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Surface topography influences several surface properties, including friction and adhesion. While
a statistical description of surface topography can be obtained from a power spectral density (PSD)
analysis of atomic force microscopy (AFM) height maps and fitting the self-affine region of the
PSD to determine the Hurst exponent (H), the accuracy of this approach has not been evaluated
yet. Here, we use a Fourier filtering algorithm combined with a novel approach to simulate typical
AFM scan-line anisotropy to generate synthetic AFM topography images with known input Hurst
exponent. A Monte Carlo approach is then used to evaluate the variance and bias in H estimation
from PSDs across different hypothetical experimental approaches, including the case of a cluster of
images collected at one scan size (scale) and the case of a cluster of images collected at different
scales. Our analysis reveals that estimates of the Hurst exponent from images collected at a single
scale are persistently biased in a scale-dependent fashion despite misleading convergence in variance.
This bias can be reduced by combining images collected at least at three different scales across the
range of scales accessible to AFM.

I. INTRODUCTION

At sufficiently fine scales, all surfaces exhibit texture,
which can dramatically affect adhesive [1–3], optical [4],
thermal [5, 6] and mechanical [7] properties of materi-
als [8, 9]. Formal surface finish standards (e.g. ASME
B46.1, ISO 4287, ISO 4288, ISO 25178) enumerate many
ways to parameterize both small- (roughness) and large-
(waviness) scale texture, and different parameterizations
are relevant for quantifying the impact on different prop-
erties [10, 11]. For example, contact stiffness of an in-
terface depends on the root-mean-square (RMS) height
[12–15] whereas adhesion depends on RMS curvature [2].
Complex wettability modeling [16, 17], which has been
instrumental to engineering both classic lotus leaf-type
superhydrophobic surfaces [18] as well as more recent
lubricant-infused surfaces [19], depends strongly on the
ratio of a surface’s true area to its projected area (r).
This area ratio also impacts thermal transport properties
[20] and contact mechanics [21, 22]. Accurately modeling
the quantitative relationships between these important
properties and the underlying area ratio is impeded by
two critical challenges:

Challenge 1: Most laboratory experiments seeking
to study these relationships are performed on patterned
surfaces [4–6, 23–25] for which the area ratio can be com-
puted to sufficient accuracy using simple geometric for-
mulae, whereas most surfaces in practical engineering ap-
plications are machined and thus stochastic.

Challenge 2: Obtained values for the area ratio on
stochastic surfaces can vary by two orders of magnitude
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or more [11] depending on the scale of measurement. This
is analogous to Mandlebrot’s observations with respect to
finding the “true” length of a coastline [26, 27].

Stochastic surfaces can be effectively described across
many scales by a power spectral density (PSD or φ). The
PSD has two equivalent definitions as either the Fourier
transform of the autocovariance function (the correlo-
gram definition), or as the expectation value of square
modulus of the normalized Fourier transform (the peri-
odogram definition) [28]. These can be computed directly
from line profiles (SEMI MF1811) or extended to two-
dimensional surface maps as we carry out in the present
study (see Jacobs et al. [10] for a comprehensive review
of the different curves that are called “PSD”). In either
case, the PSD contains amplitude information as a func-
tion of frequency, but discards phase information. The
use of power in the name originates in electrical engi-
neering, where, if the series under study is voltage as
a function of time, by virtue of Parseval’s theorem the
value of φ(ω) represents the contribution at any given fre-
quency to the overall power of the series [29]. For analysis
of surfaces, the PSD might be better named the Height
Variance Spectrum, as the value of φ(kx, ky) represents
the contribution of each spatial frequency (as angular
wavenumbers k in [radians/m]) to the square of the RMS
height, i.e., the variance of h(x, y) about a mean plane
h = 0. The primary utility of this description for surfaces
is that Parseval’s theorem contains the RMS height, slope
and curvature as simple sum rules [10]. Both compu-
tational simulations [30] and experimental evidence [11]
suggest that the PSD continues to have physically mean-
ingful values down to absolute smallest scales (i.e., atomic
spacing). Moreover, due to the mathematical definition
of Parseval’s theorem for derivatives, the “true” quanti-
tative values for RMS slope (from which the area ratio is
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derived) and RMS curvature of a surface are dominated
by these smallest scales [9, 10] (see the Supplemental Ma-
terial for a more in-depth discussion of the underlying
mathematics).

Even though roughness at the smallest scales can be di-
rectly investigated through different experimental meth-
ods (e.g., transition electron microscopy (TEM) cross-
sections [11]), this is impractical for large-scale or rou-
tine measurements. The decrease in costs and increase
in efficiency with the wide-scale adoption of atomic force
microscopy (AFM) [31, 32], coupled with its ability to im-
age scales smaller than those of diffraction-limited optical
profilometry [10, 33, 34], make it an ideal tool for practi-
cal investigations. However, the limited lateral resolution
of AFM [32], particularly when imaging rough surfaces,
does not enable accessing topography scales smaller than
the radius of curvature of the tip or about 5 − 10 [nm].
This presents a challenge to answering questions about
parameters such as RMS slope or RMS curvature which
are dominated by the topography at the smallest scales.
This challenge can partially be addressed by modeling
and extrapolating the available data to the relevant scales
beyond the lateral resolution of the AFM. For the finer
scales of many engineering surfaces a fractal or self-affine
model is appropriate[35, 36], in which case the PSD can
be modeled with a two parameter power law consisting
of the pre-factor (C0) and tail exponent (H). The later
parameter, called the Hurst exponent (related to the frac-
tal dimension D by D = 3 − H) [27, 37], is critical for
the accurate extrapolation to the finest length scales.
Across many fields [11, 38–40] the value of the Hurst
exponent is commonly estimated through ordinary-least-
squares (OLS) regression of a doubly logarithmic trans-
formation of the PSD. However, the physical nature of
AFM experiments and generation of AFM topographic
images pose several challenges, which can introduce sub-
stantial bias to estimates of the Hurst exponent obtained
using doubly logarithmic OLS:

Challenge 1: AFM has a slow and a fast scan direc-
tion, which introduces scan-line anisotropy through drift.
If not accounted for, this anisotropy can dramatically im-
pact higher spatial frequencies in certain directions, thus
biasing the regression.

Challenge 2: All AFM are subject to additive Gaus-
sian white noise (AGWN) in the form of thermal vibra-
tions. Even after eliminating unreliable data in high fre-
quency regions where AGWN trend overtakes signal, the
differential impact of thermal noise on the retained curve
will subtly under-bias the regression.

Challenge 3: Real surfaces are generally not self-
affine across all scales. There generally exists a low
frequency cut-off below which the PSD obeys a differ-
ent trend (such as those of white or fractional Gaussian
(FGN) noise). Due to the nature of the Fourier trans-
form, spectral leakage will ensure this alternate trend
subtly persists in the lower frequency portion of the self-
affine region, thus over-biasing the regression.

Challenge 4: Observed RMS height varies with scan

size, which results in independent pre-factors (C0) for
each scale. If not accounted for, this results in a regres-
sion converting uncertainty in the pre-factor (C0) into
uncertainty in the much more tightly-bound Hurst expo-
nent (H).

Despite these challenges, alternative techniques for es-
timating the Hurst exponent provide few benefits that
would justify switching to them from the log-OLS tech-
nique. Various non-PSD-based algorithms, such as
box-counting or multi-return, exist for estimating the
Hurst exponent from fractals, though they generally
exhibit higher bias and higher variance than a PSD-
based methodology [41]. Maximum Likelihood Estima-
tion (MLE) of the Hurst exponent from the PSD, which
is computationally and conceptually more expensive than
the log-OLS estimation, provides marginal gains in vari-
ance, while resulting in persistent under-bias [42, 43].
Techniques which rely on applying MLE directly to real
space topography images are infeasible because real sur-
faces are not generally fractal across all observed length
scales. Wavelet-transform approaches [44, 45] can be
more accurate for extremely small sample sizes if the
wavelet parameters are carefully chosen, but otherwise
lead to similar results and are thus beyond the scope of
this work. Despite all these approaches for estimating
the Hurst exponent, several open questions still remain
about the accuracy of the computed values of the Hurst
exponent, especially when obtained from AFM data.

Here, we quantify the impacts of the challenges out-
lined above on the bias in the log-OLS Hurst estimate
using a Monte Carlo approach applied to synthetic AFM
topography images of known input H and C0. Synthetic
AFM images were generated using a Fourier-filtering al-
gorithm [46] with a novel scan-line anisotropy model-
ing technique (see Fig. S1, Supplemental Material), and
simulated thermal noise through corruption post-inverse-
Fourier-transform with per-pixel AGWN. Our analysis
demonstrates that bias is significant and persistent, and
that both the magnitude and direction of the bias varies
with the scan size of the AFM image. We also explore the
mitigation of this bias through stitching together multi-
ple scan sizes into a master PSD. For this latter scenario
we first address the issue of independent pre-scale C0 due
to varying observed RMS height. Furthermore, we opti-
mize for the trade-off between having many images at
few scan sizes (minimizing variance) and few images at
many scan sizes (minimizing bias) for several simulated
AFM experiments with a fixed number of total images
collected.

II. RESULTS AND DISCUSSION

While there are many approaches to compute the PSD,
in this work we relied solely on the isotropic PSD (φiso),
which is the pseudo-1D radial average derived from a
2D map of the square modulus of the area-normalized
Fourier transform of a post-processed AFM topography
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FIG. 1. Schematic diagram of procedure for estimating Hurst exponent from AFM images through power law fitting of the
PSD. (a) Raw AFM image of boehmitized aluminum. (b) AFM image after row alignment and background subtraction. (c)
2D Power Spectral Density (periodogram estimate) of the AFM image. (d) Radial average of approximately isotropic 2D PSD
plotted on log-log axes. Critical (kc) and noise-threshold (kl) wavenumbers are identified. (e) Truncated self-affine region
with OLS fit to estimate the Hurst exponent. Multiple images (f) and scales (g) can be incorporated to improve accuracy of
estimation.

image. Raw AFM topography images were first corrected
for tilt and scan line anisotropy in real space, then win-
dowed, and finally converted to reciprocal space using
the 2D fast Fourier transform algorithm. For isotropic
surfaces, the area-normalized square modulus of the 2D
Fourier transform (the 2D-PSD (φ2D)) is a radially sym-
metric spike and thus can be averaged in rings along the

radial wavenumber
(
k =

√
k2x + k2y

)
. For Gaussian ran-

dom surfaces the expected distribution for φ2D is a chi-
squared distribution with two degrees of freedom [47, 48],
i.e., an exponential distribution, and so φiso, as a simple
arithmetic average, is the best unbiased estimator of cen-
tral tendency, and the distribution of φiso can be assumed
to be approximately Gaussian. Binning for the radial av-
erage is an important concern as the Fourier grid is dis-
cretized linearly in reciprocal space but the final linear
regression is performed on a doubly-logarithmic repre-
sentation. We chose to use a linear binning scheme as
it alleviates heteroscedasticity (particularly at interme-
diate wavenumbers) from averaging together sufficiently
distinct rings. Usually several qualitative regions are vis-
ible on any given φiso curve, and relevant cutoffs must
be identified to isolate the self-affine region present. The
self-affine model can then be used to fit the data, and
further data from additional images at the same or other
scales can be incorporated to improve the regression.
This process remains largely the same whether the source
topography image is real or synthetic (see Fig. 1 for a

schematic representation).

To ensure that our Monte Carlo simulations were phys-
ically meaningful, we first collected real AFM topography
images of boehmitized aluminum γ-AlO(OH) [49] as well
as ultra nano-crystalline diamond (UNCD). The experi-
mental AFM topography maps could be used to identify
key qualitative and quantitative features of the PSDs to
be reproduced in our synthetic topography images. AFM
images were collected in non-contact/tapping mode with
free air amplitude tuned to avoid any degradation (i.e.,
wear) of the tip or surface [50]. Tip shape stability was
verified using the blind tip reconstruction method [51]
with UNCD. Key features in the PSDs we targeted for re-
production included the presence of two qualitatively dis-
tinct regions, i.e., one modeled as self-affine and the other
as fractal Gaussian noise. The identification of these dis-
tinct regions allowed for the determination of the critical
wavenumber (kc) separating these two region, the ap-
propriate amount of white noise at low wavelengths, and
the average image hRMS from which the model pre-factor
(C0) could be mathematically computed. Previous work
has generally relied on qualitatively estimating the value
of kc [10, 11]. As this constitutes a crucial parameter in
our model, we developed a novel approach to identify it
with quantitative rigor using the Chow test statistic [52]
(see Fig. S2, Supplemental Material). Figure 2 presents
a comparison of our real and synthetic images. The good
agreement between the calculated value of kc and the av-
erage grain size along the principal axis (Fig. 2) suggests
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FIG. 2. (a) AFM image of boehmitized aluminum. Inset: area
imaged by SEM (micrograph displayed in (d)). (b) Synthetic
AFM image generated by Fourier filtering algorithm with drift
anisotropy modeling and per pixel additive Gaussian white
noise. (c) Comparison of the PSDs for the two images dis-
played in (a) and (b). The comparison demonstrates good
reproduction (in synthetic images) of key features observed in
experimental AFM topographic maps, particularly in the self-
affine region. Slight vertical offset added to synthetic curve
for clarity. Circled region highlights peak of increased power
due to scan-line anisotropy. Simulated images has purposely
more white noise than typical AFM images experimentally
acquired in this work. (d) SEM image of boehmitized alu-
minum. Overlaid is the distribution of lengths of the needle-
shaped grains (highlighted by double-headed arrow) as mea-
sured in ImageJ. The mean of the distribution approximately
matches the value of the critical wavenumber in (c).

that the grain size is the physical limit of the “mem-
ory” of any potentially self-affine atomic processes. This
observation is inline with the conclusions of recently pub-
lished works [53].

Using a Monte Carlo approach, the synthetic AFM
topography images prepared with a known input Hurst
exponent (H) could be used to accurately evaluate the
bias (and not just the variance) in the Hurst exponent
extracted from the PSD analysis schematically outlined
in Fig. 1.

A. Bias in AFM images collected at a single image
scale

The collection of multiple AFM images at the same
scale for a given surface can be thought of as an ap-
plication of the Bartlett or Welch modified periodogram
method [28], which provides an asymptotically unbiased

estimator of φ with improved variance performance over
the ordinary periodogram. Here, we are mainly inter-
ested in determining the estimator of a parameter (H) for
our model of φ. Thus, to evaluate our estimation accu-
racy, we applied a Monte Carlo technique and generated
a set amount of synthetic AFM images of known input H.
Then, we compared the output of the log-log OLS Hurst
estimation procedure (see Fig. 1) to the known input H.
The results (Fig. 3) indicated a significant convergence
in variance of the Hurst estimator within the first 10 im-
ages, and little further improvements beyond 100 images.
Notably, the Ĥ was not asymptotically unbiased in our
simulations, converging to values which significantly dif-
fered from the input H, and varied depending on the scale
of the images. The origin of this bias can be ascribed to
the presence of transition regions at the low and high
wavenumber cut-offs of the observed self-affine region.
At low wavenumbers, spectral leakage (i.e., redistribu-
tion of power to adjacent bins) from the fractal Gaussian
noise trend steepens the regression slope and thus biases
Ĥ towards smaller values (the regression slope and Ĥ
have inverse directionality because m = −2(H + 1)). At
high wavenumbers, the persistent additive white noise
component shallows out the regression slope and thus bi-
ases Ĥ towards larger, potentially non-physical, values.
Both these effects remain present even after eliminating
data beyond reliability cut-offs proposed in recent stud-
ies reported in the literature (see Jacobs et al. [10] for
approaches to identifying reliability cut-offs based on in-
strument white noise and tip size curvature). To improve
the determination of cut-off values, in the present study
we used the Chow Test F statistic [52]. Fig. 3 presents

both the rapid convergence of variance in Ĥ, and the
mechanisms responsible for bias in Ĥ.

The differences in bias across scales can be attributed
to changes in relative contribution of these two effects as
different regions of the multi-scale PSD curve are probed.
In particular, the pixel size, the pixel density, and the
value of the critical wavenumber were all found to have
an effect on the bias in Monte Carlo simulations. These
effects can be unified onto a single curve by indexing
them according to the length of the pre-self-affine region
that has been probed (a metric referred to as kcdist in
this work. kcdist, which mathematically is the difference
between log(kc) and log(kmin), can be negative if the pre-
self-affine trend is no longer observable). However, sep-
aration of different pixel densities occurs at high kcdist
values due to differing amounts of information available
in the sparsely probed self-affine region. This separation
can be further eliminated by normalizing the kcdist met-
ric against a measure of noise-free self-affine region infor-
mation available, which we referred to as kldist (math-
ematically equal to the difference between log(kl) and
either log(kc) or log(kmin) - whichever is larger). The
combined bias curve is presented in Fig. 4.

While the bias curve is consistent in our simulations
across a range of input Hurst exponents, pixel den-
sities, pixel sizes, and input critical wavenumbers, it
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FIG. 3. (a) Repeated Monte Carlo simulations with varying numbers of total generated images. The results indicate a consistent
converge in variance within 100 images, but disparate final H estimates which significantly vary depending on the image scale
that was simulated. Points represent the mean of a set of 100 realizations with N images, while error bars represent the
standard deviation of the set. Shaded region shows the 3-sigma confidence level. Inset shows standard deviation decreasing
with N images at the same rate for all simulated image scales, but bias remaining constant and distinct. (b) At large scales,
spectral leakage from the pre-self-affine trend results in steepening the fitted regression as compared to the true input trend.
(c) At small scales, the persistence of subtle noise contributions results in shallowing-out the fitted regression.

strongly depends on kcdist/kldist, especially at small
kcdist/kldist values. These values represent what in
practice is the most desirable information, i.e., images
probing the smallest scales accessible to the AFM, and
observing mostly or only the self-affine behavior. This
finding clearly suggests that using a single image scale to
estimate the Hurst exponent can be potentially mislead-
ing, while calling for the acquisition of several topography
maps for achieving unbiased estimation.

B. Correctly combining AFM images at multiple
scales to minimize bias and optimize bias-variance

trade-off

AFM measurements allow probing multiple length
scales by stitching together topographic maps. This en-
ables for the reconstruction of a large portion of the
multi-scale PSD [54–56]. For rough surfaces measured by
AFM and subject to practical considerations, the largest
scan size is in the order of a few 10s of µm (20 µm in the
case of the instrument used in this work), while the lat-
eral resolution is limited by the finite radius of the scan-
ning tip (∼ 5− 10 nm), which corresponds to an accessi-
ble range of angular wavenumbers of 105−109

[
rad
m

]
[32].

Extending the length of the probed self-affine region can
improve the accuracy of Hurst estimation. In particular,
when stitching together multiple PSDs computed from
topographic images acquired at different scales, achiev-
ing a good overlap of the extreme portions of the PSDs

can help to significantly minimize the end-effects respon-
sible for the bias observed in the previous section, as
already pointed out by Duparre et al. [54]. Some com-
mon pitfalls addressed elsewhere in the literature, which
can cause poor overlap, include improper or absent tilt-
correction, improper or absent image windowing, instru-
ment noise, and tip-size artefacts (see Jacobs et al. [10]
for a comprehensive discussion of these sources of error
and how to mitigate them). An additional important fac-
tor to be considered is the variation in observed hRMS

with image scale (Fig. 5(a)), which occurs due to sam-
pling bias against large features when dealing with topo-
graphic maps of progressively smaller scan sizes. Since
C0 is mathematically related to hRMS [10], variations
in hRMS can result in PSD curves acquired at differ-
ent scales having different intercepts, and thus appearing
as approximately parallel lines when overlaid (Fig. 5(b-
c)). If differences in intercepts are not accounted for by
adding degrees of freedom to the linear model, the uncer-
tainty in the estimated intercept, C0, can propagate to
uncertainty in the estimated slope and the Hurst expo-
nent, which has a very narrow range of physically mean-
ingful values.

While the acquisition of multiple AFM images at differ-
ent length scales can aid in improving the accuracy in the
estimation of the Hurst exponent, the relative slow rate
of scanning during AFM imaging [10, 42] together with
the need to maximize the value of AFM instrument time
require balancing the number of images being collected
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with the minimization of the variance in the Hurst expo-
nent. This can be achieved by collecting many measure-
ments in the same range of the multi-scale PSD or min-
imizing the bias by exploring as much of the multi-scale
PSD as possible. To address this bias-variance trade-off
optimization problem, we simulated multiple AFM ex-
periments with a fixed total number of synthetic images
of known input H divided across multiple scales in dif-
ferent ways. We then compared the bias and variance (in
the form of the mean square error criterion) across ten
repeats of each synthetic experiment. Two approaches
were used to progressively incorporate many scales. For
the constant spacing (CS) approach, we began with the
midpoint of the scales practically available to the AFM
(arbitrarily chosen to be 5 [µm] scan size, 256x256 pixel
image), and used additional scales to probe further out
from the middle-scale while maintaining constant spac-
ing between scales. Thus, for 2 scales we used 8 [µm] and
5 [µm] scan sizes, for 3 scales we used 8, 5 and 3 [µm]
scan sizes, and for 4 scales we used 10, 8, 5 and 3 [um]
scan sizes. For the constant range (CR) approach, we
began with the entire range of scales practically available
to the AFM (from a 20 [µm] scan size to a 0.2 [µm] scan
size, 256x256 pixel image), and used additional scales to
fill-in the range. Both approaches became equivalent at
the limiting conditions of 1 scale, and the max number
of scales the simulation was designed for, i.e. 12 scales.
We also evaluated different number of total images (i.e.,

high (120), medium (24) and low (12)). The number of
total images was selected based on the variance conver-
gence analysis from the previous section, while maintain-
ing even divisibility with as many potential N scales as
possible. Input C0 for each simulated image was varied
by following the relationship between hRMS and scan size
observed in our real samples, while including standard
Gaussian noise of variance 0.1. Estimated Hurst output
was determined using a procedure that accounted for the
differences in input C0 by assuming an independent in-
tercept (and shared slope) for each scale. The results of
these bias-variance trade-off experiments are presented
in Fig. 5.

The simulation results suggest that, for minimizing
bias in the estimation of the Hurst exponent, probing the
entire range of scales practically accessible to the AFM
is superior to probing a narrow but closely spaced range.
Moreover, beyond an optimum of 3-6 scales (strict opti-
mum at 4), it is a more productive use of limited AFM
time to collect more images at each of the probed scales,
than it is to probe additional scales. Mean square errors
below 3% or ±0.024 for a Hurst exponent of 0.8 can fea-
sibly be achieved with as few as 12 total images across 4
scales.
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FIG. 5. (a) Dependence of hRMS on image scale across four boehmitized aluminum samples prepared by immersing aluminum
in boiling water for varying lengths of time. Overlaid trend was used for varying input C0 with scale in the simulation. (b)
Schematic of “stair-step”behavior that can occur due to slight variations in the observed RMS height across different scales,
with a poor treatment (fitting to all points combined) overlaid. Data is from an aluminum sample immersed in boiling water
for 5 min. (c) Schematic of correct treatment of “stair-step”behavior, with independent intercepts for each scale. (d) Monte
Carlo simulation of bias-variance trade-off that occurs when incorporating more scales with fixed total number of collected
images. Points represent the mean of a set of 10 realizations with either 12, 24 or 120 total images divided evenly across N
scales, while error bars represent the standard deviation of the set. Circular points denote the constant spacing (CS) approach
to adding more scales, while cross points denote the constant range (CR) approach. For 4 and 10 scales, only realizations with
120 total images were generated, while for 8 scales, only realizations with 24 or 120 total images were generated. (e) MSE of
bias-variance trade-off in (e) showing optimum between 3-6 scales using the constant range (CR) approach.

III. CONCLUSIONS

In the present work, we generated synthetic AFM im-
ages of known input Hurst exponent through a Fourier
filtering algorithm and evaluated, using a Monte Carlo
approach, the presence of bias in the Hurst exponent
estimated on the basis of ordinary-least-squares (OLS)
regression of a doubly logarithmic transformation of the
power spectral density (PSD). The PSD of the synthetic
images was designed to reproduce typical PSD curves
computed from real, measured boehmite and UNCD sur-
faces. We evaluated the bias under two different scenar-
ios, namely many images collected at the same scale, and
multiple overlapping scales stitched together to create a
master PSD.

For the single-scale scenario we identified that while

variance converges rapidly - within ∼ 10 images with
little further improvement beyond 100 images - bias is
significant and persistent, and both the magnitude and
direction of the bias varies with the scan size of the AFM
image. We also identified the mechanisms responsible for
this bias and used that knowledge to collapse the bias
results under varying conditions onto a single predictive
bias curve. This single predictive bias curve indicated a
significant increase in bias at the most desirable scales,
i.e., those at the limit of what is accessible to the AFM.
This finding highlights the potential limitation of using
only a single image scale to estimate the Hurst exponent.

For the multiple scale scenario, we optimized for the
variance-bias trade-off . The results indicated that wide
ranges in image scales are desirable for minimizing bias,
and that mean square errors below 3% can feasibly be
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achieved with as few as 12 total images across an opti-
mum of 4 scales.

Finally we observed evidence in our measurements
of real surfaces supporting a link between the critical
wavenumber and the grain size, and we proposed a novel
technique for rigorously and quantitatively determining
the value of the critical wavenumber by maximizing the
Chow test statistic.

IV. MATERIALS AND METHODS

A. Sample Preparation

Aluminum 6061 (McMaster-Carr, Douglasville, GA,
USA) discs were mechanically ground and polished on a
LaboPol-20 (Struers USA, Cleveland, OH, USA) down to
a final 1/4µm diamond paste polish. Once prepared, the
samples were sonicated in acetone and then submerged
in boiling ultrapure water (resistance 18.2 MΩ) to form
a nano-rough boehmite (γ-AlO(OH)) film following the
procedure outlined in Ref. [49]. The size and density of
the boehmite crystals were manipulated by varying the
duration of the boehmitization process from 5 minutes
to over 2 hours.

B. AFM Experiments

Topography images were obtained with an XE100
AFM (Park Systems, Suwon, South Korea) in true non-
contact (TM) mode using PPP-NCHR probes (Nanosen-
sors, Neuchatel, Switzerland). Statistical roughness in-
formation such as hRMS values (Figure S3) were de-
rived from topography images obtained with an MFP-
3D Origin+ AFM (Oxford Instruments Asylum Re-
search, Santa Barbara, CA, USA) in tapping mode using
HQ:NSC15 probes (MikroMasch USA, Watsonville, CA,
USA). Spring constants were calibrated using Sader’s
method [57]. The tapping mode parameters (such as the
free oscillation amplitude) were tuned so that the peak
contact stress would never exceed the yield stress of ei-
ther the tip or the substrate [50]. Absence of tip degrada-
tion was verified by performing blind-tip reconstruction
[51] against an ultra-nanocrystalline diamond (UNCD,
Aqua 25, Advanced Diamond Technologies, USA) test
substrate both before and after each experiment. AFM
scanning rates varied from 1 Hz for smaller images
(˜1µm2 ) to 0.1 Hz for larger images (˜20µm2 ). All
substrates were sonicated in acetone before acquiring to-
pography images. AFM image post-processing was per-
formed in Gwyddion using the polynomial background
subtraction [58] subroutine to account for tilt and the
align rows [59] subroutine to minimize the impact of scan-
line anisotropy.

C. Synthetic Image Generation

Synthetic self-affine images were generated using an
inverse-Fourier filtering algorithm [46]. Fourier trans-
form coefficients were generated with a uniformly dis-
tributed random phase and a normally distributed abso-
lute square with mean and standard deviation following
either a fractal Brownian noise trend [26, 27] for wavevec-
tors above kc or a fractal Gaussian noise trend [60, 61]
for wavevectors below kc. The pre-exponential constant
C0 was computed [10] based on a desired output hRMS

matching experimental results in the range 20-40nm. To
simulate drift related to the scanning speed anisotropy in
AFM (originating from the presence of a fast- and a slow-
scan direction), the Fourier coefficients were addition-
ally scaled following an empirical half-Gaussian trend, to
replicate the anisotropy visible on real data in Fig. 2. Ac-
curate reproduction required scaling only those directions
for which the expected amount of AFM drift would be
similar to total distance traveled by the AFM tip (see Fig.
S1 Supplemental Material). To mimic thermal noise, the
resultant image after inverting the FFT was corrupted
with per-pixel additive Gaussian white noise (zero mean,
standard deviation equal to the expected magnitude of
the self-affine power law at twice the pixel length). Im-
ages generated by this algorithm are by nature periodic.

D. Spectral Analysis

Images were first windowed using the radially symmet-
ric Hann window, then normalized using squared-window
normalization to preserve RMS-roughness sum rules [10].
Windowed images were Fourier transformed using MAT-
LAB’s built-in 2D-FFT routine [62]. The resultant FT
value was squared to obtain the periodogram estimate of
the power spectral density [28]. Coordinates in reciprocal
space were computed treating the position of each pixel
as being the center of the pixel. The radial average of the
2D Fourier grids was computed while remaining in the
linear binning scheme. For the resultant isotropic PSDs,
the critical wavenumber and noise-threshold cut-offs were
determined by maximizing the Chow test statistic [52].
Initial estimates for these cut-offs were obtained through
qualitative appraisal, or through a combined white noise
threshold [10], and anisotropy based approach, respec-
tively.
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[13] C. Campañá, B. N. J. Persson, and M. H. Müser, Trans-
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