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Competence-Aware Path Planning Via
Introspective Perception

Sadegh Rabiee

Abstract—Robots deployed in the real world over extended pe-
riods of time need to reason about unexpected failures, learn to
predict them, and to proactively take actions to avoid future fail-
ures. Existing approaches for competence-aware planning are ei-
ther model-based, requiring explicit enumeration of known failure
sources, or purely statistical, using state- and location-specific fail-
ure statistics to infer competence. We instead propose a structured
model-free approach to competence-aware planning by reasoning
about plan execution failures due to errors in perception, without
requiring a priori enumeration of failure sources or requiring
location-specific failure statistics. We introduce competence-aware
path planning via introspective perception (CPIP), a Bayesian frame-
work to iteratively learn and exploit task-level competence in novel
deployment environments. CPIP factorizes the competence-aware
planning problem into two components. First, perception errors
are learned in a model-free and location-agnostic setting via in-
trospective perception prior to deployment in novel environments.
Second, during actual deployments, the prediction of task-level
failures is learned in a context-aware setting. Experiments in a
simulation show that the proposed CPIP approach outperforms
the frequentist baseline in multiple mobile robot tasks, and is
further validated via real robot experiments in environments with
perceptually challenging obstacles and terrain.

Index Terms—Motion and path planning, visual learning, failure
detection and recovery.

I. INTRODUCTION

S ROBOTS become increasingly available, they are de-
ployed for tasks where autonomous navigation in un-
controlled environments is crucial to success, such as package
delivery, warehouse automation, and home service settings.
Deploying robots over extended periods of time and in such
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open world setting requires addressing failures originating from
real-world uncertainty and imperfect perception. Continuous
operator monitoring, while effective, is cumbersome and thus
not scalable to many robots or large environments. We are thus
interested in developing competence-aware agents capable of
assessing the probability of successfully completing a given
task. Such agents would learn from failures and leverage the
acquired knowledge when planning to improve their robustness
and reliability. Previous efforts towards competence-aware path
planning and motion planning either rely solely on statistical
analysis of logged instances of failures in the configuration
space of the robot and do not benefit from the sensing infor-
mation collected by the robot [1], or are application specific
and designed to reduce the probability of failure for a specific
perception module such as visual SLAM [2]. While there has
been progress on introspective perception to enable perception
algorithms to learn to predict their sources of errors [3], [4], the
outputs of such algorithms have not yet been exploited in robot
planning.

We present competence-aware path planning via introspective
perception (CPIP), a general framework that bridges the gap
between path planning and introspective perception and allows
the robot to iteratively learn and exploit task-level competence
in novel deployment environments. CPIP models the path plan-
ning problem as a Stochastic Shortest Path (SSP) problem and
builds a model that represents both the topological map of the
environment as well as the competence of the robot in traversing
each part of the map autonomously. CPIP leverages introspective
perception to predict the task-level competence of the robot
in novel deployment environments and employs a Bayesian
approach to update its estimate of the robot competence online
and during the deployment. CPIP then uses this information to
plan paths that reduce the risk of failures.

Our experimental results demonstrate that CPIP converges to
the optimal planning policy in novel deployment environments
while reducing the frequency of navigation failures by more
than 80% compared to the state-of-the-art competence-aware
path planning algorithms that do not leverage introspective
perception.

II. RELATED WORK

The idea of integrating perception with planning and con-
trol was introduced by pioneering works on active perception
that suggested performance of perception can be improved by
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selecting control strategies that depend on the current state of
perception data interpretation as well as the goal of the task [5],
[6]. Researchers have applied this idea to various levels of
control ranging from active vergence control for a stereo pair
of cameras [7] to object manipulation given the next best view
for surface reconstruction of unknown objects [8].

One line of work predicts and avoids degradation of percep-
tion performance given features extracted from the raw sensory
data. Costante et al. [2] propose a perception-aware path plan-
ning for MAVs that maximizes the information gain from image
matching while solving for dense V-SLAM. Sadat et al. [9] and
Deng et al. [10] follow a similar approach and use an RRT*
planner where the cost of a path is defined as a linear combination
of the length of the path and the predicted density of image
features along the path to reduce localization errors. In these
works, estimates of competence for perception are obtained
via hand crafted metrics and the path planner cost function is
designed to specifically address the reliability of V-SLAM and
is not generalizable to arbitrary perception tasks.

There exists a body of work on risk-aware path planning,
where it is assumed that the autonomous agent has accurate
models of the uncertainty of perception. Jasour ez al. [11] use the
a priori known parametric probability distributions for obstacle
locations and leverage chance constrained optimization to plan
paths that have collision probabilities below a user-specified
threshold. Schirmer et al. [12] use an offline-built localiza-
tion uncertainty map of the environment to do risk-aware path
planning. Barbosa et al. [13] and similarly Chung et al. [14]
relax the full-observability assumption and do path planning in
partially known environments, yet they assume that the agent
has an observation model with a known noise process that is
used to update its belief over the state of the world. However,
in practice estimates of uncertainty of perception algorithms, as
obtained by methods such as the Cramer-Rao lower bound, are
often overconfident and inaccurate. An alternative approach is
to directly model task-level failures as a function of the state
of the world as acquired by perception. Saxena et al. [15] learn
to predict task-level failures that are due to errors in perception
from the raw sensory data; however, predicted failures are used to
trigger an enumerated set of recovery actions rather than proac-
tively generating plans that reduce the probability of failures.
Similarly Gurau et al. [16] leverage image data and location
specific features to do reactive planning by selecting between
different levels of autonomy at any point in time.

A different line of work on competence-aware path planning
that has a more holistic view of failures includes keeping track
of all of the robot failures regardless of the perception algorithm
that is the cause, and then leveraging this information to proac-
tively generate plans with reduced risk of failures. Lacerda et
al. [17] aggregate the failure instances of a service mobile robot
while navigating the environment to model the probability of
success for traversing each edge of a topological map using an
MDP and generate navigation policies that prefer paths with
high success probabilities. Krajnik [18] use a spectral model
to learn mid to long-term environmental changes assuming
they have a periodic nature and exploit it to improve robot
navigation and localization by predicting such changes. Vintr et
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al. [19] use a similar approach to learn a spatio-temporal model
for predicting presence of humans in the robot’s deployment
environment at different times of the day. Since these methods
are based on statistical analysis of the frequency of navigation
failures, they require ample experience and several samplings
from any location in the map, in order to achieve an accurate
estimate of the robot’s competence in navigating that specific
location. Moreover, due to using location specific features of
the environment for estimating the robot competence, these esti-
mates cannot be generalized to novel deployment environments.
Basich et al. [20] further expand the concept of competence to
the optimal level of autonomy and define a stochastic model for
solving the path planning problem, where the generated plans
consist of a path and the optimal level of autonomy for each
segment of the path. In order to learn to predict the probability
of failure at each level of autonomy this work requires a curated
list of environmental features that are potentially correlated with
robot failures.

In this work we leverage machine learned models capable
of predicting errors of individual perception modules, to obtain
an accurate estimate of the robot’s competence at successfully
navigating throughout an environment. CPIP uses the estimate of
competence to plan reliable and short-duration paths. Our work
is similar to [17], [20] in that it reasons about the competence
of the robot at successfully performing navigation tasks at a
topological map level; however, it removes the need for an
enumerated list of perception related features by automatically
learning to extract such features from the raw sensory data. Fur-
thermore, CPIP significantly reduces the frequency of failures
experienced in new environments by exploiting the generaliz-
able learned perception features instead of merely relying on
statistical analysis of the location of previous navigation failures.

III. CPIP DEFINITION

CPIP is a framework for integrating path planning with intro-
spective perception in life-long learning settings. It is defined
as a tuple < M,Z,H >, where M is a stochastic planning
model, Z = {I;}2_, is a set of introspective perception mod-
ules, and # is a task-level competence predictor. CPIP leverages
introspective perception and the competence predictor model
to predict the probability of task-level failures given the raw
sensory data at every time step and uses these estimates to
update the planning model iteratively during robot deployments,
hence learns policies that reduce the probability of failures.
In Section IV, we introduce the planning model M and explain
how it incorporates the probability of autonomous navigation
failure in path planning. We then explain introspective percep-
tion Z and the competence predictor model H and how they are
used to structure the problem of learning to predict instances of
navigation failures in Section V.

IV. COMPETENCE-AWARE PLANNING

The CPIP planning model M uses a representation of the
environment that includes both the connectivity of a set of sparse
locations on the map as well as the probability of successful
traversal between each two connected neighboring locations. In

Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 09,2022 at 15:17:12 UTC from IEEE Xplore. Restrictions apply.



3220

Fig. 1.

Planning SSP for an example environment.

this section, we explain this model and how it is actively updated
during deployments.

A. Planning Model Description

The input to our problem is a topological map of the environ-
ment in the form of a directed graph G = (N, E) composed of
a set of nodes, N, and a set of edges, E. Each node represents
a location, and each edge e is defined by a tuple (n%,n?, t.,p.).
Here, nle is the starting vertex, ng is the ending vertex, ¢, is the
expected traversal time for the edge e, and p, is the probability
of successfully traversing the edge.

Given the topological map, G, we model the planning problem
as a Stochastic Shortest Path (SSP) problem, a formal decision-
making model for reasoning in stochastic environments where
the objective is to find the least-cost path from a start state to
a goal state. An SSP is a tuple (S, A, T, C, s, G) where S is
a finite set of states, A is a finite set of actions, 7' : S X A X
S — [0, 1] represents the probability of reaching state s’ € S
after performing actiona € Ainstates € S,C : S x A — R+
represents the expected immediate cost of performing action a €
Ainstate s € S, sg € S is an initial state, and G C S is a finite
(possibly singleton) set of goal states such that T'(s,, a, sq) =
1ANC(sg,a) =0Va € A, s € G.

A solution to an SSP is a policy 7 : S — A that indicates
that action 7(s) € A should be taken in state s € S. A policy
7 induces the value function V™ : § — R that represents the
expected cumulative cost V7 (s) of reaching s, from state s
following the policy m. An optimal policy 7* minimizes the
expected cumulative cost V*(sg) from the initial state s.

In our problem, S = N x S is a finite set of states comprised
of the map nodes IV and a finite set of failure states Sand A =
E U A is a finite set of actions comprised of the directed edges
in the graph and a finite set of recovery actions A. T'(s, a, s') is
determined by the probability of successfully traversing the edge
e = (s, ), pe, which is zero if the action a does not correspond
to the edge e. In a failure state 5, 7'(s, a, s') = Oifa ¢ Aand s #
§'.C(s,a)issettot. ifa € E,and the expected recovery cost for
s otherwise. Fig. 1 illustrates the planning SSP for an example
urban environment. During robot deployments, the transition
function is updated to reflect the latest belief over the probability
of navigation failures in traversing each edge on the map, or
equivalently the probability of successful traversals. Next, we
explain the method for updating the transition function.
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B. Updating the Failure Belief During Deployment

CPIP builds an SSP model to represent the topological map of
the environment as described in Section IV-A. CPIP updates the
aforementioned SSP model structure during deployments as it
collects more observational data from the environment, altering
the underlying transition function such that the resultant model
represents not just the map but the competence of the robot in
traversing it. In order to achieve that, the occurrence of a failure
of class f; at edge e is assumed to be a random variable from
the categorical distribution F, ~ Cat(p;.r,). The belief over this
variable is defined as By (F. = f;) = p(F. = fi|21.t), where the
subscript ¢ indicates the t™ traversal of the edge and z; is the
observation made by the robot during that traversal. Applying
the Bayes rule yields

bely(fi.o) = p (2l fie, 21:0-1) p (firel21:0-1)
e p(2t|z1:0-1)

_P (fi,e|zt)p (z¢) beli—1(fie)
p(fi,e)p(zt|zl:t71>

ey

Defining the negation of f;. as p(—=fic) =1—p(fie) =
> j2iP(fje) the belief can be implemented as the log odds
ratio

l(fie) =log (M)

belt(_'fi,e)

p(fielzt) )
=lo ——— |+l ie) l i,e )
g(l—p(fi,em) e1lfie) ~lolfie)
2
where lo(fi.) = log (%) is the prior in log odds form.

Before the first deployment of the robot in a new environment,
p(fie) = eandpe = p(fr.e) =1 =3 ;. p(fi,)foreverye €
E. Then upon each traversal of an edge, the above relation
is used to update the transition function of the planning SSP
model such that T;(s, e, $;) = bel;(fi ) =1 — m
The main term that needs to be computed for updating the belief
in Eq. 2 after each traversal is p( f; ¢|2;), which is known as the
inverse observation likelihood and in CPIP it is implemented by
two different functions, each handling one of the two different
types of observations z;: 1) Occurrence of failures of class f;
which is indicated via intervention signals issued either by a
human or a supervisory sensing unit and is denoted by s; ;; 2)
Sensory input that the robot continuously acquires such as RGB
images captured by cameras on the robot, which is denoted
by I;. For the former, the inverse observation likelihood is
implemented as

_ _ 1) 1=7
p(f2,6|zt_5t,3)_{15 i

-1
where ¢ is a constant coefficient. The inverse observation like-
lihood function for the latter type of observations, however, is
machine learned and is one of the key components of this work
that allows CPIP to reach an accurate estimate of bel;(f; )
without requiring the robot to experience costly failures. CPIP
structures the problem of learning p( f; . |z; = I;) such thatitcan
be achieved with a small number of failure examples for training
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data. Introspective perception is leveraged to extract features
associated with errors in perception from the high dimensional
raw sensory data. These features are then used to learn to predict
the probability of different classes of failures of navigation. By
learning this likelihood function, the robot will learn to better
navigate its environment, proactively avoiding paths that are
known to lead to failure cases, and reactively adjusting its policy
upon encountering novel situations that may lead to failures.
In the following section we describe the different parts of this
learning problem.

V. FAILURE PREDICTION VIA INTROSPECTIVE PERCEPTION

In order to predict failures of navigation given the sensory
data, we need to approximate the function p(f; |2, = I;). End-
to-end learning of this function is intractable because it requires
a great amount of training data, yet catastrophic failures in
robotics when executing tasks such as autonomous navigation
do not happen frequently. The scarcity of these examples makes
it challenging to learn a classifier that predicts the probability
of task execution failure directly from the raw sensory data.
Without enough training data and without abstracting the ac-
quired high dimensional sensory data, the learned classifier is
bound to overfit to the training data. We instead propose to fac-
torize p(fielzt) = f¢ D(fi.el@)p(P|2) where ¢ are the features
extracted from observations by introspective perception — a
model-free approach to predicting arbitrary errors of perception.

A. Introspective Perception

Early works on introspective perception [21], [22] defined
a perception algorithm to be introspective if it is capable of
predicting the occurrence of errors in its output given the cur-
rent state of the robot. Follow-up works [3], [4] extended this
definition and required such perception algorithms to predict
the probability of perception error conditioned on the region in
the raw sensory data that the output is dependent upon, e.g. an
image patch in the captured image by an RGB camera where the
estimated depth of the scene is erroneous. This is obtained by
means of an introspection function that is trained on empirical
data.

In CPIP, the robot is assumed to be equipped with one or more
introspective perception modules; each module has a learned
function I : Z — R"™, which extracts features ¢ € R™ from
the raw sensory data Z that encode information about sources
of perception errors. The outputs of all introspective percep-
tion modules are fed to a navigation competence predictor / :
R™ K — [0, 1]F, which learns to estimate the likelihood of each
of the different classes of failure f7.;, given a set of sources of
perception errors, i.e. P(f;|¢1.x ) suchthat ", P(fil¢1.x) < 1.
The inverse observation likelihood function in Eq. 2 is then
estimated as the composition of the above two functions, i.e.
P(fielze = It) = h(I1.x(I¢))}. It should be noted that although
CPIP assumes a constant set of failure classes, the number of
distinct sources of failures, which is often much larger than
the number of different classes of failure, are not enumerated a
priori. Each failure class corresponds to a different severity level
and hence a different failure recovery cost that is considered in
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planning. There exist, however, a large number of failure sources
that lead to failures with the same severity level. For example, a
high-severity class of failure in robot navigation are collisions,
for which there exist numerous failure sources including false
negatives in obstacle detection due to texture-less surfaces or
small object sizes, terrain type mis-classification, dynamic ob-
stacles, occlusions, etc. Furthermore, while the distinct sources
of failure differ between environments, the classes of failure
are specific to the objective of the domain (e.g. navigation,
manipulation, etc.), irrespective of the environment, and are
hence comparatively easy to enumerate.

In this paper we implement introspective perception for a
block matching-based stereo depth estimator [23] using the same
convolutional neural network architecture as that used in [3]
for the introspection function. The training data is collected au-
tonomously using a depth camera as supervisory sensing, which
is only occasionally available and provides oracular information
about the true depth of the scene.

B. Competence Predictor Model

We implement the navigation competence predictor model
h: R™¥ —10,1] as an ensemble of two deep neural net-
works. The input to the model is a list of image patches I; € R"
extracted from the same input image I and the output is the
probability of each class of failure. The architecture as shown in
Fig. 2 consists of two sub-models that are trained independently.

The global_info network is a convolutional neural net-
work (CNN) that operates simultaneously on all input image
patches arranged on a blank image in their original pixel coordi-
nates. The input to this network is equivalent to the input image
masked at all regions except for those predicted by introspective
perception to lead to errors. The global_info CNN captures
task-contextual and spatial information from the current frame
related to competence. By masking out parts of the full image
deemed to be unrelated to perception failures we are able to
ensure that the global_info CNN does not overfit to specific
environments.

The local_info network is a CNN that is fed as input
individual image patches. The output of this branch is the
probability of each class of failure for each single image patch.
This network learns correlations between navigation failures and
image features that lead to perception errors. The goal of this
branch is to locally pinpoint the potential source of navigation
failures in the image space, when a class of failure is predicted
by the global_info network.

The last stage of the model is a temporal filtering of the output
of each of the two networks. Failure class probabilities that are
produced by the global_info network are passed through a
mean filter to output Py € [0, 1]. Moreover, image patches that
are predicted by the local_info network tolead to navigation
failures are tracked in the full image over consecutive frames to
form a set of active tracklets A; for each class of failure f;. The
output of the model is obtained via strict consensus on the output
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Fig. 2. Navigation competence predictor model architecture.
such that
Py if Ay # 0
P(fi)=1 " . @)
0 otherwise

In other words, the predicted probability of each class of fail-
ure provided by the global_info network is only accepted
if the local_info network also supports that by detecting
at least one potential cause for the same class of failure in the
image space. During deployment, if 35 | P(f;) > ¢, i.e. there
exists consensus between the two branches of the network on
the existence of any class of failure, the output of the competence
predictor model will be used to update the belief in (2).

VI. IMPLEMENTATION DETAILS

In this section we provide implementation details for our
application of CPIP, i.e. path planning for an unmanned ground
vehicle (UGV) that uses a stereo vision-based depth estima-
tor [23] for obstacle avoidance.

A. Autonomy Stack

Our navigation software consists of global path planning
on the navigation graph and local path planning to follow the
planned path while avoiding dynamic obstacles that the robot
does not know about a priori. CPIP’s planning model does
the global path planning and we use a trajectory roll-out local
path planner. The 3D reconstruction of the environment by
stereo-vision is processed and any points with their height larger
than 15 cm and less than the height of the robot are detected as
obstacles. All obstacle points coordinates are projected to the
ground plane, converted to a 2D laser-scan format, and used by
the local path planner to select the least cost trajectory from
a set of sampled trajectories, such that the robot keeps a large
clearance from obstacles and makes progress towards the next
way-point on the global plan.

We implement introspective perception for the depth estima-
tor and train a CNN to predict depth estimation errors similar to
prior work [3]. The network is composed of 5 convolution layers
followed by 3 fully connected layers. The input to the network
are the image patches of size 70 x 70 pixels extracted from the
512 x 512 pixel images captured by the left stereo pair. The
output is the probability of depth estimation error and all image
patches predicted to lead to perception error with a probability
of > (.5 are passed to the competence predictor model. We use
a similar CNN architecture as that use for introspective depth
estimation for both sub-models of the competence predictor with

the only difference being the number of nodes in the output
layer of the network. The full pipeline of navigation competence
predictor which consists of introspective perception and the
competence predictor model runs at 5 Hz on a laptop with Intel
Core 19-9880H and GeForce RTX 2080 Max-Q.

B. Training of CPIP

CPIP has two learned components, i.e. introspective percep-
tion and the competence predictor model and they are trained
sequentially. The training data is extracted from logs of robot
deployments in the training environment. The logs include data
collected by the primary sensors, i.e. RGB images captured by
the stereo cameras, as well as data collected by supervisory
sensors, i.e. the Orbbec Astra depth camera that is only occa-
sionally available. Furthermore, intervention signals issued by a
human operator upon occurrence of navigation failures are also
recorded.

The deployment logs are processed offline. First, introspective
perception is trained with data that is autonomously labeled
using the supervisory sensing. Then, the training data for the
competence predictor model is prepared by passing the raw
sensory data through the introspective perception module and
labeling the output image patches as associated with one of the
classes of navigation failures if they fall within a fixed time
window preceding the occurrence of such failures. Each of the
two sub-models of the competence predictor model explained
in §V-B are then trained using a cross-entropy loss.

VII. EXPERIMENTAL RESULTS

In this section: 1) We evaluate CPIP on how well it predicts
sources of robot failures. 2) We compare CPIP against baseline
global path planners in terms of their task completion success
rate and their task completion time. 3) We evaluate the impor-
tance of introspective perception in CPIP’s performance and
generalizability via ablation studies.

A. Experimental Setup

1) Simulation: In order to evaluate CPIP and compare it
against SOTA extensively, we use AirSim [12], a photo-realistic
simulation environment, where robot failures are not expensive
and the robot can easily be reset upon occurrence of navigation
failures. A simulated car is equipped with a stereo pair of RGB
cameras as well as a depth camera that provides ground truth
depth readings for every pixel in the camera frame. We use
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Fig. 3. Training and test environments in the real-world experiments.

two separate urban environments for training and testing. The
environments are populated with obstacles of different shapes,
textures, and colors.

2) Real-robot maze: We also evaluate CPIP on a real robot.
We use a Clearpath Husky equipped with a stereo pair of RGB
cameras, an Orbbec Astra depth camera, and a Velodyne VLP-16
3D Lidar. We use different indoor sites for training and testing
of CPIP. Each environment has different types of terrain such
as tiles and carpet, and is populated with obstacles of different
shapes, textures, and surface materials. The test environment is
a maze constructed in an area of size 60 m?.

3) Real-robot large-scale: In order to test CPIP extensively
and in more natural settings, we also conduct a large scale
experiment, where we deploy the robot on the entire floor of a
building. This test environment has an area of larger than 400 m?
and the robot traverses more than 1.5 km during the deployment.
Fig. 3 shows the training and both the large scale and maze test
environments.

B. FAILURE PREDICTION ACCURACY

In order to evaluate the accuracy of CPIP in predicting failures
of navigation, we have the autonomous agent traverse each of the
edges of the navigation graph in the test simulation environment
50 times and run the captured images by the robot camera
through the CPIP’s introspective perception module and the
competence predictor model to predict instances of navigation
failure. In this paper, we implement CPIP with two classes of
failures. 1) Catastrophic failures, where the robot ends up in a
state that precludes completion of the task and is not recoverable
with human intervention. Examples of this class include colli-
sions and the robot getting stuck off-road. 2) Non-catastrophic
failures, where the robot will not be able to complete its task
unless intervention is provided by a human operator or a su-
pervisory sensor. The robot getting stuck due to false detection
of obstacles or because of localization errors are examples of
this type of failure. Fig. 4 illustrates the predicted and actual
navigation failures in a confusion matrix. CPIP correctly predicts
occurrence of navigation failures more than 70% of the time
for both types of failures. Prediction errors mostly correspond
to cases, where the source of failure is significantly different
looking from the examples available in the training data.
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Fig. 5. Comparison of cumulative failure count (a) in the real-robot maze
experiment, and (b) the real-robot large scale experiment for this work (CPIP),
SOTA (frequentist), and the baseline with no competence-aware planning.

C. NAVIGATION SUCCESS RATE AND PLAN OPTIMALITY

We test the end-to-end system in predicting navigation failures
and proactively planning paths that reduce the probability of
failures, by deploying the robot in a previously unseen test
environments. The robot is commanded to complete randomly
generated navigation tasks that consist of a starting pose and
a target pose. We conduct this experiment in all three settings
explained in Section VII-A, i.e. simulation, real-robot maze, and
the large-scale real-robot deployment.

We compare CPIP with a baseline path planner that does
not reason about the competence of the robot as well as a
state-of-the-art approach for competence-aware path planning
— called the Frequentist approach — that relies on keeping track
of the frequency of past failures in traversing each of the edges
of the navigation graph [17]. Fig. 5 compares the cumulative
failure count for all three methods throughout the real-robot
experiments. With the Frequentist approach, the robot learns
to avoid regions of the environment, where it cannot navigate
reliably as it experiences navigation failures. However, CPIP
enables the robot to predict and avoid most of these failures,
leading to the least number of experienced failures.

We also evaluate the optimality of the planned paths by
comparing the task completion time for all the methods under
test with an oracular path planner that is given the true probability
of navigation failures for each edge of the navigation graph.
The ground truth failure probabilities are obtained by having
the agent traverse each edge of the navigation graph numerous
times and logging the frequency of each type of failure. Fig. 6
shows the completion duration for each task in the simulation
experiment. The duration values are normalized by the task
completion duration when the oracular path planner is used. The
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Fig. 6. Task completion duration w.r.t. an oracle planner that is provided with the true probability of failure throughout the environment ahead of deployment.

Vertical bars visualize the incomplete tasks for each method annotated by color. Highlighted red regions in the top band demonstrate tasks, during which the robot

encounters previously unseen parts of the environment. Best viewed in color.

Fig. 7.

Test environments in (a) the real robot maze experiment, (b) large-scale real robot experiment, and (c) the simulation experiment. Regions of the

environments highlighted in red cause catastrophic failures, regions highlighted in yellow illustrate sources of non-catastrophic failures, and areas annotated with

green, show areas where the robot can successfully operate autonomously.

TABLE I
TASK COMPLETION AND FAILURE PREVENTION RATE

#Tasks  TCR (%) Relative TCD # Avoided Failures
Mean  Std CF NCF
Real Robot  CPIP 11 100 1.04 0.08 5 (100%) 3 (100%)
Maze Frequentist 11 73 1.22 0.43 3 (60%) 1 (33%)
Real Robot  CPIP 20 100 0.98 0.04 9 (100%) -
Large-Scale  Frequentist 20 80 0.99 0.04 5 (55%) -
Simulati CPIP 100 97 100 005 14 (93%) 61 (97%)
Muaton - prequentist 100 83 102 009  9(60%) 52 (83%)

*Task completion duration statistics are only calculated for tasks that were completed
by both algorithms.

figure also illustrates instances of task completion failures for
both CPIP and the Frequentist method. Such instances include
occurrence of catastrophic failures or occurrence of consecutive
non-catastrophic failures such that the robot cannot recover from
a stuck state by re-planning. CPIP task completion duration is
similar to that of the oracular path planner except for tasks where
the robot visits a previously unseen part of the environment
and has to re-plan upon prediction of a source of navigation
failure. An example of such re-planning can be seen around task
number 50 in Fig. 6. Table I summarizes the task completion rate
(TCR), relative task completion duration (TCD), and the number
of avoided navigation failures by CPIP and the Frequentist
method for both simulation and real-robot experiments. The
TCD statistics are computed only for tasks that were completed
by both CPIP and the Frequentist approach. CPIP achieves
a significantly higher TCR across all experiments; moreover,
CPIP either performs similarly or outperforms the Frequentist

approach in terms of relative TCD. The reduced task completion
duration achieved by CPIP is due to proactively predicting and
avoiding non-catastrophic failures, e.g. getting stuck behind
falsely detected obstacles. The Frequentist approach would ex-
perience these failures and although it might complete the task
by replanning, it suffers a longer task completion duration due to
performing recovery actions. CPIP outperforms the Frequentist
in terms of the relative TCD in the real-robot maze environ-
ment, where the distance traveled by the robot in each task is
shorter compared to the other experiments, hence the relative
task completion delay caused by performing recovery actions
by the Frequentist approach is significantly larger. Moreover,
in the real-robot large-scale experiment the relative TCD is
very similar for CPIP and the Frequentist since there exist no
sources of non-catastrophic failures in the environment. Fig. 7
illustrates snapshots of the test environments and highlights the
different sources of navigation failures encountered by the robot,
which includes different types of texture-less obstacles as well
as reflective surfaces.

D. ABLATION STUDY

In order to evaluate the importance of introspective perception
in the pipeline of CPIP, we conduct an ablation study. We train
a classifier that instead of leveraging the extracted information
by introspective perception, directly receives the raw captured
RGB images as input and outputs the probability of each class
of failure occurring in a specified time window in the future. We
use a convolutional neural network with the AlexNet architecture
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Fig. 8. Results of the navigation failure prediction for CPIP vs. an end-to-end
classifier that does not use introspective perception (a) in a previously seen
environment and (b) in a novel environment.

similar to that used in prior work [22] for predicting failures of
perception.

We train the classifier on the same simulation dataset used
for training CPIP and we compare the performance of both
methods in predicting navigation failures both in a previously
unseen environment—the same test dataset described in Sec-
tion VII-B—as well as in a new set of deployments of the agent
in the training environment. Fig. 8 shows the average precision,
recall, and f1-score metrics over all classes, i.e. two classes of
failures and a no-failure class, for both CPIP and the end-to-end
classifier. While both methods perform similarly good in a
previously seen environment, CPIP significantly outperforms
the alternative classifier in the novel environment. Leveraging
the extracted features by introspective perception simplifies the
learning task and allows CPIP to achieve better generalizability
given the same amount of training data. This is specifically a
benefit for task-level failure prediction, where the volume of
training data is limited due to the costly nature of acquiring data
from examples of robot failures.

VIII. CONCLUSION

In this paper, we introduced CPIP, a framework for integrating
introspective perception with path planning in order to learn
to reduce robot navigation failures in the deployment environ-
ment and with limited amount of training data. We empirically
demonstrated that by leveraging introspective perception CPIP
can learn a navigation competence predictor model that gener-
alizes to novel environments and results in significantly reduced
frequency of navigation failures. CPIP currently addresses the
problem of robot global path planning on a coarse navigation
map of the environment. As future directions, the CPIP frame-
work can be extended to support competence-aware local motion
planning as well as high-level task planning for mobile robots.
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