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Identification of the 3D
crystallographic orientation
using 2D deformations

Sevan Goenezen , Maulik C Kotecha and Junuthula N Reddy

Abstract
Polycrystalline materials consist of grains (crystals) oriented at different angles resulting in a heterogeneous and anisotro-
pic mechanical behavior at that micro-length scale. In this study, a novel method is proposed for the first time to deter-
mine the 3D crystal orientations of grains in a 2D domain, using solely 2D deformation fields. The grain boundaries are
assumed to be unknown and delineated from the reconstructed changes in the crystallographic orientation. Further, the
constitutive equations that describe the mechanical behavior of the domain in 2D under plane stress conditions are
derived, assuming that the material is transversely isotropic in 3D. Finite element based algorithms are utilized to discre-
tize the inverse problem. The in-house written inverse problem solver is coupled with Matlab-based optimization scripts
to solve for the mechanical property distributions. The performance of this method is tested at different noise levels
with synthetic displacements that were used as measured data. The reconstructions deteriorate as the noise level is
increased. This work presents a first milestone in the verification of this novel technology with synthetic data.
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Introduction

In recent years, additive manufacturing technology has
tremendously advanced, and its commercial use is
growing broadly. This non-conventional manufacturing
technique may provide new opportunities to create
metal and alloy based materials with tailored spatial
variations in their mechanical properties at the macro
length scale by altering the grain structure at the micro
length scale. This can be achieved through the adjust-
ment of process parameters in additive manufacturing.
For example, the elevated power of the laser system
(1000W) increases cooling time, thus produces elon-
gated grains, leading to an anisotopic mechanical
response, which could potentially be spatially con-
trolled.1 Several other factors could potentially cause
inhomogeneities in the mechanical properties of addi-
tively manufactured parts such as dwell times at ele-
vated temperatures, deposition rate, build environment,
directional cooling patterns, etc. to name a few.2

However, it is highly challenging to adjust process
parameters to yield controlled and desired mechanical
property distributions. To thoroughly study the effect
of process parameters on the mechanical behavior of

the material, it is essential to accurately determine the
spatial distribution of the crystal orientations.

Hovig et al.3 determined the anisotropic elastic prop-
erties of Inconel 718 at the macroscopic length scale
after additively manufacturing the part using laser pow-
der bed fusion. To this end, tensile tests were conducted
at multiple orientations of the build part and the defor-
mation field was measured using a digital image corre-
lation (DIC) system. An optimization method was
utilized to infer the linear elastic anisotropic constants.
Their method is applicable to homogeneous specimens,
and does not reveal spatial variations in the anisotropic
properties. Nano-indentations have been employed to
measure the elastic properties of anisotropic materials,
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including cubic and transversely isotropic single crys-
tals.4 These methods are locally applied and do not
accommodate a continuous quantification of the
mechanical property distribution.

Herrera-Solaz et al.5 described an iterative optimiza-
tion strategy based on the Levenberg–Marquardt
method to determine the single-crystal mechanical
behavior of magnesium alloy (AZ31). They used multi-
scale modeling with finite element methods and incor-
porated multiple simulated tests in their optimization
process. Pant et al.6 demonstrated a methodology
based on ultrasonic wave velocities to characterize
homogeneous elastic properties of transversely isotro-
pic materials. The approaches in Herrera-Solaz et al.5

and Pant et al.6 require homogeneity of the specimen
and thus limit their applicability to analyze process
parameters in additive manufacturing.

In previous works, the corresponding author of this
paper has demonstrated feasibility to recover the ortho-
tropic elastic property distribution in 2D utilizing in
plane displacement fields.7 In this paper, we propose a
novel approach to determine the three dimensional
(3D) angular orientation distribution of a polycrystal-
line material at the micro length scale by utilizing solely
two dimensional (2D) displacement fields in plane. We
conduct a theoretical study using a thin plate like sam-
ple at the grain length scale with multiple grains and
create synthetic displacement fields in 2D to test feasi-
bility of our approach. These synthetic displacement
fields are augmented with various noise levels to mimic
noise in measurements. An in-house written optimiza-
tion program is utilized to solve the inverse problem,
which is posed as a constrained minimization problem.
This theoretical framework represents the first step of a
potentially new technology to map the crystal orienta-
tion in 3D and grain boundaries solely from 2D displa-
cement measurements.

Method

In this section, we derive the constitutive equations to
describe the plane stress response of a three dimensional
(3D) transversely isotropic material. This strategy
results in two dimensional (2D) boundary value prob-
lems that preserve the 3D directional dependency of the
crystallographic orientation in a plane. We assume a
linear elastic material behavior and start with the gener-
alized Hooke’s law given in the following form:

e
xyz
ij =S

xyz
ijkl s

xyz
kl ð1Þ

Here, S
xyz
ijkl are the fourth order elastic compliance ten-

sor components, and e
xyz
ij and s

xyz
kl are strain and stress

tensors, respectively. The superscript with lowercase let-
ters 00xyz00 denotes the variables with respect to the local
coordinate system aligned with the material orientation.

Adopting Voigt notation the 3D stress and strain ten-
sors can be written in the following form:
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Further, assuming a transversely isotropic material, the
fourth order elastic compliance tensor can be repre-
sented by a 636 matrix given by:

Sxyz=
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which contains five independent mechanical parameters
S11,S33,S44,S12, and S13 or more widely used in terms
of the elastic constants with physical meaning in engi-
neering, Exx,Ezz, nxy, nzx, and mxz. Here, it should be
noted that S66 =2(S11 � S12). We assume that the
orientation of the transversely isotropic material is
aligned with the z-axis, implying that the xy-plane is
isotropic. Further, we note that XYZ are global coordi-
nates. In the global coordinate frame, we write the
generalized Hooke’s Law as eXYZ=SXYZ sXYZ,
where sXYZ=Ks sxyz, eXYZ=Ke exyz, and SXYZ=Ke

Sxyz (Ks)�1: The superscript with uppercase letters
XYZ denote the expression with respect to the global
coordinate system.

As described in Lekhnitskii et al.8 and Ting9 for our
chosen convention of representing stress and strain
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tensors, it can be shown that Ks =R and Ke =R�T

and thus SXYZ=R�TSxyzR�1, where R is a 636 matrix
defined in equation (4).

R=

r211 r212 r213 2r12r13 2r11r13 2r11r12
r221 S22 r223 2r22r23 2r23r21 2r21r22
r231 r232 r233 2r32r33 2r31r33 2r31r32
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r31r11 r12r32 r13r33 r12r33 + r13r32 r11r33 + r13r31 r11r32 + r12r31
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2
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ð4Þ

Here, rij are the components of the orthogonal rota-
tion matrix given by

Q=
r11 r12 r13
r21 r22 r23
r31 r32 r33

0
@

1
A ð5Þ

In the following, we define the orthogonal rotation
matrix Q via three consecutive rotations about the
coordinate axis. We perform the rotations starting
from the local coordinate system into the global coordi-

nate system as shown in Figure 1. We perform rota-
tions of material coordinates in the order z� y0 � x00

by Euler angles g,b, and a (Figure 2, equation (6)).
There are several other combinations for the order in
which we can make the rotations to achieve the desired
orientation known as Euler Angles. We use the order of

rotation z� y0 � x00 as we described earlier, which later
on helps us in eliminating one of the angles (angle g in
this case) owing to the symmetries of the transversely
isotropic material.
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The components of Q (i.e. rij) are used in the transfor-
mation matrix R (equation (4)) to obtain the compli-
ance matrix in the global coordinate system (SXYZ). We
observe that the terms involving angle g vanish in the
transformed compliance matrix. Physically, this can be
explained by the isotropy in the xy-plane. Next, we
derive the constitutive equations for plane stress condi-
tions for a transversely isotropic material. The constitu-
tive equations for our model in Voigt notations are
given by
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According to the plane stress assumption, the out of
plane stress components vanish. Thus, substituting
sXYZ
3 =0, sXYZ

4 =0, and sXYZ
5 =0, we can reduce

the six equations (equation (8)) to three equations
(equation (9)).
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Synthetic data generation

We generate synthetic test data for a hypothetical test
domain in the XY-plane (global coordinates) by solving
boundary value problems given by:

div(s)= 0 on O ð11Þ

u= u0 on Gu ð12Þ

t= t0 on Gt ð13Þ

where, u0 represent prescribed displacements on the dis-
placement boundary Gu and t0 prescribed tractions on
the boundary Gt. The stress tensor s can be expressed
in terms of the strains using equation (9). We have
derived the weak form, discretized it with Galerkin’s
method, and implemented the algorithms in an in-

house finite element solver. In Figures 3 and 4, we
define a heterogeneous domain with side lengths of
1 mm31 mm and consisting of 16 sub-domains repre-
senting individual grains of a hypothetical polycrystal
material. To represent the approximate shapes of the
grains or crystals in the microstructure of the metal, we
used Voronoi tessellations. The concept of Voronoi dia-
grams dates back to 17th century, when René
Descartes, in his book ‘‘Principles of Philosophy,’’
describing the space decomposed into convex regions
and entities of the solar system as its vertices.10 The
concept of crystal-growth has been used to generation
of Voronoi diagrams and found its applications in vari-
ous fields.11 The Voronoi diagram represents the grains
by randomly created convex polygons. We can generate
the Voronoi diagrams using randomly located Voronoi
sites (points). We use the MATLAB command named
‘‘voronoin’’ to create the Voronoi diagram and a user-
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written MATLAB function called ‘‘VoronoiLimit’’12 to
confine the Voronoi diagram within the bounds of the
problem domain (1mm2 here). We get the vertices of
each polygon generated after that and utilize them to
assign the nodal properties to the finite element nodes
in each of the sub-domain. For our simulations, we
limit the average grain sizes to be about 250mm in both
directions and perturbed the locations of the initially
equally spaced Voronoi sites to create the tessellation

of randomly shaped polygons. We used the MATLAB
command ‘‘convhull’’ to obtain the closed polygon
from the polygon vertices.

We discretize the problem domain in Figure 4 using
20,000 linear triangular finite-elements, and 10,201
finite element nodes. The mesh is uniform and has 101
nodes on each boundary edge. We define a set of six
crystallographic orientations via the angles a and b in
Table 1 and assign them to each grain in Table 2.
Materials having Hexagonal Closed Packed (HCP)
crystal structure such as magnesium, titanium, zinc, etc.
are good examples of transversely isotropic materials.
The elastic properties of many HCP metals have been
reported in the literature.13 In this study, we use the
transversely elastic properties of zinc.13 Assuming the
plane of isotropy being in the xy-plane, the parameters
of the compliance tensor are given by S11 =8:07

(T Pa)�1, S12 =0:606 (T Pa)�1, S33 =27:55 (T Pa)�1,

S44 =25:25 (T Pa)�1, S13 = � 7:02 (T Pa)�1. With
these parameter values and the angular orientations for
each grain, we can calculate the transformed compli-

ance tensor components SXYZ
ij using equation (10).

Next, we take the inverse of SXYZ resulting in the 2D

elasticity tensor CXYZ for each set as shown in Table 3.

Figure 1. Local coordinates for one of the grains that we
denote with xyz alongside the global coordinates (XYZ) is also
shown.

Figure 2. Here we illustrate the transformation of the local coordinate system into the global coordinate system.

Figure 3. Voronoi diagram for a 1 mm31 mm bounded square
domain with 16 number of Voronoi sites.

Figure 4. Target domain consisting of 16 grains 1 mm31 mm.
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Inverse problem solution

We solve the inverse problem in two steps assuming
that the 2D displacement field is available from (syn-
thetic) measurements. First, we solve for six anisotropic
elastic parameter distributions Cj(x)= ½CXYZ

11 CXYZ
12

CXYZ
16 CXYZ

22 CXYZ
26 CXYZ

66 � with j=1, :::, 6 that are repre-
sented as unknowns on finite element mesh nodes.
Thus, this step has a large number of unknowns equal
to six times the number of mesh nodes. The solution of
this step will reveal each individual grain domain from
the contrast in the anisotropic elastic constants. Next,
the anisotropic elasticity matrix will be inverted to yield
the anisotropic compliance matrix. We have derived the
relation of the components of the compliance matrix to
the 3D material orientation in equation (10), which is
what we are aiming to solve for. We will make use of
the recovered grain domains and these equations to
solve for these unknowns.

We start with the first step and pose the inverse
problem for the unknown anisotropic elastic parameter
distributions Cj(x) as a constrained minimization
problem with the boundary value problems (equations
(11)–(13)) being the constraints of the problem. The
objective function is minimized with respect to the ani-
sotropic elastic constants Cj and is given by:

p=
1

2

XNmeas

i=1

jjucomp
i (Cj(x))� umeas

i jj2

+
X6
j=1

aj

2

ð

O0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrCj(x)j2 + c2

q
dO

ð14Þ

The first term represents the displacement correla-
tion term, where the difference between measured and
computed displacement fields is minimized in the L2

norm. The computed displacement fields satisfy the
constraints of the boundary value problems that are
solved using finite element methods.14 We observe a
summation from i=1,., Nmeas to accommodate mul-
tiple measurements, that is, multiple displacement fields
from multiple measurements by utilizing distinct
boundary conditions. This is important in order to
steer the problem to a unique solution as shown in Luo
et al.,15 Barbone and Gokhale.16 Further, the second
term, represents the regularization term to smooth the
overall solution of the ill-posed inverse problem. We
use the total variation diminishing regularization to
preserve sharp grain boundaries. We note that the
summation is over six terms, since we have six aniso-
tropic elastic constants to solve for. The constant
c=0:01 is chosen to be a small value to avoid singu-
larities in gradient calculations. The regularization
factor a provides a weight relative to the displace-
ment correlation term and is chosen according to
Morozov’s discrepancy principle. We utilize a gradi-
ent based optimization method to solve the inverse
problem. In particular, we make use of the limited
BFGS method with readily available subroutines pro-
vided in Zhu et al.17 The gradient is evaluated effi-
ciently using the adjoint equations detailed in Oberai
et al.18 We have discretized and implemented these
algorithms into an in-house written program in paral-
lel using message passing interface (MPI). The linear
equations are solved using the direct sparse solver in
PARDISO.19–21

Table 3. Components of the 2D elasticity tensor CXYZ
ij for all sets.

Set-1 Set-2 Set-3 Set-4 Set-5 Set-6

CXYZ
11

157.5554 110.9968 50.9468 68.9077 96.0880 124.8967

CXYZ
12

40.5757 32.1524 39.6201 41.3304 37.8792 27.2777

CXYZ
16

3.9721 27.9164 12.1592 211.0010 24.3404 20.3224

CXYZ
22

50.3008 112.6982 156.8470 150.4821 139.2970 125.1231

CXYZ
26

7.6066 27.6525 6.8019 24.0313 20.2261 20.3104

CXYZ
66

39.7004 31.2292 38.6595 42.3534 49.2043 66.1114

Table 1. Crystallographic angular orientations for each set.

Set-1 Set-2 Set-3 Set-4 Set-5 Set-6

a 4p=9 4p=9 4p=9 �p=10 �p=30 p=30
b p=30 p=4 4p=9 p=3 p=4 p=36

Table 2. Grain numbers associated with the sets defined in Table 1.

Set-1 Set-2 Set-3 Set-4 Set-5 Set-6

Grains 6,12 1,7,13 2,8,14 3,9,15 4,10,16 5,11
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Next, we delineate the grain boundaries based on
the anisotropic elastic parameter contrasts. We then
remove outliers within each grain, calculate the compli-
ance matrix at each node (except for the nodes with
outliers) by inverting the previously computed aniso-
tropic elasticity matrix. Finally, we take the nodal aver-
age values for each component of the compliance

matrix ((S
XYZ

ij )(g)). We use these averaged values within

each grain to minimize the following objective func-
tions with respect to the angular orientation within
each grain.

eq(6(g�1)+1) = (SXYZ
11 )(g) � (S

XYZ

11 )
(g)

eq(6(g�1)+2) = (SXYZ
12 )(g) � (S

XYZ

12 )
(g)

eq(6(g�1)+3) = (SXYZ
16 )(g) � (S

XYZ

16 )
(g)

eq(6(g�1)+4) = (SXYZ
22 )(g) � (S

XYZ

22 )
(g)

eq(6(g�1)+5) = (SXYZ
26 )(g) � (S

XYZ

26 )
(g)

eq(6(g�1)+6) = (SXYZ
66 )(g) � (S

XYZ

66 )
(g)

ð15Þ

Here, (SXYZ
ij )(g), for g=1, :::,G, are functions of the

mechanical constants S11,S33,S44,S12, and S13 and the
angular orientations a(g) and b(g) given in equation (10)
for each grain and G is the total number of grains in
the problem domain.

We reiterate that we are minimizing equation (15)
for two angles at each grain, thus, we are minimizing
for 2�g unknowns, where g represents the number of
grains. We used lsqnonlin from the optimization tool-
box and selected therein the trust-region-reflective

optimization algorithm in MATLAB optimization
script to solve for unknowns by minimizing our objec-
tive function.

Results

Reconstructions by solving an inverse problem

To test the solution strategy outlined in the previous
section, we create synthetic displacement fields by sol-
ving boundary value problems to represent measured
displacement fields. Since experimentally acquired data
sets contain measurement errors, we add random
Gaussian noise to the simulated displacement fields
given in equations (16) and (17).

umeas = u+h ð16Þ

% noise=
jjhjj2O
jjujj2O

3100%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
O
h2 dO

R
O
u2 dO

vuuuut 3100%

ð17Þ

where h denotes the added noise level. In this paper, we
add noise levels of about 0.1% and 1% to the displace-
ment fields. Figure 5 shows the target problem domain
with varying boundary conditions, resulting in eight
distinct displacement fields that are used in solving the
inverse problem.

We note that the misfit of computed and measured
displacements (first term in equation (14)) of zero is

(c) (d)(a) (b)

(g) (h)(e) (f)

Figure 5. Problem domain with grains and varying boundary conditions. Each figure (a-h) has distinctly applied boundary conditions
to yield a distinct displacement field.
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only desired if the displacement noise is zero, which is
not the case with experimental data sets. For non-zero
displacement noise, it is not desired to perfectly match
the computed (predicted) displacements with noisy dis-
placement measurements. According to Morozov’s dis-
crepancy principle, the misfit between the computed

and measured data should be up to the level of noise
inherent in the measured data. This misfit in the displa-
cement correlation term is controlled via the regulariza-
tion term, which can be thought of a penalty term.
Setting the regularization factor to zero in the presence
of noisy displacement measurements will yield a very

Figure 6. Target domain and reconstructions of six parameters using eight synthetic displacement fields: the rows (a–f) depict the
target and reconstructed parameter distributions for CXYZ

11 ,CXYZ
12 , CXYZ

16 , CXYZ
22 , CXYZ

26 , and CXYZ
66 , respectively. The first column depicts

the target parameter distributions, the second depicts reconstructions without added noise, the third and fourth columns depict the
reconstructions with 0:1% and 1% noise, respectively.
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close fit between computed and measured displacement
fields. This would result in reconstructions that are
highly oscillatory and far from resembling the target
distributions. This reflects the ill-posed nature of the
problem and the sensitivity to noise in measured data in
the absence of any regularization. As the regularization
factor is increased, the misfit in the displacement corre-
lation term increases as well. We have chosen the regu-
larization factor according to Morozov’s discrepancy
principle. To this end, we have rewritten the displace-
ment correlation term by scaling it with the measured
displacement field in the L-2 norm and taking the
square root of it as given by

relative match=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNmeas

i=1

R
O
(uicomp(C(x))� uimeas(x))

2 dO

PNmeas

i=1

R
O
(uimeas(x))

2 dO

vuuuuuut

3100%

ð18Þ

Figure 6 shows the target problem domain in the
first panel with all six elastic parameters, followed by
the corresponding reconstructions for 0%, 0.1%, and
1% noise in the second, third, and fourth panel, respec-
tively. We observe that the grain domains are very well
recovered if no noise is used and start deteriorate as the

noise level increases. We emphasize at this point that
these anisotropic elastic property reconstructions in 2D
have no direct physical relevance, but serve as an inter-
mediate step in recovering the crystal orientations in
each grain. The regularization parameters (aj) pertain-
ing to all six mechanical parameters as well as the num-
ber of iterations for the minimization are shown in
Table 4 for all three noise levels (i.e. 0%, 0.1%, and
1%). We note that the relative match is in the order of
the noise level as shown in our previous
publications.15,22

Solving for angular orientations and mechanical
parameters for each grain

Next, we delineate grain boundaries from image con-
trasts in the reconstructions of Figure 6. We illustrate
this on a grain sample from Figure 7(a) with a pink
overlayed mesh and extracted in Figure 7(b) for the
elastic parameter CXYZ

11 . We could have selected any
other reconstructed elastic parameter as long as the
contrast is distinct from its neighboring grains. The
fully extracted grain domain is shown in Figure 8 for
all noise levels.

After delineating the grain boundaries, we average
the elastic parameters within each grain domain after
removing outliers. We list the mean reconstructed elas-
ticity parameters (C) in Tables 5 to 7 for 0%, 0.1%,
and 1% noise level, respectively.

Table 4. Regularization parameters, number of iterations, and relative match for different noise levels in the synthetic data.

Noise a1 a2 a3 a4 a5 a6 Iter. Rel. match

0% 5.0e-12 5.0e-12 5.0e-12 5.0e-12 5.0e-12 5.0e-12 25,000 0.00076
0:1% 5.0e-10 5.0e-10 5.0e-10 5.0e-10 5.0e-10 5.0e-10 15,807 0.06958
1% 1.0e-8 6.0e-9 8.0e-9 6.0e-9 6.0e-9 6.0e-9 4293 0.69896

Here, the six regularization parameters correspond to the six elastic constants in equation (14).

Figure 7. Selecting and extracting individual grains: (a) grain-1 with pink mesh overlay, has been selected for further analysis
(0% noise) and (b) enlarged view of the extracted domain of grain-1 (0% noise).
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Since we delineated 16 grain domains, the number
of unknowns now reduces to 2 � 16=32. Thus, we
solve 96 nonlinear equations (6 for each grain) simulta-
neously to solve for 32 unknowns. We specify the
mechanical properties (i.e. S11,S12,S13,S33, and S44),

and solve equations (10) via a nonlinear least-square
minimization method using the trust-region-reflective
algorithm with the lsqnonlin solver from the MATLAB
Optimization Toolbox. To analyze uniqueness of the
solution, we utilize the multi-start global optimization

Figure 8. Extracted grain domains shown for (a) no noise, (b) 0.1% noise, and (c) 1% noise.

Table 5. Mean reconstructed elasticity parameters (C) after removing outliers for all 16 grains (0% noise).

Sub-domain CXYZ
11 CXYZ

12 CXYZ
16 CXYZ

22 CXYZ
26 CXYZ

66

1 111.0116 32.1576 27.9167 112.7035 27.6555 31.2308
2 50.9508 39.6202 12.1574 156.8404 6.7956 38.6578
3 68.9049 41.3331 211.0076 150.4843 24.0385 42.3567
4 96.0699 37.8815 24.3378 139.3150 20.2241 49.2032
5 124.9008 27.2806 20.3264 125.1423 20.3112 66.1145
6 157.5941 40.5985 3.9446 50.3346 7.5965 39.7236
7 111.0094 32.1542 27.9317 112.7221 27.6620 31.2165
8 50.9322 39.6170 12.1605 156.8406 6.8041 38.6551
9 68.9179 41.3339 211.0022 150.4801 24.0338 42.3544
10 96.0911 37.8828 24.3505 139.3030 20.2327 49.1990
11 124.8894 27.2891 20.3326 125.1161 20.3036 66.1234
12 157.6092 40.5771 3.9718 50.3038 7.6081 39.6997
13 110.9964 32.1506 27.9184 112.6927 27.6534 31.2278
14 50.9492 39.6217 12.1576 156.8445 6.7948 38.6577
15 68.9339 41.3335 210.9961 150.5177 24.0268 42.3521
16 96.0738 37.8853 24.3397 139.3174 20.2245 49.2025

Table 6. Mean reconstructed elasticity parameters (C) after removing outliers for all 16 grains (0.1% noise).

Sub-domain CXYZ
11 CXYZ

12 CXYZ
16 CXYZ

22 CXYZ
26 CXYZ

66

1 110.9722 32.1612 27.9402 112.7072 27.6757 31.2289
2 50.9238 39.5787 12.1477 156.8037 6.7784 38.6707
3 68.9280 41.3143 211.0287 150.4987 24.0257 42.3254
4 96.1134 37.9028 24.3232 139.3838 20.2368 49.2162
5 124.9262 27.3057 20.3165 125.1628 20.3129 66.0865
6 157.0173 40.4742 3.9352 50.4789 7.5917 39.7687
7 111.5262 32.3460 27.9368 113.0930 27.5392 31.2275
8 50.8858 39.5901 12.1487 156.7247 6.8345 38.6709
9 68.9198 41.3174 211.0129 150.3737 24.0466 42.3452
10 96.2833 37.8713 24.5023 139.2199 20.2863 49.1489
11 124.5151 27.3707 20.3276 124.9570 20.3048 66.0244
12 157.5338 40.5774 4.0141 50.3054 7.6127 39.7371
13 110.9353 32.1539 27.9161 112.7245 27.6572 31.2031
14 50.9593 39.6027 12.1402 156.3510 6.7692 38.6605
15 68.8056 41.3255 211.0027 150.5911 23.9699 42.3454
16 96.1429 37.8938 24.3141 139.3664 20.2197 49.1835
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feature in the Global Optimization Toolbox to solve
the minimization problem with multiple starting points.
The specified optimization bounds for the angle pairs
are �p=24ag4p=2, and �p=24bg4p=2. The opti-
mization options are listed in Tables 8 and 9. Table 10
presents the solution for the crystallographic angles for
each grain for different noise levels together with their
target values.

Discussions

In this paper, we have presented a new methodology to
determine the 3D crystallographic orientations of
grains using solely 2D displacement fields. To this end
we reduced the 3D constitutive equations to 2D assum-
ing plane stress conditions. The 2D formulation pre-
serves all elastic constants (S11,S12,S13,S33, and S44)
and the crystal orientations a and b from the 3D
model. The advantage of the 2D model is that the num-
ber of degrees of freedom is significantly reduced and
with that the computational time as well. While this
work presents a theoretical proof of concept, it is a first
step in the verification of this new technology using

synthetic displacements that were augmented with ran-
dom Gaussian noise levels of 0.1% and 1% to represent
noisy measurements. We created synthetic displace-
ments by solving boundary value problems with the
finite element method.

Typical measured noise levels with a DIC system for
large specimens are in the order of 1% based on our
experience with basic experiments on rubber like speci-
mens (Goenezen et al.23) with regular camera systems.
In the following, we provide a few examples of DIC
data acquisition for micro-scale sized region of inter-
ests, which are generally imaged with an optical micro-
scope or a scanning electron microscope (SEM).
Carroll et al.24 utilized an optical microscope (Olympus
model BX51 M) to measure the strain field of Hastelloy
during crack growth with an average grain size of
95mm. The region of interest was chosen to be
7003 800mm2 with a spatial resolution of 0.87mm and
a pixel size of 87 nm. EBSD images were provided
alongside with a plastic strain distribution in the order
of 1%. The authors therein report that about 0.1%
strain contributes to the error in the measured strain,
which is high given that elastic strains for many metals
and alloys are in the order of 0.1%. An SEM DIC sys-
tem has been used by Di Gioacchino and Quinta da
Fonseca25 to measure plastic strain fields of stainless
steel at a spatial resolution of 0.2mm and a pixel size of
36 nm. The Sirion FEI SEM system enables the acquisi-
tion of high definition images of up to 41343 2904 pix-
els. Fine speckle patterns were achieved by depositing
vaporized gold particles. A field of view of

Table 7. Mean reconstructed elasticity parameters (C) after removing outliers for all 16 grains (1% noise).

Sub-domain CXYZ
11 CXYZ

12 CXYZ
16 CXYZ

22 CXYZ
26 CXYZ

66

1 111.2213 32.2554 27.9552 113.0634 27.7988 31.0537
2 51.3838 39.8460 12.2253 156.7449 7.1354 38.4439
3 69.5607 41.3657 211.1098 150.4288 24.1856 42.7308
4 96.1439 37.9999 24.0697 139.9960 20.3295 48.9028
5 123.5211 27.0873 20.0108 125.1402 20.5434 65.9398
6 150.3939 39.0876 4.5326 49.9444 7.7571 39.4874
7 119.5652 33.9044 20.9682 105.2789 22.8188 32.7006
8 51.1510 39.8330 11.9250 155.7832 7.0037 38.6946
9 69.1590 41.2927 211.2992 150.5276 24.1785 42.3945
10 98.0099 38.5187 25.3870 139.3666 20.9246 48.9778
11 120.0847 27.7697 0.4117 123.9264 20.1815 64.9721
12 155.8465 40.5771 3.7980 50.4938 7.5086 40.2038
14 111.3397 32.1170 27.8652 112.7025 27.5703 31.1073
15 50.8840 39.4745 12.4693 154.8576 6.7620 38.7972
16 68.7032 41.9779 211.3043 150.5722 23.5618 42.7594
17 96.4685 37.8415 23.8039 139.5396 20.3974 48.4416

Table 8. Optimization options.

Algorithm ‘‘trust-region-reflective’’
Display ‘‘iter’’
MaxFunctionEvaluations 15,000
OptimalityTolerance 1.00E-14
MaxIterations 15,000
SpecifyObjectiveGradient 0
StepTolerance 1.00E-14
FunctionTolerance 1.00E-25
ConstraintTolerance 1.00E-06
FiniteDifferenceStepSize ‘‘sqrt (eps)’’
FiniteDifferenceType ‘‘forward’’
SubproblemAlgorithm ‘‘factorization’’

Table 9. Multi-start global optimization options.

Number of start points 10,001
FunctionTolerance 1.00E-06
MaxTime 30,000
XTolerance 0.1
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1003 100mm2 was recorded in nine subregions and
stitched together to obtain a region of interest of
3003 300mm2. The strain error appears to be about
0.2% and also in the order of elastic strains. However,
we note here the small pixel size of 36 nm and the
potential of achieving higher accuracy as discussed fur-
ther below. Pinto et al.26 measured the strain field of a
semi-crystalline polymer using an SEM – DIC system.
The region of interest was given with 105.63 158.9mm2

and a spatial resolution of 2.2mm with a pixel size of
55 nm. The absolute strain noise appears to be high as
well what appears to be about 0.2%. Walley et al.27

measured the strain field for a nickel based superalloy
with an SEM – DIC system alongside with the underly-
ing grain structure obtained with EBSD. The speckle
pattern was produced with electron beam lithography
with speckle sizes ranging from 0.45 to 0.7mm and the
pixel size was provided with 150 nm. The authors
therein report the standard deviations in the noise in
the displacement and strain measurements to be about
0.03 pixels (4.5 nm) and 0.07%, respectively. Sutton
et al.28 achieved a displacement accuracy of 0.02 pixels
corresponding to 1 nm after correcting for the drift and
spatial distortions of the SEM – DIC system with a

resolution of 10243 884pixels. Let’s assume we would
apply a tensile strain of 0.1% on this domain to remain
in the elastic regime. This would imply a displacement
noise level of roughly 4% for a very small specimen of
about 50mm length. Increasing the specimen length to
200mm, while keeping the same resolution or stitching
together subregions, will reduce the noise level to
roughly 1%. This would correspond to the maximum
noise level that was utilized in the theoretical study of
this paper to map the crystal orientation of grains lever-
aging a mechanics based approach. Stinville et al.29 per-
formed SEM – DIC deformation experiments in the
elastic region for a nickel based superalloy and present
their results alongside with an EBSD image. The aver-
age grain size is given by 26mm and the region of inter-
est has a width of 85mm. The SEM has a resolution of
40963 3775 pixels. Overall tensile strains of 0.29% are
applied to the specimen, which is within the elastic
range of the material. The authors therein also report
that the absolute error in the strain is quite high with
0.15%.

The noise in the displacement field depends on multi-
ple factors, such as the number of pixels and gray values
in each facet (also referred to as window or subset). The
error in acquired data decreases with the square root of
the number of pixels in a facet. Other factors to affect
noise in DIC data include the illumination of the sam-
ple during image acquisition, speckle pattern distribu-
tion, speckle size, speckle pattern contrast, camera set
up and calibration, and vibrations affecting the posi-
tioning of the cameras and the specimen. This can be
addressed by automatizing the entire process (speckle
patterning, calibration, illumination within an enclosed
system, mechanical testing, data acquisition, etc.) with
minimal user input. Under optimal conditions, displa-
cements can be measured up to 0.01 pixel accuracy with
a DIC system, thus, the full potential of DIC systems
has not yet been exploited.

The experiments discussed above were conducted on
specimens with gage dimensions in the order of milli-
meters, and only a small subregion of that was imaged
with SEM. DIC displacement and strain measurements
of their work could be translated into smaller sample
sizes achieved by other research groups. For example
the review paper by Gianola and Eberl30 reports tensile
testing of nano and micro samples utilizing modified
atomic force microscope (AFM) systems. In Du et al.31

the authors fabricated a micro mechanical testing speci-
men with dimensions of 93 2.53 2mm3 using focused
ion beam (FIB). The tensile testing was conducted
without any pre-loading at small displacement incre-
ments of 7 nm with a maximum accumulated displace-
ment of 200mm. The load cell measures forces ranging
from 0 to 25mN with a precision of 2.5mN. The repro-
ducible overall strain is reported to be about 0.1% and
in the elastic region of many metals and alloys, but no
error estimates have been provided. EBSD images are
included as well in their work.

Table 10. Reconstructed crystallographic angles for 16 grains.

Angles Target
angles
(rad)

0% noise
(rad)

0.1% noise
(rad)

1% noise
(rad)

a1 1.3963 1.3963 1.4006 1.4484
b1 0.7854 0.7854 0.7859 0.7885
a2 1.3963 1.3963 1.3893 1.1973
b2 1.3963 1.3963 1.3962 1.3828
a3 20.3142 20.3142 20.3156 20.3051
b3 1.0472 1.0472 1.0470 1.0394
a4 20.1047 20.1047 20.1042 20.1040
b4 0.7854 0.7854 0.7852 0.7868
a5 0.1047 0.1047 0.1058 0.1387
b5 0.0873 0.0873 0.0878 0.0407
a6 1.3963 1.3963 1.3868 1.4028
b6 0.1047 0.1047 0.1044 0.1062
a7 1.3963 1.3963 1.3761 0.9910
b7 0.7854 0.7854 0.7845 0.6225
a8 1.3963 1.3963 1.4577 1.1640
b8 1.3963 1.3963 1.3983 1.3882
a9 20.3142 20.3142 20.3146 20.3195
b9 1.0472 1.0472 1.0471 1.0452
a10 20.1047 20.1047 20.1090 20.1283
b10 0.7854 0.7854 0.7845 0.7780
a11 0.1047 0.1047 0.1123 0.1719
b11 0.0873 0.0873 0.0804 0.0177
a12 1.3963 1.3963 1.3956 1.3863
b12 0.1047 0.1047 0.1044 0.0997
a13 1.3963 1.3963 1.4025 1.4063
b13 0.7854 0.7854 0.7861 0.7855
a14 1.3963 1.3963 1.3967 1.5708
b14 1.3963 1.3963 1.3966 1.3968
a15 20.3142 20.3142 20.3150 20.3143
b15 1.0472 1.0472 1.0484 1.0560
a16 20.1047 20.1047 20.1048 20.1075
b16 0.7854 0.7854 0.7852 0.7870
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Finally, we note that the gage length of specimens
can be changed to reduce the overall strain for displace-
ment controlled tensile testing in order to ensure elastic
deformations. The region of interest can be a subregion
of the test specimen. However, the dimensions of the
test specimen may not be too large in particular along
the specimen thickness to avoid variations in the grain
morphology, since our model assumes plane stress
conditions.

This work could help researchers in advanced manu-
facturing to understand the correlation between various
process parameters and their effect on the grain mor-
phology. The grain morphology is also of high interest
in Materials Science to predict mechanical properties,
surface properties, damage, and annealing behavior
that depend on the grain size distribution and orienta-
tion.32,33 Further, magnetic properties, electrical prop-
erties, and fracture behavior are affected by their grain
orientation and boundaries. Thus, it is of high impor-
tance to have the tools to visualize the crystallographic
orientation of grains in 3D, which is currently most
widely achieved using an electron backscatter diffrac-
tion (EBSD). The grain boundaries are then delineated
using an image segmentation program that checks for
changes in crystallographic orientations.

The proposed method in this paper could potentially
provide an alternative to EBSD using the mechanical
deformations of materials and mechanics based algo-
rithms to map the crystal orientation. At this develop-
mental stage, however, it is difficult to state if this
technology may become a better alternative to EBSD
with respect to experimental time, cost, and accuracy of
crystallographic orientation maps. We note that the
DIC process requires micro sized sample preparation,
fine surface polishing, and speckle patterning, for exam-
ple, using a spray, electron beam lithography, or vapor-
ized gold particles. Furthermore, EBSD appears to be
capable of resolving chaotic textures with very fine fea-
tures. In contrast, the use of Voronoi Tesselation in this
paper lead to a well organized grain domain. However,
well organized grain structures have been shown with
additive manufacturing via control of process para-
meters such as the laser power, laser width, scanning
path, scanning speed, etc. Based on the extensive experi-
ence in solving inverse problems in elasticity in general,
the authors anticipate that a realistic and well organized
grain structure will not pose more challenges than the
artificial one using Voronoi Tesselation.

We notice that the quality of the reconstructions of
the elasticity parameters in the first step (and conse-
quently, the orientations in the following steps)
decrease significantly with increasing noise levels. The
error in the reconstructed angles from Table 10 is about
0% for the case of no noise. It ranges from 0% to 8%
for the case of 0.1% noise and from 0% to 79% for the
case of 1% noise. The error range in the reconstruc-
tions increases dramatically for 1% noise and needs
further investigation. Thus, future work needs to

address the high errors in the reconstruction of some
grains, in particular for noise levels of 1%. This could
potentially be achieved by altering the regularization
term or the norm to minimize the discrepancy between
computed and measured displacement fields.

The average sub-domain sizes simulated in this
paper are not representative of the actual grain sizes of
zinc.34,35 Using the realistic grain sizes would require a
finer finite element mesh, extensive computations,
and higher resolution for displacement acquisition if
experiments are performed. Investigating the feasibility
to translate this work on a finer mesh will be focus for
future study. Also, we note that the inverse problem
for the angle pair (a,b) is not unique. A negation of
the angle pairs, (�a, � b), will yield the same displace-
ment field. Thus, future work will also focus on addres-
sing uniqueness of the crystallographic orientation.

Conclusions

In this article, we presented a novel approach to iden-
tify the grain-orientations for a class of anisotropic
materials. Our identification method is based on the
solution of inverse problems in linearized elasticity and
full-field displacement measurements. We showcased
the reconstructions of the grain-orientations obtained
from the simulations for the cases with and without
added noise. Further improvements in our algorithm
and experimental validation could make our method
potentially a viable tool to map the 3D crystal orienta-
tion of alloys.
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