
Modeling COVID-19 spread in small colleges

Riti Bahl1, Nicole Eikmeier2, Alexandra Fraser3, Matthew Junge4*, Felicia Keesing5,
Kukai Nakahata4, Lily Reeves6

1 Mathematics, Bard College, Annandale-on-Hudson, NY, USA
2 Computer Science, Grinnell College, Grinnell, IA, USA
3 Bard College, Annandale-on-Hudson, NY, USA
4 Mathematics, Baruch College, New York, NY, USA
5 Biology, Bard College, Annandale-on-Hudson, NY, USA
6 Applied Mathematics, Cornell University, Ithaca, NY, USA

* Matthew.Junge@baruch.cuny.edu

Abstract

We develop an agent-based model on a network meant to capture features unique to
COVID-19 spread through a small residential college. We find that a safe reopening
requires strong policy from administrators combined with cautious behavior from
students. Strong policy includes weekly screening tests with quick turnaround and
halving the campus population. Cautious behavior from students means wearing
facemasks, socializing less, and showing up for COVID-19 testing. We also find that
comprehensive testing and facemasks are the most effective single interventions,
building closures can lead to infection spikes in other areas depending on student
behavior, and faster return of test results significantly reduces total infections.

1 Introduction 1

Amid Fall 2020 of the COVID-19 pandemic, universities rolled out a variety of 2

interventions in hopes of safely offering in-person instruction [1]. Wrighton and 3

Lawrence argued that “best practices” should be followed, which include: testing, 4

quarantine, contact tracing, facemask usage, and dedensification [2]. While colleges in 5

some parts of the world successfully opened [3], the interventions utilized in the United 6

States were largely untested. A prominent example was the pivot by the University of 7

North Carolina at Chapel Hill to remote instruction after an “untenable” COVID-19 8

outbreak occurred during the first week of instruction [4]. Other major universities 9

subsequently followed suit in response to similar infection spikes upon reopening [5,6]. 10

In light of this uncertainty, simulation evidence may help inform policy and guide 11

student behavior. 12

Some models addressed COVID-19 spread on college campuses [7–12]. We discuss 13

these in more detail in Section 1.4, but note that their primary focus was medium-sized 14

colleges. Given that there are more than 500 colleges in the United States with a 15

student body of 4,000 or less that, in aggregate, serve over a million students, it seems 16

important to specifically address this setting. We develop an agent-based model on a 17

network to simulate COVID-19 spread through a small residential college. The smaller 18

population and campus allow us to make a relatively detailed model. Beyond colleges, 19

we believe that adaptations of our approach could be useful for modeling the 20
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effectiveness of interventions in other small, closed-community residential settings such 21

as military bases, single-industry towns, and retirement communities [13,14]. 22

1.1 Base Assumption 23

Our model contains 2,000 students and 380 faculty. To standardize results, we start 24

each trial with 10 students initially exposed to COVID-19. These agents progress to 25

either the asymptomatic or symptomatic state during which they possibly infect others. 26

The main statistic is the total number of resulting infections after 100 days. Since we 27

seek to compare the effectiveness of different interventions, we require a base model to 28

compare against. There is no data for what would happen during a full semester of 29

regular instruction with unmitigated COVID-19 spread. Our analysis starts with the 30

following assumption. 31

Base Assumption Over 80% of the population of a small, residential college would 32

become infected with COVID-19 during a semester with no intervention. 33

We stress that our Base Assumption is in the hypothetical situation that no policy 34

and behavior changes occur in response to rising infection counts. Even when a large 35

portion of the population is infected, symptomatic and asymptomatic individuals 36

continue their typical routines: attending class, socializing, and using common spaces on 37

campus as usual. Facemasks are never worn. The administration enacts no mitigating 38

strategies such as: class cancellations, building closures, infection testing and 39

quarantine, contact tracing, and social distancing measures. Complete details about the 40

base model are in Section 2. 41

We believe that 80% total infections after a semester is conservative given that the 42

population lacks innate antibodies against COVID-19 [15] and the average reproduction 43

number R0 with no intervention is quite high [16–18] in some settings. Additionally 44

college settings are believed to be worse for COVID-19 spread [19] than in larger 45

communities with less overlap between residents such as cities. Note that a related 46

study [10] predicted that 100% of the campus population would become infected about 47

halfway into a semester with no intervention. More discussion of sensitivity to this 48

choice and difficulties concerning R0 is in Section 4. 49

1.2 Findings 50

We use the scenario in the Base Assumption as a control against which we measure the 51

effectiveness of various interventions. Our main findings are given below and discussed 52

further in Section 3. 53

Figure 1. (A) The base model with single interventions applied. Note that the
reduction in infections from “fewer students” is smaller than it appears since there are
50% fewer people on campus in that intervention. (B) The impact of testing latency on
a campus with 25% fewer students and testing and quarantine in effect.

Result 1 Comprehensive testing and facemask compliance are the most effective single 54

interventions. 55

Weekly COVID-19 screening of 100% of students with a two-day wait for test results 56

brings total infections from around 1,900 to 400 (see Fig 1 A). Alternatively, perfect 57

facemask usage in public and social settings drops total infections below 300. 58

Result 2 Building closures may increase total infections. 59
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Closing the gym, library, and dining hall gives extra unstructured time to students. We 60

find that if students are strict about passing that extra time alone, total infections 61

decrease. However, if students spend half of that time socializing, we see a dramatic 62

spike; nearly every agent in our model becomes infected (see Fig 2). 63

Figure 2. Total infections by room type in the base model and with the gym, library,
and dining hall closed. In an “austere closure”, students spend any extra free time
alone. In a “social closure”, students spend half of their free time socializing.

Result 3 Shortening time to receive test results reduces total infections. 64

We consider a campus at 75% density with 50% of students screened weekly for 65

COVID-19 in addition to walk-in testing. No other interventions occur. We then vary 66

the latency period to receive test results from four days down to one. Our model with a 67

four-day latency period results in on average 394 total infections, compared to 259 with 68

a one-day period (see Fig 1 B). 69

Result 4 Strong, unified administrative policy and student adherence result in the best 70

outcomes. 71

A novel part of our intervention design is that we separate student behavior from 72

administrative policy. Specifically, students control facemask usage in social settings, 73

compliance with screening tests, and time spent socializing. Administrators control the 74

number of screening tests, testing latency, building closures, and the number of students 75

allowed back to campus. We consider student adherence and administrative policy at 76

low, medium, and high intensities. A high-intensity administrative policy by itself keeps 77

total infections below 10 with medium levels of student adherence. However, with less 78

intense policy, we find that student adherence plays a crucial role. For example, total 79

infections drop from 269 to 41 as student adherence increases with the low-intensity 80

policy in effect. It is also worth noting that, under a high-intensity administrative 81

policy, there is less variability as a result of student behavior. See Fig 3.

Figure 3. The total infection counts colored by size for different policy and adherence
intensities.

82

1.3 Key Takeaways 83

We outline some possible takeaways for administrators and students. 84

Administrators 85

Our results suggest that strong administrative policy is needed, particularly regarding 86

testing. Concerned administrators (and students) should check Table 5 to see which 87

intensity their reopening plan most aligns with. We emphasize that the low-intensity 88

policy in our model tests 25% of the student body weekly (Result 4). Without testing 89

at or above this level, our results suggest that it will be hard to control COVID-19 90

spread. Test latency appears to make a difference as well; we advise that lowering the 91

time to return results be a priority (Result 3). Lastly, we demonstrate that building 92

closures do not necessarily reduce total infections (Result 2). Since social distancing can 93

be more easily controlled in campus buildings, administrators may consider keeping 94

buildings open. At the very least, students displaced by building closures should be 95

encouraged to spend more time in isolation. 96
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Students 97

A serious and disciplined approach is needed from students (and administrators) to keep 98

infections down (Result 4). We recommend that students wear facemasks in private 99

settings, such as socializing, large gatherings, and common space in dorms (Result 1). 100

In light of the increased unstructured time resulting from building closures, it is 101

especially important to spend more time alone rather than socializing (Result 2). Given 102

the impact of testing, students should cooperate fully with any required screening 103

testing (Result 1). 104

1.4 Related work 105

We know of five projects that specifically addressed COVID-19 spread on a college 106

campus. Gressman and Peck [10] used the University of Pennsylvania as a template to 107

simulate different intervention strategies in an urban university with 22,500 students. 108

This complemented recent work of Weeden and Cornwell [9] that studied how the degree 109

of separation between students at Cornell University changes when some courses are 110

switched to a remote or hybrid format. Around the same time [10] was released, Frazier 111

et al. posted a preprint [7] and, later, an addendum [8] that modeled how testing and 112

quarantine could mitigate the spread of COVID-19 through Cornell’s campus. Recently, 113

Paltiel, Zheng, and Walensky studied the effectiveness of testing in a college with 5,000 114

students [11]. Durrett et. al developed a mathematical model that rigorously 115

demonstrated the benefits of limiting double occupancy dorms and of capping course 116

enrollments [12]. 117

To briefly summarize, [9] showed that a typical student directly interacts with about 118

4% of the 22, 000 other students from common courses. However, the reach of a student 119

jumps to 87% when considering two degrees of separation, and to 98% with three 120

degrees. The authors further observed that removing large classes with an enrollment 121

over 100 fails to disconnect the network and such interventions only increase the average 122

graph distance between students by about 0.50. For this reason, Weeden and Cornwell 123

recommended taking further action than simply eliminating large courses. The authors 124

also considered liberal arts colleges by restricting to the 4, 500 or so students in 125

Cornell’s College of Arts and Sciences. They observed that students in a liberal arts 126

college are connected via short path lengths, but also through multiple paths. They 127

inferred that this makes ripe social conditions for disease spread. 128

Frazier et al. also studied the Cornell student body, but rather than considering the 129

network structure, they assumed a perfectly mixed population. They performed an 130

SEIR model primarily taking into account the age of those infected, severity of 131

symptoms, and amount of intervention through testing, quarantine, and contact tracing. 132

They found that such interventions can suppress, but not completely contain the spread 133

of COVID-19 during a semester. Despite fairly heavy intervention, asymptomatic 134

spread results in 1,250 infections in their model. A surprising conclusion drawn from the 135

project was that reopening in the Fall may be safer than not reopening. The reason 136

being that many students have commitments and social ties, and would likely return to 137

live in Ithaca during the Fall semester. No campus engagement would increase the 138

amount of unregulated off-campus socializing and ultimately lead to more total cases 139

than in reopening scenarios. theorem 2 demonstrates a similar phenomenon. We further 140

remark that one shortcoming of the approach from Frazier et al. is that the perfect 141

mixing assumption smooths over much of the structure inherent to a campus. 142

Paltiel, Zheng, and Walensky examined the epidemic outcomes and costs with 143

varying test attributes and epidemic scenarios. They concluded that screening every two 144

days with rapid, inexpensive tests results in a controlled number of infections with 145

relatively low total cost. The authors acknowledged the logistical and financial 146
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challenges for university administrators even in the proposed testing scenario. The 147

study did not consider other administrative strategies in combination with testing to 148

restrict the spread of infection. 149

Gressman and Peck built an agent-based model that incorporated more features of 150

college life. Roughly speaking, on a given day in the model, an agent has approximately 151

20 contacts selected at random from different groups. These groups included residential, 152

close academic, classroom contact, broad social, etc., and contact came with varying 153

likelihoods of passing an infection. Their results suggested that large scale testing, 154

contact tracing, and moving large classes online were the most impactful interventions. 155

They further found that testing specificity is crucial for managing the number of people 156

in quarantine. The authors observed that their model has limited applicability to small 157

colleges [10, p. 16]. The important difference, in their view, is that students in a small 158

college have fewer, but closer contacts compared to those at a large university. However, 159

they pointed out that, without additional data, the different likelihood of infection may 160

be a “difficult feature to reasonably quantify or calibrate.” 161

One way we specifically account for social interactions is the introduction of “social 162

spaces” into the network. Each student frequents two social spaces at which they 163

contact a subset of roughly 20 other students. This generates two internally correlated, 164

but externally independent friend groups. More broadly, we draw inspiration from 165

larger agent-based models in which agents diffuse through a to-scale environment 166

according to simple routines [20,21]. We set the physical network and agent schedules 167

as realistically as possible, then let the academic, residential, and social interactions 168

tune to these choices. This philosophy distinguishes our approach from the models for 169

COVID-19 spread in colleges mentioned above. 170

2 Methods 171

In this section, we describe the network, agent behavior, and infection dynamics in our 172

base model for a campus with no interventions in place. We conclude by describing 173

different interventions. 174

Buildings are star graphs whose cores represent shared spaces and leaves represent 175

rooms or sections of the building. Each agent is assigned a fixed schedule that 176

determines their motion through the network which updates hourly (see Table 1). 177

Infection dynamics follow an SEIR model (see (1)) where agents transition from the 178

susceptible to the exposed state with probability proportional to the number of nearby 179

infected agents scaled by the riskiness and size of the space (see (2)). We set the 180

parameters (see the Appendix) to reflect the unique features of a small college 181

campus—small classes; tightly knit, but diverse social groups; a primary dining hall, 182

gym, and library—as well as our present understanding of the biology of COVID-19. We 183

then overlay various interventions on the base model and measure their effectiveness. 184

2.1 Space 185

Many of our decisions regarding our network draw inspiration from the campuses of 186

Bard College and Grinnell College which exemplify small, relatively isolated, residential 187

colleges. The basic building blocks are star graphs representing dorms, academic 188

buildings, dining halls, gyms, social spaces, offices, and off-campus. The core of each 189

star represents shared space in the building such as hallways, bathrooms, lobbies, etc. 190

The leaves represent either specific rooms or sections of the building. See Table 2 for 191

specifics. The core of each star connects to the transit vertex which represents the 192

connective space between buildings. Note that the graph diameter is 4. See Fig 4 for a 193

schematic. 194
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Table 1. Sample schedules for an on-campus student, an off-campus student, and a
faculty member. Each row is the time of day.

On-Campus Off-Campus Faculty
A B W A B A B

8 D D D
9 DH D DH OC OC OC OC
10 C1 DH D C1 L O O
11 C1 S L C1 S O O
12 DH C4 S DH C4 DH O
13 S C4 DH L C4 O DH
14 C2 DH S C2 DH C1 C2

15 C2 G G C2 G C1 C2

16 C3 D L C3 L O O
17 C3 S L C3 S O O
18 DH D D OC OC OC OC
19 L DH DH
20 S D S
21 D D S
22 D D D

Key

D Dorm
DH Dining Hall
Ci ith class
S Social Space
L Library
G Gym
OC Off Campus
O Office

Table 2. At the top, counts for the number of single and double dorm rooms, the
number of seats in classrooms. In the middle, the number of classrooms in each type of
building. On the bottom, the number of each type of building.

Single Double Smls Mds Lrgs Seats Capacity

Small Dorm 5 5 15
Medium Dorm 15 15 45

Large Dorm 25 25 75
Small Clsrm 10 15

Medium Clsrm 15 20
Large Clsrm 20 30

Small Acad 3 0 0 30 45
Medium Acad 2 3 0 65 90

Large Acad 5 3 3 155 225

Dorm Bldgs 25 10 10 1575
STEM Bldgs 2 2 3 655 945

Humanities Bldgs 1 2 1 315 450
Arts Bldgs 2 1 1 280 405

Figure 4. Schematic of the network.

Dorms, Classrooms, Academic Buildings 195

Are either small, medium, or large depending on the number of single and double rooms 196

(Dorms), the number of seats (Classrooms), or the number of classroom sizes (Academic 197

Buildings). 198

July 12, 2021 6/21



Dining Hall, Gym, Library, Faculty Offices 199

Are modeled by star graphs with six leaves. The leaves represent sections of the 200

buildings. Our network has one gym, one library, one dining hall, and three faculty 201

offices. 202

Social Spaces 203

Are leaves of a star graph. The spaces represent social gatherings (study sessions, work 204

groups, parties, casual social groups) that occur at various locations on campus. There 205

are 100 such leaves. The core has no meaning, but is included for the sake of 206

consistency in the underlying network. 207

Transit Space 208

Is a single vertex that represents the paths, halls, and rooms that connect the other 209

spaces. 210

Off Campus 211

Is a single vertex that represents all space off campus. 212

2.2 Agent Behavior 213

In this section, we describe the types of agents, the way they are assigned schedules, 214

and how they move through the network. 215

Agent types 216

There are n = 2, 380 total agents in the model; with nc = 1, 500 on-campus students, 217

no = 500 off-campus students, and nf = 380 faculties. Agents are assigned a subtype 218

that designates their division among STEM, Humanities, and Arts. We write ni
∗ with 219

i = 1, 2, 3 and ∗ ∈ {c, o, f} to denote the counts of STEM (i = 1), Humanities (i = 2), 220

and Arts (i = 3) agents. We assume that STEM students are 50% of the student body, 221

Humanities students are 25%, and Art students are 25%. Note that the division 222

designations are interchangeable so these proportions represent whatever specialty a 223

small college may have. 224

Agent Schedules 225

Days are classified as either A, B, W , or S. A and B days are distinguished by 226

alternating class schedules. W days represent weekends (Friday and Saturday) on which 227

no instruction occurs and students socialize. To introduce some space into schedules, we 228

include Sundays (S) on which students either stay in their dorms or off-campus all day. 229

A day is divided into 14 one-hour increments spanning from 8:00 – 22:00 (the time N :00 230

will be abbreviated by N). Classes take place in two-hour increments starting at 10, 12, 231

14, and 16. 232

We write each seat in a class on a given day and time as a 4-tuple (d, t, r, c) where 233

d ∈ {A,B}, t ∈ {10, 12, 14, 16}, r is a classroom, and c is a chair in r (so 1 ≤ c ≤ the 234

enrollment capacity of room r). Let C be the set of all distinct seats (d, t, r, c). Let C1 235

denote the set of all tuples whose building is designated a STEM building, and similarly 236

for C2 and C3 for Humanities and Arts, respectively. Let C = C1 ∪ C2 ∪ C3. To randomly 237

assign classes, students with subtype i, one after the other, sample two elements 238

uniformly at random from Ci and then two elements uniformly at random from C 239
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without replacement. If two selections conflict in time, classrooms are resampled until 240

there are no conflicts. 241

Once an agent obtains a class schedule, the remaining time slots are filled in 242

according to the following rules. For each building in the schedule that is not a dorm or 243

academic building, the agent is assigned to a uniformly sampled leaf, which they 244

exclusively visit. The one exception concerns social spaces. For these, students are 245

assigned a leaf for class days, and a leaf for the weekend. Since there are 100 social 246

space leaves, on average 20 students are assigned to each leaf. Being assigned to two 247

leaves makes it so agents interact with two social groups that are correlated within, but 248

uncorrelated to other groups. 249

For on-campus students, each day begins and ends in their assigned dorm room at 8 250

and 22. Up to two students may be assigned to a given dorm room, which corresponds 251

to having a roommate. Each day type has one visit to the dining hall in the time slots 252

8–11, 12–15, 17–20. The afternoon slot 12–15 is skipped if the student has classes during 253

that time. Lastly, each day type has a gym visit with probability g. The remaining slots 254

are assigned to uniformly sampled social spaces with probability s, a library leaf with 255

probability `, or the agent’s assigned dorm room with probability 1 − s− `. 256

For off-campus students, A and B days begin and end at the Off Campus vertex at 257

times 8, 9 and 18–22. On W and S days the student remains at the Off Campus vertex 258

all day. On A and B days, an off-campus student has one visit to the dining hall in the 259

time slots 12–15, if the class schedule allows it. Each day type contains a gym visit with 260

probability g at a randomly chosen available time slot. The remaining slots are spent in 261

a social space with probability s, at the library with probability `, and otherwise 262

off-campus. 263

For faculty, A and B days begin and end with the agent at the Off Campus vertex 264

at times 8, 9 and 18–22. On W and S days the faculty remains at the Off Campus 265

vertex all day. If possible, the agent goes to the faculty leaf of the dining hall at a 266

uniformly chosen time from 11–13. The remaining slots are spent in the appropriate 267

Division Office vertex. 268

Agent Paths 269

Once an agent is assigned a schedule it remains to define the path the agent follows to 270

move between each location. Suppose an agent is moving from a leaf of the core vertex 271

v to a leaf of the core vertex u. They do so by moving to v, to the transit vertex, to u, 272

and then to the target leaf of u. We assume that transit occurs at the end of the hour 273

and interacts with any other agents that move through the spaces u, the transit vertex, 274

and v at the end of the same hour. 275

2.3 Infection spread 276

Agent States 277

Agents are in states S,E, Ia, Im, Ie and R corresponding to Susceptible, Exposed, 278

Infected Asymptomatic, Infected Mildly Symptomatic, Infected Extremely Symptomatic, 279

and Recovered. Agents transition through the states in the following manner: 280

S // E // Ia //

(1−a)e
))

a

!!
Im 55Ie // R (1)

We let Iav (d, t) denote the number of agents in state Ia at site v at time (d, t) and 281
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similarly for the other states. Describing how and when agents transition from state S to 282

state E is the subject of the next section. The other transitions are simple to describe: 283

• Agents stay in state E for TE = 2 days. After which, they transition to state Ia. 284

• Each agent in state Ia transitions to state R after TIa = 10 days (from the day of 285

infection) with probability a. Otherwise, after T ∗Ia = 2 days the agent transitions 286

to state Ie with probability e and to state Im with probability 1− (a + e). 287

• Each agent in state Ie transitions to state R after TIe = 10 days. However, after 288

T ∗Ie = 5 days the agent spends the subsequent time in their dorm room. This 289

represents a student becoming “bed-ridden,” i.e., too sick to leave their room. 290

• Agents in state Im transition to state R after TIm = 10 days. 291

The base probability of infection 292

The vertex v at time (d, t) has infection probability

pv(d, t) = rv
Iev(d, t) + Imv (d, t) + 0.5Iav (d, t)

Cv
p. (2)

The parameter Cv is the capacity of v and rv ∈ {0, 1, 2, 3} is the risk multiplier for 293

infection spread in that space. Each of the St(v) susceptible agents at v at time t 294

independently enters state E with the probability at (2). Note that we set the 295

infectiousness of an agent in state Ia to half that of an agent in the other infected 296

states [22]. The constant p is the tuning parameter that allows us to control global 297

infectiousness. 298

The risk and capacity parameters 299

The parameter rv is chosen based on time spent, the proximity of agents in the space, 300

and the typical amount of respiration—i.e. time spent talking aloud or exercising—in a 301

given space. For example, rv is higher in the gym compared to the library. We set Cv 302

equal to ten times the core capacity for buildings with known capacities in advance 303

(dorms and instructional buildings). The factor of ten is to dilute the number of people 304

in the core at a given time (otherwise all of the agents would simultaneously be in that 305

location). Ten is chosen since a passing time between classes is about that duration in 306

minutes. The capacities for the dining hall, library, gym, and social spaces are set 307

empirically to match the typical occupancy of the building. See Table 3 for all of the Cv 308

and rv values. 309

Exceptions 310

Two exceptional spaces, where the infection dynamics are not exclusively governed by 311

(2), are off-campus and large gatherings. Upon leaving the off-campus vertex at t = 8, 312

each agent in state S transitions to state E with probability o. For agents returning 313

from off-campus, we choose o = .125/(no + nf ) so that, on average, one off campus 314

agent becomes infected every 8 class days (two weeks). For large gatherings, half of the 315

student agents (both on- and off-campus) are denoted as “social.” We simulate large 316

informal gatherings (e.g., parties or organized social events) by drawing three random 317

subsets G1, G2, G3 of agents designated as social at the end of each week. Each Gi has 318

size uniformly and independently sampled from [20, 60]. The Gi are sampled 319

independently and are not necessarily disjoint. Each susceptible agent at a large 320

gathering becomes infected according to (2) with rv = 3 and Cv = 40d|Gi|/40e, i.e., 321

Cv = 40 if |Gi| ≤ 40, and Cv = 80 if |Gi| > 40. 322
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Table 3. The core and leaf capacity and risk multiplier for different buildings. The
quantity x is the number of people assigned to that space.

Core Leaf
Space Cv rv Cv rv

Transit Space 100n 1
Dining Hall 650 1 100 2
Faculty Dining Leaf 20 2
Library 10 · 300 1 50 2
Gym 10 · 60 3 10 3
STEM Office 10 · 6 · 50 1 50 2
Hum/Art Office 10 · 6 · 25 1 20 2
Social Space 10 3
Large Gatherings 40dx/40e 3
Small Acad 10 · 45 1
Medium Acad 10 · 90 1
Large Acad 10 · 225 1
Small Clsrm 15 2
Medium Clsrm 20 2
Large Clsrm 30 2
Single Dorm 1 3
Double Dorm 2 3
Small Dorm 10 · 15 2 x 3
Medium Dorm 10 · 45 2 x 3
Large Dorm 10 · 75 2 x 3

2.4 Contact Structure 323

Section 2.1 describes the campus network. Agents move through this network by 324

following hourly schedules generated according to the specification in Section 2.2. We 325

then overlay COVID-19 spread according to the rules in Section 2.3. The likelihood of 326

infection spread is given at (2), and ultimately governed by the risk factor and capacity 327

of each site in the network. We measure the aggregate exposure between agents by 328

summing the risk scaled by the capacity over all of an agents interactions during a 329

simulated week in the model. 330

More precisely, given an agent i, we generate a vector ~ei = (ei,1, . . . , ei,N ) where

ei,j =
∑

(d,t,v)∈Si

1{agent j also at v on day d at time t} rv
Cv

with Si the set of vertices that i visits over the course of one week. So we sum the risk 331

factor scaled by the capacity of all of the vertices that i interacts with j at. We call the 332

vector ~ei the exposure profile of agent i with the individual entries ei,j the exposure level 333

of agent i to agent j. Note that ei,j = ej,i be symmetry of the model. 334

To generate Figure 5 we sampled the exposure profiles of 100 on-campus, 100 335

off-campus, and 100 faculty agents. The exposure levels were then arranged in 336

decreasing order. For on-campus students with a roommate we throw out the first entry 337

since it is on a different order than the others. This represents the feature of our model 338

that roommates are most likely to infect one another. We then plotted a curve 339

representing a 95% confidence interval around the mean level of each entry for each 340

agent type. We observe that agents have high exposure levels with ten or so other 341

agents and the exposure level drops roughly linearly until about 50 to 75 agents. 342

Subsequently, the exposure level is low with the remaining 2300 agents. 343
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Figure 5. Exposure profiles for 100 agents are arranged in decreasing order then
averaged. A 95% confidence interval is included around the curve. Panel A shows the
exposure profile for off-campus students. The larger panel of Panel B shows the
exposure profile for on-campus students with the maximum entry (corresponding to a
dorm roommate) removed. The smaller subpanel in Panel B shows the exposure profile
when the roommate is included. Panel C shows the ordered average exposure profile for
100 faculty.

This data suggests that the contact structure of our network is such that each 344

individual has ten or so close contact with whom they are likely to spread infection. 345

These high exposure levels are coming from socializing and faculty interactions in their 346

departmental buildings. Agents with medium exposure levels (in the interval [25,75]) 347

come from classroom contact and exposure in dorm common spaces. The rest of the 348

campus population has small exposure levels. This heterogeneity of exposure profiles 349

suggests that our model is more nuanced than commonly used homogeneously mixing 350

SEIR models in which all exposure levels would be equal. 351

2.5 Types of intervention 352

We consider a variety of interventions that broadly include: facemasks, 353

testing/quarantine, building closures, less socializing, and dedensification, which we 354

describe in more detail below. 355

Facemasks 356

We assume that agents never wear facemasks at dorm and dining hall leaves. There is
partial compliance at dorm cores, social space leaves, and large gatherings. All other
vertices have perfect compliance. Let f ∈ {0.50, 1} be the proportion of compliant
agents. We implement this intervention by randomly selecting the corresponding
percentage of agents who always wear a facemask at partial compliance vertices. We
assume that wearing a mask reduces an agent’s infectiviousness by a factor of m = 0.5
(which is the conservative estimate from [22] and in line with other estimates
from [23–27]). So, an infected agent wearing a mask is a factor of m less infectious, and
a susceptible agent wearing a mask is a factor of m′ = 0.75 less likely to become infected
at each time location. That facemasks protect the wearer (although to a lesser extent
than the reduction in infectiousness from an infected agent wearing a mask) from
inhaling the virus is supported by evidence from [23,27]. For example, a susceptible
person wearing a mask in room v at time (d, t) will become infected with probability

p′v(d, t) = m′
mMv(d, t) + Iv(t, d)

Cv
p (3)

rather than (2), where Mv(d, t) = Me
v (d, t) +Mm

v (d, t) + 0.50Ma
v (d, t) are the number of 357

agents in the infected state wearing a mask at v at time (d, t) and 358

Iv(d, t) = Iev(t) + Imv (d, t) + 0.50Iav (d, t) are (weighted by infectiousness) number of 359

infected agents in the infected state not wearing a mask at v at time (d, t). 360

Testing and Quarantine 361

In line with [10], we assume a false positive rate of FP = 0.001 for agents tested while 362

in the susceptible or exposed state, and a false negative rate of FN = 0.03 for agents 363

tested while in an infected state. 364
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Screening: We assume that P ∈ {0.25, 0.50, 1} of the student body is screened per 365

week. Only students are screened, and the screening is applied throughout the entire 366

student body on a repeating cycle. The latency period L ∈ {1, 2, 3, 4} is the number of 367

days to receive results. After the latency period, the infected agents from the batch who 368

test positive are placed in the quarantine state for 14 days, after which they transition 369

to the recovered or susceptible state depending on whether or not the test was correct. 370

We consider c ∈ {0.80, 0.90, 1} the level of compliance for agents in state Ia to get 371

screened. This means that each time an agent in the S,E, or Ia state is selected for 372

screening, the agent skips taking the test with probability 1 − c. 373

Walk-ins: For each day following the first that an agent enters state Ie or Im, that 374

agent opts to be tested with probabilities qe = 0.95 and qm = 0.70. After this, the agent 375

enters the quarantine state with probability 1 − FN depending on if they are in state 376

Im, Ie, or Ia. For example, the probability an agent in state Ie enters the quarantined 377

state k days after entering state Ie is (1− FN)(1− qe)
k−1qe. The probability q∗ 378

represents an agent ignoring symptoms on a given day and waiting to take the test. We 379

assume that walk-ins immediately begin quarantine, but re-enter the campus if they 380

receive a false negative result. 381

Closures 382

We assume that buildings in B ⊆ {L,G,DH,O,LG} are closed. If the library (L), gym 383

(G), or dining hall (DH) are closed, time spent at the space is replaced in a student’s 384

schedule with time in the student’s dorm room or off-campus, depending on the type of 385

student, with probability h ∈ {0.50, 0.75, 1}. Otherwise, the agent goes to the social 386

space. When facing a building closure, faculties spend that time in their office instead. 387

When faculty offices (O) are closed, no infection occurs there, and we assume faculty 388

only spend time in the classes they teach. When large gatherings (LG) are removed, we 389

turn off the large gathering component. 390

Dedensification 391

For medium dedensification we remove D = 650 agents: 250 on-campus, and 250 392

off-campus students, as well as 150 faculty at random. For high dedensification we 393

remove 1300 agents: 500 on-campus students, 500 off-campus students, and 300 faculty 394

from the campus. The first students to be removed are those in double rooms. 395

A few technicalities emerge with dedensification in effect. Courses in either degree of 396

dedensification are assumed to be hybrid. All classes continue to meet, but the removed 397

students attend class remotely. We assume that large gatherings do not occur whenever 398

dedensification is in place. Lastly, a dedensified campus will naturally have fewer 399

initially infected agents. We account for this by starting with i ∈ {5, 7, 10} on-campus 400

students infected, with i chosen to be approximately 0.05% of the students and faculty 401

still utilizing the campus. When D = 650, we assume that i = 7, and when D = 1300 we 402

assume that i = 5. 403

Less socializing 404

We replace time in social spaces with time spent at the student’s dorm room or the 405

off-campus vertex depending on the type of student. This replacement is done to each 406

occurrence of social space in an agent’s schedule with probability s ∈ {0, 0.25, 0.75}. 407

At this point we have defined all of the parameters in our model. Table 4 408

summarizes these choices. 409
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Table 4. Parameters

Parameter Value Description Ref

Base Model
(nc;n

1
c , n

2
c , n

3
c) (1500; 750, 375, 375) on-campus student counts by division [28]

(no;n1
o, n

2
o, n

3
o) (500; 250, 125, 125) off-campus student counts by division [28]

(nf ;n1
f , n

2
f , n

3
f ) (380; 190, 95, 95) faculty counts by division [28,29]

(g, s, `) (0.15, 0.15, 0.15) gym, social, and library probabilities [30,31]
o 0.125/(no + nf ) off-campus infection probability
TE 2 days in the exposed state [32]
a 0.15 probability of remaining asymptomatic [33]
e 0.50 probability of Ia → Ie [34]
TIa 10 days in Ia if asymptomatic
T ∗Ia 2 days in Ia if symptomatic [35]
TIe 10 days in Ie if never bid-ridden [16]
T ∗Ie 5 days in Ie if bed-ridden [16]
TIm 10 days in Im [36]
p 1.25 tuning parameter
FP 0.001 false positive rate [10]
FN 0.03 false negative rate [10]

Interventions
f 0, 0.50, 1 facemask compliance
m 0.50 facemask reduced infectiousness [22–27]
m′ 0.75 facemask protection from infection [22–27]
P 0.20, 0.50, 1 weekly percentage of students screened
L 1, 2, 3, 4 latency period to receive results
c 0.80, 0.90, 1 asymptomatic screening compliance
qe 0.95 probability of symptomatic walk-in test
qm 0.70 probability of mild walk-in test
FP 0.001 false positive rate [10]
FN 0.03 false negative rate [10]
B L,G,DH,O,LG building closures [37]
h 0.50, 0.75, 1 prob. of dorm/off-campus from bldg. closure
D 0, 650, 1300 dedensification amount [38]
s 0, 0.25, 0.75 reduction in socializing
i 5, 7, 10 initial infected cases with dedensification

3 Results 410

There are over a hundred thousand distinct combinations of the five single interventions 411

from Section 2.5. Therefore, some care is required to decide what combinations provide 412

useful insights. To this end, we reduce down to 20 strategies and focus on total 413

infections. This is the total number of agents ever in the exposed state after running the 414

model for 100 days with i on-campus students initially in the exposed state. The value 415

of i ∈ {5, 7, 10} depends on the amount of dedensification and is not counted towards 416

total infections. We perform 40 independent simulation trials for each model (with new 417

schedules in each trial). Each trial takes a little over a minute to simulate on a home 418

computer. It takes about a day on a single machine to run all of the interventions 419

described below. 420
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Table 5. The intervention parameter choices corresponding to different intensities for
administrative policy (left) and student adherence (right). We describe in words
Medium Policy and Medium Student Adherence as an example. Medium Policy screens
P = 0.50 of the student population weekly with a 3-day latency L. D = 650 students
are removed from the population. The gym, library, dining hall, and large gatherings
are closed. Medium student adherence has half of students wearing facemasks while
socializing f = 0.50. A c = 0.90 proportion of students comply with screening tests.
Students spend free time from building closures in their dorm room with probability
h = 0.75 for each occurrence in their schedule. Additionally, students socialize less by a
factor of ∫ = 0.25.

Policy Adherence
P L D B f c h s

Low 0.25 4 0 {G,L} 0 0.80 0.50 0
Medium 0.50 3 650 {G,L,DH,LG} 0.50 0.90 0.75 0.25
High 0.75 2 1300 {G,L,DH,O,LG} 1 1 1 0.75

Marginals 421

We apply single interventions at high-intensity to the base model. Specifically, we 422

consider: no intervention, facemasks with f = 1, high dedensification with D = 1300, 423

less socializing with s = 0.75, and testing with P = 1. The results are shown in Fig 1, 6, 424

and 2. 425

Building closures 426

We close the gym, libarary, and dining hall with h = 0.50 and h = 1. No other 427

interventions are applied. See Fig 2. 428

Test latency 429

We fix the base model with medium dedensification (D = 650) and testing with 430

P = 0.50. This means that there are about 25% fewer students on campus, of whom 431

50% are screened weekly. We then consider latency L ∈ {1, 2, 3, 4}. The results are 432

shown in Fig 1. 433

Policy and Adherence 434

To address the problem of choosing which interventions to run among the many we 435

could apply, we classify the single interventions as either an administrative policy, or a 436

student adherence behavior. We group interventions by type and set each to one of 437

three different intensity levels. This gives nine combined strategies, which we hope offer 438

a practical perspective for students and administrators attempting to manage the risk of 439

COVID-19 spread. The specific parameters used for low, medium, and high-intensity 440

policy/adherence are given in Table 5. Administrators control the amount of testing P , 441

test latency L, the amount of dedensification D, and building closures B. Students 442

control facemask adherence f, testing compliance c, how they spend time that would 443

normally be spent in a closed building h, and how much they reduce socializing s. The 444

results are shown in Fig 3, and 7. 445

Recall, that our primary findings are: 446

1. Comprehensive testing and facemask compliance are the most effective single 447

interventions. 448
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2. Building closures may increase total infections. 449

3. Shortening time to receive test results reduces total infections. 450

4. Strong, unified administrative policy and student adherence result in the best 451

outcomes. 452

We now explain how these experiments support these results. 453

Base Model 454

In our base model, we set the tuning parameter p = 1.25. This consistently leads to a 455

large infection that reaches on average 1988 agents (see Fig 1). Fig 6 displays the 456

evolution of the infection over time. The peak typically occurs between 40 and 50 days 457

into the semester. Fig 6 A shows two standard deviations of data. The breakdown of 458

infection counts by building type are given in Fig 2. Dorms, classrooms, social spaces, 459

and the dining hall make up the majority of cases. Large gatherings and the gym are 460

next. 461

Figure 6. Agent states over 100 days in the base model. Panel A shows a 95%
confidence around the mean behavior from 40 trials. Panel B shows the number of
active infections over time for each trial.

Result 1 462

Fig 1 shows how weekly testing of 100% of students with latency at L = 2, consistently 463

reduces infections below 400. With facemask usage, total infections stay around 300 464

(Fig 1). Note that Fig 1 is somewhat misleading in its depiction of the effectiveness of 465

high dedensification (the “fewer students” box), because there are only half as many 466

agents present during that intervention. 467

Result 2 468

Fig 2 shows the vertices where infections occur in the base model alongside the effects of 469

closing the gym, library, and dining hall. With closures, we consider the settings with 470

h = 1 and h = 0.50. We call the case h = 1 an “austere closure” since students are 471

electing to pass the time slots they would have been in a closed building at either their 472

dorm room or off-campus. With an austere closure, total infections drop from nearly 473

2000 to around 1700. The total number of infections in social spaces increases, since 474

these infections would normally occur earlier in a closed building, but instead occur 475

later in a social space. The case h = 0.50 is a “social closure” in which students go to 476

social spaces with probability 0.50. The last column of Fig 2 shows a significant increase 477

in infections. A huge increase in social space infections allows the infection to 478

proliferate. We note that the final counts are unrealistic, since it seems unlikely to us 479

that a college would remain open after so many students are infected. Nonetheless, the 480

mixed effect of closing buildings is illustrated by these counts. 481

Result 3 482

As L goes from 4 to 1 total infection counts drop from 394 on average to 259. See Fig 1 483

B. One interesting feature is that the variance increases as L decreases. When L = 4, 484

the standard deviation in total infections is 60; but when L = 1, the standard deviation 485

is 87. The reason for the greater volatility is that shorter latency sometimes is very 486
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effective and completely controls the infection, and sometimes the infection spreads more 487

quickly than testing can control, resulting in many infections (relative to the mean). 488

Result 4 489

Fig 3 shows that the average number of total infections drops from 269 to 6 as policy 490

and adherence are strengthened. The standard deviation drops significantly as well. We 491

see that total infections are reasonably controlled by high-intensity policy (top row of 492

Fig 3). Fig 7 displays the coefficient of variation (standard deviation/mean). The figure 493

illustrates how low-intensity policy coupled with low adherence, even after normalizing 494

for the mean, has the highest variation. Additionally, Fig 7 shows that high-intensity 495

administrative policy can temper variation stemming from different levels of student 496

adherence. 497

Figure 7. The total number of cases (numeric) and the coefficient of variation
(standard deviation/mean; colorbars) for different policy and adherence intensity levels.

4 Discussion 498

4.1 The average reproduction number 499

The average reproduction number R0 is the mean number of direct infections originating 500

from a single infected agent in a completely susceptible population. This assumes no 501

preventative measures are being taken. Compare to Rt which measures the mean 502

number of infections at a given point in time as interventions occur and immunity 503

develops in the population. The emerging consensus is that the value of R0 particular 504

to COVID-19 lies in the interval [2, 3] [18]. However, estimates vary [16,17], and as put 505

by [39] “estimates of R0 in one population do not necessarily translate to another.” 506

An issue with calculating R0 is that it is not intrinsic to the biology of the infection 507

(incubation period, infectiousness, recovery time, etc.), rather it is a phenomenological 508

output of the biology of the infection and contact structure of the society [17]. When 509

modeling R0, it is commonly obtained under the assumption of perfect mixing i.e., a 510

given agent has equal likelihood of infecting each of the other agents in the model [40]. 511

When aggregated over large communities on the scale of cities and states, this is widely 512

held to be a reasonable assumption. However, our model of a small population—which 513

has clustered, highly overlapping contact structure with sustained regular contact—is 514

quite heterogeneous. These features allow for more infection spread than in a perfectly 515

mixed network and consequently result in a larger R0. We note that Gressman and 516

Peck use similar reasoning to justify their elevated choice of R0 = 3.8 [10]. The contact 517

structure in their university COVID-19 model is also heterogeneous. 518

A natural way to estimate R0 is to seed the student population with s on-campus
students in the exposed state. We then run the model and count the resulting number
of direct infections I(s) that arise from these s agents. A sample of R0 from this seed is
then computed via

R0(s) =
I(s)− s

s
. (4)

While R0(1) corresponds to the definition of the average reproduction number (minus 519

the perfect mixing assumption), it is desirable to take s larger to smooth out the 520

randomness arising during the agent’s progression through the infection and from their 521

individual schedule. 522
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Such smoothing reveals a difficulty with measuring R0 in our model. Figure 8 shows 523

significant variation in the R0 defined in (4). R0(1) ranges from 1 to 23 with mean 7.4. 524

The value of R0(s) decreases quickly in s; it more than halves to have mean 3.33 at 525

s = 20 and the mean drops below 2.35 for s ≥ 50. It is not obvious which value of s, if 526

any, gives the “correct” R0. Note that this effect is a consequence of the contact 527

structure in the model discussed in Section 2.4 and also the small total population of or 528

model. 529

Figure 8. Empirical measurements of R0(s) computed as in (4) with different initial
seed sizes s of the on-campus student population infected. The results from 100 runs
are shown for each R0(s) .

The doubling time of the infection is another important statistic that is closely 530

associated with R0 [40]. This is the average number of days for the number of total 531

infections to double in an environment with no intervention. It is believed that the 532

doubling time for COVID-19 lies in between 2 days and 4 days [41,42]. In Figure 9 we 533

display the average number of days for total infections to double in our base model. The 534

average number of days to go from 20 infected agents to more than 40 is 2.5. The 535

doubling time on the next interval [40, 80] is 3.43, [80, 160] is 4.9, and [160, 320] is 6.7. 536

At this point 320/2380 ≈ 13% of the population is infected. Thus, the depleting 537

population size is slowing infection spread. These doubling times are more compatible 538

with an R0 in [2, 3], which is consistent with taking s ≥ 30 in (4). 539

Figure 9. The average number of days (y-axis) to go from x/2 to at least x infections.
We omit x = 20 since we initially seed 10 agents in the exposed state and there is
latency for infections to begin. We omit x > 320 since for such large x-value the
doubling time slows significantly from a herd-immunity effect.

In closing, the seed size and doubling time data suggests that measuring R0 in our 540

model is subjective. Measuring intervention effectiveness through total infections 541

against our Base Assumption is more transparent. Moreover, total infections are likely 542

of greater help to policy makers since that data is directly available (via testing) rather 543

than the inferred statistic R0. 544

4.2 Sensitivity to global parameters 545

In our model, there are two events in which susceptible agents may become infected: (i) 546

interaction with an infected agent on campus and (ii) interaction with an infection 547

arising off-campus. All infections from (i) occur from face-to-face interaction at a site of 548

the network. Transmission is thus proportional to the risk of transmission at the vertex 549

times the number of infected agents at vertex v at a particular day and time, scaled via 550

a tuning parameter p (see (2)). In Figure 10 we vary p in {0.00, 0.25, . . . , 1.5}, given a 551

fixed level of student compliance (medium) and varying policy intensity. Under these 552

different scenarios, the relative effectiveness of the various policies remains roughly 553

proportional. 554

Figure 10. A sensitivity analysis of the tuning parameter, p. We fix the student
adherence to be medium, and show the total number of cases for each of the three
administrative policies.

The second pathway for infection is through exogenous infections arising off-campus.
The base model has on average one new off-campus infection every two weeks. This
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comes from each of the n0 + nf agents coming and going from campus probability

o =
0.125

(no + nf )

of becoming infected on a given instruction day. In Figure 11 we test the effect of 555

multiplying o by a factor in {1, 2, 4, 8} on total infections with medium student 556

adherence and varying policy intensity. We see that there is not much sensitivity to this 557

choice. Increasing o by a factor of 8 (so there are on average 4 exogenous infections per 558

week) does not significantly change the total number of new cases. 559

Figure 11. A sensitivity analysis of the off-campus multiplier. We fix the student
adherence to be medium, and show the total number of cases for each of the three
administrative policies.

Lastly, the single most effective intervention is facemask use (see Figure 1).
Accordingly, we explore sensitivity to that feature. Recall that the parameters m and m′

dictate the reductive factor for the probability of an infected facemask wearer infecting
others (m) and a susceptible wearer becoming infected (m′). See (3). We call the
quantity M = 1−m ·m′ the facemask effectiveness since it gives the reduction in
transmission probability when both parties (infected and susceptible) are wearing
facemasks. Our default choice is m = 0.5 and m′ = 0.75 which gives M = 0.625. This is
consistent with current estimates for facemask effectiveness [22–27]. Nonetheless, in
Figure 12 we show the resulting number of total infections when f = 1 and

(m,m′) ∈ {(0.5, 0.75)± n(0.1, 0.1) : n = −2,−1, 0, 1, 2},

so that M varies through the interval [0.335, 0.835]. What we observe is in line with the 560

sensitivity analysis in Figure 10; facemask effectiveness has significant, yet predictable, 561

impact on the total number of infections. 562

Figure 12. A sensitivity analysis of facemask effectiveness. Displayed are total number
of infections after a semester with f = 1 (perfect facemask compliance), but no other
intervention.

Future directions 563

A limitation of our model is that the way infections occur makes contact tracing 564

impractical to implement. Unlike [10], in which contacts are known, we assume perfect 565

mixing on the level of rooms, so it is not possible to infer who did the infecting. Staff 566

and visitors to campus are another noteworthy feature that our model is missing. It 567

would add more detail to include more variety in agent types and behavior and also 568

consider other interventions as well as combined strategies. Introducing a vaccine to the 569

infection dynamics could be useful. 570
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