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Abstract

We develop an agent-based model on a network meant to capture features unique to
COVID-19 spread through a small residential college. We find that a safe reopening
requires strong policy from administrators combined with cautious behavior from
students. Strong policy includes weekly screening tests with quick turnaround and
halving the campus population. Cautious behavior from students means wearing
facemasks, socializing less, and showing up for COVID-19 testing. We also find that
comprehensive testing and facemasks are the most effective single interventions,
building closures can lead to infection spikes in other areas depending on student
behavior, and faster return of test results significantly reduces total infections.

1 Introduction

Amid Fall 2020 of the COVID-19 pandemic, universities rolled out a variety of
interventions in hopes of safely offering in-person instruction [1]. Wrighton and
Lawrence argued that “best practices” should be followed, which include: testing,
quarantine, contact tracing, facemask usage, and dedensification [2]. While colleges in
some parts of the world successfully opened [3], the interventions utilized in the United
States were largely untested. A prominent example was the pivot by the University of
North Carolina at Chapel Hill to remote instruction after an “untenable” COVID-19
outbreak occurred during the first week of instruction [4]. Other major universities
subsequently followed suit in response to similar infection spikes upon reopening [5, 6].
In light of this uncertainty, simulation evidence may help inform policy and guide
student behavior.

Some models addressed COVID-19 spread on college campuses [7—12]. We discuss
these in more detail in Section 1.4, but note that their primary focus was medium-sized
colleges. Given that there are more than 500 colleges in the United States with a
student body of 4,000 or less that, in aggregate, serve over a million students, it seems
important to specifically address this setting. We develop an agent-based model on a
network to simulate COVID-19 spread through a small residential college. The smaller
population and campus allow us to make a relatively detailed model. Beyond colleges,
we believe that adaptations of our approach could be useful for modeling the
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effectiveness of interventions in other small, closed-community residential settings such
as military bases, single-industry towns, and retirement communities [13, 14].

1.1 Base Assumption

Our model contains 2,000 students and 380 faculty. To standardize results, we start
each trial with 10 students initially exposed to COVID-19. These agents progress to

either the asymptomatic or symptomatic state during which they possibly infect others.

The main statistic is the total number of resulting infections after 100 days. Since we
seek to compare the effectiveness of different interventions, we require a base model to
compare against. There is no data for what would happen during a full semester of
regular instruction with unmitigated COVID-19 spread. Our analysis starts with the
following assumption.

Base Assumption Over 80% of the population of a small, residential college would
become infected with COVID-19 during a semester with no intervention.

We stress that our Base Assumption is in the hypothetical situation that no policy
and behavior changes occur in response to rising infection counts. Even when a large
portion of the population is infected, symptomatic and asymptomatic individuals
continue their typical routines: attending class, socializing, and using common spaces on
campus as usual. Facemasks are never worn. The administration enacts no mitigating
strategies such as: class cancellations, building closures, infection testing and
quarantine, contact tracing, and social distancing measures. Complete details about the
base model are in Section 2.

We believe that 80% total infections after a semester is conservative given that the
population lacks innate antibodies against COVID-19 [15] and the average reproduction
number Ry with no intervention is quite high [16-18] in some settings. Additionally
college settings are believed to be worse for COVID-19 spread [19] than in larger
communities with less overlap between residents such as cities. Note that a related
study [10] predicted that 100% of the campus population would become infected about
halfway into a semester with no intervention. More discussion of sensitivity to this
choice and difficulties concerning Ry is in Section 4.

1.2 Findings

We use the scenario in the Base Assumption as a control against which we measure the
effectiveness of various interventions. Our main findings are given below and discussed
further in Section 3.

Figure 1. (A) The base model with single interventions applied. Note that the
reduction in infections from “fewer students” is smaller than it appears since there are
50% fewer people on campus in that intervention. (B) The impact of testing latency on
a campus with 25% fewer students and testing and quarantine in effect.

Result 1 Comprehensive testing and facemask compliance are the most effective single
interventions.

Weekly COVID-19 screening of 100% of students with a two-day wait for test results
brings total infections from around 1,900 to 400 (see Fig 1 A). Alternatively, perfect
facemask usage in public and social settings drops total infections below 300.

Result 2 Building closures may increase total infections.
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Closing the gym, library, and dining hall gives extra unstructured time to students. We
find that if students are strict about passing that extra time alone, total infections
decrease. However, if students spend half of that time socializing, we see a dramatic
spike; nearly every agent in our model becomes infected (see Fig 2).

Figure 2. Total infections by room type in the base model and with the gym, library,
and dining hall closed. In an “austere closure”, students spend any extra free time
alone. In a “social closure”, students spend half of their free time socializing.

Result 3 Shortening time to receive test results reduces total infections.

We consider a campus at 75% density with 50% of students screened weekly for
COVID-19 in addition to walk-in testing. No other interventions occur. We then vary
the latency period to receive test results from four days down to one. Our model with a
four-day latency period results in on average 394 total infections, compared to 259 with
a one-day period (see Fig 1 B).

Result 4 Strong, unified administrative policy and student adherence result in the best
outcomes.

A novel part of our intervention design is that we separate student behavior from
administrative policy. Specifically, students control facemask usage in social settings,
compliance with screening tests, and time spent socializing. Administrators control the
number of screening tests, testing latency, building closures, and the number of students
allowed back to campus. We consider student adherence and administrative policy at
low, medium, and high intensities. A high-intensity administrative policy by itself keeps
total infections below 10 with medium levels of student adherence. However, with less
intense policy, we find that student adherence plays a crucial role. For example, total
infections drop from 269 to 41 as student adherence increases with the low-intensity
policy in effect. It is also worth noting that, under a high-intensity administrative
policy, there is less variability as a result of student behavior. See Fig 3.

Figure 3. The total infection counts colored by size for different policy and adherence
intensities.

1.3 Key Takeaways

We outline some possible takeaways for administrators and students.

Administrators

Our results suggest that strong administrative policy is needed, particularly regarding
testing. Concerned administrators (and students) should check Table 5 to see which
intensity their reopening plan most aligns with. We emphasize that the low-intensity
policy in our model tests 25% of the student body weekly (Result 4). Without testing
at or above this level, our results suggest that it will be hard to control COVID-19
spread. Test latency appears to make a difference as well; we advise that lowering the
time to return results be a priority (Result 3). Lastly, we demonstrate that building
closures do not necessarily reduce total infections (Result 2). Since social distancing can
be more easily controlled in campus buildings, administrators may consider keeping
buildings open. At the very least, students displaced by building closures should be
encouraged to spend more time in isolation.
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Students

A serious and disciplined approach is needed from students (and administrators) to keep
infections down (Result 4). We recommend that students wear facemasks in private
settings, such as socializing, large gatherings, and common space in dorms (Result 1).
In light of the increased unstructured time resulting from building closures, it is
especially important to spend more time alone rather than socializing (Result 2). Given
the impact of testing, students should cooperate fully with any required screening
testing (Result 1).

1.4 Related work

We know of five projects that specifically addressed COVID-19 spread on a college
campus. Gressman and Peck [10] used the University of Pennsylvania as a template to
simulate different intervention strategies in an urban university with 22,500 students.
This complemented recent work of Weeden and Cornwell [9] that studied how the degree
of separation between students at Cornell University changes when some courses are
switched to a remote or hybrid format. Around the same time [10] was released, Frazier
et al. posted a preprint [7] and, later, an addendum [8] that modeled how testing and
quarantine could mitigate the spread of COVID-19 through Cornell’s campus. Recently,
Paltiel, Zheng, and Walensky studied the effectiveness of testing in a college with 5,000
students [11]. Durrett et. al developed a mathematical model that rigorously
demonstrated the benefits of limiting double occupancy dorms and of capping course
enrollments [12].

To briefly summarize, [9] showed that a typical student directly interacts with about
4% of the 22,000 other students from common courses. However, the reach of a student
jumps to 87% when considering two degrees of separation, and to 98% with three
degrees. The authors further observed that removing large classes with an enrollment
over 100 fails to disconnect the network and such interventions only increase the average
graph distance between students by about 0.50. For this reason, Weeden and Cornwell
recommended taking further action than simply eliminating large courses. The authors
also considered liberal arts colleges by restricting to the 4,500 or so students in
Cornell’s College of Arts and Sciences. They observed that students in a liberal arts
college are connected via short path lengths, but also through multiple paths. They
inferred that this makes ripe social conditions for disease spread.

Frazier et al. also studied the Cornell student body, but rather than considering the
network structure, they assumed a perfectly mixed population. They performed an
SEIR model primarily taking into account the age of those infected, severity of

symptoms, and amount of intervention through testing, quarantine, and contact tracing.

They found that such interventions can suppress, but not completely contain the spread
of COVID-19 during a semester. Despite fairly heavy intervention, asymptomatic
spread results in 1,250 infections in their model. A surprising conclusion drawn from the
project was that reopening in the Fall may be safer than not reopening. The reason
being that many students have commitments and social ties, and would likely return to
live in Ithaca during the Fall semester. No campus engagement would increase the
amount of unregulated off-campus socializing and ultimately lead to more total cases
than in reopening scenarios. theorem 2 demonstrates a similar phenomenon. We further
remark that one shortcoming of the approach from Frazier et al. is that the perfect
mixing assumption smooths over much of the structure inherent to a campus.

Paltiel, Zheng, and Walensky examined the epidemic outcomes and costs with
varying test attributes and epidemic scenarios. They concluded that screening every two
days with rapid, inexpensive tests results in a controlled number of infections with
relatively low total cost. The authors acknowledged the logistical and financial
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challenges for university administrators even in the proposed testing scenario. The
study did not consider other administrative strategies in combination with testing to
restrict the spread of infection.

Gressman and Peck built an agent-based model that incorporated more features of
college life. Roughly speaking, on a given day in the model, an agent has approximately
20 contacts selected at random from different groups. These groups included residential,
close academic, classroom contact, broad social, etc., and contact came with varying
likelihoods of passing an infection. Their results suggested that large scale testing,
contact tracing, and moving large classes online were the most impactful interventions.
They further found that testing specificity is crucial for managing the number of people
in quarantine. The authors observed that their model has limited applicability to small
colleges [10, p. 16]. The important difference, in their view, is that students in a small
college have fewer, but closer contacts compared to those at a large university. However,
they pointed out that, without additional data, the different likelihood of infection may
be a “difficult feature to reasonably quantify or calibrate.”

One way we specifically account for social interactions is the introduction of “social
spaces” into the network. Each student frequents two social spaces at which they
contact a subset of roughly 20 other students. This generates two internally correlated,
but externally independent friend groups. More broadly, we draw inspiration from
larger agent-based models in which agents diffuse through a to-scale environment
according to simple routines [20,21]. We set the physical network and agent schedules
as realistically as possible, then let the academic, residential, and social interactions
tune to these choices. This philosophy distinguishes our approach from the models for
COVID-19 spread in colleges mentioned above.

2 Methods

In this section, we describe the network, agent behavior, and infection dynamics in our
base model for a campus with no interventions in place. We conclude by describing
different interventions.

Buildings are star graphs whose cores represent shared spaces and leaves represent
rooms or sections of the building. Each agent is assigned a fixed schedule that
determines their motion through the network which updates hourly (see Table 1).
Infection dynamics follow an SEIR model (see (1)) where agents transition from the
susceptible to the exposed state with probability proportional to the number of nearby
infected agents scaled by the riskiness and size of the space (see (2)). We set the
parameters (see the Appendix) to reflect the unique features of a small college
campus—small classes; tightly knit, but diverse social groups; a primary dining hall,
gym, and library—as well as our present understanding of the biology of COVID-19. We
then overlay various interventions on the base model and measure their effectiveness.

2.1 Space

Many of our decisions regarding our network draw inspiration from the campuses of
Bard College and Grinnell College which exemplify small, relatively isolated, residential
colleges. The basic building blocks are star graphs representing dorms, academic
buildings, dining halls, gyms, social spaces, offices, and off-campus. The core of each
star represents shared space in the building such as hallways, bathrooms, lobbies, etc.
The leaves represent either specific rooms or sections of the building. See Table 2 for
specifics. The core of each star connects to the transit vertex which represents the
connective space between buildings. Note that the graph diameter is 4. See Fig 4 for a
schematic.
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Table 1. Sample schedules for an on-campus student, an off-campus student, and a
faculty member. Each row is the time of day.

On-Campus Off-Campus Faculty

A B W A B A B

8 D D D
9 DH D DH oCc 0OC oC 0OC

10 ¢, DH D C; L O O Key

11 C S L C S O O D Dorm

12 DH C; S DH (4 DH O DH Dining Hall
13 S C, DH L (4 O DH C;  ith class

14 Cy; DH S C; DH C1 Oy S Social Space
15 C, G G Co G ¢, G L Library

16 Cs D L Cs L O 0] G Gym

17 Cs S L C3 S O O OC Off Campus
18 DH D D oC 0OcC oCc 0C 0 Office

19 L DH DH

20 S D S

21 D D S

22 D D D

Table 2. At the top, counts for the number of single and double dorm rooms, the
number of seats in classrooms. In the middle, the number of classrooms in each type of
building. On the bottom, the number of each type of building.

Single Double Smls Mds Lrgs Seats Capacity

Small Dorm 5 5 15
Medium Dorm 15 15 45
Large Dorm 25 25 75
Small Clsrm 10 15
Medium Clsrm 15 20
Large Clsrm 20 30
Small Acad 3 0 0 30 45
Medium Acad 2 3 0 65 90
Large Acad 5 3 3 155 225
Dorm Bldgs 25 10 10 1575
STEM Bldgs 2 2 3 655 945
Humanities Bldgs 1 2 1 315 450
Arts Bldgs 2 1 1 280 405

Figure 4. Schematic of the network.

Dorms, Classrooms, Academic Buildings

Are either small, medium, or large depending on the number of single and double rooms
(Dorms), the number of seats (Classrooms), or the number of classroom sizes (Academic
Buildings).
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Dining Hall, Gym, Library, Faculty Offices

Are modeled by star graphs with six leaves. The leaves represent sections of the
buildings. Our network has one gym, one library, one dining hall, and three faculty
offices.

Social Spaces

Are leaves of a star graph. The spaces represent social gatherings (study sessions, work
groups, parties, casual social groups) that occur at various locations on campus. There
are 100 such leaves. The core has no meaning, but is included for the sake of
consistency in the underlying network.

Transit Space

Is a single vertex that represents the paths, halls, and rooms that connect the other
spaces.

Off Campus

Is a single vertex that represents all space off campus.

2.2 Agent Behavior

In this section, we describe the types of agents, the way they are assigned schedules,
and how they move through the network.

Agent types

There are n = 2,380 total agents in the model; with n. = 1,500 on-campus students,
n, = 500 off-campus students, and ny = 380 faculties. Agents are assigned a subtype
that designates their division among STEM, Humanities, and Arts. We write n’ with
i=1,2,3 and * € {c,0, f} to denote the counts of STEM (i = 1), Humanities (i = 2),
and Arts (i = 3) agents. We assume that STEM students are 50% of the student body,
Humanities students are 25%, and Art students are 25%. Note that the division
designations are interchangeable so these proportions represent whatever specialty a
small college may have.

Agent Schedules

Days are classified as either A, B, W, or S. A and B days are distinguished by
alternating class schedules. W days represent weekends (Friday and Saturday) on which
no instruction occurs and students socialize. To introduce some space into schedules, we
include Sundays (S) on which students either stay in their dorms or off-campus all day.
A day is divided into 14 one-hour increments spanning from 8:00 — 22:00 (the time N:00
will be abbreviated by N). Classes take place in two-hour increments starting at 10, 12,
14, and 16.

We write each seat in a class on a given day and time as a 4-tuple (d,t,r, c) where
d e {A, B}, t € {10,12,14,16}, r is a classroom, and ¢ is a chair in 7 (so 1 < ¢ < the
enrollment capacity of room r). Let C be the set of all distinct seats (d,t,r,c). Let Cy
denote the set of all tuples whose building is designated a STEM building, and similarly
for Co and C3 for Humanities and Arts, respectively. Let C = C; U Cs U C3. To randomly
assign classes, students with subtype ¢, one after the other, sample two elements
uniformly at random from C; and then two elements uniformly at random from C
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without replacement. If two selections conflict in time, classrooms are resampled until 240

there are no conflicts. 241

Once an agent obtains a class schedule, the remaining time slots are filled in 22
according to the following rules. For each building in the schedule that is not a dorm or 2
academic building, the agent is assigned to a uniformly sampled leaf, which they 244
exclusively visit. The one exception concerns social spaces. For these, students are 25
assigned a leaf for class days, and a leaf for the weekend. Since there are 100 social 26
space leaves, on average 20 students are assigned to each leaf. Being assigned to two 247
leaves makes it so agents interact with two social groups that are correlated within, but s
uncorrelated to other groups. 249

For on-campus students, each day begins and ends in their assigned dorm room at 8 2s
and 22. Up to two students may be assigned to a given dorm room, which corresponds 2
to having a roommate. Each day type has one visit to the dining hall in the time slots 2
8-11, 12-15, 17-20. The afternoon slot 12-15 is skipped if the student has classes during  2s3
that time. Lastly, each day type has a gym visit with probability g. The remaining slots s
are assigned to uniformly sampled social spaces with probability s, a library leaf with 255
probability ¢, or the agent’s assigned dorm room with probability 1 — s — £. 256

For off-campus students, A and B days begin and end at the Off Campus vertex at 25
times 8, 9 and 18-22. On W and S days the student remains at the Off Campus vertex 2ss
all day. On A and B days, an off-campus student has one visit to the dining hall in the 250
time slots 12-15, if the class schedule allows it. Each day type contains a gym visit with 20
probability g at a randomly chosen available time slot. The remaining slots are spent in 2

a social space with probability s, at the library with probability ¢, and otherwise 262
off-campus. 263

For faculty, A and B days begin and end with the agent at the Off Campus vertex 2
at times 8, 9 and 18-22. On W and S days the faculty remains at the Off Campus 265
vertex all day. If possible, the agent goes to the faculty leaf of the dining hall at a 266
uniformly chosen time from 11-13. The remaining slots are spent in the appropriate 267
Division Office vertex. 268
Agent Paths 269

Once an agent is assigned a schedule it remains to define the path the agent follows to 2w
move between each location. Suppose an agent is moving from a leaf of the core vertex o
v to a leaf of the core vertex u. They do so by moving to v, to the transit vertex, to u, o
and then to the target leaf of u. We assume that transit occurs at the end of the hour 23
and interacts with any other agents that move through the spaces u, the transit vertex, 2

and v at the end of the same hour. 215
2.3 Infection spread 276
Agent States 217
Agents are in states S, E, I, "™, I° and R corresponding to Susceptible, Exposed, 218
Infected Asymptomatic, Infected Mildly Symptomatic, Infected Extremely Symptomatic, 2
and Recovered. Agents transition through the states in the following manner: 280

a

m

L — T
0

We let I9(d,t) denote the number of agents in state I® at site v at time (d,t) and 2
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similarly for the other states. Describing how and when agents transition from state S to
state E is the subject of the next section. The other transitions are simple to describe:

e Agents stay in state E for Ty = 2 days. After which, they transition to state I®.

e Each agent in state I* transitions to state R after T« = 10 days (from the day of
infection) with probability a. Otherwise, after T}. = 2 days the agent transitions
to state I¢ with probability e and to state I"™ with probability 1 — (a + €).

e Fach agent in state I¢ transitions to state R after Tje = 10 days. However, after
T}. = 5 days the agent spends the subsequent time in their dorm room. This
represents a student becoming “bed-ridden,” i.e., too sick to leave their room.

e Agents in state I transition to state R after Trm = 10 days.

The base probability of infection
The vertex v at time (d, t) has infection probability

Ie(d,t) + I (d, t) + 0.512(d, t)p
v

pv(dv t) =T Cv

(2)
The parameter C,, is the capacity of v and r, € {0,1,2,3} is the risk multiplier for
infection spread in that space. Each of the S;(v) susceptible agents at v at time ¢
independently enters state F with the probability at (2). Note that we set the
infectiousness of an agent in state I to half that of an agent in the other infected
states [22]. The constant p is the tuning parameter that allows us to control global
infectiousness.

The risk and capacity parameters

The parameter r, is chosen based on time spent, the proximity of agents in the space,
and the typical amount of respiration—i.e. time spent talking aloud or exercising—in a
given space. For example, 7, is higher in the gym compared to the library. We set C,
equal to ten times the core capacity for buildings with known capacities in advance
(dorms and instructional buildings). The factor of ten is to dilute the number of people
in the core at a given time (otherwise all of the agents would simultaneously be in that
location). Ten is chosen since a passing time between classes is about that duration in
minutes. The capacities for the dining hall, library, gym, and social spaces are set
empirically to match the typical occupancy of the building. See Table 3 for all of the C,
and r, values.

Exceptions

Two exceptional spaces, where the infection dynamics are not exclusively governed by
(2), are off-campus and large gatherings. Upon leaving the off-campus vertex at t = 8,
each agent in state S transitions to state E with probability o. For agents returning
from off-campus, we choose o = .125/(n, 4+ nys) so that, on average, one off campus
agent becomes infected every 8 class days (two weeks). For large gatherings, half of the
student agents (both on- and off-campus) are denoted as “social.” We simulate large
informal gatherings (e.g., parties or organized social events) by drawing three random
subsets G1, G4, G3 of agents designated as social at the end of each week. Each G; has
size uniformly and independently sampled from [20,60]. The G; are sampled
independently and are not necessarily disjoint. Each susceptible agent at a large
gathering becomes infected according to (2) with r, = 3 and C, = 40[|G;|/40], i.e.,
C, =40 if |G;] <40, and C, = 80 if |G;| > 40.
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Table 3. The core and leaf capacity and risk multiplier for different buildings. The
quantity = is the number of people assigned to that space.

Core Leaf

Space Cy Ty Cy Ty
Transit Space 100n, 1

Dining Hall 650 1 100 2
Faculty Dining Leaf 20 2
Library 10 - 300 1 50 2
Gym 10 - 60 3 10 3
STEM Office 10-6-50 1 50 2
Hum/Art Office 10-6-25 1 20 2
Social Space 10 3
Large Gatherings 40[z/40] 3

Small Acad 10 - 45 1

Medium Acad 10-90 1

Large Acad 10 - 225 1

Small Clsrm 15 2
Medium Clsrm 20 2
Large Clsrm 30 2
Single Dorm 1 3
Double Dorm 2 3
Small Dorm 10-15 2 x 3
Medium Dorm 10 - 45 2 T 3
Large Dorm 10-75 2 x 3

2.4 Contact Structure

Section 2.1 describes the campus network. Agents move through this network by
following hourly schedules generated according to the specification in Section 2.2. We
then overlay COVID-19 spread according to the rules in Section 2.3. The likelihood of
infection spread is given at (2), and ultimately governed by the risk factor and capacity
of each site in the network. We measure the aggregate exposure between agents by
summing the risk scaled by the capacity over all of an agents interactions during a
simulated week in the model.

More precisely, given an agent i, we generate a vector € = (e; 1,...,€; y) where

-
€i; = Z 1{agent j also at v on day d at time t}C—v
(d,t,v)€S; v

with S; the set of vertices that ¢ visits over the course of one week. So we sum the risk
factor scaled by the capacity of all of the vertices that ¢ interacts with j at. We call the
vector €; the exposure profile of agent ¢ with the individual entries e; ; the exposure level
of agent ¢ to agent j. Note that e; ; = e;; be symmetry of the model.

To generate Figure 5 we sampled the exposure profiles of 100 on-campus, 100
off-campus, and 100 faculty agents. The exposure levels were then arranged in
decreasing order. For on-campus students with a roommate we throw out the first entry
since it is on a different order than the others. This represents the feature of our model
that roommates are most likely to infect one another. We then plotted a curve
representing a 95% confidence interval around the mean level of each entry for each
agent type. We observe that agents have high exposure levels with ten or so other
agents and the exposure level drops roughly linearly until about 50 to 75 agents.
Subsequently, the exposure level is low with the remaining 2300 agents.
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Figure 5. Exposure profiles for 100 agents are arranged in decreasing order then
averaged. A 95% confidence interval is included around the curve. Panel A shows the
exposure profile for off-campus students. The larger panel of Panel B shows the
exposure profile for on-campus students with the maximum entry (corresponding to a
dorm roommate) removed. The smaller subpanel in Panel B shows the exposure profile
when the roommate is included. Panel C shows the ordered average exposure profile for
100 faculty.

This data suggests that the contact structure of our network is such that each
individual has ten or so close contact with whom they are likely to spread infection.
These high exposure levels are coming from socializing and faculty interactions in their
departmental buildings. Agents with medium exposure levels (in the interval [25,75])
come from classroom contact and exposure in dorm common spaces. The rest of the
campus population has small exposure levels. This heterogeneity of exposure profiles
suggests that our model is more nuanced than commonly used homogeneously mixing
SEIR models in which all exposure levels would be equal.

2.5 Types of intervention

We consider a variety of interventions that broadly include: facemasks,
testing/quarantine, building closures, less socializing, and dedensification, which we
describe in more detail below.

Facemasks

We assume that agents never wear facemasks at dorm and dining hall leaves. There is
partial compliance at dorm cores, social space leaves, and large gatherings. All other
vertices have perfect compliance. Let f € {0.50,1} be the proportion of compliant
agents. We implement this intervention by randomly selecting the corresponding
percentage of agents who always wear a facemask at partial compliance vertices. We
assume that wearing a mask reduces an agent’s infectiviousness by a factor of m = 0.5
(which is the conservative estimate from [22] and in line with other estimates

from [23-27]). So, an infected agent wearing a mask is a factor of m less infectious, and
a susceptible agent wearing a mask is a factor of m’ = 0.75 less likely to become infected
at each time location. That facemasks protect the wearer (although to a lesser extent
than the reduction in infectiousness from an infected agent wearing a mask) from
inhaling the virus is supported by evidence from [23,27]. For example, a susceptible
person wearing a mask in room v at time (d,t) will become infected with probability

,fnﬂ4@(d7t)%flb(t,d)p

/ —
p'u(d7 t) =m Cv

3)
rather than (2), where M, (d,t) = M¢(d,t) + M (d,t) + 0.50M2(d, t) are the number of
agents in the infected state wearing a mask at v at time (d,t) and

L,(d,t) = IS(t) + I'"(d,t) + 0.501%(d, t) are (weighted by infectiousness) number of
infected agents in the infected state not wearing a mask at v at time (d, t).

Testing and Quarantine

In line with [10], we assume a false positive rate of F'P = 0.001 for agents tested while
in the susceptible or exposed state, and a false negative rate of F'IN = 0.03 for agents
tested while in an infected state.
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Screening: We assume that P € {0.25,0.50, 1} of the student body is screened per
week. Only students are screened, and the screening is applied throughout the entire
student body on a repeating cycle. The latency period L € {1,2,3,4} is the number of
days to receive results. After the latency period, the infected agents from the batch who
test positive are placed in the quarantine state for 14 days, after which they transition
to the recovered or susceptible state depending on whether or not the test was correct.
We consider ¢ € {0.80,0.90, 1} the level of compliance for agents in state I* to get
screened. This means that each time an agent in the S, E, or I* state is selected for
screening, the agent skips taking the test with probability 1 — .

Walk-ins: For each day following the first that an agent enters state I¢ or I, that
agent opts to be tested with probabilities g. = 0.95 and ¢,,, = 0.70. After this, the agent
enters the quarantine state with probability 1 — F'N depending on if they are in state
I™ I¢ or I*. For example, the probability an agent in state I¢ enters the quarantined
state k days after entering state I¢ is (1 — FN)(1 — g.)*~'g.. The probability g.
represents an agent ignoring symptoms on a given day and waiting to take the test. We
assume that walk-ins immediately begin quarantine, but re-enter the campus if they
receive a false negative result.

Closures

We assume that buildings in B C {L,G, DH, O, LG} are closed. If the library (L), gym
(G), or dining hall (DH) are closed, time spent at the space is replaced in a student’s
schedule with time in the student’s dorm room or off-campus, depending on the type of
student, with probability h € {0.50,0.75,1}. Otherwise, the agent goes to the social
space. When facing a building closure, faculties spend that time in their office instead.
When faculty offices (O) are closed, no infection occurs there, and we assume faculty
only spend time in the classes they teach. When large gatherings (LG) are removed, we
turn off the large gathering component.

Dedensification

For medium dedensification we remove D = 650 agents: 250 on-campus, and 250
off-campus students, as well as 150 faculty at random. For high dedensification we
remove 1300 agents: 500 on-campus students, 500 off-campus students, and 300 faculty
from the campus. The first students to be removed are those in double rooms.

A few technicalities emerge with dedensification in effect. Courses in either degree of
dedensification are assumed to be hybrid. All classes continue to meet, but the removed
students attend class remotely. We assume that large gatherings do not occur whenever
dedensification is in place. Lastly, a dedensified campus will naturally have fewer
initially infected agents. We account for this by starting with i € {5,7,10} on-campus
students infected, with i chosen to be approximately 0.05% of the students and faculty
still utilizing the campus. When D = 650, we assume that i = 7, and when D = 1300 we
assume that i = 5.

Less socializing

We replace time in social spaces with time spent at the student’s dorm room or the
off-campus vertex depending on the type of student. This replacement is done to each
occurrence of social space in an agent’s schedule with probability s € {0,0.25,0.75}.

At this point we have defined all of the parameters in our model. Table 4
summarizes these choices.
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Table 4. Parameters

Parameter Value Description Ref
Base Model

(ne;nl,n2,m2) (15005 750, 375, 375)  on-campus student counts by division [28]
(no;nl,m2,n3)  (500; 250, 125, 125)  off-campus student counts by division [28]
(ng;ny,n3,n3)  (380; 190, 95, 95) faculty counts by division [28,29]
(g,8,0) (0.15, 0.15, 0.15) gym, social, and library probabilities [30,31]
0 0.125/(ne + ny) off-campus infection probability

Tg 2 days in the exposed state [32]

a 0.15 probability of remaining asymptomatic [33]

e 0.50 probability of I* — I°¢ [34]
Tra 10 days in I if asymptomatic

T, 2 days in I if symptomatic [35]
Tre 10 days in /¢ if never bid-ridden [16]
Tt 5 days in I¢ if bed-ridden [16]
Trm 10 days in I™ [36]

P 1.25 tuning parameter

FP 0.001 false positive rate [10]
FN 0.03 false negative rate [10]
Interventions

f 0, 0.50, 1 facemask compliance

m 0.50 facemask reduced infectiousness [22-27]
m’ 0.75 facemask protection from infection [22-27]
P 0.20, 0.50, 1 weekly percentage of students screened

L 1,2,3,4 latency period to receive results

c 0.80, 0.90, 1 asymptomatic screening compliance

Qe 0.95 probability of symptomatic walk-in test

Qm 0.70 probability of mild walk-in test

rpr 0.001 false positive rate [10]
FN 0.03 false negative rate [10]

B L,G,DH,O, LG building closures [37]

b 0.50, 0.75, 1 prob. of dorm/off-campus from bldg. closure

D 0, 650, 1300 dedensification amount [38]

5 0, 0.25, 0.75 reduction in socializing

i 5, 7,10 initial infected cases with dedensification

3

Results

There are over a hundred thousand distinct combinations of the five single interventions
from Section 2.5. Therefore, some care is required to decide what combinations provide

useful insights. To this end, we reduce down to 20 strategies and focus on total

infections. This is the total number of agents ever in the exposed state after running the
model for 100 days with i on-campus students initially in the exposed state. The value
of i € {5,7,10} depends on the amount of dedensification and is not counted towards
total infections. We perform 40 independent simulation trials for each model (with new
schedules in each trial). Each trial takes a little over a minute to simulate on a home
computer. It takes about a day on a single machine to run all of the interventions
described below.
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Table 5. The intervention parameter choices corresponding to different intensities for
administrative policy (left) and student adherence (right). We describe in words
Medium Policy and Medium Student Adherence as an example. Medium Policy screens
P = 0.50 of the student population weekly with a 3-day latency £. D = 650 students
are removed from the population. The gym, library, dining hall, and large gatherings
are closed. Medium student adherence has half of students wearing facemasks while
socializing f = 0.50. A ¢ = 0.90 proportion of students comply with screening tests.
Students spend free time from building closures in their dorm room with probability

h = 0.75 for each occurrence in their schedule. Additionally, students socialize less by a
factor of [ = 0.25.

Policy Adherence
P L D B f c h 5
Low 025 4 0 {G, L} 0 0.80 0.50 0
Medium 050 3 650 {G,L,DH,LG} 0.50 090 0.75 0.25
High 0.75 2 1300 {G,L,DH,O,LG} 1 1 1 0.75

Marginals

We apply single interventions at high-intensity to the base model. Specifically, we
consider: no intervention, facemasks with f = 1, high dedensification with D = 1300,
less socializing with s = 0.75, and testing with P = 1. The results are shown in Fig 1, 6,
and 2.

Building closures

We close the gym, libarary, and dining hall with h = 0.50 and h = 1. No other
interventions are applied. See Fig 2.

Test latency

We fix the base model with medium dedensification (D = 650) and testing with

P = 0.50. This means that there are about 25% fewer students on campus, of whom
50% are screened weekly. We then consider latency £ € {1,2,3,4}. The results are
shown in Fig 1.

Policy and Adherence

To address the problem of choosing which interventions to run among the many we
could apply, we classify the single interventions as either an administrative policy, or a
student adherence behavior. We group interventions by type and set each to one of
three different intensity levels. This gives nine combined strategies, which we hope offer
a practical perspective for students and administrators attempting to manage the risk of
COVID-19 spread. The specific parameters used for low, medium, and high-intensity
policy/adherence are given in Table 5. Administrators control the amount of testing P,
test latency £, the amount of dedensification D, and building closures B. Students
control facemask adherence f, testing compliance ¢, how they spend time that would
normally be spent in a closed building b, and how much they reduce socializing s. The
results are shown in Fig 3, and 7.

Recall, that our primary findings are:

1. Comprehensive testing and facemask compliance are the most effective single
interventions.
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2. Building closures may increase total infections.
3. Shortening time to receive test results reduces total infections.

4. Strong, unified administrative policy and student adherence result in the best
outcomes.

We now explain how these experiments support these results.

Base Model

In our base model, we set the tuning parameter p = 1.25. This consistently leads to a
large infection that reaches on average 1988 agents (see Fig 1). Fig 6 displays the
evolution of the infection over time. The peak typically occurs between 40 and 50 days
into the semester. Fig 6 A shows two standard deviations of data. The breakdown of
infection counts by building type are given in Fig 2. Dorms, classrooms, social spaces,
and the dining hall make up the majority of cases. Large gatherings and the gym are
next.

Figure 6. Agent states over 100 days in the base model. Panel A shows a 95%
confidence around the mean behavior from 40 trials. Panel B shows the number of
active infections over time for each trial.

Result 1

Fig 1 shows how weekly testing of 100% of students with latency at £ = 2, consistently
reduces infections below 400. With facemask usage, total infections stay around 300
(Fig 1). Note that Fig 1 is somewhat misleading in its depiction of the effectiveness of
high dedensification (the “fewer students” box), because there are only half as many
agents present during that intervention.

Result 2

Fig 2 shows the vertices where infections occur in the base model alongside the effects of
closing the gym, library, and dining hall. With closures, we consider the settings with
h=1and h = 0.50. We call the case h = 1 an “austere closure” since students are
electing to pass the time slots they would have been in a closed building at either their
dorm room or off-campus. With an austere closure, total infections drop from nearly
2000 to around 1700. The total number of infections in social spaces increases, since
these infections would normally occur earlier in a closed building, but instead occur
later in a social space. The case h = 0.50 is a “social closure” in which students go to
social spaces with probability 0.50. The last column of Fig 2 shows a significant increase
in infections. A huge increase in social space infections allows the infection to
proliferate. We note that the final counts are unrealistic, since it seems unlikely to us
that a college would remain open after so many students are infected. Nonetheless, the
mixed effect of closing buildings is illustrated by these counts.

Result 3

As L goes from 4 to 1 total infection counts drop from 394 on average to 259. See Fig 1
B. One interesting feature is that the variance increases as £ decreases. When £ = 4,
the standard deviation in total infections is 60; but when £ = 1, the standard deviation
is 87. The reason for the greater volatility is that shorter latency sometimes is very
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effective and completely controls the infection, and sometimes the infection spreads more
quickly than testing can control, resulting in many infections (relative to the mean).

Result 4

Fig 3 shows that the average number of total infections drops from 269 to 6 as policy
and adherence are strengthened. The standard deviation drops significantly as well. We
see that total infections are reasonably controlled by high-intensity policy (top row of
Fig 3). Fig 7 displays the coefficient of variation (standard deviation/mean). The figure
illustrates how low-intensity policy coupled with low adherence, even after normalizing
for the mean, has the highest variation. Additionally, Fig 7 shows that high-intensity
administrative policy can temper variation stemming from different levels of student
adherence.

Figure 7. The total number of cases (numeric) and the coefficient of variation
(standard deviation/mean; colorbars) for different policy and adherence intensity levels.

4 Discussion

4.1 The average reproduction number

The average reproduction number Ry is the mean number of direct infections originating
from a single infected agent in a completely susceptible population. This assumes no
preventative measures are being taken. Compare to R; which measures the mean
number of infections at a given point in time as interventions occur and immunity
develops in the population. The emerging consensus is that the value of Ry particular
to COVID-19 lies in the interval [2, 3] [18]. However, estimates vary [10,17], and as put
by [39] “estimates of Ry in one population do not necessarily translate to another.”

An issue with calculating Ry is that it is not intrinsic to the biology of the infection
(incubation period, infectiousness, recovery time, etc.), rather it is a phenomenological
output of the biology of the infection and contact structure of the society [17]. When
modeling Ry, it is commonly obtained under the assumption of perfect mixing i.e., a
given agent has equal likelihood of infecting each of the other agents in the model [40].
When aggregated over large communities on the scale of cities and states, this is widely
held to be a reasonable assumption. However, our model of a small population—which
has clustered, highly overlapping contact structure with sustained regular contact—is
quite heterogeneous. These features allow for more infection spread than in a perfectly
mixed network and consequently result in a larger Ry. We note that Gressman and
Peck use similar reasoning to justify their elevated choice of Ry = 3.8 [10]. The contact
structure in their university COVID-19 model is also heterogeneous.

A natural way to estimate Ry is to seed the student population with s on-campus
students in the exposed state. We then run the model and count the resulting number
of direct infections I(s) that arise from these s agents. A sample of Ry from this seed is
then computed via

Ro(s) = —— (4)

While Ry(1) corresponds to the definition of the average reproduction number (minus
the perfect mixing assumption), it is desirable to take s larger to smooth out the
randomness arising during the agent’s progression through the infection and from their
individual schedule.
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Such smoothing reveals a difficulty with measuring Ry in our model. Figure 8 shows

significant variation in the Ry defined in (4). Ro(1) ranges from 1 to 23 with mean 7.4.

The value of Ry(s) decreases quickly in s; it more than halves to have mean 3.33 at

s = 20 and the mean drops below 2.35 for s > 50. It is not obvious which value of s, if
any, gives the “correct” Ry. Note that this effect is a consequence of the contact
structure in the model discussed in Section 2.4 and also the small total population of or
model.

Figure 8. Empirical measurements of Ry(s) computed as in (4) with different initial
seed sizes s of the on-campus student population infected. The results from 100 runs
are shown for each Ry(s) .

The doubling time of the infection is another important statistic that is closely
associated with Ry [40]. This is the average number of days for the number of total
infections to double in an environment with no intervention. It is believed that the
doubling time for COVID-19 lies in between 2 days and 4 days [41,42]. In Figure 9 we
display the average number of days for total infections to double in our base model. The
average number of days to go from 20 infected agents to more than 40 is 2.5. The
doubling time on the next interval [40,80] is 3.43, [80,160] is 4.9, and [160, 320] is 6.7.
At this point 320/2380 = 13% of the population is infected. Thus, the depleting
population size is slowing infection spread. These doubling times are more compatible
with an Ry in [2, 3], which is consistent with taking s > 30 in (4).

Figure 9. The average number of days (y-axis) to go from x/2 to at least = infections.
We omit x = 20 since we initially seed 10 agents in the exposed state and there is
latency for infections to begin. We omit = > 320 since for such large x-value the
doubling time slows significantly from a herd-immunity effect.

In closing, the seed size and doubling time data suggests that measuring Ry in our
model is subjective. Measuring intervention effectiveness through total infections
against our Base Assumption is more transparent. Moreover, total infections are likely
of greater help to policy makers since that data is directly available (via testing) rather
than the inferred statistic Ry.

4.2 Sensitivity to global parameters

In our model, there are two events in which susceptible agents may become infected: (i)
interaction with an infected agent on campus and (ii) interaction with an infection
arising off-campus. All infections from (i) occur from face-to-face interaction at a site of
the network. Transmission is thus proportional to the risk of transmission at the vertex
times the number of infected agents at vertex v at a particular day and time, scaled via
a tuning parameter p (see (2)). In Figure 10 we vary p in {0.00,0.25,...,1.5}, given a
fixed level of student compliance (medium) and varying policy intensity. Under these
different scenarios, the relative effectiveness of the various policies remains roughly
proportional.

Figure 10. A sensitivity analysis of the tuning parameter, p. We fix the student
adherence to be medium, and show the total number of cases for each of the three
administrative policies.

The second pathway for infection is through exogenous infections arising off-campus.
The base model has on average one new off-campus infection every two weeks. This
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comes from each of the ng + n; agents coming and going from campus probability

0125
~ (no+ny)

of becoming infected on a given instruction day. In Figure 11 we test the effect of
multiplying o by a factor in {1, 2, 4,8} on total infections with medium student
adherence and varying policy intensity. We see that there is not much sensitivity to this
choice. Increasing o by a factor of 8 (so there are on average 4 exogenous infections per
week) does not significantly change the total number of new cases.

Figure 11. A sensitivity analysis of the off-campus multiplier. We fix the student
adherence to be medium, and show the total number of cases for each of the three
administrative policies.

Lastly, the single most effective intervention is facemask use (see Figure 1).
Accordingly, we explore sensitivity to that feature. Recall that the parameters m and m’
dictate the reductive factor for the probability of an infected facemask wearer infecting
others (m) and a susceptible wearer becoming infected (m’). See (3). We call the
quantity M =1 —m - mw’ the facemask effectiveness since it gives the reduction in
transmission probability when both parties (infected and susceptible) are wearing
facemasks. Our default choice is m = 0.5 and m’ = 0.75 which gives M = 0.625. This is
consistent with current estimates for facemask effectiveness [22-27]. Nonetheless, in
Figure 12 we show the resulting number of total infections when f =1 and

(m,m’) € {(0.5,0.75) £ n(0.1,0.1): n = —2,-1,0,1, 2},

so that M varies through the interval [0.335,0.835]. What we observe is in line with the
sensitivity analysis in Figure 10; facemask effectiveness has significant, yet predictable,
impact on the total number of infections.

Figure 12. A sensitivity analysis of facemask effectiveness. Displayed are total number
of infections after a semester with f =1 (perfect facemask compliance), but no other
intervention.

Future directions

A limitation of our model is that the way infections occur makes contact tracing
impractical to implement. Unlike [10], in which contacts are known, we assume perfect
mixing on the level of rooms, so it is not possible to infer who did the infecting. Staff
and visitors to campus are another noteworthy feature that our model is missing. It
would add more detail to include more variety in agent types and behavior and also
consider other interventions as well as combined strategies. Introducing a vaccine to the
infection dynamics could be useful.
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