State Supervised Steering Function for Sampling-based
Kinodynamic Planning

Pranav Atreya
University of Texas at Austin
Austin, TX, United States
pranavatreya@utexas.edu

ABSTRACT

Sampling-based motion planners such as RRT* and BIT*, when
applied to kinodynamic motion planning, rely on steering func-
tions to generate time-optimal solutions connecting sampled states.
Implementing exact steering functions requires either analytical
solutions to the time-optimal control problem, or nonlinear pro-
gramming (NLP) solvers to solve the boundary value problem given
the system’s kinodynamic equations. Unfortunately, analytical solu-
tions are unavailable for many real-world domains, and NLP solvers
are prohibitively computationally expensive, hence fast and opti-
mal kinodynamic motion planning remains an open problem. We
provide a solution to this problem by introducing State Supervised
Steering Function (S3F), a novel approach to learn time-optimal
steering functions. S3F is able to produce near-optimal solutions
to the steering function orders of magnitude faster than its NLP
counterpart. Experiments conducted on three challenging robot
domains show that RRT* using S3F significantly outperforms state-
of-the-art planning approaches on both solution cost and runtime.
We further provide a proof of probabilistic completeness of RRT*
modified to use S3F.

KEYWORDS

Kinodynamic Motion Planning; Learning Steering Functions;
Sampling-based Planning

ACM Reference Format:

Pranav Atreya and Joydeep Biswas. 2022. State Supervised Steering Function
for Sampling-based Kinodynamic Planning. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION AND RELATED WORK

This work tackles the kinodynamic motion planning (KDMP) prob-
lem, which is the problem of computing a kinodynamically feasible
motion plan that takes a robot from an initial configuration to a
goal region. We begin by formally defining the KDMP problem and
then survey the various approaches to solving it.

Let X be the configuration space of the robot. The state space
X is defined as the Cartesian product of Xc with Xp, the set of
dynamics variables needed to fully describe the dynamics of the
robot at any given instance in time. Xp typically consists of time
derivatives of elements of Xc. Let U be the control space of the
robot. The kinodynamic constraints are described by the differential
equation x(t) = f(x(t),u(t)), where x(¢) € X and u(t) € U. The

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Joydeep Biswas
University of Texas at Austin
Austin, TX, United States
joydeepb@cs.utexas.edu

KDMP problem differs from the purely kinematic motion planning
(KMP) problem in that the KMP problem operates only on the
configuration space Xc. Let X5 € X be the set of obstacle-colliding
states and let Xgee = X\X,ps be the set of valid states. Let xjpjt €
Xfree be the initial state of the robot and let Xgo,1 C Xfree be the goal
region. The objective of the KDMP problem is to find a collision
free path that takes the robot from xinit to Xy, while obeying the
kinodynamic constraints. The solution to the KDMP problem is
a mapping c(t) : [0,tf] — U from time to control inputs such
that applying c(t) starting from the state xj,j; traces out a path
£(t) = [0,2¢] — Xiree such that £(tf) € Xgoal- A motion plan is
considered optimal if it minimizes some cost function C(ty,c, §).
The time-optimal solution minimizes the total time .

We review the state of the art approaches to solving the KDMP
problem, including search-based planning, sampling-based plan-
ning, and learning-based solutions.

Search-based planning typically involves constructing a state
lattice G = (V, E) where V C Xfee and the edges E are pre-defined
kinodynamically feasible motion primitives [23]. This lattice can
then be searched using any graph search algorithm to obtain a so-
lution. Increasing the resolution of the lattice increases the chances
that a solution can be found, but comes with an exponential in-
crease in computational cost. Finding a set of motion primitives
that work well can also be difficult. Search-based planning algo-
rithms are resolution optimal, in that they can find solutions that
are optimal with respect to the discretization used.

Sampling-based planning makes use of a continually improv-
ing discretization of the state space through random sampling. One
of the most effective sampling-based planning algorithms is the
Rapidly Exploring Random Tree (RRT) [17] algorithm. The RRT
algorithm works by incrementally sampling the state space and ex-
tending the nearest vertex in the tree towards that sample. Because
this extension can be made by a random propagation of controls,
the RRT algorithm can be applied to kinodynamic systems.

RRTs have also been integrated with machine learning approaches
to solve the KDMP problem. One such work employs the k-nearest-
neighbors algorithm within the RRT framework to approximate the
cost-to-go function and expand vertices in the tree [29]. It however
suffers from lack of optimality of computed trajectories and is only
demonstrated to work for simple environments. Reinforcement
Learning RRT (RL-RRT) [6] trains an RL agent to do local planning
and uses an RRT to guide exploration. The resulting motion plan is
suboptimal and since the RL local planner is trained on particular
obstacle configurations, may not generalize well to new obstacle
environments. Probabilistic Roadmap RL (PRM-RL) [8] also uses RL
for local planning but maps sensor observations directly to actions
and does not attempt to produce optimal trajectories.

RRT and the aforementioned RRT based algorithms do not pro-
duce optimal solutions. An alternative algorithm that produces
optimal solutions while maintaining the computational efficiency
of RRT is the RRT* algorithm [14]. The RRT* algorithm makes use
of a rewiring step to ensure that the path from the root to any
vertex in the tree is optimal with respect to the connections in the
tree. Because of this, the RRT* algorithm is asymptotically optimal.
Many variants of the RRT" algorithm exist that have proven to
work well in practice. Informed RRT* [9] improves on RRT* by
ensuring that after an initial solution has been found, only states
that have the potential to improve the solution are considered as
candidate vertices. The BIT* algorithm [10] integrates graph-based
and sampling-based planning techniques to more efficiently find
and improve on solutions to the planning problem.

One caveat of optimal sampling-based algorithms including RRT*
and BIT" is that they all require an optimal steering function to
connect states. For any two states x4, x5 € X, a steering function
S(xa, xp) produces a trajectory T : [0,t7] — U, a mapping from
time to control inputs. Integrating T from x, according to the equa-
tion of motion f produces apath T : [0, ¢7] — X, a mapping from
time to states. An optimal steering function S*(x4, x;) produces
a trajectory T* : [0, tf] — U and a path T* : [0, tf] — X that
in addition to satisfying the aforementioned constraints, satisfies
I'*(tf) = xp and minimizes some cost function, most commonly
time. There exist algorithms like Stable-Sparse RRT (SST) [19] and
Asymptotically Optimal RRT (AO-RRT) [12] that do not require
a steering function, but in practice they tend to take a significant
amount of time to find good quality solutions. Analytical solutions
to the steering function exist for some robots, such as those with lin-
ear dynamics [28], and so do iterative solutions for specific systems
such as omnidirectional robots with bounded acceleration [2], but
for most systems computing the optimal steering function requires
a call to a computationally expensive nonlinear programming (NLP)
solver. There are ways to decrease the computational overhead of
NLP solvers to make planning tractable [30], but the NLP solver
still remains a significant bottleneck. Previous work has explored
whether the steering function can be learned [32]. The learning
setup used however was unable to connect arbitrary start and goal
states, a necessity if the steering function is to be used in an optimal
sampling-based planning algorithm.

Reinforcement learning has also been applied to the KDMP
problem. One approach to KDMP for linear systems uses continuous-
time Q-learning [16] to deal with dynamics whose differential equa-
tions of motion are inaccurate or unreliable. Some have also pro-
posed formulating the KDMP problem entirely as a Markov Deci-
sion Process (MDP), where the solution KDMP policy is learned by
RL [5].

Learning optimal control policies is a research area that has
also been recently explored. Past works [11] [27] [25] [26] have
attempted to train a neural network to learn to produce optimal
controls. All of these works however keep the goal state fixed, and
so a new policy would need to be learned for every goal state.

Optimization-based planning methods rely on numerical
optimization to find a solution to the goal that minimizes some
cost objective. Example works that fall under this category in-
clude GuSTO [4], CHOMP [24], and STOMP [13]. While such

optimization-based methods are effective at finding solutions given
good initialization, they find difficulty in handling cases where
initial solutions are unknown, or when the optimization objective
function has local minima (often due to obstacles).

Integrated planning and learning approaches have recieved
significant attention lately. Search on the Replay Buffer (SoRB) [7]
demonstrates how the success rate of goal-conditioned RL on long
horizon tasks can be improved by adding a planning component.
SoRB however is unable to provide theoretical guarantees on com-
pleteness and faces difficulty when run on unseen environments.
One approach [1] uses precomputation and machine learning to
enable real-time kinodynamic planning for quadrotors. It is able
to avoid solving two-point boundary value problems directly on
quadrotor dynamics by using minimum snap polynomial splines,
a technique that only works for a limited class of systems. Model-
Predictive Motion Planning Networks (MPC-MPNet) [18] proposes
the integration of multiple neural components along with Model
Predictive Control to solve the kinodynamic motion planning prob-
lem. The algorithm is compared with SST and is shown to have
faster planning times. It however is unable to produce lower cost
paths than SST and drops in performance on unseen environments.

While many approaches exist for kinodynamic planning, none so
far are able to find low cost solutions in a computationally efficient
manner. Approaches either sacrifice low solution cost or perfor-
mance in pursuit of the other. We propose with this work that both
are attainable. In contrast to many learning approaches, our work
is also agnostic to obstacle configurations, and so generalizes well
to new environments.

In summary, in this paper we contribute: 1) State Supervised
Steering Function (S3F), a learning-based technique to efficiently
compute the steering function required by optimal sampling-based
planners; 2) S3F-RRT*, a probabilistically complete RRT* algorithm
that uses S3F as its steering function; and 3) Empirical results for
three kinodynamically-complex robots that demonstrate that S3F-
RRT* outperforms state-of-the-art kinodynamic planners.

2 KINODYNAMIC PLANNING WITH STATE
SUPERVISED STEERING FUNCTION

Recall from earlier that given two arbitrary states x4, x; € X the
optimal steering function S*(x4, x3) produces a trajectory T* that
optimally connects these two states. We are interested in learning
a function $ that approximates $* such that $(xg, x,) produces a
near-optimal trajectory T =~ T*. The control trajectory T can be
integrated to obtain a path T.

2.1 Steering Function Formulation

Rather than learning S that produces T directly, we simplify the
learning problem by constructing T in an iterative manner. This
can be done by learning a policy 7 : X X X — U where x takes
as input the current state of the robot x; and the goal state x; and
produces as output a constant-time control input u to be executed
for a fixed period of time 7, resulting in a new state x;41. Iteratively
calling 7 for a fixed number of iterations n results in the genera-
tion of a piecewise constant control function that we denote Tax.
Integrating Tmax from the start state x, yields the state function

rmax .

control (N)

| I
!

il
1 —o— thrustl
—#— thrust2
* ” A’ —¥— thrust3
21 MLA::- > Lt . thrust4

. 1.0 15

2.0 2.5 3.0

time (s)

(a) Control function

=
-g
=
g
“
g
L —— x
12}
K =y
“ —h— z gamma
-3 —¥— xdot thetadot
1] —<— ydot phidot
- —»— zdot gammadot
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

(b) State function

Figure 1: Quadrotor optimal control and state functions

T can be obtained from Tpax by discarding from Tiax all controls
past the time when the robot has reached the goal. To be able to
do this, nt, the duration of Tinax, needs to be greater than the time
it takes to connect any two states in X optimally. The next step
is to determine when Ty actually reaches the goal. The naive
approach is to simply select the time at which Tipax is closest to x
where closeness is defined using Euclidean distance. The problem
with this approach is that our trajectories not only need to reach
the goal but also be optimal with respect to the time to goal. Let’s
say for one particular trajectory the robot reaches a distance dy
from the goal at time t; and a distance dy from the goal at time
t2. If dy is the closest distance, then we are guaranteed to pick
as our ending time, even if dy is marginally less than d;. However
it may be possible that t; is significantly greater than ¢, and so
just to reach a little closer to the goal we’re sacrificing significant
time optimality. This type of analysis motivates the solution to
this problem. Since there are in essence two objectives that we are
optimizing over when selecting the end time - distance to goal and
time to reach goal — we should construct a reward function that
fairly takes into account both. The following reward function R(t)
does exactly this:

ll¢a — xp || = [1Tmax(£) — xp ||
l1xa = xp||

ﬁ, if”rmax(t) —xpll S p
0, otherwise

R(ty=«a

i+ Rb (rmax(t),xb)

M
Ry (Tinax (1), xp) = {

The first term is a normalized difference of potential functions, and
is maximized when the candidate terminal state is situated at the
goal. The use of such potential functions was first introduced as a
policy invariant mechanism for reward shaping [21]. The second
term, —t, takes into account the second objective: minimizing the
time to the goal. Finally the third term provides an additional incen-
tive if the candidate terminal state is very close (< p distance away)
to the goal. The hyperparameters «, 8, and p are positive constants
which can be tuned to adjust the relative weights of the three terms.

For all time points which this reward function is calculated, the
end time will be the time with the greatest reward. T can then be
obtained by discarding all control inputs in T,y after the end time.

2.2 Learning the Policy

The previous section showed how the steering function S can be
constructed from a learned policy 7. We next present how = is
learned.

We employ a supervised learning approach to learn 7. Since
the end goal is to learn the optimal steering function, our dataset
consists of solutions to the optimal steering function for a large
number of start and goal states. This dataset, generated by an NLP
solver, consists of a series of trajectories each described by a tuple
(T*,T*, tf). Here T* : [0, tr] — U and T : [0, tr] — X are
the control and state functions introduced earlier. We used the
PSOPT (3] optimal control library to generate the trajectories. The
start and goal states for each trajectory in the dataset are sampled
uniformly at random from the full state space to ensure good state
space coverage.

To learn 7 using this dataset we employ the fact that r is used to
generate control and state functions T and I". The arguably simplest
approach is to have T imitate T* for each start and goal pair in
the dataset. The discrepancy in the fact that T is piecewise con-
stant whereas T* is continuous can be accounted for by simply
averaging controls in T* at each length 7 time interval. = would
then be directly supervised by the averaged constant controls in
T*. Although straightforward, this approach fails to learn a well-
performing policy. The primary reason for this is that the learning
problem involves the approximation of a highly discontinuous func-
tion. 7 is tasked with learning the optimal control function which
for many kinodynamic systems is a bang-bang control function.
Figure 1a shows an example of this for the quadrotor robot - such
discontinuous control functions are hard to represent and learn
directly, even by supervised learning.

The solution to this problem is to not use the optimal control
function T* to supervise the learning, but to instead use the optimal

S3F-RRT"* ()

1V« {xinit},E —0
2: fori=1.ndo

3:

Xrand < SampleFree()

4: Xparent ¢ D, Xext < D, Cmin ¢

5: Xnear < NearTo(G = (V,E), Xpand)

6: for each x € Xy do

7: T « Steer(x, Xand)

8: Xnew < EndState(x, T)

9: Ctraj < SteeringCost(T)

10: b « Dist(Xnew, Xrand) < Terror AObstacleFree(x,T)
11: if Cost(x) + ctraj < Cmin A b then
12: Xparent <~ X

13: Xext €<~ Xnew

14: Cmin < COSt(X) + Ciraj

15: end if

16: end for

17: if cpin # oo then

18: Ve<Vu {xext}

19: E—EU {(xparent, xext)}

20: end if

21: Rewire(V,E, Xext)

22: end for

23: return G = (V,E)

Rewire(V, E, xext)

1: Xpear < NearFrom(G = (V, E), Xext)
2: for each x € Xjear do

3:
4
5
6:
7
8
9

10:
11:

T « Steer (xext, X)
Xnew < EndState (xext, T)
Ctraj < SteeringCost(T)
b « Dist(xpew,X) < Ferror A ObstacleFree (xext, T)
if Cost (xext) + Ciraj < Cost(x) A b then
V e V\{x} U {xnew}
E « E\{(Parent(x),x)} U {(xext Xnew)}
PropagateRewiring(x, xpew)
end if

12: end for

PropagateRewiring (x, Xnew)

1: for each x4 € Children(x) do

10:

2
3
4
5
6:
7
8
9

T « Trajectories(x, Xchid)
if ObstacleFree (xpew, T') then
Xnext < EndState (xpew, T)
V= V\{xchita} U {*next}
E — E\N{(x, Xchita) } U { (Xnew, Xnext) }
PropagateRewiring (x¢hilds Xnext)
else
DeleteSubtree(xchiq)
end if

11: end for

Figure 2: S3F-RRT" Algorithm

state function I'*. We term this approach State Supervised Steer-
ing Function (S3F). Due to the differential equation f that defines
the kinodynamic constraints, state functions are guaranteed to be
differentiable (and thus continuous), making learning the optimal
state function a feasible problem. Figure 1b shows an example of
such a state function for the quadrotor robot — note that despite
the associated control function (Figure 1la) being discontinuous,
the state function is smooth and continuous. The goal now is to
have T imitate I'* for each trajectory in the dataset. This can be
done by ensuring that for various time points ¢ in the range [0,],
I'(t) = T*(t). Recall that T is only obtained by integrating T. This
can be accounted for with the following procedure: sample a series
of time points (...t in the range [0, t 7 — r]. For each time point ¢,
assume that the robot is currently at T*(¢). If T is to imitate I'*, the
robot should be at T'* (¢ + 7) at time ¢ + 7. The actual location of the
robot at this time under the current policy 7 can be calculated by
evaluating F(T*(¢), #(T*(t), xt)) where x;, is the goal state of the
trajectory and F : X X U — X is an integration function that given
a current state and a constant control, integrates the differential
equation of motion f to compute the state 7 units of time later. To
get T to imitate I'* we can thus optimize the following learning
objective:

argmin 35 3% [P0 (@0.3) - T @+ 0] 2

T*eD te(ty,....tx)

where 0 is the parameter set of 7 and D is the dataset of optimal
trajectories. The key takeaway from this learning procedure is that
we are learning 7 indirectly. 7 is a component of a state function
that we are training to be optimal, and by learning this state function
we are indirectly learning the control function 7.

2.3 Sampling-based Planning With Learned
Steering Functions: S3F-RRT"

We present S3F-RRT*, a sampling-based planning algorithm that
uses the learned steering function to solve the optimal kinodynamic
motion planning problem. S3F-RRT"* uses S3F as the steering func-
tion, and employs a modified rewiring procedure to overcome any
potential local inaccuracies in S3F’s trajectories.

Figure 2 presents the algorithmic formulation of S3F-RRT". Fig-
ure 3 shows a visualization of what goes on in each S3F-RRT*
iteration. Each iteration begins by sampling a random collision-free
state x;,n4- The NearTo function is then called to obtain the set of
all vertices in the current RRT* tree that are near x;,,4. A state is
considered to be near x;,,,4 if the time of the optimal trajectory from
that state to x;,pq is below some threshold. Each state in Xpear is
then evaluated as a possible parent to x;,,4. Steer(x, x;4,4) invokes
S3F to compute a control function T that connects x to x;,,4. To
determine xpew, where the trajectory actually ends, EndState(x, T)
integrates T from x. SteeringCost(T) returns the cost of the tra-
jectory T, which for a time-optimal planning problem is simply
the duration of T. Cost(x) returns the cost of going from the start
state to x in the current RRT" tree. The Dist function returns the
Euclidean distance between two states and is used to ensure that the
terminal state of the trajectory is close enough to the target state.
ObstacleFree(x, T) integrates the control function T beginning at
x to obtain a state function that maps time to states. ObstacleFree

Xparent

X
childy L Kehild,
Xchild,

")
Xehild, 4
Xchild,

,
Xchild,

Xehild,

Xterminal 3@ *target

Sample a random state x4
red. Attempt connections from all reaching x,
nearby states currently in the tree to opstacle free. The state actually
Xeang Using S3F. The start and goal reached x.
states of the planning problem are not it needs to be close.
shown.

j shown in Pick the connection that allows For each nearby state in the tree (x
rand With minimal cost and is ~ is one example), see if it can be need to be shifted. The trajectory
reached faster by going through x,
new Need not equal Xp,,g, DUt | jke before, the connections are previous iteration by S3F. We can re-
generated by S3F. The path to Ftarget execute this trajectory beginning at
will be replaced by the faster one. Xierminal*

If Xierminal 7 Xrareet » Xtarger 'S Children Recursively propagate the rewiring to
- T children deeper in the subtree. Similar
to the previous step, the connection

(¥ehild,» Xenita,) that was generated
earlier by S3F will be re-executed
beginning from)’l/-luldp

target

(Yiarges Xcnita,) Was generated in a

new "

Figure 3: Illustration of the steps that take place in one iteration of S3F-RRT"*

then ensures that every state in this state function does not collide
with obstacles.

After the best parent has been found and the state has been added
to the tree, the rewiring procedure is invoked. Here, the set Xpear is
constructed by calling NearFrom(G = (V, E), xext). The difference
between NearFrom and NearTo is that NearFrom(G = (V, E), xext)
considers connections from xext to other states as opposed to from
other states. Parent(x) returns the parent of x in the current RRT*
tree.

The rewiring procedure internally calls PropagateRewiring.
Children(x) returns the set of all children states to x in the current
RRT” tree. Trajectories(x, xcpjq) returns the control function
that was computed earlier by S3F to connect x and x¢pjg-

One of the key differences between this algorithm and the origi-
nal RRT* algorithm is the absence in this algorithmic formulation
of finding the nearest state. In the original RRT* algorithm, after a
state is randomly sampled, the nearest state in the tree is selected
as a source of expansion. A new state is obtained by extending the
nearest state towards the randomly sampled state up to a distance
1, and the resultant state is used as the target for the subsequent
steering function evaluations. We entirely eliminate this compo-
nent of the algorithm for simplicity, a modification that was first
proposed in Kinodynamic RRT* [28]. This modification is known to
not hurt theoretical asymptotic optimality of the RRT* algorithm.
The main other difference in this algorithm is a series of modifica-
tions that deal with the fact that the learned steering function will
reach within an error radius of the goal state. Notable among these
is the existence of the PropagateRewiring procedure.

2.4 Correctness of S3F-RRT*

There are two criteria for correctness: solutions returned by S3F-
RRT* must satisfy the kinodynamic constraints and must avoid
obstacles. Any operation on the S3F-RRT" tree (such as rewiring)
can be reformulated as a sequence of state addition and state dele-
tion operations. State deletion by default cannot violate correctness.
State addition also satisfies correctness because (1) a state is only
added to the tree if the path from the parent to the state is collision
free and (2) the path from the parent to the state is generated by
integrating the differential equation of motion, implying that the
path to the state satisfies kinodynamic constraints. Thus S3F-RRT*
is correct.

2.5 Probabilistic Completeness Proof of
S3F-RRT*

Here we present a summary of the proof of probabilistic complete-
ness (PC) of the S3F-RRT* algorithm. S3F-RRT" is a modification of
the original RRT" algorithm [14] designed to make use of a learned
steering function. The proof largely follows the structure of the
proof of probabilistic completeness of geometric RRT [15], though
significant modifications have been made to take into account the
presence of kinodynamic constraints and the use of a learned steer-
ing function. The full proof can be found in the supplementary
materials.

Let ¢* (x4, x) denote the cost of the optimal trajectory from x,
to xp, or equivalently the kinodynamic distance from x, to xj,. We
assume that ¢* obeys the triangle inequality, that is, ¢* (x4, xp) <
c*(xg, %) + ¢*(x,xp) for all x € X. Let S be a learned steering func-
tion. We assume that with nonzero probability p, S(xa, xp) yields
a state function T that satisfies ¢*(I'(¢),xp) < c¢*(xq,xp) for all
t € [0, t¢]. This assumption in essence states that every state along

the path produced by § is kinodynamically closer to the goal state
than the start state is. For a steering function trained to be optimal,
this is a reasonable assumption.

We will use B(x) to denote the subset of the state space X
defined by {x’|c*(x’,x) < r}. For simplicity, we assume that there
exist 8goal > 0,Xgoal € Xgoal Such that B5goa1(xgoal) € Xgoal- We

denote this simplified goal region B5g Xgoal) a8 Xgoal' The goal of

oar (
the motion planning problem is to find a kinodynamically feasible
path 7 : [0,t;] — Xgee such that 7(0) = xipir and 7(t,;) € Xgoal’
The clearance of 7 is the maximal §jcq, such that Bs, (7(t)) €
Xiree forall ¢ € [0, t,].

We assume for this proof that there exists a valid trajectory
w2 [0,t7] — Xfree With clearance ey > 0. Without loss of
generality, assume that (7)) = Xgoql, i.€., the trajectory terminates
at the center of the goal region. Let L be the total cost of , and
let v = min(S¢jear, Sgoal)- Let m = % Define a sequence of m +
1 points Xg = Xinit, --» Xm = Xgoal along 7 such that the cost of
traversal from one point to the next is % Therefore, ¢* (xj, xj+1) < %
for every 0 < i < m. We will now prove that as the number of
iterations increases, the S3F-RRT* algorithm will generate a path
passing through the vicinity of these m + 1 points with probability

asymptotically approaching one.

(a) Dubin’s Car with Acceleration

(b) Tractor Trailer

*

<

by~

(c) Quadrotor

Figure 4: Sample planning trees after running S3F-RRT” on the three robot domains. The best solution found from the (green)
start state to the (red) goal state is shown explicitly. A large spacing between consecutive gray states indicates a high velocity.
In the planning trees, the dots are the vertices of the tree and the orange connections are the edges. In (c), dark gray states are

of low elevation and light gray states are of high elevation.

LEMMA 2.1. Suppose that S3F-RRT" has reachedB% (x;), that is, its
tree contains a vertex x; such that x| € By (x3). If Xpand € By (xit+1)
and ¢* (xi, Xrand) < 5 (equivalently x; € By (Xand)) then the path
from the nearest neighbor xpear t0 x,nq lies entirely in Xp oo with

probability p.
PRrROOF. See supplementary materials. O

TueoReM 2.2. The probability that S3F-RRT” fails to reach X*
goal

from xii after k iterations is at most ae bk, for some constants
a, be R>O.

ProOF. See supplementary materials for full proof of Theorem
2.2. Here we present an overview. Assume that By (x;) already
contains an S3F-RRT” vertex. Let r; be the probability that in the
next iteration a S3F-RRT”* vertex will be added to B§ (xi+1). The
proof in essence relies on the fact that with Lemma 2.1 in place, it
can be shown that the probability r; is nonzero and is independent
of the number of S3F-RRT" iterations k. In order for the S3F-RRT*
algorithm to reach Xgoal from xjpit, a S3F-RRT* vertex must be added
to B% (xi+1) m times for 0 < i < m. If we let r be the minimum of
the transition probabilities {r;|Vi(0 < i < m)}, reaching the goal
can be described as k Bernoulli trials with success probability r,
where the goal is reached after m successful outcomes. With this
formulation it can be shown that the probability the goal is not
reached decays to zero exponentially with k, and thus S3F-RRT* is
probabilistically complete. O

3 EXPERIMENTAL RESULTS

We compared S3F to the current state of the art on three challenging
problem spaces: Dubin’s car with acceleration, tractor trailer, and
quadrotor robots. For each problem space, we solve a series of
minimum-time motion planning problems using S3F-RRT*, RRT*
using NLP for steering, RRT, and SST. The BARN dataset [22] was
used to obtain realistic, obstacle dense maps to run the comparisons

on. Figure 4 depicts sample solutions and their planning trees found
by S3F-RRT* on the three problem spaces.

3.1 Robot Kinodynamics

The three robot models used in this paper are the Dubin’s car with
acceleration, tractor trailer, and quadrotor robots. Here we intro-
duce these robot domains in more detail along with their equations
of motion.

Dubin’s Car with Acceleration: X = [x,y,0,0],U = [a, k]

x = v cos(6) y = v sin(6)
; . ©)

0 = vk i=a

The Dubin’s car with acceleration is a curvature constrained robot
car. x, y, 8, and o are the x-position, y-position, orientation, and
velocity of the car, and a and k are the acceleration and curvature
control inputs. The motion of the car is subject to the curvature
constraint |k| < | ﬁ | where ryip is the minimum radius of turning.

Tractor Trailer: X = [x,y,0,0,a],U = [a, §]
x = v cos(6) i=a

y = v sin(6)

0= (7)tan(g)

a= (B)sin(G—a) (4)

The tractor trailer robot consists of a four wheeled robot car pulling
a two wheeled trailer. The robot car in isolation has the same dy-
namics as the Dubin’s car with acceleration. x, y, 6, v, and « are
the x-position, y-position, orientation, of the car, velocity of the
car, and orientation of the trailer, respectively. The control inputs
are a and ¢ which represent the acceleration and heading. L is the
distance between the front and rear axles of the robot car, and D is
the length of the rod connecting the trailer with the car.

Quadrotor: X = [x,y,2,%, 1,2, 6, 9,7, 9, ng v1.U = [11, 12, 13, 74]

1.0
P
0.8 7
]
2
k3
£0.6 7
A~
o)
2
=
=041
g
=
Q
0.2 1 === Dubin’s w/ A
mmmm= Tractor Trailer
0.0 1 Quadrotor
0.0 02 04 0.6 08 10

Distance Ratio

(a) Distance to goal CDFs

1.0
/—f
0.8 7
]
2
k3
£0.6 7
A~
o)
2
=
=041
g
=
Q
0.2 1 === Dubin’s w/ A
mmm= Tractor Trailer
0.0 1 Quadrotor
10 15 20 25 3.0 35

Solution Cost Ratio

(b) Cost ratio CDFs

Figure 5: CDFs of (a) the distance remaining to the goal for the three robot domains and (b) the ratios of costs of S3F’s solutions
over NLP’s solutions for the three robot domains. Plots depict 1500 data points.

1
%= —(cos@singcosy+sinfsiny)(r + 2 + 13+ 14)
w

1
ij= —(cos@singsiny —sinfcosy)(r1 + 12 + 13 + 14)
w

1
Z= —(cos@cos)(r1 + 12 + 13+ 74)
w

G- L(ry — 73) — 2wL?¢y (5)
2wre /5 + 2wlL2
. L(mg— 1) + 2wL29y
9= 2wr2 /5 + 2wL?
L b(n-mtry - 74)
T 2wr?/5 + 4wl?

The quadrotor is a lightweight, agile robot heavily used in research
and industrial applications. x, y, and z represent the Cartesian
coordinates of the quadrotor. 8, ¢, and y represent the pitch, roll,
and yaw, respectively. w is the weight of the quadrotor, L is the
length of an arm, r is the radius of the sphere representing the
center blob of the quadrotor, g is the gravitational acceleration, and
b is a constant. 71 through 74 represent the thrusts generated by
each of the four motors and are the control inputs for the quadrotor.

3.2 S3F Evaluation

We evaluate the learned steering function for each of the three
problem spaces on its ability to consistently reach the goal and on
the time optimality of its solutions.

We measured the former by computing for 1500 steering function
queries how much of the initial distance between the start and goal
states was not traversed in the produced trajectory. Mathematically

this is expressed by Z—J; where d; is the distance from the start to
the goal and dy is the distance from the end state of the trajectory
produced by S3F to the goal. A value of 0 indicates that the goal
is reached exactly. Figure 5a depicts the cumulative distribution
function (CDF) plot of 1500 evaluations of this expression. To list
a few numbers, we see that for the Dubin’s car with acceleration

problem space, 85% of the trajectories are within 10% of ds to the
goal; for the tractor trailer problem space, 75% of the trajectories
are within 10% of d to the goal; and for the quadrotor problem
space, 85% of the trajectories are within 10% of d; to the goal. These
results indicate that on average, S3F is able to reach very close to
the desired goal.

Measuring the quality of the solutions produced by S3F in terms
of time optimality can easily be done by comparing S3F’s trajectory
costs with the optimal costs as determined by the NLP solver. Figure
5b shows the CDF plots of the ratios of the cost of solutions of
trajectories produced by S3F with the cost of solutions of trajectories
produced by the NLP solver. An ideal value of the ratio is close to
1. Results are depicted for 1500 trajectories. We can see that for
all three problem spaces the trajectories are very close to optimal.
Specifically, for the Dubin’s car with acceleration problem space,
90% of S3F’s trajectories have costs that are less than 1.25 times as
suboptimal as the optimal cost; for the tractor trailer problem space,
90% of S3F’s trajectories have costs that are less than 1.25 times
as suboptimal as the optimal cost; and for the quadrotor problem
space, 80% of S3F’s trajectories have costs that are less than 1.25
times as suboptimal as the optimal cost.

3.3 Planning Comparisons

Here we compare planning using the S3F-RRT" algorithm against
RRT* with NLP steering, RRT, and SST. By comparing against
SST, we can omit a comparison against AO-RRT since previous
work [20][31] has shown that empirically SST outperforms AO-
RRT. Comparisons are done on all three problem spaces. Starting
and ending points for each planning query are sampled randomly
across five different maps.

Figures 6a, 6b, and 6¢ plot the average cost of best solution found
by each of the algorithms against wall-clock time for the different
robot domains. Results of 25 planning problems are depicted in each
plot. In many cases, it takes the algorithms quite a long time to find
their first solution. This causes the graphs to not be monotonically

141 mmm RRT* w/ NLP Steering
=== RRT" w/ S3F Steering
mem= Kinodynamic RRT
127 SST

Cost of best solution (s)

I_|_‘_

T —

| —"
] M_
T T T T T T T
0 50 100 150 200 250 300
Planning Time (s)

(a) Dubin’s Car with Acceleration average solution cost vs runtime

22
=== RRT" w/NLP Steering
20 4 mmmm= RRT" w/ S3F Steering
me - Kinodynamic RRT
18 SST
©
8 161
]
2 144
F
= 4
12
2
3
3 101 i
P
6
0 50 100 150 200 250 300
Planning Time (s)
(b) Tractor Trailer average solution cost vs runtime
01 === RRT" w/NLP Steering
=== RRT" w/ S3F Steering
35 | mmm= Kinodynamic RRT
SST
=
= 30 1
2
E
S 254
a
F
< 20
3
] L
3
Q 151
10 1
51 = —
0 50 100 150 200 250 300

Planning Time (s)

(c) Quadrotor average solution cost vs runtime

Figure 6: Comparison of the planning results of the S3F-RRT",
NLP-RRT*, RRT and SST planning algorithms on the three
robot domains. Planning time is plotted against the cost of
the best solution found thus far, averaged across 25 planning
trials.

Dubin’s Car | Tractor Trailer Quadrotor
f (%) t(s) | (%) t(s) | £(%) t(s)

RRT 4| 0.251 0 0.083 10 0.789
S3F-RRT* 20 0.480 28 1.910 0 16.386
NLP-RRT* 92 | 21.307 100 - 70 | 168.656
SST 12 | 10.013 48 11.075 100 -

Figure 7: Failure rate (f) and time to first solution (t) of dif-
ferent planners

decreasing, since the cost of best solution before a solution is found
cannot be plotted. We observe in the graphs that S3F-RRT" is able to
find solutions very quickly, and is able to find better solutions than
the baseline algorithms irrespective of the amount of computation
time given. One of the key reasons why this occurs is that due
to the speed of evaluation of the learned steering function, many
more RRT” iterations can be completed in a unit time as opposed to
NLP-RRT”, enabling the more rapid exploration of the state space
by the sampling-based planning algorithm. Furthermore, because
S3F does a good job at approximating the optimal steering function,
waypoints in the final planned path are connected in a near-optimal
fashion. This is something that the baseline algorithms like SST and
RRT are unable to do, because in these algorithms waypoints are
connected by randomly sampled trajectories, resulting in significant
suboptimality.

Figure 7 depicts the rate of failure and average time to first
solution of the different algorithms. The time to first solution differs
from the cost of best solution in Figure 6 in that the former only
considers how long it takes to find the first feasible solution. We
can see that across the different problem spaces, S3F-RRT* has
lower rates of failure than SST and NLP-RRT™. Figure 6¢ seems to
show that S3F-RRT* and NLP-RRT" have similar performance on
the quadrotor domain, but the data in the table shows that S3F-
RRT* has a much lower rate of failure and finds its first solution
far more quickly, demonstrating that S3F-RRT” indeed has better
performance. S3F-RRT" on average is able to find its first solution
almost as quickly as RRT. It takes on average an order of magnitude
more time for SST and NLP-RRT” to find their first solutions.

4 CONCLUSION

We introduced State Supervised Steering Function, a learning based
approximation of the optimal steering function for complex kinody-
namic systems. We demonstrate that the learned steering function
can be used in sampling-based planners to achieve superior plan-
ning results. This superiority is assessed on metrics of time to find
solution and quality of solution for three challenging robot domains.
Finally, we present a proof of probabilistic completeness of RRT*
using S3F, demonstrating its theoretical soundness.

ACKNOWLEDGMENTS

This work has taken place in the Autonomous Mobile Robotics
Laboratory (AMRL) at UT Austin. AMRL research is supported in
part by NSF (CAREER-2046955, I1S-1954778, SHF-2006404), ARO
(W911NF-19-2-0333,W911NF-21-20217), DARPA (HR001120C0031),
Amazon, JP Morgan, and Northrop Grumman Mission Systems. The
views and conclusions contained in this document are those of the
authors alone.

REFERENCES

[1] Ross Allen and Marco Pavone. 2016. A real-time framework for kinodynamic

planning with application to quadrotor obstacle avoidance. In AIAA Guidance,
Navigation, and Control Conference. 1374.

David Balaban, Alexander Fischer, and Joydeep Biswas. 2018. A Real-Time Solver
For Time-Optimal Control Of Omnidirectional Robots with Bounded Acceleration.
8027-8032. https://doi.org/10.1109/IR0OS.2018.8594306

Victor M Becerra. 2010. Solving complex optimal control problems at no cost
with PSOPT. In 2010 IEEE International Symposium on Computer-Aided Control
System Design. IEEE, 1391-1396.

Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. 2019.
GuSTO: Guaranteed sequential trajectory optimization via sequential convex
programming. In 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 6741-6747.

Leonid Butyrev, Thorsten Edelhduf8er, and Christopher Mutschler. 2019. Deep
reinforcement learning for motion planning of mobile robots. arXiv preprint
arXiv:1912.09260 (2019).

Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra
Faust. 2019. RL-RRT: Kinodynamic motion planning via learning reachability
estimators from RL policies. IEEE Robotics and Automation Letters 4, 4 (2019),
4298-4305.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. 2019. Search on
the replay buffer: Bridging planning and reinforcement learning. arXiv preprint
arXiv:1906.05253 (2019).

Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,
Marek Fiser, and James Davidson. 2018. PRM-RL: Long-range robotic navigation
tasks by combining reinforcement learning and sampling-based planning. In
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
5113-5120.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2014. In-
formed RRT": Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In 2014 IEEE/RSF International Conference
on Intelligent Robots and Systems. IEEE, 2997-3004.

[10] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2015. Batch

informed trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs. In 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 3067-3074.

Pradipto Ghosh and Bruce Conway. 2012. Near-optimal feedback strategies
for optimal control and pursuit-evasion games: a spatial statistical approach. In
AIAA/AAS astrodynamics specialist conference. 4590.

Kris Hauser and Yilun Zhou. 2016. Asymptotically optimal planning by feasible
kinodynamic planning in a state—cost space. IEEE Transactions on Robotics 32, 6
(2016), 1431-1443.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. 2011. STOMP: Stochastic trajectory optimization for motion
planning. In 2011 IEEE international conference on robotics and automation. IEEE,
4569-4574.

Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research 30, 7 (2011), 846—
894.

Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E Bekris, and Dan
Halperin. 2018. Probabilistic completeness of RRT for geometric and kinodynamic
planning with forward propagation. IEEE Robotics and Automation Letters 4, 2

=
&

(17

[18

=
)

[20

[21

[22

[23

[24

~
S

[26

[27

[28

[29

&
=

(31]

[32

(2018), x—xvi.

George P Kontoudis and Kyriakos G Vamvoudakis. 2019. Kinodynamic motion
planning with continuous-time Q-learning: An online, model-free, and safe
navigation framework. IEEE transactions on neural networks and learning systems
30, 12 (2019), 3803-3817.

Steven M LaValle and James] Kuffner Jr. 2001. Randomized kinodynamic planning.
The international journal of robotics research 20, 5 (2001), 378-400.

Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip. 2021. MPC-
MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal
Planning under Kinodynamic Constraints. IEEE Robotics and Automation Letters
6,3 (2021), 4496-4503.

Yanbo Li, Zakary Littlefield, and Kostas E Bekris. 2015. Sparse methods for effi-
cient asymptotically optimal kinodynamic planning. In Algorithmic foundations
of robotics XI. Springer, 263-282.

Zakary Littlefield and Kostas E Bekris. 2018. Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions. In 2018 IEEE/RS}
International Conference on Intelligent Robots and Systems (IROS). IEEE, 1-9.
Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Icml,
Vol. 99. 278-287.

Daniel Perille, Abigail Truong, Xuesu Xiao, and Peter Stone. 2020. Benchmark-
ing metric ground navigation. In 2020 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR). IEEE, 116-121.
Mihail Pivtoraiko and Alonzo Kelly. 2011. Kinodynamic motion planning with

state lattice motion primitives. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2172-2179.

Nathan Ratliff, Matt Zucker,] Andrew Bagnell, and Siddhartha Srinivasa. 2009.
CHOMP: Gradient optimization techniques for efficient motion planning. In 2009
IEEE International Conference on Robotics and Automation. IEEE, 489-494.
Carlos Sanchez-Sanchez and Dario Izzo. 2018. Real-time optimal control via deep
neural networks: study on landing problems. Journal of Guidance, Control, and
Dynamics 41, 5 (2018), 1122-1135.

Dharmesh Tailor and Dario Izzo. 2019. Learning the optimal state-feedback via
supervised imitation learning. Astrodynamics 3, 4 (2019), 361-374.

Panagiotis Tsiotras and Ricardo Sanz Diaz. 2014. Real-time near-optimal feedback
control of aggressive vehicle maneuvers. In Optimization and optimal control in
automotive systems. Springer, 109-129.

Dustin J Webb and Jur Van Den Berg. 2013. Kinodynamic RRT*: Asymptoti-
cally optimal motion planning for robots with linear dynamics. In 2013 IEEE
International Conference on Robotics and Automation. IEEE, 5054-5061.
Wouter] Wolfslag, Mukunda Bharatheesha, Thomas M Moerland, and Martijn
Wisse. 2018. RRT-CoLearn: towards kinodynamic planning without numerical
trajectory optimization. IEEE Robotics and Automation Letters 3, 3 (2018), 1655~
1662.

Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. 2015. Toward
asymptotically optimal motion planning for kinodynamic systems using a two-
point boundary value problem solver. In 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 4187-4194.

Mandy Xie and Frank Dellaert. 2020. Batch and incremental kinodynamic motion
planning using dynamic factor graphs. arXiv preprint arXiv:2005.12514 (2020).
Dongliang Zheng and Panagiotis Tsiotras. 2021. Sampling-based Kinodynamic
Motion Planning Using a Neural Network Controller. In AIAA Scitech 2021 Forum.
1754.

State Supervised Steering Function for Sampling-based
Kinodynamic Planning

Pranav Atreya
University of Texas at Austin
Austin, TX, United States
pranavatreya@utexas.edu

ACM Reference Format:

Pranav Atreya and Joydeep Biswas. 2022. State Supervised Steering Function
for Sampling-based Kinodynamic Planning. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9-13, 2022, IFAAMAS, 2 pages.

1 SUPPLEMENTARY MATERIALS
1.1 Robot State/Control Space Bounds

The following are the bounds of the state and control variables for
the Dubin’s Car with Acceleration robot domain:

x:[=5,5]m y:[-55]m

0 : [0,27]rad v [-3, 3]?

k:[-1,1]m™! a: [—1,1]22
S

The following are the bounds of the state and control variables for
the Tractor Trailer robot domain:

x:[=5,5]m y:[-55]m

0: [0, 27]rad v [-1, 1]%

a: [0,2r]rad L:0.25m

D :0.5m a:[-1, 1]ﬂ2
s

¢ : [tan~!(~L), tan"(L)]rad

The following are the bounds of the state and control variables for
the Quadrotor robot domain:

x:[=55]m y:[-55]m
z:[0,5]m X : [—3>3]m
s
g [-3312 2 [-11]2
s s
0 [—%, %]md ¢ [—%, %]rad
. d
y: [-m x)rad 0:[-m, 7r]1
s
. rad . T ., rad
$:lomal= Pyl
w: 1.2kg L:0.3m
r:0.1m b :0.0245
71 ¢ [1.994, 10.095]|N 75 [1.994,10.095]|N
75 : [1.994,10.095]N 74 ¢ [1.994,10.095]N

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Joydeep Biswas
University of Texas at Austin
Austin, TX, United States
joydeepb@cs.utexas.edu

1.2 Implementation Details

All of the experiments were run on a Parallels Desktop virtual
machine running Ubuntu ARMé4 on a 2020 M1 Macbook Air. The
virtual machine was equipped with 4 processing cores and 4 GB
RAM.

For the planning experiments, the S3F-RRT*, NLP-RRT*, and RRT
algorithms were implemented in C++ by the authors. The Open
Motion Planning Library (OMPL) [4] was used for the implementa-
tion of the SST algorithm. For training dataset generation and in
NLP-RRT*, the PSOPT [1] optimal control library was used as the
NLP solver.

The policy 7 in S3F was represented as a feedforward neural
network. A two hidden layer 256 neuron network with tanh acti-
vations was used for both the Dubin’s car with acceleration and
tractor trailer problem spaces. A three hidden layer 256 neuron net-
work with the same activations was used for the quadrotor problem
space.

1.3 Probabilistic Completeness Proof

Here we present a proof of probabilistic completeness (PC) of the
S3F-RRT* algorithm. S3F-RRT” is a modification of the original
RRT* algorithm [2] designed to make use of a learned steering
function. The proof largely follows the structure of the proof of
probabilistic completeness of geometric RRT [3], though significant
modifications have been made to take into account the presence of
kinodynamic constraints and the use of a learned steering function.

Let ¢* (xgq, xp) denote the cost of the optimal trajectory from x,
to xp, or equivalently the kinodynamic distance from x, to x;. We
assume that ¢* obeys the triangle inequality, that is, ¢* (x4, xp) <
¢*(xq,) + c¢* (x, xp) for all x € X. Let S be a learned steering func-
tion. We assume that with nonzero probability p, S(x4, x3) yields
a state function T that satisfies ¢*(I'(¢),xp) < c¢*(xq,xp) for all
t € [0,t¢]. This assumption in essence states that every state along
the path produced by $ is kinodynamically closer to the goal state
than the start state is. For a steering function trained to be optimal,
this is a reasonable assumption.

We will use B,(x) to denote the subset of the state space X
defined by {x’|c*(x’,x) < r}. For simplicity, we assume that there
exist Sgoal > 0, Xgoal € Xgoal Such that B, (xgoal) € Xgoal- We
oa)- The goal of
the motion planning problem is to find a kinodynamically feasible
path 7 : [0, ;] = Xgee such that 7(0) = xijn; and 7(t;) € Xgoal‘
The clearance of 7 is the maximal §je,, such that Bs, (7(t)) €
Xiree forall ¢ € [0, t,].

We assume for this proof that there exists a valid trajectory
w2 [0,t7] — Xfee With clearance dgeqy > 0. Without loss of

denote this simplified goal region B(;gnal (xgoal) @S Xg

generality, assume that 7(fx) = Xgoql, L., the trajectory terminates
at the center of the goal region. Let L be the total cost of 7, and
let v = min(Sclears Ogoal)- Let m = % Define a sequence of m +
1 points Xg = Xinit, --» Xm = Xgoal along 7 such that the cost of
traversal from one point to the next is % Therefore, ¢* (x;, Xi+1) < %’
for every 0 < i < m. We will now prove that as the number of
iterations increases, the S3F-RRT” algorithm will generate a path
passing through the vicinity of these m + 1 points with probability
asymptotically approaching one.

LEMMA 1.1. Suppose that S3F-RRT" has reached By (xi), that is, its
tree contains a vertex x| such that x| € By (xi). If Xpand € By (xit+1)
and c* (xi, Xpand) < § (equivalently x; € Bg (xrand)) then the path
from the nearest neighbor xnpear 10 Xpanq lies entirely in Xgee with
probability p.

PROOF. Because xpear is the nearest neighbor, it is true that
¢* (¥near, Xrand) < € (], Xrand)- Invoking the triangle inequality,
* * *
¢” (Xnear> Xi+1) < ¢ (Xnear, Xyand) + ¢ (Xrand> Xi+1)
%/ 7 %
¢ (xi’ Xrand) * € (Xrands Xi+1)

c* (xi” xi) + ¢ (i, Xrand) + ¢ (Xrand> Xi+1)

IN

IA

v
3-=v0
3

Thus Xpear € By(xi+1), meaning xpear € Xfree- Assume that ¢* (T(2), xp) <
¢*(xq, xp). The probability that this occurs is p. Since each state
along T' is closer or as close to x;4,4 S Xnear, the same logic that was
applied above to xpear can be applied to each respective state. Thus,

with probability p, the path from xpear to xpang Will lie entirely in
Xfree- o

IA

THEOREM 1.2. The probability that S3F-RRT” fails to reach X*
goal

from xinit after k iterations is at most ae bk, for some constants
a, be R>0.

PrOOF. Assume that Bg (x;) already contains an S3F-RRT* ver-
tex. Let r; be the probability that in the next iteration a S3F-RRT*
vertex will be added to Bg (xi+1)- Recall that due to lemma 1.1,
Xrand € B2 (xi+1) and ¢*(xj, Xyand) < 5 implies that the path from
Xnear 10 Xpand Will lie entirely in Xpee with probability p. In the
S3F-RRT* algorithm, after x,,,4 is sampled, all states in Xpear are
considered as possible parent states. By the definition of Xpear, Xnear
is a part of this candidate set. Thus, it is guaranteed that xpew will be
added as a S3F-RRT* vertex with probability greater than or equal
to p. Assume that the probability that both x;,,q4 € Bg (xi+1) and
¢*(Xi, Xrand) < §isy; > 0.Itis safe to assume that this probability is
nonzero because any state along the path produced by S*(x;, xj+1)
satisfies these constraints, and so does any state along the por-
tion of 7 from x; to x;41. Finally, let the conditional probability that
Xnew € By (xi+1) given that x5nq € By (xi+1) and ¢* (x;, Xpand) < 5
be x; > 0.1t is again safe to assume that this probability is nonzero
because I' closely approximates I'*, meaning xpew will be close to
Xrand- Taking into account these probabilities, we have r; = py;x;.
Note that this expression is independent of k.

Let r be the minimum of the probabilities {r;|Vi(0 < i < m)}.In
order for the S3F-RRT* algorithm to reach Xgoal from xjnit, a S3F-

RRT* vertex must be added to Bg (xi4+1) m times for 0 < i < m. This

stochastic process can be defined as a Markov chain. Alternatively,
this process can be described as k Bernoulli trials with success
probability r. The planning problem can be solved after m successful
outcomes. Note that the success probability r is an underestimate of
the true success probability for each trial, and that it is possible that
the process ends after less than m successful outcomes. Defining
the problem in such a manner allows us to obtain an upper bound
on the probability of failure.

Next, we bound the probabilty of faiure, that is, the probability
that the process does not reach state m after k steps. Let X denote
the number of successes in k trials, then

m—1
Pr(Xp <m] = Z (];)ri(l - r)k_i

i=0
m—1
Z (mk_ 1)ri(l - r)kii
i=0
k m—1
< (B 1) (1- r)k
m i=0
k m-1 ~
e
m i=0
k me™"k
m-—1
l_[i'c=k—mi -rk
R
< m m _—rk
“ (m-1)

where the second statement is justified since m << k, the third

statement uses the fact that r < % and the fourth statement relies
on (1 —r) < e ". As r,m are fixed and independent of k, the
1

expression mk’”me”k decays to zero exponentially with k.
Therefore, S3F-RRT" is probabilistically complete. O
REFERENCES

[1] Victor M Becerra. 2010. Solving complex optimal control problems at no cost with
PSOPT. In 2010 IEEE International Symposium on Computer-Aided Control System
Design. IEEE, 1391-1396.

[2] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research 30,7 (2011), 846-894.

[3] Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E Bekris, and Dan
Halperin. 2018. Probabilistic completeness of RRT for geometric and kinody-
namic planning with forward propagation. IEEE Robotics and Automation Letters
4,2 (2018), x—xVi.

[4] Toan A. Sucan, Mark Moll, and Lydia E. Kavraki. 2012. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine 19, 4 (December 2012), 72-82.
https://doi.org/10.1109/MRA.2012.2205651 https://ompl.kavrakilab.org.

