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Abstract—Robots deployed in the real world over extended pe-
riods of time need to reason about unexpected failures, learn to
predict them, and to proactively take actions to avoid future fail-
ures. Existing approaches for competence-aware planning are ei-
ther model-based, requiring explicit enumeration of known failure
sources, or purely statistical, using state- and location-specific fail-
ure statistics to infer competence. We instead propose a structured
model-free approach to competence-aware planning by reasoning
about plan execution failures due to errors in perception, without
requiring a priori enumeration of failure sources or requiring
location-specific failure statistics. We introduce competence-aware
path planning via introspective perception (CPIP), a Bayesian frame-
work to iteratively learn and exploit task-level competence in novel
deployment environments. CPIP factorizes the competence-aware
planning problem into two components. First, perception errors
are learned in a model-free and location-agnostic setting via in-
trospective perception prior to deployment in novel environments.
Second, during actual deployments, the prediction of task-level
failures is learned in a context-aware setting. Experiments in a
simulation show that the proposed CPIP approach outperforms
the frequentist baseline in multiple mobile robot tasks, and is
further validated via real robot experiments in environments with
perceptually challenging obstacles and terrain.

Index Terms—Motion and path planning, visual learning, failure
detection and recovery.

I. INTRODUCTION

A
S ROBOTS become increasingly available, they are de-

ployed for tasks where autonomous navigation in un-

controlled environments is crucial to success, such as package

delivery, warehouse automation, and home service settings.

Deploying robots over extended periods of time and in such
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open world setting requires addressing failures originating from

real-world uncertainty and imperfect perception. Continuous

operator monitoring, while effective, is cumbersome and thus

not scalable to many robots or large environments. We are thus

interested in developing competence-aware agents capable of

assessing the probability of successfully completing a given

task. Such agents would learn from failures and leverage the

acquired knowledge when planning to improve their robustness

and reliability. Previous efforts towards competence-aware path

planning and motion planning either rely solely on statistical

analysis of logged instances of failures in the configuration

space of the robot and do not benefit from the sensing infor-

mation collected by the robot [1], or are application specific

and designed to reduce the probability of failure for a specific

perception module such as visual SLAM [2]. While there has

been progress on introspective perception to enable perception

algorithms to learn to predict their sources of errors [3], [4], the

outputs of such algorithms have not yet been exploited in robot

planning.

We present competence-aware path planning via introspective

perception (CPIP), a general framework that bridges the gap

between path planning and introspective perception and allows

the robot to iteratively learn and exploit task-level competence

in novel deployment environments. CPIP models the path plan-

ning problem as a Stochastic Shortest Path (SSP) problem and

builds a model that represents both the topological map of the

environment as well as the competence of the robot in traversing

each part of the map autonomously. CPIP leverages introspective

perception to predict the task-level competence of the robot

in novel deployment environments and employs a Bayesian

approach to update its estimate of the robot competence online

and during the deployment. CPIP then uses this information to

plan paths that reduce the risk of failures.

Our experimental results demonstrate that CPIP converges to

the optimal planning policy in novel deployment environments

while reducing the frequency of navigation failures by more

than 80% compared to the state-of-the-art competence-aware

path planning algorithms that do not leverage introspective

perception.

II. RELATED WORK

The idea of integrating perception with planning and con-

trol was introduced by pioneering works on active perception

that suggested performance of perception can be improved by
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selecting control strategies that depend on the current state of

perception data interpretation as well as the goal of the task [5],

[6]. Researchers have applied this idea to various levels of

control ranging from active vergence control for a stereo pair

of cameras [7] to object manipulation given the next best view

for surface reconstruction of unknown objects [8].

One line of work predicts and avoids degradation of percep-

tion performance given features extracted from the raw sensory

data. Costante et al. [2] propose a perception-aware path plan-

ning for MAVs that maximizes the information gain from image

matching while solving for dense V-SLAM. Sadat et al. [9] and

Deng et al. [10] follow a similar approach and use an RRT*

planner where the cost of a path is defined as a linear combination

of the length of the path and the predicted density of image

features along the path to reduce localization errors. In these

works, estimates of competence for perception are obtained

via hand crafted metrics and the path planner cost function is

designed to specifically address the reliability of V-SLAM and

is not generalizable to arbitrary perception tasks.

There exists a body of work on risk-aware path planning,

where it is assumed that the autonomous agent has accurate

models of the uncertainty of perception. Jasour et al. [11] use the

a priori known parametric probability distributions for obstacle

locations and leverage chance constrained optimization to plan

paths that have collision probabilities below a user-specified

threshold. Schirmer et al. [12] use an offline-built localiza-

tion uncertainty map of the environment to do risk-aware path

planning. Barbosa et al. [13] and similarly Chung et al. [14]

relax the full-observability assumption and do path planning in

partially known environments, yet they assume that the agent

has an observation model with a known noise process that is

used to update its belief over the state of the world. However,

in practice estimates of uncertainty of perception algorithms, as

obtained by methods such as the Cramer-Rao lower bound, are

often overconfident and inaccurate. An alternative approach is

to directly model task-level failures as a function of the state

of the world as acquired by perception. Saxena et al. [15] learn

to predict task-level failures that are due to errors in perception

from the raw sensory data; however, predicted failures are used to

trigger an enumerated set of recovery actions rather than proac-

tively generating plans that reduce the probability of failures.

Similarly Gurau et al. [16] leverage image data and location

specific features to do reactive planning by selecting between

different levels of autonomy at any point in time.

A different line of work on competence-aware path planning

that has a more holistic view of failures includes keeping track

of all of the robot failures regardless of the perception algorithm

that is the cause, and then leveraging this information to proac-

tively generate plans with reduced risk of failures. Lacerda et

al. [17] aggregate the failure instances of a service mobile robot

while navigating the environment to model the probability of

success for traversing each edge of a topological map using an

MDP and generate navigation policies that prefer paths with

high success probabilities. Krajník [18] use a spectral model

to learn mid to long-term environmental changes assuming

they have a periodic nature and exploit it to improve robot

navigation and localization by predicting such changes. Vintr et

al. [19] use a similar approach to learn a spatio-temporal model

for predicting presence of humans in the robot’s deployment

environment at different times of the day. Since these methods

are based on statistical analysis of the frequency of navigation

failures, they require ample experience and several samplings

from any location in the map, in order to achieve an accurate

estimate of the robot’s competence in navigating that specific

location. Moreover, due to using location specific features of

the environment for estimating the robot competence, these esti-

mates cannot be generalized to novel deployment environments.

Basich et al. [20] further expand the concept of competence to

the optimal level of autonomy and define a stochastic model for

solving the path planning problem, where the generated plans

consist of a path and the optimal level of autonomy for each

segment of the path. In order to learn to predict the probability

of failure at each level of autonomy this work requires a curated

list of environmental features that are potentially correlated with

robot failures.

In this work we leverage machine learned models capable

of predicting errors of individual perception modules, to obtain

an accurate estimate of the robot’s competence at successfully

navigating throughout an environment. CPIP uses the estimate of

competence to plan reliable and short-duration paths. Our work

is similar to [17], [20] in that it reasons about the competence

of the robot at successfully performing navigation tasks at a

topological map level; however, it removes the need for an

enumerated list of perception related features by automatically

learning to extract such features from the raw sensory data. Fur-

thermore, CPIP significantly reduces the frequency of failures

experienced in new environments by exploiting the generaliz-

able learned perception features instead of merely relying on

statistical analysis of the location of previous navigation failures.

III. CPIP DEFINITION

CPIP is a framework for integrating path planning with intro-

spective perception in life-long learning settings. It is defined

as a tuple < M, I,H >, where M is a stochastic planning

model, I = {Ik}
N
k=1 is a set of introspective perception mod-

ules, andH is a task-level competence predictor. CPIP leverages

introspective perception and the competence predictor model

to predict the probability of task-level failures given the raw

sensory data at every time step and uses these estimates to

update the planning model iteratively during robot deployments,

hence learns policies that reduce the probability of failures.

In Section IV, we introduce the planning model M and explain

how it incorporates the probability of autonomous navigation

failure in path planning. We then explain introspective percep-

tion I and the competence predictor model H and how they are

used to structure the problem of learning to predict instances of

navigation failures in Section V.

IV. COMPETENCE-AWARE PLANNING

The CPIP planning model M uses a representation of the

environment that includes both the connectivity of a set of sparse

locations on the map as well as the probability of successful

traversal between each two connected neighboring locations. In
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Fig. 1. Planning SSP for an example environment.

this section, we explain this model and how it is actively updated

during deployments.

A. Planning Model Description

The input to our problem is a topological map of the environ-

ment in the form of a directed graph G = 〈N,E〉 composed of

a set of nodes, N , and a set of edges, E. Each node represents

a location, and each edge e is defined by a tuple 〈ni
e, n

j
e, te, pe〉.

Here, ni
e is the starting vertex, nj

e is the ending vertex, te is the

expected traversal time for the edge e, and pe is the probability

of successfully traversing the edge.

Given the topological map,G, we model the planning problem

as a Stochastic Shortest Path (SSP) problem, a formal decision-

making model for reasoning in stochastic environments where

the objective is to find the least-cost path from a start state to

a goal state. An SSP is a tuple 〈S,A, T, C, s0, G〉 where S is

a finite set of states, A is a finite set of actions, T : S ×A×
S → [0, 1] represents the probability of reaching state s′ ∈ S
after performing action a ∈ A in state s ∈ S, C : S ×A → R

+

represents the expected immediate cost of performing action a ∈
A in state s ∈ S, s0 ∈ S is an initial state, and G ⊂ S is a finite

(possibly singleton) set of goal states such that T (sg, a, sg) =
1 ∧ C(sg, a) = 0 ∀a ∈ A, sg ∈ G.

A solution to an SSP is a policy π : S → A that indicates

that action π(s) ∈ A should be taken in state s ∈ S. A policy

π induces the value function V π : S → R that represents the

expected cumulative cost V π(s) of reaching sg from state s
following the policy π. An optimal policy π∗ minimizes the

expected cumulative cost V ∗(s0) from the initial state s0.

In our problem, S = N × S̃ is a finite set of states comprised

of the map nodes N and a finite set of failure states S̃ and A =
E ∪ Ã is a finite set of actions comprised of the directed edges

in the graph and a finite set of recovery actions Ã. T (s, a, s′) is

determined by the probability of successfully traversing the edge

e = (s, s′), pe, which is zero if the action a does not correspond

to the edge e. In a failure state s,T (s, a, s′) = 0 if a /∈ Ã and s �=
s′.C(s, a) is set to te ifa ∈ E, and the expected recovery cost for

s otherwise. Fig. 1 illustrates the planning SSP for an example

urban environment. During robot deployments, the transition

function is updated to reflect the latest belief over the probability

of navigation failures in traversing each edge on the map, or

equivalently the probability of successful traversals. Next, we

explain the method for updating the transition function.

B. Updating the Failure Belief During Deployment

CPIP builds an SSP model to represent the topological map of

the environment as described in Section IV-A. CPIP updates the

aforementioned SSP model structure during deployments as it

collects more observational data from the environment, altering

the underlying transition function such that the resultant model

represents not just the map but the competence of the robot in

traversing it. In order to achieve that, the occurrence of a failure

of class fi at edge e is assumed to be a random variable from

the categorical distribution Fe ∼ Cat(p1:L). The belief over this

variable is defined asBt(Fe = fi) = p(Fe = fi|z1:t), where the

subscript t indicates the tth traversal of the edge and zt is the

observation made by the robot during that traversal. Applying

the Bayes rule yields

belt(fi,e) =
p (zt|fi,e, z1:t−1) p (fi,e|z1:t−1)

p (zt|z1:t−1)

=
p (fi,e|zt) p (zt) belt−1(fi,e)

p(fi,e)p(zt|z1:t−1)
. (1)

Defining the negation of fi,e as p(¬fi,e) = 1− p(fi,e) =
∑

j �=i p(fj,e) the belief can be implemented as the log odds

ratio

lt(fi,e) = log

(

belt(fi,e)

belt(¬fi,e)

)

= log

(

p(fi,e|zt)

1− p(fi,e|zt)

)

+ lt−1(fi,e)− l0(fi,e) ,

(2)

where l0(fi,e) = log
(

p(fi,e)
1−p(fi,e)

)

is the prior in log odds form.

Before the first deployment of the robot in a new environment,

p(fi,e) = ǫ and pe = p(fL,e) = 1−
∑

i �=L p(fi,e) for every e ∈
E. Then upon each traversal of an edge, the above relation

is used to update the transition function of the planning SSP

model such that Tt(s, e, s̃i) = belt(fi,e) = 1− 1
1+exp(lt(fi,e))

.

The main term that needs to be computed for updating the belief

in Eq. 2 after each traversal is p(fi,e|zt), which is known as the

inverse observation likelihood and in CPIP it is implemented by

two different functions, each handling one of the two different

types of observations zt: 1) Occurrence of failures of class fi
which is indicated via intervention signals issued either by a

human or a supervisory sensing unit and is denoted by st,i; 2)

Sensory input that the robot continuously acquires such as RGB

images captured by cameras on the robot, which is denoted

by It. For the former, the inverse observation likelihood is

implemented as

p (fi,e|zt = st,j) =

{

δ i = j
1−δ
L−1 i �= j

(3)

where δ is a constant coefficient. The inverse observation like-

lihood function for the latter type of observations, however, is

machine learned and is one of the key components of this work

that allows CPIP to reach an accurate estimate of belt(fi,e)
without requiring the robot to experience costly failures. CPIP

structures the problem of learning p(fi,e|zt = It) such that it can

be achieved with a small number of failure examples for training
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data. Introspective perception is leveraged to extract features

associated with errors in perception from the high dimensional

raw sensory data. These features are then used to learn to predict

the probability of different classes of failures of navigation. By

learning this likelihood function, the robot will learn to better

navigate its environment, proactively avoiding paths that are

known to lead to failure cases, and reactively adjusting its policy

upon encountering novel situations that may lead to failures.

In the following section we describe the different parts of this

learning problem.

V. FAILURE PREDICTION VIA INTROSPECTIVE PERCEPTION

In order to predict failures of navigation given the sensory

data, we need to approximate the function p(fi,e|zt = It). End-

to-end learning of this function is intractable because it requires

a great amount of training data, yet catastrophic failures in

robotics when executing tasks such as autonomous navigation

do not happen frequently. The scarcity of these examples makes

it challenging to learn a classifier that predicts the probability

of task execution failure directly from the raw sensory data.

Without enough training data and without abstracting the ac-

quired high dimensional sensory data, the learned classifier is

bound to overfit to the training data. We instead propose to fac-

torize p(fi,e|zt) =
∫

φ
p(fi,e|φ)p(φ|zt) where φ are the features

extracted from observations by introspective perception — a

model-free approach to predicting arbitrary errors of perception.

A. Introspective Perception

Early works on introspective perception [21], [22] defined

a perception algorithm to be introspective if it is capable of

predicting the occurrence of errors in its output given the cur-

rent state of the robot. Follow-up works [3], [4] extended this

definition and required such perception algorithms to predict

the probability of perception error conditioned on the region in

the raw sensory data that the output is dependent upon, e.g. an

image patch in the captured image by an RGB camera where the

estimated depth of the scene is erroneous. This is obtained by

means of an introspection function that is trained on empirical

data.

In CPIP, the robot is assumed to be equipped with one or more

introspective perception modules; each module has a learned

function Ik : Z → R
n, which extracts features φ ∈ R

n from

the raw sensory data Z that encode information about sources

of perception errors. The outputs of all introspective percep-

tion modules are fed to a navigation competence predictor h :
R

n×K → [0, 1]L, which learns to estimate the likelihood of each

of the different classes of failure f1:L given a set of sources of

perception errors, i.e.P (fl|φ1:K) such that
∑

l P (fl|φ1:K) ≤ 1.

The inverse observation likelihood function in Eq. 2 is then

estimated as the composition of the above two functions, i.e.

p(fi,e|zt = It) = h(I1:k(It))[i]. It should be noted that although

CPIP assumes a constant set of failure classes, the number of

distinct sources of failures, which is often much larger than

the number of different classes of failure, are not enumerated a

priori. Each failure class corresponds to a different severity level

and hence a different failure recovery cost that is considered in

planning. There exist, however, a large number of failure sources

that lead to failures with the same severity level. For example, a

high-severity class of failure in robot navigation are collisions,

for which there exist numerous failure sources including false

negatives in obstacle detection due to texture-less surfaces or

small object sizes, terrain type mis-classification, dynamic ob-

stacles, occlusions, etc. Furthermore, while the distinct sources

of failure differ between environments, the classes of failure

are specific to the objective of the domain (e.g. navigation,

manipulation, etc.), irrespective of the environment, and are

hence comparatively easy to enumerate.

In this paper we implement introspective perception for a

block matching-based stereo depth estimator [23] using the same

convolutional neural network architecture as that used in [3]

for the introspection function. The training data is collected au-

tonomously using a depth camera as supervisory sensing, which

is only occasionally available and provides oracular information

about the true depth of the scene.

B. Competence Predictor Model

We implement the navigation competence predictor model

h : R
n×K → [0, 1]L as an ensemble of two deep neural net-

works. The input to the model is a list of image patches Ii ∈ Rn

extracted from the same input image I and the output is the

probability of each class of failure. The architecture as shown in

Fig. 2 consists of two sub-models that are trained independently.

The global_info network is a convolutional neural net-

work (CNN) that operates simultaneously on all input image

patches arranged on a blank image in their original pixel coordi-

nates. The input to this network is equivalent to the input image

masked at all regions except for those predicted by introspective

perception to lead to errors. The global_infoCNN captures

task-contextual and spatial information from the current frame

related to competence. By masking out parts of the full image

deemed to be unrelated to perception failures we are able to

ensure that the global_infoCNN does not overfit to specific

environments.

The local_info network is a CNN that is fed as input

individual image patches. The output of this branch is the

probability of each class of failure for each single image patch.

This network learns correlations between navigation failures and

image features that lead to perception errors. The goal of this

branch is to locally pinpoint the potential source of navigation

failures in the image space, when a class of failure is predicted

by the global_info network.

The last stage of the model is a temporal filtering of the output

of each of the two networks. Failure class probabilities that are

produced by the global_info network are passed through a

mean filter to output Pf ∈ [0, 1]L. Moreover, image patches that

are predicted by thelocal_infonetwork to lead to navigation

failures are tracked in the full image over consecutive frames to

form a set of active tracklets Λi for each class of failure fi. The

output of the model is obtained via strict consensus on the output
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Fig. 2. Navigation competence predictor model architecture.

such that

P (fi) =

{

Pf [i] if Λi �= ∅

0 otherwise
(4)

In other words, the predicted probability of each class of fail-

ure provided by the global_info network is only accepted

if the local_info network also supports that by detecting

at least one potential cause for the same class of failure in the

image space. During deployment, if ∃j | P (fj) > ǫ, i.e. there

exists consensus between the two branches of the network on

the existence of any class of failure, the output of the competence

predictor model will be used to update the belief in (2).

VI. IMPLEMENTATION DETAILS

In this section we provide implementation details for our

application of CPIP, i.e. path planning for an unmanned ground

vehicle (UGV) that uses a stereo vision-based depth estima-

tor [23] for obstacle avoidance.

A. Autonomy Stack

Our navigation software consists of global path planning

on the navigation graph and local path planning to follow the

planned path while avoiding dynamic obstacles that the robot

does not know about a priori. CPIP’s planning model does

the global path planning and we use a trajectory roll-out local

path planner. The 3D reconstruction of the environment by

stereo-vision is processed and any points with their height larger

than 15 cm and less than the height of the robot are detected as

obstacles. All obstacle points coordinates are projected to the

ground plane, converted to a 2D laser-scan format, and used by

the local path planner to select the least cost trajectory from

a set of sampled trajectories, such that the robot keeps a large

clearance from obstacles and makes progress towards the next

way-point on the global plan.

We implement introspective perception for the depth estima-

tor and train a CNN to predict depth estimation errors similar to

prior work [3]. The network is composed of 5 convolution layers

followed by 3 fully connected layers. The input to the network

are the image patches of size 70× 70 pixels extracted from the

512× 512 pixel images captured by the left stereo pair. The

output is the probability of depth estimation error and all image

patches predicted to lead to perception error with a probability

of > 0.5 are passed to the competence predictor model. We use

a similar CNN architecture as that use for introspective depth

estimation for both sub-models of the competence predictor with

the only difference being the number of nodes in the output

layer of the network. The full pipeline of navigation competence

predictor which consists of introspective perception and the

competence predictor model runs at 5Hz on a laptop with Intel

Core i9-9880H and GeForce RTX 2080 Max-Q.

B. Training of CPIP

CPIP has two learned components, i.e. introspective percep-

tion and the competence predictor model and they are trained

sequentially. The training data is extracted from logs of robot

deployments in the training environment. The logs include data

collected by the primary sensors, i.e. RGB images captured by

the stereo cameras, as well as data collected by supervisory

sensors, i.e. the Orbbec Astra depth camera that is only occa-

sionally available. Furthermore, intervention signals issued by a

human operator upon occurrence of navigation failures are also

recorded.

The deployment logs are processed offline. First, introspective

perception is trained with data that is autonomously labeled

using the supervisory sensing. Then, the training data for the

competence predictor model is prepared by passing the raw

sensory data through the introspective perception module and

labeling the output image patches as associated with one of the

classes of navigation failures if they fall within a fixed time

window preceding the occurrence of such failures. Each of the

two sub-models of the competence predictor model explained

in §V-B are then trained using a cross-entropy loss.

VII. EXPERIMENTAL RESULTS

In this section: 1) We evaluate CPIP on how well it predicts

sources of robot failures. 2) We compare CPIP against baseline

global path planners in terms of their task completion success

rate and their task completion time. 3) We evaluate the impor-

tance of introspective perception in CPIP’s performance and

generalizability via ablation studies.

A. Experimental Setup

1) Simulation: In order to evaluate CPIP and compare it

against SOTA extensively, we use AirSim [12], a photo-realistic

simulation environment, where robot failures are not expensive

and the robot can easily be reset upon occurrence of navigation

failures. A simulated car is equipped with a stereo pair of RGB

cameras as well as a depth camera that provides ground truth

depth readings for every pixel in the camera frame. We use
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Fig. 3. Training and test environments in the real-world experiments.

two separate urban environments for training and testing. The

environments are populated with obstacles of different shapes,

textures, and colors.

2) Real-robot maze: We also evaluate CPIP on a real robot.

We use a Clearpath Husky equipped with a stereo pair of RGB

cameras, an Orbbec Astra depth camera, and a Velodyne VLP-16

3D Lidar. We use different indoor sites for training and testing

of CPIP. Each environment has different types of terrain such

as tiles and carpet, and is populated with obstacles of different

shapes, textures, and surface materials. The test environment is

a maze constructed in an area of size 60m2.

3) Real-robot large-scale: In order to test CPIP extensively

and in more natural settings, we also conduct a large scale

experiment, where we deploy the robot on the entire floor of a

building. This test environment has an area of larger than 400m2

and the robot traverses more than 1.5 km during the deployment.

Fig. 3 shows the training and both the large scale and maze test

environments.

B. FAILURE PREDICTION ACCURACY

In order to evaluate the accuracy of CPIP in predicting failures

of navigation, we have the autonomous agent traverse each of the

edges of the navigation graph in the test simulation environment

50 times and run the captured images by the robot camera

through the CPIP’s introspective perception module and the

competence predictor model to predict instances of navigation

failure. In this paper, we implement CPIP with two classes of

failures. 1) Catastrophic failures, where the robot ends up in a

state that precludes completion of the task and is not recoverable

with human intervention. Examples of this class include colli-

sions and the robot getting stuck off-road. 2) Non-catastrophic

failures, where the robot will not be able to complete its task

unless intervention is provided by a human operator or a su-

pervisory sensor. The robot getting stuck due to false detection

of obstacles or because of localization errors are examples of

this type of failure. Fig. 4 illustrates the predicted and actual

navigation failures in a confusion matrix. CPIP correctly predicts

occurrence of navigation failures more than 70% of the time

for both types of failures. Prediction errors mostly correspond

to cases, where the source of failure is significantly different

looking from the examples available in the training data.

Fig. 4. Prediction results of the competence predictor model in the previously
unseen test environment for the three classes of catastrophic failures (CF), non-
catasatrophic failures (NCF), and no failures (NF).

Fig. 5. Comparison of cumulative failure count (a) in the real-robot maze
experiment, and (b) the real-robot large scale experiment for this work (CPIP),
SOTA (frequentist), and the baseline with no competence-aware planning.

C. NAVIGATION SUCCESS RATE AND PLAN OPTIMALITY

We test the end-to-end system in predicting navigation failures

and proactively planning paths that reduce the probability of

failures, by deploying the robot in a previously unseen test

environments. The robot is commanded to complete randomly

generated navigation tasks that consist of a starting pose and

a target pose. We conduct this experiment in all three settings

explained in Section VII-A, i.e. simulation, real-robot maze, and

the large-scale real-robot deployment.

We compare CPIP with a baseline path planner that does

not reason about the competence of the robot as well as a

state-of-the-art approach for competence-aware path planning

— called the Frequentist approach — that relies on keeping track

of the frequency of past failures in traversing each of the edges

of the navigation graph [17]. Fig. 5 compares the cumulative

failure count for all three methods throughout the real-robot

experiments. With the Frequentist approach, the robot learns

to avoid regions of the environment, where it cannot navigate

reliably as it experiences navigation failures. However, CPIP

enables the robot to predict and avoid most of these failures,

leading to the least number of experienced failures.

We also evaluate the optimality of the planned paths by

comparing the task completion time for all the methods under

test with an oracular path planner that is given the true probability

of navigation failures for each edge of the navigation graph.

The ground truth failure probabilities are obtained by having

the agent traverse each edge of the navigation graph numerous

times and logging the frequency of each type of failure. Fig. 6

shows the completion duration for each task in the simulation

experiment. The duration values are normalized by the task

completion duration when the oracular path planner is used. The
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Fig. 6. Task completion duration w.r.t. an oracle planner that is provided with the true probability of failure throughout the environment ahead of deployment.
Vertical bars visualize the incomplete tasks for each method annotated by color. Highlighted red regions in the top band demonstrate tasks, during which the robot
encounters previously unseen parts of the environment. Best viewed in color.

Fig. 7. Test environments in (a) the real robot maze experiment, (b) large-scale real robot experiment, and (c) the simulation experiment. Regions of the
environments highlighted in red cause catastrophic failures, regions highlighted in yellow illustrate sources of non-catastrophic failures, and areas annotated with
green, show areas where the robot can successfully operate autonomously.

TABLE I
TASK COMPLETION AND FAILURE PREVENTION RATE

*Task completion duration statistics are only calculated for tasks that were completed

by both algorithms.

figure also illustrates instances of task completion failures for

both CPIP and the Frequentist method. Such instances include

occurrence of catastrophic failures or occurrence of consecutive

non-catastrophic failures such that the robot cannot recover from

a stuck state by re-planning. CPIP task completion duration is

similar to that of the oracular path planner except for tasks where

the robot visits a previously unseen part of the environment

and has to re-plan upon prediction of a source of navigation

failure. An example of such re-planning can be seen around task

number 50 in Fig. 6. Table I summarizes the task completion rate

(TCR), relative task completion duration (TCD), and the number

of avoided navigation failures by CPIP and the Frequentist

method for both simulation and real-robot experiments. The

TCD statistics are computed only for tasks that were completed

by both CPIP and the Frequentist approach. CPIP achieves

a significantly higher TCR across all experiments; moreover,

CPIP either performs similarly or outperforms the Frequentist

approach in terms of relative TCD. The reduced task completion

duration achieved by CPIP is due to proactively predicting and

avoiding non-catastrophic failures, e.g. getting stuck behind

falsely detected obstacles. The Frequentist approach would ex-

perience these failures and although it might complete the task

by replanning, it suffers a longer task completion duration due to

performing recovery actions. CPIP outperforms the Frequentist

in terms of the relative TCD in the real-robot maze environ-

ment, where the distance traveled by the robot in each task is

shorter compared to the other experiments, hence the relative

task completion delay caused by performing recovery actions

by the Frequentist approach is significantly larger. Moreover,

in the real-robot large-scale experiment the relative TCD is

very similar for CPIP and the Frequentist since there exist no

sources of non-catastrophic failures in the environment. Fig. 7

illustrates snapshots of the test environments and highlights the

different sources of navigation failures encountered by the robot,

which includes different types of texture-less obstacles as well

as reflective surfaces.

D. ABLATION STUDY

In order to evaluate the importance of introspective perception

in the pipeline of CPIP, we conduct an ablation study. We train

a classifier that instead of leveraging the extracted information

by introspective perception, directly receives the raw captured

RGB images as input and outputs the probability of each class

of failure occurring in a specified time window in the future. We

use a convolutional neural network with the AlexNet architecture
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Fig. 8. Results of the navigation failure prediction for CPIP vs. an end-to-end
classifier that does not use introspective perception (a) in a previously seen
environment and (b) in a novel environment.

similar to that used in prior work [22] for predicting failures of

perception.

We train the classifier on the same simulation dataset used

for training CPIP and we compare the performance of both

methods in predicting navigation failures both in a previously

unseen environment—the same test dataset described in Sec-

tion VII-B—as well as in a new set of deployments of the agent

in the training environment. Fig. 8 shows the average precision,

recall, and f1-score metrics over all classes, i.e. two classes of

failures and a no-failure class, for both CPIP and the end-to-end

classifier. While both methods perform similarly good in a

previously seen environment, CPIP significantly outperforms

the alternative classifier in the novel environment. Leveraging

the extracted features by introspective perception simplifies the

learning task and allows CPIP to achieve better generalizability

given the same amount of training data. This is specifically a

benefit for task-level failure prediction, where the volume of

training data is limited due to the costly nature of acquiring data

from examples of robot failures.

VIII. CONCLUSION

In this paper, we introduced CPIP, a framework for integrating

introspective perception with path planning in order to learn

to reduce robot navigation failures in the deployment environ-

ment and with limited amount of training data. We empirically

demonstrated that by leveraging introspective perception CPIP

can learn a navigation competence predictor model that gener-

alizes to novel environments and results in significantly reduced

frequency of navigation failures. CPIP currently addresses the

problem of robot global path planning on a coarse navigation

map of the environment. As future directions, the CPIP frame-

work can be extended to support competence-aware local motion

planning as well as high-level task planning for mobile robots.
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