) 748

Table 4. PCK on the PF-PASCAL benchmark. Baseline results
were directly taken from corresponding papers. S: self-supervised.
W: weakly-supervised with: L: image labels; M: foreground
masks. U: unsupervised.

Compared with the self-supervised method A2-Net [84]
(essentially unsupervised), Jim-Net achieved better perfor-
mance. Table S11 showed that Jim-Net achieved the highest
PCK on 6 of the 20 classes compared to four SOTA weakly-
supervised baselines. Without using categorical labels or
foreground masks, unsupervised Jim-Net achieved close
performance to those weakly-supervised methods. Note
that PF-PASCAL is a highly imbalanced dataset (e.g., 140
bus pairs vs. 6 sheep pairs). If the number of samples from
each class changes, the overall PCK would change for dif-
ferent methods. Therefore, the number of class-wise high-
est PCK is a better evaluation criterion.

We provide visualizations of Jim-Net alignment and
clustering results for validation in Supplementary Section
S3. For (1) no clustering methods have been reported on PF-
PASCAL, an alignment evaluation dataset, and (2) fair com-
parison as Jim-Net feature extraction backbone has been
pre-trained with the same weight as all baseline methods.
The pre-trained weights may already contain semantic in-
formation. Therefore, we did not compare 2D clustering

baselines. However, the initial clustering accuracy was 64
% and steadily improved to 73 % on the testing dataset,
demonstrating the learning ability and unique strength of
the clustering branch. We note that on the main cryo-ET
application, 3D Jim-Net was initialized randomly and fairly
compared with clustering baselines.

5. Discussion

Jointly learning alignment and clustering is significant as
the two tasks are related for three major reasons: (1) joint
alignment and clustering is the most essential and challeng-
ing cryo-ET analysis task. Such end-to-end joint learning
can be easily extended to related biomedical fields includ-
ing CT and MRI data sub-atlas registration [29, 75], and
reconstruction of multiple conformations in single-particle
cryo-EM [70]. (2) For alignment, the objective in most
cases is to align image pairs of the same semantic cate-
gory. Without clustering, the direct alignment is ill-posed
as it requires prior categorical information. Joint learning
not only alleviates this requirement but also improves the
alignment accuracy, as demonstrated by the experimental
comparison with Gum-Net baseline [103]. (3) For cluster-
ing, joint learning substantially improved the performance
and prevented a common issue, the degeneration of clus-
ters. When deployed, each Jim-Net branch can be executed
concurrently or can be singled out for one particular task.

6. Conclusion

In this paper, we propose an unsupervised multi-task
learning model to tackle an important problem in computer
vision: joint learning of image alignment and image cluster-
ing. As the first end-to-end model for this problem, Jim-Net
is thoroughly evaluated on both 3D cryo-ET and 2D natural
image benchmark datasets. While attaining similar perfor-
mance, Jim-Net alleviates the need for weak-supervision of
state-of-the-art image alignment methods. Moreover, unsu-
pervised alignment and clustering on in situ cryo-ET data
specifically enable ‘visual proteomics’ that provides sys-
tematic recognition and recovery of macromolecular struc-
tures and distributions, which critically facilitates the un-
derstanding of molecular machinery of cellular processes.
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