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Abstract11

Applications and methods of artificial intelligence (AI) are becoming powerful tools for12

scientific investigations in the space sciences, particularly in the analysis and interpre-13

tation of the plethora of spacecraft and ground-based observations of the near-Earth and14

faraway space. Applications of Statistical Methods and Machine Learning in the Space15

Sciences was a virtual conference held during 17-21 May 2021 to bring together experts16

in AI and in the various subfields of space sciences to further explore the utility of AI,17

machine learning, and statistical analysis techniques while sharing the current status of18

applications in these fields. The conference concluded by emphasizing the scope of AI19

techniques available to the space science community for addressing outstanding prob-20

lems with great success as revealed in the number of research works presented.21

SSI Virtual Conference22

Emerging trends in artificial intelligence (AI), data science, and machine learning23

are revolutionizing the way scientific problems in the space sciences are placed in con-24

text and addressed. AI techniques are indeed shown to be highly promising in model-25

ing and data analysis. The techniques of AI vary over a wide range including, but not26

limited to, machine learning (ML), neural networks and deep learning, data and text min-27

ing, natural language processing, knowledge discovery and decision making, expert sys-28

tem modeling, genetic algorithms, fuzzy logic, and computer vision and pattern recog-29

nition.30

Applications of Statistical Methods and Machine Learning in the Space Sciences (pre-31

sentation materials available at http://spacescience.org/workshops/mlconference202132

.php), a fully virtual conference hosted by Space Science Institute’s Center for Data Sci-33

ence and sponsored by the National Science Foundation (NSF), was held during 17-2134

May 2021. This event brought together experts in various disciplines of the space sci-35

ences (such as solar physics and aeronomy, planetary and exoplanetary sciences, geol-36

ogy, astrobiology and astronomy) and industry to leverage the advancements in statis-37

tics, data science, methods of artificial intelligence (AI) and information theory to im-38

prove analytic models and their predictive capabilities utilizing the enormous data in these39

fields.40

This multidisciplinary conference provided a vibrant forum for senior scientists and41

industry professionals, early career researchers and students to present their latest re-42

sults using a wide variety of techniques and methods in advanced statistics, to enhance43

their knowledge in the recent trends in AI and to participate in a platform for future col-44

laborations. The conference covered a breadth of topics, such as advanced statistical meth-45

ods, deep learning and neural networks, time series analysis, Bayesian methods, feature46

identification and feature extraction, physics-based models combined with machine learn-47

ing techniques and surrogate models, space weather prediction and other domain top-48

ics where AI is applied, model validation and uncertainty quantification, turbulence and49

nonlinear dynamics in space plasma, physics informed neural networks, information the-50

ory and, data reconstruction and data assimilation.51

A summary of current efforts on applying ML methods in the field of space sciences52

in comparison with those efforts in other fields of natural sciences and recommendations53

for machine learning in planetary science to funding agencies and the planetary commu-54

nity can be found in Azari et al. (2021). Figure 1 of Azari et al. (2021) illustrated that55

heliophysics and space physics had the highest percentage of published works discussing56

machine learning in 2020, followed by astrophysics and Earth science. Azari et al. (2021)57

concluded with recommendations in the next decade for supporting a data-rich future58

for planetary science.59
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AI methods have already been applied in addressing various problems in the field60

solar-terrestrial physics since the 1990s (Newell et al., 1991; Lundstedt, 1992, 1996, 2006;61

Wintoft & Lundstedt, 1997; Wing et al., 2005). These included classifications of auro-62

ral particle precipitation, predictions of solar wind velocity, geomagnetic disturbances,63

and Kp. Information theory has proved useful in establishing linear and nonlinear re-64

lationships and causalities in the studies of solar and space physics (Wing et al., 2016,65

2018). Early attempts to apply ML techniques involve the forecast of geomagnetic in-66

dices (e.g Wu & Lundstedt, 1996; Wu & H. Lundstedt, 1997), of the relativistic electrons67

at geosynchronous orbits (e.g. Stringer et al., 1996), and of solar eruptions (Fozzard et68

al., 1988; Camporeale et al., 2019).69

The “International Workshop on Artificial Intelligence Applications in Solar-Terrestrial70

Physics” held in 1993 was one of the first of its kind which focused on “neural network71

applications of Multi-Layer-Error-Back-Propagation (MLBP) and Self-Organizing Map72

(SOM) neural nets and traditional expert systems and fuzzy expert systems” (http://73

www.lund.irf.se/HeliosHome/proceed.html). Unlike this and other conferences on74

machine learning (e.g. Camporeale & SOC-ML-Helio, 2020), the SSI virtual conference75

had an emphasis on understanding the physics and dynamics of systems while seeking76

accurate solutions using ML methods (“black box” versus “interpretable” models). Fur-77

thermore, this virtual conference highlighted the interdisciplinary nature of machine learn-78

ing applications in space sciences, the main theme of the conference. The research works79

presented revealed close collaborations among space science, statistics, computer science80

and AI, showcasing how these experts can collaborate to soundly improve their models81

and predictions.82

The virtual conference was hosted by Space Science Institute’s Center for Data Sci-83

ence (CDS) and served as an initiative to bring together domain experts in space sci-84

ences and highly skilled corporate talents sharing a common interest in data science and85

machine learning. CDS aims to inspire the scientific community to utilize key insights86

on emerging technologies, transforming this possibility into reality. Space Science Insti-87

tute hosted 219 registered participants from more than 25 countries over Zoom for this88

event. Participants did not volunteer their demographic data but based on 103 of the89

conference registrants for whom the conference organizers could reasonably determine90

their backgrounds, 32 were female, 43 were from underrepresented minorities, and 45 were91

early career (student to within 5 years of Ph.D. date). There were 79 oral and 28 e-poster92

presentations in addition to interactive sessions demonstrating data processing and ma-93

chine learning methods. The virtual conference featured 14 keynote speakers, 50% of whom94

were female and 5 were early career (within 5 years of earning their Ph.D.) scientists.95

Links to these presentations and the recordings are available at the conference website96

(http://spacescience.org/workshops/mlconference2021.php). Moreover, a collec-97

tion of the works presented at this virtual conference, along with new contributions from98

the broader scientific community in the form of original research articles, reviews/mini-99

reviews, brief reports and commentaries on the present scenario of AI applications in the100

space sciences, and scope of statistical methods and machine learning (ML) in the var-101

ious fields of space sciences are being compiled as a topical collection of Frontiers in As-102

tronomy and Space Sciences (https://www.frontiersin.org/research-topics/25408/).103

The highlight of the conference was the lively discussion sessions. The virtual con-104

ference designated 45 minutes each day for live discussion sessions to discuss AI and ML105

trends in specific fields of space science and to encourage cross-disciplinary approaches106

to problems in different fields. Discussions were distributed among different topics and107

centered on the applicability of Statistical Methods and ML in Magnetospheric Stud-108

ies, Astronomy, Heliophysics, Planetary Sciences and Exoplanets, and Aeronomy, Tur-109

bulence and Nonlinear Dynamics. Moreover, these sessions highlighted the importance110

and the impact of a few fundamental aspects in all the space science domains such as111

interpretability and explainability of ML models, reproducibility, and the need and avail-112
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ability of AI-ready data. These designated sessions addressed: the challenges of BIG DATA113

and small data sets; how to handle overfitting; uncertainties and gaps in the data sets114

and how they are incorporated into the models; supervised and unsupervised ML; how115

to compare models. These discussions defined and emphasized the necessity of “AI-ready”116

data in all the disciplines of space sciences and the participants shared information on117

the various data sets currently available and what are the steps to be taken to create bet-118

ter and more concise AI-ready data. We believe that these discussion sessions were par-119

ticularly helpful for the students, early career researchers and early ML practitioners who120

constituted a substantial fraction of the conference attendees because these sessions cov-121

ered links and access to a number of educational, software and data resources. The dis-122

cussions revealed the interdisciplinary nature of ML applications in space sciences and123

how this virtual conference presented itself as a platform for connecting the various com-124

ponents of this fast emerging, dynamical trend of AI applications.125

One of the most significant outcomes of this virtual conference is the multi-authored126

white paper on AI-readiness (Poduval et al., 2022) of the numerous space science data127

for AI/ML applications that is currently in preparation for submission to The National128

Academies of Science, Engineering, and Medicine’s Decadal Survey for Solar and Space129

Physics (Heliophysics) 2024-2033 (https://www.nationalacademies.org/our-work/130

decadal-survey-for-solar-and-space-physics-heliophysics-2024-2033).131

We conclude this brief report by emphasizing the emerging trends in ML applica-132

tions in the space sciences and how the scientific community is embracing these novel,133

powerful techniques for exploiting the enormous volume of spacecraft and ground-based134

data while exploring how to explain and interpret the ML methods more scientifically.135
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