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ABSTRACT 

In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the 

dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) 

phosphate ([P6,6,6,14][DEHP]) ionic liquid (IL) on applied pressure. The experimental results 

obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished 

steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined 

[P6,6,6,14][DEHP] molecules. This pressure-induced morphological change of [P6,6,6,14][DEHP] IL 

leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases 

with applied pressure and temperature. The structural variation of [P6,6,6,14][DEHP] IL is 

proposed to derive from the well-ordered layering of the polar groups of ions separated by the 

apolar tails. These results not only shed new light on the structural organization of phosphonium-

based ILs under elevated pressure, but also provide novel insights into the normal pressure-

dependent lubrication mechanisms of ILs in general. 
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1. INTRODUCTION 

Ionic liquids (ILs) are consist of organic cations and weakly coordinating anions. The low 

melting temperature of ILs (<100ºC) derives from the combined effect of the size difference 

between the ions, the geometric asymmetry of ions, and charge delocalization of at least one of 

the two ions, which weakens the electrostatic interactions between ions and increases their 

configurational entropy.1-2 The unique physico-chemical properties (e.g., negligible vapor 

pressure, wide electrochemical window, high thermal stability, low flammability) and the high 

“tunability” of ILs, which derives from the virtually unlimited number of permutations of cations 

and anions (1018 ILs available3), have paved the way towards tailoring the structures and 

functionalities of ILs to achieve task-specific properties.4 Therefore, ILs are usually referred to 

as “designer solvents”, emerging as candidate materials for a variety of applications, including 

solvents in catalysis,5 reaction media,6 electrolytes in energy storage devices,7 active 

pharmaceutical ingredients,8-9 and lubricating fluids.10-11 In all these applications, the functional 

behaviors (e.g., catalysts’ selectivity, charge storage of supercapacitors) depend on the response 

of ILs to external stimuli, such as electric field, pressure, and temperature. Because of this, the 

dependence of the properties and structures of ILs on externally controlled parameters has been 

the subject of extensive research.12-30 In the case of the dependence of the IL structure on applied 

pressure, several studies employed surface force apparatuses (SFA) and colloidal atomic force 

microscopy (AFM) to evaluate the structure of IL/solid interfaces upon nanoconfinement.1-2, 31-34 

SFA and colloidal AFM studies, in which the maximum uniaxial compressive normal stress 

during nanoconfinement studies is typically in the MPa range, showed the presence of damped 

oscillations in the measured force profiles as the distance between the two confining surfaces is 

reduced, thus indicating the formation of an ordered, layered interfacial structure that is difficult 
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to be squeezed out.1, 35-37 The dynamic behaviors of nanoconfined ILs have also been 

investigated by SFA and colloidal AFM as the viscosity and phase response of these fluids in 

confined geometry strongly affect the lubricating property of these fluids.1, 11, 36, 38-39 In the last 

decade, an increasing number of studies also evaluated the structures and physico-chemical 

properties of imidazolium- and pyrrolidinium-based ILs as a function of hydrostatic pressure.40-57 

Zhao et al. employed molecular dynamics (MD) simulations to investigate the effect of pressure 

on the interionic interactions of 1-butyl-3-methylimidazolium hexafluorophosphate 

([C4mim][PF6]) IL and provided evidence for changes in the conformation in the alkyl chains of 

cations at high pressure (0.6 GPa).41 Saouane et al. evaluated the solid-state polymorphism of the 

same IL using single-crystal X-ray diffraction, Raman spectroscopy, and optical microscopy.57 

The experimental results indicated the existence of three polymorphs, which was proposed to 

originate from the conformational flexibility of [C4mim] cations together with the rotational 

disorder of [PF6] anions. While other studies provided further evidence for pressure-dependent 

structural transitions in imidazolium-based ILs as a consequence of conformational variations in 

cationic tails,40, 53, 56, 58 MD simulations by Russina et al. not only confirmed the pressure-

induced change of the dihedral angles along cationic alkyl chains, but also demonstrated that 

polar moieties interacting through Coulombic interactions are less affected by the applied 

pressure.52 More recently, Sharma et al. employed MD simulations to identify structural 

variations in 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Pyrr1,n][NTf2], 

where n = 8 or 10) and demonstrated the susceptibility of both apolar and polar groups to 

changes in applied pressure, while also showing that [NTf2] anions could undergo 

conformational changes.42 



 6 

Among the ILs that have been studied, phosphonium-based ILs are particularly attractive 

owing to their combination of high thermal stability, good solubility of carbon dioxide and 

organic/inorganic solutes,59-61 and good lubricating properties.62-64 While a few works reported 

the evolution of densities and thermodynamic properties for phosphonium-based ILs as a 

function of applied pressure,65-66 a limited number of studies have been reported about pressure-

induced structural changes in these ILs. Sharma et al. used MD simulations to investigate 

variations in structural morphology of trihexyl(tetradecyl)phosphonium bromide ([P6,6,6,14][Br]) 

and trihexyl(tetradecyl)phosphonium dicyanamide ([P6,6,6,14][DCA]) ILs.67 Upon increasing the 

applied pressure, a crystalline order forms due to increased polar-polar and apolar-apolar 

correlations within the ILs. Moreover, the simulations clearly indicated the formation of a well-

ordered, solid-like layering of the polar moieties separated by the apolar tails of the cations at 

hydrostatic pressures above 0.1 GPa for [P6,6,6,14][DCA] and 0.2 GPa for [P6,6,6,14][Br]. 

While the study by Sharma et al.67 provided fundamental insights into the intrinsic structural 

transitions of phosphonium-based ILs under hydrostatic pressure using MD simulations, no 

experimental study has yet to be reported to corroborate the results. Additionally, remarkably 

little has been discussed about the functional aspects of this pressure-induced behavior of ILs in 

general. Here, we use atomic force microscopy (AFM) to evaluate in situ the evolution of the 

structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate 

([P6,6,6,14][DEHP]) IL (Figure 1a) under accurately controlled normal pressure, and explore the 

relation between the IL's structural change and its frictional behavior. 
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Figure 1. (a) [P6,6,6,14][DEHP] IL; and (b) schematic diagram of the in situ atomic force 

microscopy (AFM) approach used to evaluate the pressure-dependent structural morphology of 

[P6,6,6,14][DEHP] IL. 

 

 

2. MATERIALS AND METHODS 

AFM experiments were carried out using a commercial MFP-3D Origin+ AFM (Oxford 

Instruments, Asylum Research, USA). Polished, air-oxidized 52100 steel disks (McMaster Carr, 

USA; root-mean-square roughness over a 5 x 5 µm2 area: 2.1 ± 0.4 nm) were used as the 

substrates. During the experiments, a few drops (~0.1 g) of [P6,6,6,14][DEHP] IL were placed on 

the substrate to ensure complete immersion of the AFM cantilever in the IL once engaged. The 

synthetic procedure for [P6,6,6,14][DEHP] IL is reported in Ref. 68. The water content of this IL 

was 17139 ± 1549 ppm at room temperature (22 ± 1ºC) as determined by a Brinkman 831 Karl 

Fischer coulometer before tests. The normal spring constant of the AFM cantilever was 

calibrated using the Sader’s method.69-70 To compute the applied normal pressure, the tip shape 

was characterized before and after each experiment using the blind tip reconstruction method71 

employing an ultra-nanocrystalline diamond surface (Aqua 25, Advanced Diamond 

Technologies, USA) as the reference substrate. To avoid any significant changes in tip shape 
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during the experiments, diamond-like carbon (DLC)-coated silicon tips (NSC14-Al-BS, 

Mikromasch, USA. Spring constant ~5 N/m) were employed. To evaluate changes in structural 

morphology of [P6,6,6,14][DEHP] IL, in situ AFM tests were performed by scanning a 2 x 2 µm2 

area at a scan speed of 78 µm/s. Pressure- and temperature-dependent experiments were 

performed by varying the applied normal pressure between 2.7 ± 0.3 GPa and 7.3 ± 0.4 GPa 

(computed from Hertz contact mechanics, assuming the Young’s moduli of steel and DLC to be 

201 GPa and 150 GPa, respectively) and the temperature between room temperature (22 ± 1ºC) 

and 111 ± 1ºC. Structural changes induced by the pressure applied by the AFM tip during the 

sliding process were visualized by periodically acquiring zoomed-out topographical and friction 

force images (5 x 5 µm2) at a non-perturbative load (Figure 1b). 

 

 

3. RESULTS AND DISCUSSION 

The AFM experiments performed at 111 ± 1ºC indicated a variation in nanoscale structural 

morphology of [P6,6,6,14][DEHP] IL upon scanning at an applied average normal pressure of 5.5 ± 

0.3 GPa. Figure 2 displays typical zoomed-out topography images (5 x 5 µm2) of air-oxidized 

steel obtained at a non-perturbative load together with the corresponding normalized friction 

force maps. These height maps were acquired after the AFM tip scanned the central area (2 x 2 

µm2) at 5.5 ± 0.3 GPa for different numbers of frames. The topographic images reveal the 

progressive formation of an interfacial layer at randomly located nucleation sites, whose 

thickness subsequently increased over the course of 1000 scan cycles (Figure 3a). 

Correspondingly, an increase in contrast in the friction force maps was detected (Figure 2), 



 9 

which indicated a reduction in friction force with pressure-induced changes in structural 

morphology of [P6,6,6,14][DEHP] IL occurring upon scanning at 5.5 ± 0.3 GPa and 111 ± 1ºC. 

 

 

Figure 2. Topographic (top row) and normalized friction force (bottom row) AFM images (5 x 5 

µm2) of an air-oxidized steel surface obtained using a DLC-coated silicon AFM tip immersed in 

[P6,6,6,14][DEHP] IL at 111 ± 1ºC. The topographic images were collected at a non-perturbative 

load. The number of 2 x 2 µm2 frames, which were previously collected in the central part of the 

image at an applied pressure of 5.5 ± 0.3 GPa (highlighted with a red, dashed box), is reported 

above each column of images. The friction force maps were normalized by the average friction 

force (fii) in the region scanned by a non-perturbative load. 

 

The sample topography after removing the supernatant [P6,6,6,14][DEHP] IL and sonicating the 

substrate with organic solvents (methanol and isopropanol) revealed the complete removal of the 

interfacial layer and the absence of any mechanical wear of the underlying air-oxidized steel 

substrate (see Figure S1 in the Supporting Information). The absence of any contrast in the 
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friction force map acquired on the sample after its sonication in organic solvents (see Figure S2 

in the Supporting Information) is also indicative of no changes in surface chemistry in the region 

scanned at elevated pressure, thus corroborating the lack of any stress-assisted chemical reaction 

of the IL on the steel surface. The formation of a non-surface-bound reaction layer, as observed 

in our AFM experiments, is in contrast to macroscale sliding experiments with the same IL,62-64, 

72-73 which indicated the stress-assisted, thermally-activated chemical reaction of 

[P6,6,6,14][DEHP] on steel or cast iron surfaces to generate a mechanically-stable iron phosphate 

film (as thick as 120-180 nm64). The difference between our work and previously published 

studies can be ascribed to the completely different contact conditions employed in the 

experiments: while the low sliding speed of the AFM tip resulted in a negligible temperature rise 

(<<1ºC) at the contact, the high sliding speeds of multi-asperity, macroscale sliding contacts 

could drastically increase the contact temperature (as high as 140ºC),68 thus accelerating any 

surface mechano-chemical reaction of the [P6,6,6,14][DEHP] IL. In light of this, the variations in 

topographic AFM images observed in the present study can be attributed to a pressure-induced 

change in structural morphology of the [P6,6,6,14][DEHP] molecules. The resulting solid-like 

interfacial layer is proposed to derive from the well-ordered layering of polar groups of 

[P6,6,6,14][DEHP] ions separated by apolar tails, as suggested by MD simulations performed on 

phosphonium-based ILs.67 This finding also indicates that the effect of the nanoconfinement of 

ILs results in the formation of a solid-like structure that remains (at least in part) on the substrate 

surface after the release of the applied force. 

It is also critical to highlight that, while the absence of any stress-assisted surface reaction in 

the experiments presented herein is in agreement with our previous work,68 the formation of the 

surface layer shown in Figure 2 upon sliding at 5.5 ± 0.3 GPa contrasts with the results obtained 
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from AFM experiments carried out at a higher applied pressure (7.3 ± 0.4 GPa) in the same 

previous study. In the latter case, the topographic AFM images indicate progressive material 

removal (i.e., wear) from the air-oxidized steel upon sliding, thus suggesting that any interfacial 

layer formed as a result of pressure-induced changes in structural morphology of 

[P6,6,6,14][DEHP] IL is not mechanically stable at 7.3 ± 0.4 GPa. Despite this difference in the 

evolution of the surface topography upon sliding at elevated pressures, a decrease in nanoscale 

friction was measured in the area slid at high loads in both scenarios (5.5 ± 0.3 GPa and 7.3 ± 0.4 

GPa68), which indicates that different mechanisms underpin the measured friction reduction: in 

the present study, the decrease in friction in the area scanned at 5.5 ± 0.3 GPa can be ascribed to 

the pressure-induced variation in structure of [P6,6,6,14][DEHP] IL, whereas in our previous work 

the friction reduction was shown to be due to the adsorption of phosphate ions on the 

mechanically smoothened metallic iron surface that leads to the formation of a densely-packed, 

lubricious boundary film.68 This finding sheds new light on the dependence of the lubrication 

mechanism of phosphonium phosphate ILs on applied normal pressure, as it demonstrates that 

pressure-induced changes in structural morphology of phosphonium phosphate ILs can control 

the nanoscale friction response through the formation of a well-defined interfacial layer that is 

mechanically stable up to a critical applied normal pressure, above which wear occurs and the 

surface adsorption of phosphate ions on freshly-exposed metallic iron surfaces dictates the 

friction response at the nanoscale. 
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Figure 3. Thickness of the surface layer formed by [P6,6,6,14][DEHP] IL on air-oxidized steel as a 

function of the number of scans for the case of: (a) experiments performed at different applied 

normal pressures (temperature: 111 ± 1ºC); and (b) experiments carried out at different 

temperatures (applied normal pressure: 5.5 ± 0.3 GPa). The layer thickness was obtained by 

computing the height difference between the mean plane of the area scanned at high pressure 

(green shaded area in the AFM topographic image in the inset in (a)) and the mean plane of the 

reference area (blue shaded area in the AFM topographic image in the inset in (a)). 

 
To evaluate the pressure- and temperature-dependence of the structural changes of 

[P6,6,6,14][DEHP], AFM experiments were performed at different applied normal forces and 

temperatures. Figure 3 displays the evolution of the thickness of the interfacial layer as a 

function of the number of scans. Increasing the applied normal pressure from 2.7 ± 0.3 GPa to 

5.5 ± 0.3 GPa at a constant temperature (111 ± 1ºC) progressively increases the thickness and 

growth rate of the interfacial layer with the same number of scans (Figure 3a and Figure S3 in 

the Supporting Information). Additionally, while at lower temperatures (22 ± 1ºC and 69 ± 1ºC) 

the AFM topographic images indicated the generation of an extremely thin interfacial layer 

(thickness < 1 nm), increasing the temperature to 111 ± 1ºC significantly enhances the layer 

formation (Figure 3b). The increase in growth rate of the solid-like interfacial layer upon 
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increasing the IL temperature can be attributed to the higher mobility (or self-diffusivity) of the 

ions in [P6,6,6,14][DEHP] at elevated temperatures (the self-diffusivity Di of a species i with radius 

ri is inversely proportional to the viscosity of the medium h according to Stokes-Einstein 

relation: 𝐷! = 𝑀!𝑘"𝑇 =
#!$
%&'("

, where Mi is the mobility of species i, kB is the Boltzmann constant 

and T is the temperature. The variation of the viscosity of [P6,6,6,14][DEHP] with temperature is 

shown in Figure S4 in the Supporting Information), which makes the ions more responsive to the 

mechanical action of the AFM probe. An additional factor that might affect the growth rate of 

the solid-like interfacial layer is related to the water content in [P6,6,6,14][DEHP] (i.e., 17139 ± 

1549 ppm at 22 ± 1ºC). Thermogravimetric measurements indicated that a mass loss occurs 

between 100ºC and 110ºC (see Figure S5 in the Supporting Information), which is likely due to 

water desorption from [P6,6,6,14][DEHP]. Thus, while the significant amount of water present in 

[P6,6,6,14][DEHP] at 22 ± 1ºC and 69 ± 1ºC can hydrogen-bond with the IL ions ([DEHP] anions 

in [P6,6,6,14][DEHP], in particular), affect the ionic arrangement, 74 and interfere with the 

formation of a solid-like, ordered structure by screening ion-ion interactions, in the case of the 

AFM experiments performed at 111 ± 1ºC the reduced water content in [P6,6,6,14][DEHP] allows 

for the well-ordered layering of polar groups of [P6,6,6,14][DEHP] ions separated by apolar tails, 

thus resulting in a much larger thickness of the interfacial layer. 

 

 

4. CONCLUSIONS 

In summary, we carried out in situ AFM experiments to evaluate the pressure-induced 

evolution of the structural morphology of [P6,6,6,14][DEHP] IL. The AFM results obtained upon 

sliding a DLC-coated silicon AFM tip on mechanically polished steel at an applied pressure up 
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to 5.5 ± 0.3 GPa indicate the pressure-induced generation of a solid-like, lubricious interfacial 

layer, whose thickness and growth rate increase with both applied normal pressure and 

temperature. The interfacial structure created by [P6,6,6,14][DEHP], which is proposed to be due to 

the layering of polar groups of IL ions separated by apolar tails,67 is stable upon releasing the 

applied pressure, but fully removed from the substrate upon removing the supernatant IL and 

washing the sample with organic solvents. Notably, the pressure-induced change in structural 

morphology of [P6,6,6,14][DEHP] decreases nanoscale friction, while preventing mechanical 

damage (wear) of the underlying steel substrate. These findings do not only complement and 

corroborate previously published MD simulations that indicate the occurrence of pressure-

dependent polymorphic phase transformations in ILs,67 but also provide experimental evidence 

for a potentially universal mechanism that underpins the nanoscale lubrication mechanism of ILs 

in general. Further experimental and modeling work is needed to evaluate pressure-induced 

phase transformations in other classes of ILs and their dependence on the molecular structure of 

ILs, contaminants in ILs (e.g., water and halides), and externally-controlled parameters (e.g., 

temperature, applied bias voltage). 

 

 

ASSOCIATED CONTENT 

Topographic AFM images of an air-oxidized steel acquired with the AFM tip immersed in 

[P6,6,6,14][DEHP] IL (the topographic images were obtained before and after scanning the central 

part of the frame at an applied pressure of 5.5 ± 0.3 GPa). Topographic image collected in the 

same sample area at the end of the experiment performed at 5.5 ± 0.3 GPa and after sonicating 

the sample in methanol and isopropanol. Pressure-dependence of the volumetric growth rate of 



 15 

the interfacial layer formed by [P6,6,6,14][DEHP] at 111 ± 1ºC. Dependence of the dynamic 

viscosity of [P6,6,6,14][DEHP] on temperature. Thermogravimetric analysis of [P6,6,6,14][DEHP] 

IL. 
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