
Visual Representation Learning for Preference-Aware Path Planning

Kavan Singh Sikand1, Sadegh Rabiee1, Adam Uccello1,2, Xuesu Xiao1, Garrett Warnell1,2, Joydeep Biswas1

Abstract— Autonomous mobile robots deployed in outdoor
environments must reason about different types of terrain for
both safety (e.g., prefer dirt over mud) and deployer preferences
(e.g., prefer dirt path over flower beds). Most existing solutions
to this preference-aware path planning problem use semantic
segmentation to classify terrain types from camera images,
and then ascribe costs to each type. Unfortunately, there are
three key limitations of such approaches – they 1) require pre-
enumeration of the discrete terrain types, 2) are unable to
handle hybrid terrain types (e.g., grassy dirt), and 3) require
expensive labelled data to train visual semantic segmentation.
We introduce Visual Representation Learning for Preference-
Aware Path Planning (VRL-PAP), an alternative approach
that overcomes all three limitations: VRL-PAP leverages un-
labelled human demonstrations of navigation to autonomously
generate triplets for learning visual representations of terrain
that are viewpoint invariant and encode terrain types in a
continuous representation space. The learned representations
are then used along with the same unlabelled human navigation
demonstrations to learn a mapping from the representation
space to terrain costs. At run time, VRL-PAP maps from
images to representations and then representations to costs to
perform preference-aware path planning. We present empirical
results from challenging outdoor settings that demonstrate
VRL-PAP 1) is successfully able to pick paths that reflect
demonstrated preferences, 2) is comparable in execution to
geometric navigation with a highly detailed manually annotated
map (without requiring such annotations), 3) is able to gener-
alize to novel terrain types with minimal additional unlabeled
demonstrations.

I. INTRODUCTION AND RELATED WORK

Autonomous navigation through unstructured human en-

vironments is a well-studied problem in robotics, and has

seen a number of different approaches. A common class of

autonomous navigation is geometric navigation, which plans

obstacle-free paths purely via geometric collision-checking.

Geometric navigation has been shown to be successful over

long-term deployments in indoor settings [1], [2], [3].

However, geometric navigation is unable to reason about

paths over different terrain that appears equally valid geomet-

rically (e.g., sidewalk vs. dirt vs. gravel), but have different

costs due to reliability of navigation or social norms; or

terrain that appears geometrically impassable but is actually

navigable (e.g., tall grass). This shortcoming of geometric

navigation has motivated a field of research in the space of

visual navigation, which uses image data from the mobile

robot to reason about the environment while navigating.
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End-to-end learning solutions to the visual navigation

problem, which involve using deep neural networks to learn a

policy which predicts control commands given raw sensory

inputs, have recently become a field of great interest. The

supervised approach to this learning problem is to use

a reference policy (usually provided by a human) as the

training signal indicating the desired behaviour for a given

sensory input [4]. To avoid the need to provide training labels

for every input, Reinforcement Learning (RL) has gained

popularity as a method for learning end-to-end policies in

a variety of simulation domains [5] and more recently on

real robots [6]. BADGR [7] leverages the available sensing

redundancy on a mobile robot to learn behaviour on different

types of terrain in a self-supervised manner. By exploring

off-policy paths, they are able to learn a planner that ignores

geometric obstacles that the robot can safely traverse (e.g.,

tall grass). In this work, we handle a different case: when

geometric information tells us there are no obstacles in a

given region, but visual information tells us it would be

preferable to avoid that region anyway.

While end-to-end approaches are attractive due to their

ability to be learned from high-level navigation demonstra-

tions, they have been shown to have significant difficulty

generalizing to new environments [8]. To resolve this gener-

alizability issue, a number of approaches start by processing

the input to produce some intermediate representation of

the environment, such as cost maps, segmentation maps

[9], [10], or traversability estimates [11], and then perform

planning using that data as an input. For example, GoNet [11]

uses Generative Adversarial Networks (GANs) to predict the

traversability of an environment given nominal examples of

navigation for a mobile robot. Because there are a variety

of ways of pre-processing visual information which can be

useful for different specific downstream navigation tasks,

there has also been work focused on choosing between

various intermediate representations, and fusing these outputs

together before selecting an appropriate action [12].

Although intermediate data representations such as seman-

tic segmentation and traversability estimation provide helpful

generalizability properties, they often require dense manual

labelling of training data, a time-intensive process which

is required to handle any new terrain type. To ameliorate

this shortcoming, inverse reinforcement learning (IRL) with

visual semantic segmentation [9] learns the navigation cost

associated with each semantic class autonomously from

human demonstrations. A similar approach to learning visual

navigation is to frame it as a reinforcement learning problem

given semantic segmentation of input images [13]. However,

these approaches still rely on the outputs of a pre-trained se-



mantic segmentation network, and require manual annotation

to extend the semantic segmentation to novel terrain types.

Recently, a class of self-supervised ”near-to-far” learning

techniques have been gaining popularity in the space of

traversibility estimation [14] [15]. In these approaches, robots

fuse exteroceptive sensor data with proprioceptive sensor

data to help classify terrain based on the experiences of the

robot while traversing it [15]. These approaches solve the

data-efficiency problems of semantic segmentation through

self-supervision, but cannot learn to distinguish between

terrain classes with similar proprioceptive responses or in-

corporate preferences based solely on social norms.

Our approach retains the generalizability benefits of using

an intermediate representation while removing the depen-

dence on explicit labelling of visual information. In our

approach, both the visual representations and the navigation

planner can be adapted to a new environment using only

unlabeled human-provided demonstrations.

II. PREFERENCE-AWARE PATH PLANNING

We consider the path planning problem in the context of

a state space S , action space A, and deterministic transition

function T : S × A → S . Our state space is comprised of

states s = [x, y, θ, φ], where [x, y, θ] ∈ SE(2) denote the

robot’s position, and φ ∈ Φ denotes the visual appearance

of the ground at this location. We define Φ as the space of

visual appearances relevant for preference-aware planning.

The action space and transition function are defined by the

kinodynamic constraints of the robot. Given a start state

s0 and goal G, the local path planning problem is the

search for a finite receding horizon sequence of actions,

(a0, . . . , aN−1) ∈ AN such that the resulting trajectory

Γ : i ∈ {1, . . . , N} → S , which is defined by Γ(i) =
T (Γ(i − 1), ai−1), exhibits minimal cost J(Γ), J : SN →
R

+. Since this is a receding horizon local planning problem,

the final state of the optimal solution Γ∗(N) may not reach

G, but the trajectory must be optimal with respect to the

cost such that Γ∗ = argΓ min J(Γ). This paper is primarily

concerned with defining J , and uses a previously-established

sampling-based local planner to recover Γ.

In purely geometric approaches to local planning (i.e.,

those that consider only geometric obstacles and treat all

free space as equal), a common choice for J is

J(Γ) = Jf (Γ(N), G) + Jl(Γ) + Jcl(Γ) , (1)

where Jf is the cost based on progress towards G (e.g.,

Jf (s,G) = ||G − s||), Jl is the cost based on the free path

length of the trajectory, and Jcl the cost based on obstacle

clearance [16] along Γ. Jl and Jcl using geometric obstacles

detected by an on-board LiDAR sensor.

Unlike purely geometric approaches, the path planning

method we propose seeks to make preference-aware planning

decisions also based on the appearance φ ∈ Φ of the terrain

underlying each of the states in the robot’s trajectory. For

a preference-aware planner that reasons only about distinct

semantic classes, Φ would be the set of discrete known

semantic classes. In contrast, in our approach Φ ⊂ R
k is a

continuous space of k-dimensional learned visual representa-

tions relevant for preference-aware planning. To incorporate

this visual information into the path planning problem, we

add an additional term to Eq. 1, redefining J as

J(Γ) = Jf (Γ(N), G) + Jl(Γ) + Jcl(Γ) + Jp(Γ) , (2)

where Jp(Γ) computes a cost based on the appearance of the

terrain over which the trajectory Γ traverses. Intuitively, this

cost should be large for trajectories that cause the robot to

traverse undesirable terrain, and small otherwise.

Instead of specifying Jp manually, we learn it from human

demonstrations that implicitly provide information about

terrain desirability using a representation learning approach.

In the next section, we will discuss this learning problem.

III. VISUAL REPRESENTATION-BASED

PREFERENCE LEARNING

While each robot state s ∈ S has some true visual appear-

ance φ ∈ Φ, the robot does not have a-priori information

about it. Instead, the robot observes image patches of the

ground I ∈ I, which are then used to infer φ as follows.

First, we use an image projection operator P : S × S → I,

to identify image patches of the ground in one state as seen

by another robot state: P (s1, s2) returns the image patch

I1 corresponding to the state s1 while observing it from

the state s2. Note that P (s1, s2) needs access to the full

image observation of the robot while at pose s2 – we assume

this image to be available, and omit it from the notation for

simplicity. This projection operator can be derived from the

camera’s extrinsic and intrinsic calibration, and the relative

positions of the states s1 and s2. We then apply a visual

representation function fvis to infer the visual appearance

information from this image patch. Thus, the appearance φ1

of state s1 is inferred via the visual observations from a

different state s2 as φ1 = fvis(P (s1, s2)).
Given an initial state s0 from which the robot can observe

future states along trajectory Γ, we formulate the preference-

aware cost Jp(Γ) as

Jp(Γ) =
∑

t=0,...,N

γtJc(φt), φt = fvis(P (Γ(t), s0)), (3)

where fvis : I → Φ is a visual representation function

that maps image patch observations I ∈ I to the visual

appearance of the ground φ ∈ Φ, Jc : Φ → R
+ is a

cost function that uses these embeddings to produce a real-

valued cost, and γt is a discount factor to ensure states

in the distant future don’t have an overbearing impact on

the current cost calculation. We propose to learn fvis via

representation learning, which has recently shown great suc-

cess at closing the gap between supervised and unsupervised

learning for visual tasks such as image recognition [17] and

video representation learning [18]. We leverage unlabeled

human demonstrations to learn the functions fvis and Jp, as

described in Section III-A.

The training data for this learning problem consists of

a set of human-provided demonstrations D =
{

ΓD
i=1:M

}

,

where each demonstration ΓD
i consists of a sequence of robot

locations and image observations collected by manually





region of terrain: that is, straight-line demonstrations provide

no new data to the system, and sub-optimal navigation

through a homogeneous environment can lead to mislabelled

training data. Imposing this restriction on the demonstration

set is a reasonable trade-off given that the number of demon-

strations needed to train the system is quite small.

B. Visual Preference Cost Function

The cost function Jc : Φ → R
+ is responsible for taking

the visual appearance of a single patch of terrain φ, as ob-

tained from fvis, and outputting a real-valued traversal cost,

reflecting the cost incurred by travelling over this terrain.

These individual patch costs are then combined together in

Eq. 3 to contribute to the overall cost of a trajectory Γ.

Loss Function. To train our cost function, we use the same

training set that was extracted in Section III-A. Our loss

function has a margin δc, and can be defined as:

Lc(Jc, φ
p, φn) = max(Jc(φ

p)− Jc(φ
n) + δc, 0). (9)

This loss function enforces that Jc(φ
n) is at least δc greater

than Jc(φ
p). We therefore choose φn such that it is a patch

of terrain that should have a high cost relative to φp. To do

this, we find J∗
c which is the cost function Jc such that:

J∗
c = argJc

min
∑

〈Ia

i
,Is

i
,Id

i
〉∈RD

Lc(Jc, fvis(I
a), fvis(I

d))

+Lc(Jc, fvis(I
s), fvis(I

d)). (10)

Here, we use Ia∪Is (image patches over which the robot

traversed during demonstration) as the patches which gener-

ate φp, and we use Id (image patches that were explicitly

avoided during demonstration) as the patches which generate

φn. By comparing the produced costs in a pairwise fashion,

we can enforce a strict ordering among the terrain types

that are present. From the demonstrations we are unable

to determine the absolute cost of a region, but are given

relative preference information, and therefore we do not use

a regression-based cost function.

IV. IMPLEMENTATION DETAILS

In this section we discuss details of our implementation

that allowed the method described above to be deployed in

real-time during our experimental evaluation.

Ground-Plane Homography. When working with the

robot’s visual data, we first apply a homography to transform

the images to overhead views, determined by the intrinsics

and extrinsics of the robot’s camera. Fig. 1b demonstrates

the result of this transformation. After this transformation,

rectangular image patches of constant size correspond to

constant size rectangular regions on the ground plane. In

our implementation, we chose a patch size of 40 × 40
pixels, representing approximately 0.3m2 in the real world,

comparable to the size of our robot. Patches extracted using

this ground-plane homography are the input to fvis.

Local Cost-Map. We retain the costs for each observed patch

(the output of Jc) in a local costmap centered on the robot’s

current position, using the robot’s odometry to transform

the existing costmap between time-steps. This affords the

robot a short-term memory of visual information it has

observed, but which is no longer in its view, which helps

our implementation handle sharp turns and narrow field-of-

view cameras. We recompute Jc for any patches which can

be observed by the robot, and we recompute Jp from this

costmap for each trajectory at every time step.

Network Structure. In our implementation, the visual rep-

resentation function fvis takes the form of a neural network

with 2 convolutional layers followed by 3 densely-connected

layers with nonlinear activation functions, and our represen-

tation φ is a 6-dimensional vector. The cost function Jc is

a small 3-layer Multi-Layer Perceptron (MLP) with a ReLU

activation function to prevent negative outputs. These net-

work sizes were experimentally chosen to maximize accuracy

while retaining real-time performance on the mobile robot.

Batched Cost Computation. Because our formulation com-

putes costs for each image patch independently, we are

able to parallelize the computation of patch costs for each

image. The small patch size combined with the compact

network structure allows our algorithm to process hundreds

of patches per time-step on our robot’s GPU (Nvidia GeForce

GTX 1050TI), which is enough to process an entire image

observation. Our processing of visual information occurs

at 20Hz during the planning process; significantly faster

than FCHarDNet [20], a segmentation network designed for

efficiency in compute-constrained environments, which was

only able achieve ∼6Hz when running on the same GPU.

V. EXPERIMENTAL RESULTS

We evaluate VRL-PAP in a variety of real-world envi-

ronments by measuring its 1) accuracy at following desired

paths compared to other visual and geometric navigation

planners; 2) adaptability to novel terrain types from limited

unlabeled demonstration; and 3) scalability to long trajecto-

ries in the real world.

A. Experimental Setup

All experiments were performed on a Clearpath Jackal

Unmanned Ground Vehicle equipped with a VLP-16 LiDAR,

a Microsoft Azure Kinect RGB-D camera, and an Nvidia

GeForce GTX 1050TI. The LiDAR is used to perceive

geometric obstacles, and the RGB channels of the Kinect

camera is used for obtaining visual information.

We compare VRL-PAP to four baselines:

• Reference: A reference trajectory of the correct preference-
aware path provided via joystick by a human operator. These
trajectories were not used as part of the training process and
are not considered demonstrations.

• Annotated Geometric: A geometric planner using a detailed
hand-annotated navigation graph of the evaluation environ-
ment including desirable paths. This is the primary navigation
planner for the Autonomous Mobile Robotics Laboratory at
UT Austin, and builds upon the work in [1]. This consists
of a global planner, which performs A-star search over the
topological map of the environment represented as a graph,
and a local planner, which performs sampling-based trajectory
roll-out to determine the performed action based on a cost
function similar to Eq. 1.
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Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

Planner

Mean
Hausdorff

Distance (m)

Off-Path
Duration (s)

Intervention
Count

Hausdorff
Distance (m)

Off-Path
Duration (s)

Intervention
Count

Hausdorff
Distance (m)

Off-Path
Duration (s)

Intervention
Count

Hausdorff
Distance (m)

Off-Path
Duration (s)

Intervention
Count

Preference Learning 0.95 0 0 0.93 0 0 1.37 0 0 1.49 0 0
Segmentation 2.40 13 3.5 1.56 2.5 2 2.23 8.5 4 2.66 5.5 3
Annotated Geometric 1.05 1.25 1 1.15 0.25 0.5 1.32 0 1 2.17 4 0

Pure Geometric > 1.832 24 4 > 4.562 18 5 > 10.022 62 7 > 4.012 15 5

TABLE I: Mean Metrics in Primary Evaluation Environment.

• Pure Geometric: The geometric planner described above with
a much more coarse global navigation graph.

• Segmentation: A state of the art preference-aware planner
using semantic segmentation to build a local cost map for
planning: The Army Research Laboratory’s Autonomy Stack,
which uses FCHarDNet [20] for semantic segmentation,
trained on the RUGD Vision dataset [21].

In these experiments VRL-PAP was trained using 17

human demonstrations in the primary evaluation environ-

ment, most of which consisted of navigating a single turn.

The robot covered approximately 80m of terrain over the

course of about 2 minutes of demonstration data. These

demonstrations covered all visually distinct regions of terrain

in the evaluation environment, but none of them matched any

of the evaluation trajectories. For Section V-C and Section V-

E, an additional 4 demonstrations were given in the complex

environment, totalling in 40s of data covering 40m.

During deployment, the robot uses Episodic Non-Markov

Localization [22], which fuses LiDAR and odometry data to

provide robust global localization, allowing for us to evaluate

the navigation performance of these systems.

B. Accuracy in Following Desired Paths

We ran repeated trials with each of these navigation meth-

ods on four evaluation trajectories, ranging from 10 to 40m

in length. Fig. 2a shows these trajectories, which traverse a

real-world environment that includes multiple types of valid

sidewalk, shadows cast by trees and buildings, and multiple

types of undesired terrain including dirt, grass, and shrubs.

We use an undirected Hausdorff distance, which measures

the distance from each point in the trajectory to the closest

point in the reference trajectory, to quantitatively evaluate

the accuracy of each autonomously executed trajectory:

H(Γa,Γb) = max(h(Γa,Γb), h(Γb,Γa)), (11)

h =
∑

a∈Γa

min
b∈Γb

||a− b||.

Additionally, we evaluate the duration of time for which the

robot was on undesirable terrain type, and the number of

operator interventions necessary to prevent the robot from

taking unsafe actions (e.g., driving into dense grass or off

the side of a concrete pathway).

The results of these experiments are presented in Table I.

From these results, we see that VRL-PAP performs compara-

bly to Annotated Geometric baseline, without access to the

hand-made navigation graph for this environment. Further,

VRL-PAP never needed human intervention, while all of

the baseline approaches did. The pre-trained segmentation-

based approach struggled to handle terrain that was not in

its training dataset (short shrubs and smooth dirt), which

motivates the adaptability experiment in Section V-D.

C. Accuracy in Secondary Environment

To investigate the accuracy of VRL-PAP in a more com-

plex scenario, we performed evaluation in an unstructured

park environment, which included paths that were less clearly

delineated than those in the primary evaluation environment.

Fig. 2b shows the two trajectories over which we evaluated

VRL-PAP and the Pure Geometric baseline, performing

two trials of each. Fig. 3a and Fig. 3b show the cumulative

distribution of the distance (CDF) from the reference tra-

jectory when executing VRL-PAP and the Pure Geometric

baseline – in both cases VRL-PAP more closely follows the
2Error would have been higher; included extensive manual intervention
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