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ABSTRACT
This article describes how robot innovations are adopted
during a disaster using the COVID-19 response both as a
natural experiment and a case study. The article is based on
an analysis of the R4ID dataset of 203 instances of ground
and aerial robots in 34 countries explicitly reported in the
press, social media, and scientific literature from January 24,
2020, to July 4, 2020, as being used due to the COVID-19
pandemic. While the reports do not provide sufficient detail
to ascertain gaps in specific algorithms or specific subsys-
tems, such as perception, manipulation, or autonomy, the
size and the pervasiveness of the data permits examination
of three questions: 1) how the need for a robot arises during
a disaster, 2) whether those needs are met with existing
technically mature robots, adapting existing robots, or in-
novating new robots, and 3) what are the major barriers to
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inserting robots into use during a disaster. The analysis uti-
lizes a novel formal framework consisting of a sociotechnical
work domain analysis, an extended demand analysis, and a
rating of the technical maturity of each instance using the
NASA Technical Readiness Assessment (TRA) ranking. The
relative TRA of robots is compared by work domain and
modality, followed by an in-depth examination of technically
mature Heritage systems, which accounted for 74% of the
203 instances, modified Engineering Systems (13%), and
New Systems accounting (13%). The data is also discussed
in terms of a) demand pull versus innovation push, b) avail-
ability, c) suitability, and 4) risk, leading to a formal model
of organization adoption of robotics during a disaster. The
analysis shows that organizational adoption of robotics dur-
ing a disaster embodies two of the four components of the
Unified Theory of Acceptance and Use of Technology Model
(UTAUT) (Venkatesh et al., 2003), specifically that adoption
is primarily influenced by end-users’ expectations of perfor-
mance and how much effort they need to expend to integrate
into work processes, also known as suitability and risk. The
data also suggests that a third component of UTAUT, fa-
cilitating conditions for adoption, occurs during disasters
because regulations and acquisition policies may be waived.
In addition, the data shows that the lack of availability of
some models of existing robots due to low inventory, delays
in delivery, or high purchase price facilitated conditions for
the development and adoption of new, possibly less reliable,
alternative robots. The analysis also shows that the the
adoption of robots for a disaster, regardless of work domain,
is the result of demand pull by the primary stakeholders,
not an innovation push by roboticists, as the majority of
missions were established prior to the disaster. The article
concludes with four recommendations for roboticists pur-
suing disaster robotics: 1) work with stakeholders before a
disaster to design robots to meet pre-existing established
demands, 2) design robots or software that support multi-
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ple uses so that robots can be quickly and safely adapted,
3) engage in technology transfer to integrate robots into
operational use prior to the disaster, conduct fundamental
research into formal methods for projecting the risk of us-
ing the robot in terms of direct and indirect performance
and consequences, and 4) conduct fundamental research in
design and on demand manufacturing so as to increase the
availability and functionality of low cost Heritage robots.



1
Introduction

When a disaster occurs, it is natural for roboticists to want to help
with the immediate response to saving lives and mitigating societal
impacts. Indeed, since 2001, ground, aerial, and marine robots have
been inserted into disaster response by emergency response organiza-
tions (Murphy, 2014). Case studies of how robots have been used and
the specific capabilities of those robots appear in Murphy (2014) and
Murphy et al. (2016). Speculative articles outlining needed research in
specific mechanisms or levels of autonomy are too numerous to cite here.
These cases studies generally describe the “what” of the morphological
and functional attributes of deployed robot, not the “how” or “why”
stakeholders chose one robot over another.

What is missing is an understanding of the overall adoption process
by organizations during a disaster and the characteristics of robot
innovations that favor adoption. Adoption is a subset of the general
responsible innovation process (Nordmann, 2014) by which technologists
design and refine innovations for a high social impact application and
the pattern of diffusion of innovation in Rogers (2003) describing how
adopters decide to adopt a specific technology.

133
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It is more useful for roboticists interested in inserting their robots
in a response to understand the adoption process during an emergency
rather than the entire innovation and diffusion progression for two rea-
sons. One is that innovation during a response bypasses the responsible
innovation process, as only a subset of stakeholders are engaged in the
adoption decision and the long-term consequences and effects are not
considered. While adoption during a disaster is generally an organiza-
tional adoption, not an adoption by an individual who assumes all the
risks, the insertion of new technologies for disaster response must fit
the response organization policies. The adoption may be local, that is,
it may be limited to one unit within a larger organization (e.g., one hos-
pital in a chain) or the decisions may be temporarily driven bottom-up
(e.g., one person advocates the adoption for unit or organization).

A second reason is that diffusion of innovation during a disaster sim-
ilarly compresses or bypasses stages, and may result in only temporary
adoption. Indeed, some innovations may be highly experimental and
thus not map onto the normal diffusion of innovation process. The initial
knowledge, persuasion, decision phases of diffusion are compressed or
exceptional due to many influences. One influence is time pressure,
as the agency must make a decision quickly without a more nuanced
determination or justification, aka satisficing (Simon, 1972). A second
is social pressure, as there may be social pressure on the agency to show
that are doing something extraordinary to rise to the event. Purchasing
costs may not be the primary influence, especially for governmental
agencies, as disaster response is often covered by special funds or loans of
equipment, though clearly there would monetary limits. Indeed, as noted
in Section 2.2, Heikkilä et al. (2012) reports that reducing economic
costs is not necessarily a predictor of adoption of robotic technology.
However, Clipper (2020) reports that health insurers allowing teleoper-
ated robots as a reimbursable cost accelerated adoption for pandemic
clinical care. The influence of capital costs is expected to depend on
the monetary amount, work domain (e.g., clinical care, public safety,
private company), country, etc. Regulations are also not necessarily an
influence as most agencies and health care institutions have mechanisms
to obtain special dispensation from regulations in emergencies. The
final stage of diffusion of innovation, the confirmation/continuation step,
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is not normally part of the disaster. Adoption of novel technologies is
temporary, with no obligation to insert into routine operations or for
future disasters. Indeed, Murphy (2014) shows that small ground robots
have been successfully used since 2001 for building collapses but have
not been adopted into general practice by any country.

1.1 Objectives

Understanding the adoption process can be loosely thought of as an-
swering three sets of questions that appear in UTAUT (Venkatesh et al.,
2003) and applications of UTAUT to emergency response (Moats, 2015).
The first question is: How do needs emerge? Are the use cases with
the highest societal impact known to the stakeholders a priori, are
they uncovered during the incident, or emerge in some combination?
The answer to this question provides insight on the drivers for inno-
vation, especially who would identify the use cases (e.g., stakeholders
or roboticists), and what sorts of activities roboticists can prepare in
advance to contribute to the response (e.g., have existing partnerships
with agencies, have certified robot performance for domain D, etc.).
A second question is: How robust and reliable should robots be in or-
der to be adopted? Is something better than nothing or, as posited in
Murphy (2014), robots which reproduce existing capabilities with well
understood limitations more likely to be adopted? The answer to this
question establishes whether adoption is risk-adverse; if so, focusing
on deploying or adapting existing robots may lead to higher rates of
adoption than innovating novel robots which are unlikely to be put into
service. A conservative adoption process would also imply that more
research in needed on projecting and quantifying risk. A third, related,
question is: What are the barriers to adoption during a disaster? Do
regulations or acquisition policies play notable roles? How important
is trust by the end-users? While regulations and policies are outside
of the control of roboticists, it is helpful to know whether rules can
be waived and, if so, under what circumstances. If there are no rules
or rules can be easily waived, then this might mean the decision to
adopt rests with individual stakeholders, and more research is needed
to understand their comfort with robotics.
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It should be noted that modeling the adoption process for the
response phase is different from conducting a gaps analysis or generating
a model of diffusion of innovation as the disaster or disease progressed.
An evidence-based gaps analysis is outside of the scope of this article,
in part because the majority of the reports generally do not describe
specific problems with sensors, mobility, navigation, interfaces, etc. or
areas for future improvement. However, as will be seen in this article, the
data does support extracting general attributes that influence adoption,
especially technical maturity. A model of diffusion would be interesting,
exploring questions such as: Was China an early adopter of robotics?
Did other Asian countries follow China, then Western countries follow
Asia? and Whether adoption of specific robot is influenced by cultural
perceptions of robots? But such a time- and culture-based analysis is
beyond the scope of this article; instead, this article concentrates on
what attributes of the robot itself predict adoption during a disaster.

Until the COVID-19 pandemic, generating answers to these questions
has been hampered by the lack of use cases, either for a single type of
disaster or for disaster response in general. While Murphy (2014) argues
that adoption for the response phase is highly conservative and only
robots with a proven record of performance will be deployed, that is a
heuristic assessment based on subjective interpretation of only 34 cases
in 10 countries from 2001 to 2013.

Fortunately, the COVID-19 pandemic has provided 262 reports in
the press, social media, and scientific literature from 24 January, 2020,
to 4 July, 2020, of 203 robots being used to respond to coronavirus in 34
countries. The reports clearly cover the immediate response phase in all
of the reported countries. These reports are contained in the Robotics
for Infectious Diseases (R4ID) open source database at RoboticsforInfec-
tiousDiseases.org. The size and extent of the R4ID database overcomes
the previous lack of use cases for an evidence-based model of adoption.
Even though the use cases are for a single event, a pandemic, patterns
in adoption can be expected to generalize to all disasters, following the
“all-hazards" doctrine of emergency operations (Bullock et al., 2011).
The “all-hazards" doctrine provides a generic structure for responding
to disasters by abstracting the common elements of natural, man-made,
or medical disasters.
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However, the reports in the R4ID have three limitations which
influence the level of detail that can be extracted about the adoption
process. One limitation is that the dataset is not guaranteed to be
complete. As detailed in Chapter 3, the majority of data collected was
from posts in social media and press reports using English keywords.
Some instances of robot use were likely not reported, because they
were routine or less novel or entertaining, while other more entertaining
or surprising uses were more likely to be reported even though they
might have less impact on the response. The data may not completely
reflect international use, given that 23 of the 34 countries represented
in the data had only two or less reported instances during this time
period. However, the large number of reports, and aggregating them
into a “meta-analysis”, offers evidence of general trends in adoption. A
second limitation is that the reports are not useful for identifying which
robots had a higher impact on the response and examining the adoption
process for those high-value uses. The reports typically only describe
the robot and how it is being used, often leading with unsupported
hyperbole about a particular robot being likely to revolutionize some
aspect of the response. Even the articles from robotics literature offer
no meaningful measures of impact, possibly because impact is hard to
predict or measure without a longitudinal study that examines subtle
workplace and economic factors. Therefore this article is restricted to
discussing patterns of adoption and barriers to adoption so that robots
can be more readily applied to presumably high impact tasks. The final
limitation of the data is that the reports do not capture the decision
process that led stakeholders to chose a particular robot for a use case.
With 203 reports in 34 countries, it is not feasible to conduct follow
up interview. Instead, the analysis in this article infers what influenced
those decisions from what was, and was not, deployed using a formal
analytical framework.

1.2 Approach to Conducting the Analysis

There is no established framework or methodology for explicitly com-
paring and contrasting the use of robots for different use cases within a
disaster. Previous work in disaster robotics, especially Murphy (2014),
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has focused on comparing robots for a single use case within a disaster.
Thus, in order to answer the three motivating questions, this article
creates a novel framework for comparison consisting of three compo-
nents: a sociotechnical domain analysis which establishes how robots
were used, an expanded demand analysis which infers why robots were
used, and the NASA Technical Research Assessment which classifies
what robots were used by their technical maturity. An overview of the
framework is given here and detailed later in Chapter 3.

The first component of the approach is a sociotechnical work do-
main analysis which groups instances of robot use for COVID-19 into
sociotechnical work domain categories (e.g., clinical care, public safety,
etc.) and subcategories of use cases within each sociotechnical work
domain (e.g., disinfection, delivery). Since the primary clustering is
not by robot capabilities or components (e.g., autonomy, manipulation,
sensors), the resulting taxonomy enables a broad assessment of how tech-
nology is being used, respective of nuances in implementation between
individual models of robots. The clustering based on sociotechnical
work domains also helps to clarify what factors influence adoption, for
example, a robot being used for clinical care in hospital would have to fit
a very different regulatory structure than a robot used to combat labor
shortages in a manufacturing plant. The sociotechnical work domains
and use cases are described in more detail in Section 3.2.

The second component is a post hoc demand analysis to understand
whether demand pull or innovation push is a driver for adoption of
robots into disasters. Demand analysis is important because if robots
for disasters are generally deployed to meet demand pull, then robots
can be designed or improved for those missions in advance. Furthermore,
if there is an existing demand pull, but robots were not widely available
or used, there may be an economic, regulatory, or trust barrier that
should be addressed for future disasters. A typical demand analysis is
prescriptive, where end-users, regulatory agencies, and developers are
brought together before the application of a technology to determine
responsible innovation, either where there is a clear demand (demand
pull) or the innovation supports new missions or new ways of doing
things (innovation push) as per Decker et al. (2017). In the case of
COVID-19, and other disasters, technology deployment decisions are
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made rapidly by the primary stakeholder representing the end-users
(e.g., healthcare administrators, law enforcement, business owners, etc.),
thus short circuiting the prescriptive, broad engagement responsible
innovation process.

Rather than perform a prescriptive demand analysis, this article
performs a post hoc demand analysis by determining whether the stake-
holders used existing, commercially available robots. If so, the adoption
was inferred to be driven by demand pull; for example, telepresence
healthcare robots already existed before the pandemic and their use
increased, thus implying a demand pull for more robots. If robots had to
be significantly modified or built from scratch, then it was inferred that
there was an innovation push because robotics was being explored as a
mechanism for meeting novel missions. The post hoc demand analysis
methodology is described in more detail in Section 3.3.

The third component is the use of the NASA Technical Readiness As-
sessment (TRA) methodology (Hirshorn and Jefferies, 2016) to classify
the technical maturity of robots. TRA goes beyond the NASA Technical
Readiness Levels (TRL) to essentially provide a measure of the suitabil-
ity and risk of a technology for a mission within the larger sociotechnical
organization. The TRA provides a more useful categorization because
a robot can be reliable, work as designed, and be commercially avail-
able, thus earning the highest TRL level, but may be difficult to use
or have negative consequences on work flows and manpower (Straub,
2015). and thus not truly ready for operations. Thus NASA expanded
the device-centric TRL into a larger work domain-centric Technical
Readiness Assessment (TRA) classification which ranks the suitability
and risk of a technology both in terms of platform maturity (TRL) and
usability (Hirshorn and Jefferies, 2016). The TRA classifies technology
as Heritage, if it is an existing proven technology being applied to a
similar mission and work envelope, Engineering, if it is a modification
of an existing proven technology for a well-defined mission and work
envelope, or New, involving new hardware, software, a new mission, or
a different work envelope. The TRA classification process is described
in more detail in Section 3.4.
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1.3 Organization of the Article

The remainder of this article is organized as follows. Chapter 2 reviews
the related work in modeling the adoption of robots and prior summative
of the use of robots for the coronavirus pandemic. Next, the novel
framework for analysis is discussed in detail in Chapter 3. Using the data
in Chapter 3, Chapter 4 presents the Technical Readiness Assessment of
the 203 instances by examining the distribution of Heritage, Engineering,
or New instances overall, by the six sociotechnical work domains, and by
two modalities (unmanned ground or aerial vehicle). The analysis then
goes deeper and considers all Heritage systems (Chapter 5), Engineering
systems (Chapter 6), and New systems (Chapter 7). A discussion of the
demand analysis, availability, and risk is provided in Chapter 8 resulting
in a formal model of adoption. The article concludes with findings
for disaster robotics, then uses the model of adoption to make four
recommendations for roboticists interested in developing and deploying
technology for a disaster.



2
Related Work

The literature on disaster robotics does not provide a formal model of
what factors influence adoption beyond the general heuristics found in
Murphy (2014). However, research on robot adoption in surgery, dairy
farming, and construction suggests that adoption will be influenced by
i) how well the robots work, in terms of performance, human-robot
interaction, and the general fit within the existing sociotechnical system,
and ii) the risk of damage. There are numerous articles emerging which
discuss robots being adopted during the coronavirus pandemic, but
these are not comprehensive studies of adoption; however, one study,
Mardani et al. (2020), did attempt to determine a ranking of factors that
might influence the adoption of disruptive technologies such as robots
in the healthcare profession for future pandemics. The highest rated
factors in decision making were those where the technology matched the
needs, such as provided a healthcare information system, or highlighted
a risk, such as lack of knowledge of how to apply the technology or
concerns over cost inefficiencies. All of the prior work in adoption of
robotic innovation are consistent with UTAUT. This article builds on
the prior work by incorporating the factors in Heikkilä et al. (2012),
Marcus et al. (2017), Pan and Pan (2019), and Mardani et al. (2020) into
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the analysis under the names of suitability and risk. It goes beyond the
prior work to construct an evidence-based analysis of what attributes
influence adoption for disasters and thus what gaps should be addressed
by research and development.

2.1 Modeling Adoption of Robot Innovation for Disasters

Murphy (2014) summarizes how robots were selected (or rejected) for
36 disasters in eight countries from 2001 to 2013. The selection process
during a disaster favored robots i) performing tasks that humans could
not do or do safely, ii) with a proven record of meeting the desired
functionality in similar work envelopes and iii) that minimized the
performance risk, including from operator error due to poor human-robot
interaction. This conservative adoption heuristic is consistent with the
classic technology acceptance model (UTAUT) posed by Venkatesh et al.
(2003), which states that the primary influences on how stakeholders
choose technology are the perceived usefulness and the perceived ease-
of-use. Note that these influences are captured within the TRA ratings,
with both the disaster robotics and UTAUT work predicting the most
mature technology for an application, i.e., Heritage, will be preferred.

2.2 Modeling Adoption of General Robot Innovation

Adoption of innovation in robotics has been studied for surgical robots
(Marcus et al., 2017), dairy farming (Heikkilä et al., 2012), and con-
struction robots (Pan and Pan, 2019) and indicates that usefulness, risk,
usability and general fit within the existing sociotechnical system are
the primary influences on robot adoption, not economics or advanced
functionality. A retrospective of laparoscopic surgical robots found that
adoption was a function of economics, whether the robot was useful and
reliable, the usability of the robot, and the resistance of the patient to in-
teracting with the robot (Marcus et al., 2017). However, the study noted
that the main influences were whether the robot enabled the surgeon
to conduct the surgery faster with less performance risk than manual
surgery and the impact of the robot on the physical workspace of the
operating room. Economic benefit does not appear to be the sole driver
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for adoption, as a study showed that whether the socio-organizational
structure supports new technology had more influence on dairy farmers
adopting robot milkers than economic benefits (Heikkilä et al., 2012).
Robotics for building prefabrication found that the socio-organizational
and work envelope attributes influenced adoption more than the robotic
technology itself (Pan and Pan, 2019).

This article examines the R4ID dataset to confirm or deny the
conservative adoption heuristic from Murphy (2014) concentrating on
usefulness, usability, risk, and work envelope. Validating the disaster
robotics heuristic is important since the extreme short time of the
response may have meant that availability was the actual primary
influence. Available robots were likely those already in commercial
existence and thus more useful and usable. This article goes further than
UTAUT by documenting and analyzing the source for usefulness (i.e.,
the demand analysis) and analyzing the influences of availability and risk
on adoption during a disaster. It analyzes the use of robots in terms of
usefulness, risk, and usability by applying the NASA TRA classifications.
It captures usability, work envelope and economic constraints through
the sociotechnical work domain analysis.

2.3 Prior Analyses of Robots Used for COVID Response

Five articles by the scientific community have provided surveys of how
robots have been used for COVID-19. This comparison is restricted
to those surveys that compare and contrast actual robots used for the
pandemic. Articles that speculate on how robots might be used or may
have technological gaps or deficiencies, or some combination of the
above outside of the scope of this article, because they are speculative
and do not answer the three questions posed in the introduction

The five articles consist of two papers which discuss use of robots
for direct medical functions (Clipper, 2020; Yang et al., 2020) and
three about medical and non-medical functions during the pandemic
(Murphy et al., 2020; Shen et al., 2020; Strickland and Zorpette, 2020).
Of these, Clipper (2020) describes the use of robotics for telemedicine,
particularly how approval of telerobotics for temporary reimbursement
accelerated adoption. Yang et al. (2020), discuss how robots can be
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used for the medical response to coronavirus, though it briefly mentions
what robots had been used to date and that robots can be used for
more than public health. Shen et al. (2020) provides a survey of 200
reports of robots for pandemic-related uses, concentrating on research
opportunities not adoption. The survey did not provide the dataset or
how instances were screened for veracity and duplications (in contrast
to the formal process described in 3.1, though it appears from what
sources that were directly cited that the R4ID dataset contains all of
those reports. Murphy et al. (2020), provide a survey of how robots
were being used in the early months of the pandemic response and argue
that the adoption fits the disaster robotics heuristic. Strickland and
Zorpette (2020), briefly discuss the type of robots used for COVID-19,
but do not go into any detail.

2.4 Comparison

This article differs from those efforts in five ways. First and foremost,
the goal of this article is different from Clipper (2020), Shen et al.
(2020), and Yang et al. (2020) because it concentrates on establishing
the actual use of robots overall and then using those findings to refine
a model of diffusion of robotics innovation during a disaster. Such
a model can inform a research roadmap. For example, if perceived
risk to the environment is a major influence on adoption in clinical
care, then this informs the need for research in explicitly quantifying
operational risk in indoor environments with glass walls, clutter along the
hallways, and people moving about. However, the distinction is that this
article provides data motivating research but does not specify the exact
functionality needed. While this article does make recommendations,
these recommendations center on what is needed to make robots in
general more adoptable during a disaster, not better for a particular
mission.

Second, as with Strickland and Zorpette (2020), this article collects
and organizes reports in news, social media, and scientific and trade
publication about robots for the COVID-19 response; however, this
article, following Murphy et al. (2020), is limited to those robots that
are clearly in use in direct response to COVID-19, have been in use, or
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are explicitly scheduled for use. This limit is a consequence of the goal
of the article to conduct an analysis of the technical maturity of robots
directly used in the response and the actual diffusion of innovation.

This article differs from Shen et al. (2020) because it uses a formal
framework to collect, organize, and analyze the data in terms of technical
maturity, as described in Chapter 3. It builds on the sociotechnical work
analysis in Murphy et al. (2020) but adds the extended demand analysis
and technical readiness components. One attribute of the framework is
the organization of reports about robots in use for COVID-19 by work
domain, with subcategories of functionality for each work domain. This
is in contrast to numerous articles discussing robots in terms of robot
function (e.g., social robots) or by subsystem (e.g., sensors). While such
discussions of functionality and subsystems are valuable, they do not
explain why certain robotic technologies are used and others not.

This article differs from Yang et al. (2020) and Clipper (2020), which
focus on identifying robots in use for a few work domains such as clinical
care, by considering applications within a comprehensive taxonomy of
six work domains (see Chapter 3). Organizing by phase of treatment
may miss insights for robotics for pandemics as well as for disasters in
general, given that the R4ID dataset indicates that healthcare is not
the primary use of robots, public safety is. The comprehensive coverage
of work domains is expected to yield greater insights into the diffusion
of innovation process and cross-cutting technologies.

This article differs from Shen et al. (2020) and Yang et al. (2020)
by focusing on technical maturity, not on gaps in terms of specific
robot mechanisms (e.g., manipulators) or capabilities (e.g., autonomous
navigation). The technical maturity can be established from descriptions
in social media and follow up search on the mentioned robot, but
accurately projecting gaps requires working with the stakeholders to
conduct a full work domain analysis for each mission. Given that the
R4ID dataset shows 30 different missions across six major work domains,
a gaps analysis is beyond the scope of this article.

This article also differs from Yang et al. (2020), which frames the
analysis as phases of a disease: prevention, diagnosis, treatment, and
recovery. This analysis frames the analysis as phases of an all-hazards
disaster, e.g. prevention, preparedness, response, and recovery. Under
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the all-hazards paradigm, the response phase of an epidemic incorpo-
rates prevention, diagnosis, treatment, and recovery, so an all-hazards
approach includes medical uses. The all-hazards paradigm offers the
advantage of considering the innovation and adoption of robots for
non-medical domains and for identifying commonalities across work
domains.



3
Data Collection and Analysis Methodology

The analysis depends on the R4ID dataset which is a publicly available
spreadsheet of reports of the use of robots for COVID-19 extracting
from press reports, social media, and the scientific literature. As of July
4, 2020, 262 reports extracted 203 unique instances of robots used for,
or due to, COVID-19, in 34 countries. Each instance was coded with
the robot’s technical maturity using the NASA Technical Readiness
Assessment system (Hirshorn and Jefferies, 2016). The analysis generally
followed the constant comparative method (Glaser, 1965). A sociotech-
nical work domain analysis (steps 1 and 2 of (Glaser, 1965) clustered
the instances into six work domains and 30 use cases. The instances in
a work domain were subjected to a post hoc demand analysis (steps 3
and 4 of (Glaser, 1965) to determine if existing robots had been in use
for those use cases prior to the pandemic.

3.1 R4ID Dataset Collection Process

The R4ID dataset consists of the master set of 286 collected reports
that were filtered to eliminate generic discussions, merged to eliminate
duplication, then split into 203 instances of a model of robot explicitly
used for, or due to, COVID-19. The dataset collection methodology is
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Figure 3.1: Dataset Collection Methodology.

given in the Figure 3.1. The resulting 203 instances captured use in 34
countries, summarized in Table 3.1.

A weekly search was conducted from March 27, 2020, to July 4, 2020,
and produced 286 reports with January 24, 2020, as the earliest date of
publication or of use of the robot, and June 18, 2020, as latest reported
date of use in the search period, though duplicative reports continued
to surface through July 4. The search used the Google Search engine
and the Social Search and Talkwalker social search engines and manual
keyword searches of of Facebook, Twitter, YouTube, and LinkedIn as
well as in electronic scientific journal databases. The English phrases
and keywords used for carrying out the search were: COVID, COVID19,
COVID-19 robots, COVID19 Robots, COVID 19 Drone, COVID 19
UAS, COVID Drone, COVID UAS, “COVID-19 and Robots”, “Use of
Robots for COVID-19”, “Use of Robots for the present pandemic”, and
“COVID-19 Robot uses”. While data collection was limited by keywords
and phrases in English, “robot" and “COVID" are generally expressed
in those words regardless of language. The comments section of the
social media posts, and press reports were manually scraped as well to
obtain additional links.

Of the 286 reports, only 262 explicitly described an adoption of
one or more robots. A robot was considered adopted if the article
gave evidence that the robot had been, or was explicitly scheduled, for
operational use in COVID-19 related applications. Reports that were
limited to general discussions and concerns regarding the robot use for
COVID-19 without explicit description of the robot use were excluded.
Robots which were built and demonstrated in a robotics laboratory
but not operated in the targeted work environment were excluded as
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speculative, not representative of actual use. Some reports were unclear
as to whether the robot was truly in operational use or only in use
for a demonstration or a few days. However, if the robot was shown
situated in the intended work domain, e.g., in a hospital being operated
by healthcare professionals, then the robot was considered adopted
regardless of uncertainty over operationalization.

The 262 reports were further filtered to eliminate duplication, result-
ing in 161 entries. Duplications stemmed from retweeting or republishing
of the same report or distinct reports that described the same robot
and application. Duplicate reports were merged into a single entry in
the master dataset. For example, two of the 262 reports repeated a
story about the use of Moxi for inventory management at a hospital
and these two reports became one entry.

The 161 entries were then split to produce 203 instances of robot
model, application tuples, as some of the 161 entries reported either on
multiple robots working independently or multiple use cases for a single
robot. Note that if multiple robots of a single model type were being
used at the same facility for the same application, e.g., five of the same
robot model were being tasked at one hospital for meal delivery, that
was treated as a single instance. Reports rarely gave details and thus it
was not possible to effectively use the frequency of a robot model in the
analysis. If an entry described a robot model being used for different
applications, each application became an instance. For example, the
entry about the use of KARMI-Bot model described how it was used
for three different use cases in a hospital: telepresence for healthcare
workers, disinfecting point of care, and prescription and meal dispensing.
Thus while the use of KARMI-Bot had one entry in the master dataset,
it resulted in three <robot model, application> instances in the dataset
used for this article. If the report did not give the name of the robot
model, the model name might be manually identified using a photograph
or video in the report, otherwise the organization creating the robot
served as the model name.

The resulting 203 instances captured use in 34 countries, shown
in Table 3.1. The instances are arranged in descending order of total
number of robot models. Table 3.1 also shows the number of instances
by ground (UGV) and aerial (UAS) modality; no reports in the search
period mentioned a marine vehicle.



150 Data Collection and Analysis Methodology

Table 3.1: 203 Instances of robot use arranged by country with modality
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Figure 3.2: Categorization of instances of robot use based on the sociotechnical
work domain and by modality. (Brown represents UGV and blue represent UAS).

Each of the 203 instances were assigned to one of six sociotechni-
cal work domains and 30 use cases within that domain, as shown in
Figure 3.2. The assignment process followed steps 1 and 2 of the the
constant comparative method (Glaser, 1965), where the incidents were
iteratively compared and grouped into categories based on distinguish-
ing attributes emerging from the comparison. The sociotechnical work
domain analysis converged on six work domains: Public Safety, Clinical
Care, Continuity of Work and Education, Quality of Life, Laboratory
and Supply Chain Automation, and Non-Hospital Care. The 30 use
cases reflect subjective clusters, attempting to abstract missions or
tasks. A use case for one domain may have nearly identical objectives
to a use case in another domain, but have different design constraints.
For example, delivery of meals in a hospital is similar to delivery of
food to citizens in terms of objectives but in the former case the final
step is distribution by a nurse’s aide to deathly ill patients, whereas in
the quarantine facility the citizen and robot can directly interact.

The six sociotechnical domains were differentiated by three technical
factors and two social factors. The three technical factors were work
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domain, that is, the overarching purpose and function of the application,
the types of missions, or use cases, that typify achieving the purpose, and
the work envelope that the robot would be operating in for those func-
tions. The technical factors are common operational design inputs for
a robot. The two social factors are the stakeholders impacting adoption,
including regulatory agencies, and the worker or interactant skills and
expectations. While workers and interactant are stakeholders and could
influence adoption, their influence is typically indirect. For example, the
primary stakeholders in adopting robots in a hospital for clinical care
are hospital administrators, insurers, and medical regulatory agencies,
though it would be hoped that the decision would incorporate feedback
from healthcare workers operating the robot and how the robot would in-
teract with patients. Understanding the worker and interactant skills and
expectations is important. Consider that a robot being used by highly
trained technicians to automate laboratory procedures in a dedicated lab-
oratory without bystanders is different than a robot being used by a nurs-
ing assistant with minimal training on robotics to interact with sick, dis-
oriented patients. Note that the social factors impact the usability, and
thus the design, of the robot beyond the traditional operational design.

The six work domains are similar to, but different from, the ones
proposed in Madurai-Elavarasan and Pugazhendhi (2020) for discussing
the societal implications of new technologies for pandemics, including
robotics. Those domains were Healthcare System, Government, Public,
Industry, Environment, and Energy. The justification for the choice of
work domains was not given, but appears to reflect economic sectors.
These sectors and description of robotics are too abstract to support
the objectives of this article.

Public Safety reflected the role of law enforcement, public works, and
public health agencies in carrying out policies affecting the general public;
for example, enforcing social distancing or sheltering in place regulations.
Technology adoption is influenced by regulations and policies and agency
budgets. These activities are subject to regulations and governmental
policies and have high public accountability. The interactants are officials
operating robots as part of their duties, roboticists acting in an official
capacity, or citizens who may have had no prior exposure to robots or
to a robot being used in that context.
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The use cases and work envelope for Public Safety activities typically
occurred in outdoor venues, such as paris; or in indoor venues that
were large open spaces such as arenas and subway entrances. As seen in
Figure 3.2, the Public Safety work domain had a total of 74 instances
(18 UGV, 56 UAS) distributed across five use cases:

• Quarantine enforcement (35): Two UGV and 33 UAS were used
for enforcing quarantine measures, social distancing measures, and
COVID related surveillance.

• Disinfecting public spaces (25): Eight UGV and 17 UAS were
used to disinfect or sanitize spaces usually occupied by general
public, such as subways, public recreational areas, urban areas,
and airports.

• Identification of infected (7): Four UGV and three UAS were
used to identify individuals with COVID symptoms using thermal
imaging.

• Public service announcements (6): Four UGV and two UAS were
used to carryout public announcements, and convey information
that would be useful in assisting and educating the public regard-
ing COVID.

• Monitoring traffic flow (1): One UAS was used to monitor traffic
flow.

Clinical Care captured how robots protected healthcare workers
while they performed testing and treatment and helped the workers
cope with the surge in demand. Technology adoption is influenced by
whether the cost of the technology is accepted by medical insurers, gov-
ernmental regulations, e.g., medical devices, and internal review boards.
The interactants are generally healthcare specialists working with ill,
disoriented, and often elderly patients through the robot. Janitorial
workers would normally control disinfecting robots.

The use cases and work envelope for Clinical Care is typically a
hospital or clinic, though sometimes a pop-up clinic in a sports arena
or other venue. Clinical Care had 46 instances, all UGV, distributed
across six use cases:
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• Healthcare telepresence (16): 16 UGV were used to reduce the
exposure of healthcare workers by serving as a proxy for conducting
diagnosis and acute care of patients. This use case included both
non-contact and physical contact tasks.

• Disinfecting point of care (13): 13 UGV were used to sanitize
hospitals, affiliated clinics and point of care facilities using UV-C,
and disinfectant spraying technologies.

• Prescription and meal dispensing (11): 11 UGV were used to
deliver prescriptions and meals within the hospital facilities.

• Patient intake and visitors (3): Three UGV were used to conduct
registration, admission and intake related tasks at the front desk
of the hospital facilities.

• Patient and family socializing (2): Two UGV were used to enable
telepresent social interaction between patients and their families,

• Inventory (1): One UGV was used for grabbing supplies and
restocking them within the hospital.

Continuity of Work and Education represents the use of robots by
companies or institutions to maintain operations threatened by the loss
of workers due to illness or to prevent disease transmission between
workers and clients. The robots are acquired as a capital cost. These
companies or institutions are not subject to regulations beyond the
normal occupational work and safety requirements. The interactants may
be workers or teachers interacting with other, students, or customers
through a robot but often a janitorial or line worker setting up or
controlling the robot.

The use cases and work envelopes for these applications are varied,
including the exterior perimeter of facilities and construction sites, in-
door classrooms and offices, and indoor but large warehouses. Continuity
of Work and Education had 27 instances (23 UGV, 4 UAS) distributed
over six use cases:

• Sanitation at work/school (11): 11 UGV were used to disinfect,
sanitize and clean workplaces and premises of educational institu-
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tions using UV-C, disinfectant spraying technologies, or robots
with sweeping capabilities.

• Telepresence (7): Seven UGV with telepresence capabilities were
used as proxy of either a customer or a business representative to
maintain virtual contact thereby enabling the business to carryout
their regular operations without much hassle. In some cases similar
telepresence robots were used as proxy of a student, thereby
enabling them to attend school events like graduation virtually.

• Warehouse automation (5): Five UGV were used in automating
and assisting in operational processes of warehouses and other
processing facilities.

• Construction (2): Two UAS were used for assisting with con-
struction related operations such as carrying lighting to enable
construction activities at night.

• Security (1): One UAS was used for security related operations
and surveillance within a private infrastructure employed by the
private entities in charge.

• Agriculture (1): One UAS was used to assist in agricultural activ-
ities like night time seeding of crops.

Quality of Life captures how individuals, entertainment, or social
organizations use robots. These stakeholders pay for, and operate,
robots directly or lease services. The interactants may be members of
the public unfamiliar with robots or own personal consumer robots, or
robot professional providing a service.

As with Continuity of Work and Education, the use cases and work
envelope can be indoors or outdoors. Quality of Life had 22 instances
(9 UGV, 13 UAS) distributed over five use cases:

• Delivery food (8): Five UGV and three UAS were used to de-
liver food from restaurants, groceries, and other consumables to
individuals.

• Delivery non-food (5): Five UAS were used to delivery non-food
items such as books and medicine to individuals.
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• Attend public social events (4): One UGV and three UAS were
used to facilitate social events, for example using drones for a
public light show to thank front line personnel or enable individual
to attend a social event through telepresence.

• Interpersonal socializing (3): Two UGV and one UAS were used
to assist in interpersonal socializing of an individual, for example
using an UAS to ask a neighbor out on date.

• Other personal activities (2): One UGV and one UAS were used
to carryout other miscellaneous personal activities, for example, a
citizen remotely walking their dog using their personal UAS.

Laboratory and Supply Chain Automation covers the use of robots
to support and assist in healthcare supply chain automation solutions
and laboratory healthcare operations in diagnostic laboratories, hos-
pitals, and non-hospital facilities. The robots were adopted either by
private laboratory service companies as a capital expense or by a hos-
pital, subject to allowable insurance reimbursement. In general, the
interactants were specialists directly operating or working with a robot
without an expectation of a social interaction.

The use cases and work envelope could be indoors or outdoors.
Laboratory and Supply Chain Automation had 21 instances (11 UGV,
10 UAS) distributed over four use cases:

• Delivery (13): Five UGVs and eight UAS were used to trans-
port testing samples and related equipment between laboratories,
testing centers, or clinics.

• Infectious material handling (3): One UGV and two UAS were
used to handle infectious or contaminated materials.

• Manufacture or Decon PPE (3): Three UGV were used to decon-
taminate used personal protection equipment (PPE) kits or to
assist in manufacturing PPE kits.

• Laboratory automation (2): Two UGV were used to automate
testing and other related laboratory processes to reduce COVID
testing time.
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Non-hospital Care captured the use of robots for quarantined indi-
viduals or for assisted living or nursing homes. These people are not
being treated for COVID-19 and thus do not fall under Clinical Care,
but their activities or operations are restricted by public health regu-
lations. The costs may be either be paid by a public health or public
safety agency managing a quarantine facility or by a private company
managing a non-clinical facility. The work envelope is indoors but may
be tent shelters, re-purposed auditoriums or sports venue, hotels, or
nursing homes. The interactants may be trained healthcare workers
using the robot and citizens with and without symptoms interacting
with the robot.

Non-hospital Care had 13 instances (12 UGV, 1 UAS) distributed
across four use cases:

• Delivery to quarantined (4): Four UGV were used to deliver food
and supplies to individuals in quarantine facilities.

• Quarantine socializing (4): Four UGV enabled patients in quar-
antine facilities and nursing homes to socialize with their remote
families and friends through telepresence.

• Off-site testing (4): Three UGV and one UAS thermal imaging ca-
pabilities were used to detect coronavirus symptoms in individuals
in privately owned workplace clinics.

• Testing, care in nursing homes (1): One UGV was used to provide
non-acute care for individuals in a nursing home.

3.3 Post Hoc Demand Analysis

This article conducts a post hoc demand analysis with two objectives.
One objective is to identify trends in demand pull or innovation push for
disasters. The second objective is to examine the impact of availability,
suitability, and risk on selection of robots. The analysis meets these
objectives by identifying i) if existing robots were available for a use
case, thus implying an a priori demand pull, ii) whether existing or
novel robots were used for those use cases, implying that there was a
demand pull but some some barrier preventing adoption, iii) if existing
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robots were used or adapted for novel missions, implying the value
of general purpose robots, and iv) if novel robots were used for novel
missions, suggesting that roboticists had provided an innovation push
to meet an emergent demand that would have gone unmet. The analysis
methodology followed steps 3 and 4 of the constant comparative method
(Glaser, 1965), delimiting or restricting the parsimony of influences on
adoption and the scope of the theory so that it could remain tractable,
and then synthesizing the model.

Availability is typically a critical factor in prior disasters; consider
that a hurricane, earthquake, or wildfire has a very short opportunity for
saving lives and mitigating societal impacts of food, shelter, sanitation,
transportation, etc. Due to this narrow window of opportunity, there
is generally no time to create a new robot. However, pandemics are
long duration events and thus the window goes from days to months,
possibly years, thus permitting more opportunities for adoption of
innovation. This article explores whether robot deployment strongly
follows availability or if the use of available robots was the result of
other factors, possibly the suitability of the robot for the mission or the
expected risk.

Related to availability is the suitability of a robot to meet demand
pull. An existing robot may be available but have to be modified in order
to be suitable for the demand. Multiple robots may be commercially
available and promoted for the same application, but one may offer
a poor user experience or encumber hidden manpower costs, thus a
robot may not be widely adopted because it is not suitable for the
work domain. This article examines the suitability of robots for COVID-
19, inferring suitability from frequency of acquisition. The results are
expected to help identify potential areas for research and development.

The risk of deploying a robot during a disaster may be take one of
three forms: direct performance, indirect performance, and unintended
consequences. The most obvious risk is risk of direct poor performance;
for example at the Pike River mine disaster, a ground robot was applied
to a new mission and work environment and failed, blocking the only
access to the trapped victims (Murphy, 2014). As noted in Murphy
(2014) and Straub (2015), primary stakeholders often are concerned
with indirect performance risks incurred by unintended impacts on work
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flows and manpower, resulting in a high cost, low benefit ratio. But
stakeholders may face a third risk of incurring negative consequences.
One example of a negative consequence is unfavorable regulatory and
public reaction; for example, the use of aerial vehicles (drones) for
enforcing social distancing in Westport, Connecticut, violated cultural
expectations of privacy leading to a public backlash (NBC, 2020).
Another example is the use of robots for physical human interaction,
where the stakeholder has to decide if the benefits outweigh the risk of
injury.

3.4 Technical Readiness Assessment Methodology

Figure 3.3: Process to classify according to technical maturity, adapted from
(Hirshorn and Jefferies, 2016) to be more readable and follow a color convention of
pastel green for Heritage, salmon for Engineering, and lavender for New.

The 203 instances of robot use were divided into three categories
according to their technical readiness, Heritage, Engineering, and New,
based on the NASA Technology Readiness Assessment (TRA) criteria
(Hirshorn and Jefferies, 2016). The categories reflect degrees of suitabilty
and risk. The process in Hirshorn and Jefferies (2016) is illustrated in
Figure 3.3.
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• Heritage: a technology that already exists, is used successfully
in operation, and can be transferred to the new mission without
changing its function, fit or form. The existing successful use
indicates that the robot has high suitability for the use case
and work envelope and poses little risk, either to performance or
unintended consequences.
A technology is classified as Heritage if it satisfies the following
Hirshorn and Jefferies (2016):

– The technology has no change in its manufacturing processes,
and

– The technology has no change or modifications to its function,
fit or form when used for a use case, and

– The environment to which the technology would be exposed
to is not more adverse than the ones the technology was
originally intended for.

• Engineering: a technology whose function or history of perfor-
mance is well understood and established, but needs low risk
engineering modifications to make it more suitable for a particular
mission.
A technology is classified as Engineering if it satisfies the following
criteria (Hirshorn and Jefferies, 2016):

– The technology is neither Heritage nor New, and
– The development or modifications of the technology requires

use of existing components, techniques and processes within
demonstrated capabilities or design intentions.

• New: a technology with new functions that do not already exist
or and has not been used operationally for a particular mission.
Thus a New technology can be expected to have gaps in suitability
and pose a higher risk because it will likely have unintended
consequences for work flow processes and low reliability that
would be worked out over time.
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A technology is classified as New if it satisfies the following criteria
(Hirshorn and Jefferies, 2016):

– The use case to which the technology is used for is new or
novel, or

– The use case to which the technology is applied to exceeds
its functional capability or demonstrated performance, or

– The form or fit of the technology exceeds its previous demon-
strated capability or performance, or

– The technology integration needs exceeds previous demon-
strated capability, and

– The technology is neither Heritage nor Engineering.

3.5 Limitations of the Analysis Methodology

The inherent limitations of the dataset were described in the Introduc-
tion and are expanded here. In addition, the analysis process itself is
limited in that the categorization is subjective, although it follows a
well-defined classification process.

The data collected relied on posts in social media and press reports,
which means instances were likely missed and certain applications are
likely to be under-represented while some are over-represented. The
reports tended to have content that focused on novelty or innovation;
this means that robots already in use before the pandemic might be less
attractive for reporting. Reports favoring novelty would lead to an under
count of existing robots for a work domain and use case, while robots
that were innovative but unlikely to reflect real trends, such as robot
hand sanitizer dispensers made out of Legos, were over-represented.

The data is also imperfect due to the keyword “robot,” which appears
over-used in the press. Rather than try to derive a single definition
of robot, the data collection methodology accepted any posting that
labeled the technology as a robot. This means that systems such as
the aforementioned Lego robots were included in the dataset, despite
questions over their impact. If a report stated that the technology was
a robot, it was treated as a robot rather than arbitrate the definition of
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robot that would capture both a formal engineering definition and the
public vernacular.

Another limitation is that, as majority of the search was carried
out manually, some of the links were not collected due to the vast data
present on the world wide web. The data collected is based on reports
rather than a thorough work domain analysis which would require
extensive follow up interviews, surveys, etc. Given the large number
of reports and the distribution across 34 countries, this is outside the
scope of this effort. However, the large number of reports does suggest
that the data reflects general trends and leads to useful conclusions.

The data does not provide measures of impact or efficacy, only that
a robot was used for a particular application. Because the majority of
reports were taken from the press and social media, their content focused
on the innovative aspects and not scientific measures of performance
and impact. Indeed, it may not be possible to determine the impact
beyond the number of robots used for a work domain, as there is no clear
definition of impact and measures. Impact could mean lives saved, but
other possible metrics are the reduction in the operators’ or interactants’
workload, economic cost-benefits, and number of stakeholders continuing
to use the technology. None of the metrics can be applied to the dataset
because the reports generally do not have sufficient detail. However, the
size of the dataset allow trends in impact and efficacy to be inferred;
for example, a large number of instances for a use case suggests that
robots are needed for that use and their deployment have value and an
overall positive impact.

Similar to impact, the data does not directly reveal specific algo-
rithms or shortcomings in the technology. The analysis does not assume
that just because a robot is used, it is perfectly suitable, reliable, has
high usability, and is optimized for the mission. Unfortunately the major-
ity of reports were not detailed scientific analyses aimed for the robotics
community, instead they were short descriptions targeted for the general
public. Fortunately, the patterns of adoption in the dataset do indicate
which missions were the most prevalent, which suggests where further
investigation for a use case will likely identify improvements that have a
high impact, and the New use cases, where research may be of benefit. As
will be discussed in Chapter 8, the data does lead to model of adoption
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that indicates advances in robotics that lead to on-demand availability
and reduce risk are critical regardless of work domain or use case.

The categorization of work domains, use cases, and technical readi-
ness is subjective, though the categorization follows a formal, repro-
ducible process. The sociotechnical work analysis requires a subjective
judgment in interpreting the reports and clustering into domains and
use cases is subjective. Similarly, there is a clear decision process in
Figure 3.3 for determining the technical readiness of an instance, but
the decision may require inferring commercial use and suitability for
a use case. Fortunately, the large amount of data in the dataset and
the use of a reproducible formal process means while the placement of
some instances into a particular category may be debatable, the catego-
rization should capture overall trends. Also, it should be noted that the
dataset is publicly available and can be examined to find alternative
classifications and interpretations.



4
Technical Readiness Assessment by Work Domain

and Modality

As shown in Figure 4.1, the overwhelming majority of the 203 instances
were Heritage systems, with 150 (74%). Engineering systems accounted
for 27 (13%) and New for 26 (13%). Figure 4.2 captures the distribution
of readiness for the six sociotechnical work domains, showing that
Heritage systems were the majority for all applications. The distribution
of Engineering and New innovations appeared to depend on the work
domain. Table 4.1 indicates that Engineering and New innovations were
not restricted to a particular modality as those instances were almost
equally split between UGV (27) and UAS (26). The findings by work
domain and modality are discussed in more detail below.

4.1 Technical Readiness by Sociotechnical Work Domain

Heritage was the large majority of instances for each of six work domains
as shown in Figure 4.2. The relative size of that majority varied by work
domain, with Heritage systems ranging from a low of 65% for Public
Safety to a high of 95% for Laboratory Automation.

Only three of the six work domains deployed Engineering systems.
Public Safety had the largest use of Engineering systems (23) of any
application category, while (Quality of Life, Laboratory Automation,
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Figure 4.1: Technical Readiness Assessment of all instances.

Figure 4.2: Technical Readiness by sociotechnical work domain.
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and Non-Clinical Care did not use Engineering systems. The Public
Safety Engineering systems primarily relied on adapting small UAS
that were built to support interchangeable payloads and provided tele-
operation modes of control enabling new missions. The concentration
of Engineering systems in Public Safety may also reflect the recent
adoption of small UAS by law enforcement agencies and donations by
drone manufacturers. The lack of Engineering systems in Quality of
Life and Non-Clinical Care work domains may be the result of the lack
of existing robots for those market niches; thus any use of robot, even if
it were in common use for, say, disinfection, was considered a New sys-
tem. Engineering systems may have been missing from the Laboratory
Automation area because it is a highly specialized and well-established,
so any changes reflected New hardware or software.

All six work domains contained instances of New systems, though
typically a small number. As would be expected during a pandemic,
Clinical Care had the largest number of New instances, 10 out of 46.
Three of the 10 instances were truly New system using novel robot
hardware and software for the new mission of invasive sampling patients
for COVID. The other seven New systems were clones of existing robots,
where new hardware was built to overcome lack of availability and costs
of existing systems. Laboratory and Supply Chain Automation had
the lowest number of New instances, one which was for Laboratory
automation use case. The low number of instances is not surprising
as Laboratory Automation is highly regulated and the medical supply
chain does not favor creative solutions.

4.2 Technical Readiness by Modality

The modality of robot used for COVID-19 related activities was roughly
evenly split between UGV (119 instances) and UAS (84). However, the
technical readiness of the two modalities varied, with UAS dominating
Engineering systems and UGV dominating New systems. As seen in
Figure 4.2, which is a visualization of Table 4.1 as a bar chart, UGV and
UAS are nearly equal in use for Heritage system, but UAS dominate
Engineering systems, and UAS only reflect a small portion of the New
instances. UAS may lead in Engineering system because of their intrinsic
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Table 4.1: Technical Readiness by sociotechnical work domain and modality.

adaptability without increasing the risk of unintended consequences or
decreased safety. Consider that many UAS are built for adaptability
even though they are marketed for a specific domain; for example the
DJI MG-1P UAS is marketed for precision agriculture but was easily
adapted for spraying disinfectants instead of pesticides without any loss
of platform safety. While UGV were modified, most were superficial
exterior modifications such as adding trays or disinfecting payloads.
It appeared that the UGV were designed for specific uses and did
not support hardware or software modifications, thus limiting their
applicability.

Table 4.1 shows the modality by work domain. UGV were used
exclusively for Clinical Care and almost every use case in Continuity of
Work and Education and Non-hospital Care. This appears to be driven
by i) the work envelope, which is indoors and highly structured built
environments with unpredictable clutter, and ii) workplace constraints,
especially safety around bystanders such as healthcare workers and
patients. UAS were the majority of reported instances in Public Safety
and Quality of Life and nearly tied for Laboratory Automation. The
heavy use of UAS for Public Safety and Quality of Life may reflect
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the availability of low cost ($1000 USD) models used both by law
enforcement and consumers. UAS for Laboratory Automation were
used for delivery of samples and reagents, highlighting the emerging
importance of aerial delivery.



5
Heritage Systems

As shown in Figures 4.1 and 4.2, Heritage systems are the used most
frequently during a disaster, no matter the application. Heritage sys-
tems accounted for 150 out of the 203 instances (74%) and accounted
from 65% to 95% of the instances in each category. The largest use
of Heritage systems was for Laboratory Automation (95%), possibly
reflecting the existing standards for laboratory work that does not
support reactive changes and the broad base of automation systems
The smallest use (65%) was Public Safety, despite Public Safety having
the largest reported deployment of robots with 74 instances in total.
Instead, Public Safety had the largest use of Engineering systems (31%)
suggesting that the adaptability of robots was important for that work
domain. As seen in Table 5.1, the use of Heritage systems was spit
between UGV 73% (92 out of 119 ) and UAS 69% (58 out of 84).

There were 79 models of Heritage robots specifically named in the
reports, too large to list; however, the large number suggest that end-
users had sufficient choices for systems. 64 models of Heritage UGVs
were used for 92 instances, for a ratio of 1 model to 1.4 instances. 15
models of Heritage UAS were used for 58 instances, or a ratio of 1 model
for 3.9 instances. This suggests that UAS may be more general purpose,
available, and more cost effective than UGV.

169



170 Heritage Systems

Table 5.1: Heritage systems by modality.



6
Engineering Systems

There were 27 Engineering systems instances of robots that were used
for three of the six application areas (Public Safety (23), Clinical Care
(3) and Continuity of Work and Education (1). Table 6.1 shows that
the majority of Engineering instances (21) relied on UAS. Of the 27
instances, 18 fall in the Disinfecting of Public Spaces sub-category under
the Public Safety category. Out of that 18, 17 were agricultural UAS
modified to spray disinfectants, versus pesticides, in public spaces and
one was a UGV with an agricultural sprayer was modified to make
the sprayer more suitable for disinfecting liquids. Four instances fall in
Quarantine Enforcement sub-category under the Public Safety category.
Out of the four, three were UAS modified by adding loudspeakers, sirens,
and flashlights and one of them was modifying an UGV by adding a
camera on top of it to enforce social distancing and estimate the number
of people in a park. Two instances fall under Disinfecting Point of Care
sub-category under Clinical Care category, and both the instances were
of modifying UGV by adding UV lights to carryout disinfection. One
instance belonged to Healthcare Workers Telepresence sub-category
under Clinical Care category, and the instance was modifying an UGV
by fitting a screen on top of it to enable telepresence functionality. One
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Table 6.1: Engineering systems by modality.

instance belonged to Construction sub-category under Continuity of
Work, and Education category, and in this, the UAS was modified by
adding lights on top of it to assist in construction post sunset. The
remaining instance belonged to the Public Service Announcement sub-
category under Public Safety work domain, and in this instance, a cloud
based software update was released for an UGV to assist in carrying
out public service announcements.

The Engineering modifications were either modifications to payloads
(18), superficial morphological changes to the physical structure (8), or
a new software update (1). The 18 payload modifications were to agri-
cultural sprayers as described above. The morphological changes were
to add new payloads. Three of the eight instances added loudspeakers
to existing UAS (2) or a siren and flashlight to an existing UAS (1)
for Public Safety. Two of the eight instances modified existing UGV
(YouiBot and Turtle Bot) to carry UV-C disinfecting lights for Clinical
Care. Another two instances modified an existing UGV, Spot, to either
carry a camera to aid with enforcing social distancing in Public Safety
or to carry a tablet to enable telepresence functionality for Clinic Care.
The remaining instance was outfitting a UAS with lights to support
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construction of a hospital at night as part of Continuity of Work and
Education. The one reported instance of a change to software was an
update for the Knightscope security UGV enabling it to perform Public
Service Announcements as part of Public Safety.

It is interesting to note the lack of changes to software. Software
has traditionally been thought of as “soft” and easy to modify in
contrast to hardware. Changing the software on an existing robot
may not be possible for an end-user, as the product may not give
access or the end-user does not have requisite skills, or confidence, to re-
program. Hardware can be easier to modify, either the platforms support
changing payloads with standardized mounts, especially prevalent on the
engineered UAS, or have sufficient surfaces for fastening new payloads.



7
New Systems

There were 26 instances of New systems, as shown in Table 7.1, with the
21 of the instances innovating some aspect of UGV. All six work domains
were reported to have at least one New instance. The most instances, 10,
were for Clinical Care, where New innovations were for three invasive
telepresence robots for sampling patients, two non-invasive telepresence
robots for general patient-healthcare interaction, and five robots for
support functions such as prescription/meal dispensing, enabling the pa-
tient and family to socialize, and disinfecting points of care. The second
largest number of New instances was for Continuity of Work/Education
(6), all for the introduction of disinfection robots into those facilities.
Four New instances were reported for Quality of Life; these were dis-
tributed between Other Personal Activities (2), Attending Public Social
Events (1), and Interpersonal Socializing (1). Public Safety had three
New instances, all of which were for the use of thermal imaging to detect
infected citizens. Two New instances appeared in Non-hospital Care,
one for use of robots to allow quarantined individuals to socialize with
families and the other for Off-site testing and identification of COVID
in nursing homes. One New instance was reported for Laboratory and
Supply Chain Automation for a novel laboratory automation robot.
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Table 7.1: New Instances by novelty and modality.

As shown in Table 7.1, the 26 were categorized as New for one
of three innovations: novel hardware or software (13), novel missions
(9), or a combination both novel missions and hardware or software,
i.e. completely novel (4). UGV instances (21) were far more frequent
than UAS (5), and UGV instances originated from all three sources of
innovation, while UAS only exhibited innovative missions.

The largest source of innovation was novel hardware or software
(13 instances), all of which were UGV. Nine robots were clones dupli-
cating existing robots or technology designed for an existing mission;
the explicitly stated motivation of six of those clones was to produce a
lower cost system as the existing were prohibitively expensive. A novel
robot, LHF, was used in two different categories Clinical Care (2) and
Non-Clinical Care (1), to provide telepresence, duplicating commer-
cially available telepresence robots used in healthcare such as Double
Robotics, Temi, Ivo, and Tommy. Similarly to LHF, a novel robot
KARMI-Bot was used for telepresence in Clinical Care (1), but also
for Dispensing Meals/Prescriptions (1) and Disinfection (1). Two novel
robots were used in Clinical Care for Dispensing Meals/Prescriptions;
these robots duplicated existing systems such as Keenon Peanut Robot
and Temi. One novel robot system was developed by Amazon to disin-
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fect warehouses and whole foods stores (Sanitation at Work/School),
which appeared to duplicate commercially available UV-C disinfection
robots such as UVD, Xenex, and Tru-D. Four instances of novel robots
were not clones; these were built for sanitization at schools and the
workplace, including two “robot” hand sanitizer dispensers constructed
from Legos™.

The second large source of innovation was to meet novel missions
with existing hardware or software (9 instances). Seven of the nine
used existing UAS, two UGV. Quality of Life posed four novel missions
generated by businesses in the service sector or by individuals. Three of
these novel missions in Quality of Life used sex dolls: one instance of
filling up restaurants as part of Other Personal Activities, one instance
of using sex dolls with AI features in a restaurant to accompany and
even make conversation with solo diners as a form of Interpersonal
socializing, and Using sex dolls to fill up the soccer stadium stands for
improving Attending Public Social Events. The fourth novel mission
in Quality of Life was using a UAS to walk a dog, one instance in
Other Personal Activities). Using thermal imagery to identify persons
infected with COVID-19 accounted for four instances of use of existing
robots for novel missions. Three instances addressed the novel mission
Identification of Infected missions by Public Safety using unspecified
UAS with thermal sensors accounted (2) and a MMC quadcopter (1).
A novel mission within the Off-site Testing use cases for Non-Clinical
Care was the use of an unspecified UAS to test people for COVID-19
via thermal sensing. The ninth instance of an existing robot for a new
mission was the use of the AIS K9 Robot to roam around a shopping
area, attracting people to come and sanitize their hands with a dispenser
mounted on top (Sanitization at Work/School for the general Continuity
of Work/Education work domain).

Truly new innovations, where novel robots were built for novel
missions accounted for four of the 26 instances of New systems. Three
robots were teleoperated throat or mouth swabbing robots for Clinical
Care, specifically Healthcare Workers Telepresence. The fourth was a
“robot” disinfection booth called Cleantech J1 providing Sanitation for
Continuity of Work and Education. All four were UGVs.
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The impact of New systems on the pandemic is unknown. In general,
clones and prototypes appear to be low volume and the reports did not
provide the actual adoption rate. However, reports noted that the Pinto
robot developed for prescription/meal dispensing was requested by 50
hospitals in Thailand.

It is interesting to note that sanitation or disinfection was the largest
objective of New systems, spanning Clinical Care (1) and Continuity
of Work/Life (6). Sanitation or disinfection was tied for the largest
use of Heritage systems and the largest use of Engineering systems in
Clinical Care, so this suggests that, although systems existed, there was
a perceived need for more systems, less expensive versions, or broad
applications.



8
Discussion

As noted in the introduction, four factors are presumed to influence the
adoption of robots during a disaster: demand, suitability, availability,
and risk. This chapter reviews the 203 instances and concludes that
these factors do appear to be influences. The review of the impact of
the four influences results in a formal model of adoption of robotics
during disasters.

8.1 Demand

The low number of New systems (26), and more telling, the low number
of novel missions (9), novel hardware or software (13), or both (4),
indicate that COVID robots adoption was driven by demand pull, not
innovation push. The low number of novel missions indicates that what
the end-users wanted was already established. Indeed, only five of the
six work domains had one or more New systems enabling novel missions
and only 40% of the use cases (12 out of 30) had an instance of a New
system that involved a novel mission. The low number of instances
with novel hardware or software indicates that existing robots were
sufficient. While some robots used for missions were unusual, especially
the quadraped Spot, and some robot modalities had not been used
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before for that mission, notably UAS, the opportunistic adoption of
these innovations is tempered by the fact that the majority of these
robots were commercially available and represented existing hardware
and software being deployed for existing missions.

The distribution of New systems across the six work domains is
also informative. Demand pull for existing, known missions occurred
independently of work domain or use case. Furthermore, these demands,
and how to meet them with robots, had already been established for 29
of the 30 use cases, as only one use (Other Personal Activities under
Quality of Life) did not deploy at least one Heritage or Engineering
system. Thus, there was little creation of novel robots or novel missions
during COVID, consistent with other disasters

The largest demand pull for New Systems was for Clinical Care,
where 21.74% (10 out of 46) of the robots were for existing missions.
That Clinical Care exhibited the largest demand pull for innovation is
not surprising given the role of Clinical Care in managing a pandemic.
The work domain with the largest number of New systems was Quality
of Life (4 or 21%), however, those New systems appeared to be split
between opportunistic demand pull and innovation pull demand pull.
The use of sanitation robots to maintain an individual’s Quality of Life
appears driven by need but also the availability of said robots. The use
of consumer UAS for walking a dog and asking someone out for a date
appears to be an innovation push, where the mission would not have
occurred with the availability of the robots.

However, Heritage systems were not necessarily sufficient, as they
did not completely meet demand pull for all existing, known missions.
Consider that 15 of the use cases that deployed Heritage systems also
applied at least one Engineering or New system. This suggests that
Heritage systems could be improved, especially in cost.

The demand pull that resulted in Engineering or New systems was
met with new payloads or physical modifications to the robot, not
new or modified software. Only one instance of the 27 Engineering
instances modified software and that was a minor update, while 18
changed payloads and eight modified physical morphology. There are
at least three possible explanations for why hardware was modified not
software:
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• For most of the robots, teleoperation or shared autonomy was the
primary control scheme exploiting the human as the adaptable
agent and thus software did not have be changed.

• Hardware is easier to modify, while many robots use proprietary
software that cannot be modified, and the population base is
likely more familiar with mechanical construction (e.g., home
improvement, car repair) than software.

• It is easier to project the consequences of modifying hardware as
compared to the consequences of modifying software, which may
introduce a hidden bug, and thus stakeholders were more willing
to accept modifications.

8.2 Suitability

The same data from the previous section suggests that suitability is
a major criteria in meeting demand. The large prevalence of Heritage
systems and low number of New instances may mean that demand was
already known, but it can also mean that only use cases for which the
suitability of a robot had been established were worthy of consideration
by the stakeholders. Heritage systems, by definition, have the highest
congruence with the objectives of a use case and the existing work flows
in that domain.

8.3 Availability

Heritage robots covered most of the use cases (29 out of 30), either
directly or as the basis for Engineering, and could have covered more
but were not always available in sufficient quantities or at low cost
points for adoption. Robots already existed for most use cases, as seen
by lack of New systems. Furthermore, 69 of models of UGV and 21 of
models of UAV were reported for Heritage and Engineering, with, as
reported in Chapter 5, a ratio of 1 UGV to 1.4 instances and 1 UAS for
3.9 instances. This suggests that not only were robots available, users
often had a choice of robots.
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However, even though robots existed, they were not necessarily
available for immediate deployment at scale due to lack of inventory
and costs. There were a notable number of clones (9) duplicating existing
robots. Seven of these clones were for use cases in Clinical Care, most
often for disinfection. The motivation reported for these clones was that
existing disinfection robots were expensive and had a long wait time.

8.4 Risk

COVID-19 data confirmed the pattern of risk-adverse adoption for
disasters and that this risk-adverse choices are driven by the users, not
the regulations. It can be inferred that Heritage robots dominated the
use cases (96.67%) and instances (73.89%) because they posed fewer
risks or posed known risks. Heritage robots are low risk because, by
definition, the hardware and software is mature and does not require
modification (have high reliability), the use cases already exist in the
sociotechnical system (have high suitability) and because the robots
are already in use, the best practices are already known (have high
usability).

The conclusion that adoption is risk-adverse is further supported by
the fact that only three of the 203 instances clearly exposed interactants
to physical danger. In these three instances, all of which were occurred
within the Healthcare Workers Telepresence use case in Clinical Care,
patients were exposed to increased risk because the robots were phys-
ically interacting with the person in order to take invasive samples.
However, the risk of these experimental procedures was minimized via
the close supervision of the operation.

While occupational and product safety regulations for robots do
exist, they did not appear to be a barrier to availability or adoption.
Regulations directly impacted only three instances, the aforementioned
New robots for invasive samples. These robots were considered medical
devices and thus had to be evaluated and approved for experimentation.
The UAS were subject to each countries aviation regulations but aviation
agencies generally have mechanisms for emergency use. Given that UAS
were used for 84 instances in 22 countries, it seems unlikely that aviation
regulations were a significant barrier. While regulations did not impact
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Figure 8.1: Resulting model of adoption of robotics innovation.

200 instances, of those only three New uses were considered medical
devices. However, the public may have benefited from new regulations.
For example, while there were seven instances from the Public Safety
category where robots used thermal imaging to detect infected persons,
there was no evidence that this method worked (Greenwood, n.d.) nor
was the impact on the presumed infected person’s privacy considered.
As another example, five instances and four general discussions raised
concerns of unwarranted surveillance.

8.5 Formal Model of Adoption of Robotic Innovations During a
Disaster

The analysis supports a formal model of adoption of robotic innova-
tions during a disaster shown in Figure 8.1. When a disaster occurs,
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stakeholders will look for robotic solutions for use cases known a priori,
representing a demand pull. The stakeholders are likely aware of robots
from peers using robots for those functions, though roboticists working
in partnership with the users may be able to direct attention to applica-
ble robots. Robots will be evaluated by the adopting stakeholder based
on availability, suitability, and risk. The degree of suitability and the
tolerance for performance and operational risks depends on the specific
sociotechnical work domain. The evaluation appears to greatly favor
the application of Heritage systems but some Heritage systems may
be modified thus becoming Engineering systems, such as modifying
the payload of the agricultural drone DJI MG-1P to support spraying
of disinfectants. In a few cases new hardware or software has to be
developed or added to meet the a priori missions, such as the cloning
of UVC disinfection robots, though the novelty is again constrained by
the adopting stakeholder’s tolerance for risk.

However, a small number of novel use cases may emerge whereby
there is no direct suitability and this provides the opportunity for
valuable opportunistic experimentation. The view of robots for novel
use cases as experiments is based on the following considerations. The
application of robots for novel use cases broaches the potential for
mismatches on suitability and introduces risks, thus they are de facto
experiments. Furthermore, the robots are unlikely to be available at
sufficient scale during the incident to make a notable difference in the
response.

The model captures two strategies for innovating robots for novel
use cases. One strategy is for stakeholders to adopt existing, available
hardware or software and apply these to the novel use cases. The relia-
bility and consequences will likely be unknown, so while the robots may
be physically mature (i.e., a NASA Technical Readiness Level of 9), the
readiness assessment for the use case is low (i.e., NASA TRA is New).
The risk associated with the New uses requires more human oversight
or accommodation to the technology, such as a fully automatic throat
swabbing robot by researchers from University of Southern Denmark.
This additional human oversight or accommodations effectively makes
the deployment a form of in situ, opportunistic experimentation not
a true operationalization of the robots into the work flow. A second
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strategy is for stakeholders, working with roboticists, to explore build-
ing novel platforms targeting that use case, such as the throat and
mouth swabbing robots. The use of these robots is clearly a form of
experimentation with much higher risk.

The model is consistent with the conservative, risk-adverse heuristics
for disaster robotics from Murphy (2014) and the general UTAUT model
(Venkatesh et al., 2003). The model provides a post hoc explanation of
the adoption decision by the Mine Safety and Health Administration
(MSHA) for a novel mission of sending a robot into a collapsed mine via a
narrow borehole at the Crandall Canyon Mine Disaster (Murphy, 2014).
The Crandall Canyon Mine Disaster adoption decision was a notable
exception to the trend from the 36 disasters, where only commercially
available robots used in similar work envelopes were adopted. In the
Crandall Canyon Mine Disaster, MSHA accepted an UGV constructed
from commercially available components explicitly designed for creating
custom pipe inspection robots, but rejected two proposed novel designed
specifically for the unique application. The adopted robot was a de facto
Engineering system, with lower risk than the two proposed de facto
New systems, which posed higher risk because their technical maturity
was low.

8.6 Limitations of the Formal Model of Adoption of Robotic Inno-
vations During a Disaster

It should be emphasized that the model captures adoption only during
a disaster, not long-term acquisition and acceptance. Adoption during a
disaster may be temporary due to the ephemeral demands. The urgency
of the situation may motivate institutions to waive adoption processes
for the duration of the event and end-users may be willing to accept
deviations in work processes that they would tolerate long-term. For
example, while ground robots were used successfully at the 9/11 World
Trade Center disaster, many states in the U.S.A. do not include robots
on the procurement list for response teams as they are awaiting national
standards to be established Murphy et al. (2016).

The model has at least three weaknesses. One is that the model
does not show how, or when, the adopting stakeholders learn about,
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or begin to work with, roboticists and robots. But it does provide
insight into the decision process and suggests a user-centered design
process, consistent with principles of the UTAUT (Venkatesh et al.,
2003), where roboticists are involved with stakeholders before an event.
Second, similar to the resolution of UTAUT, the model does not cap-
ture any interdependencies between suitability, availability, and risk.
However, these interdependencies are pragmatic decisions where users
consider, either consciously or unconsciously, trade-offs between these
factors based on the practices; thus, there may be no single expression
of interdependencies that holds for all work domains. Furthermore, the
R4ID dataset is based primarily on social media and press reports
which do not capture the reasoning behind temporary adoption deci-
sions. Therefore, the dataset is not sufficiently detailed to analyze or
predict user preferences and perception of the usefulness of robots as
per Chang et al. (2012) and Heerink et al. (2010) or to capture the
influences of other stakeholders (e.g., hospital, public safety department
head, etc.). Follow-up research is currently being conducted to gather
data to specifically identify these interdependencies and quantify the
relationships for different work domains. Third, the model may reflect
confirmation bias as it refines the adoption heuristic pattern for robots
from one of author’s previous work in Murphy (2014) and from another
author’s work in emergency management in Moats (2015). Concerns
over confirmation bias can be explored by other researchers as the R4ID
dataset is public and open for alternative analyses.
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Conclusions

The analysis of the roboticsForInfectionDiseases.org (R4ID) dataset
produces a formal model of adoption of robots, independent of modality,
for disasters that can guide research development and deployment.
The analysis answers the three general questions about the innovation
process posed in the Introduction within the limitations of the dataset.
The resulting formal model of adoption can be summarized as follows.
The majority of use cases are known before the disaster or emerge
from the stakeholders’ understanding of their need (demand pull),
not as an opportunistic reaction to robotic innovations (innovation
push). Stakeholders adopt available systems with the highest technical
readiness, i.e., those that maximize suitability for the use case and work
flows and minimize risk. The barriers to the widespread use of robots
during a disaster appear to be the lack of availability, either due to
inventory or economic cost, of suitable, low-risk robots, not regulations.
The dataset does not support an analysis of specific algorithms or
functionality but it does lead to four recommendations for the robotics
community on how to innovate for the next pandemic and for disasters
in general. Current and future work is continuing to collect and analyze
data, though the large size of the R4ID dataset suggests that additional
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data will refine the analysis but not change the trends reported in this
article.

9.1 The Robotics Innovation Process During Disasters

Returning to the three questions posed in the introduction, the first
question was How do needs emerge? The data indicates that, in general,
needs emerge as a demand pull, not an innovation push, and that many
high impact use cases are known before the event a priori. Of the 30
use cases, 29 (96.97%) were satisfied with at least one Heritage robot,
which means that the needs for those cases were already known and
robots in use. The impact of that use is unknown, because the reports
did not capture whether a robot was limited to early adopters or early
majority, but the data does show that robots which at least minimally
satisfied the objectives for 29 use cases were operational prior to the
pandemic.

The follow up to the first question was: Are the use cases with the
highest societal impact known a priori, are they uncovered during the
incident, or emerge in some combination? Whether these use cases
had the highest societal impact, or indeed were the Heritage robots
designed for societal impact versus economic viability, is also beyond the
scope of this article. The number of robots, either Heritage, Engineering,
or New for a use case implies impact, that stakeholders will attempt
to use robots for the most pressing situations or to give themselves
a benefit in accomplishing high impact tasks. Consider Public Safety
and Clinical Care which comprise the two largest work domains. The
impact of these robots for those work domains was not to replace
workers. Indeed in seven of the 11 use cases for Public Safety and
Clinical Care, the objectives were to protect the responders by allowing
them to work at a distance or to delegate portions of their normative
tasks (e.g., disinfection, dispensing meals or prescriptions) so that their
organization could safely handle the surge in demand for their abilities.
The instances of Engineering and New robots provide some insight
into impact. Engineering and New robots can result from either a
demand pull, i.e., that the stakeholder recognizes a need and that
need is important enough to devote effort in modifying or creating a
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novel robotic solution, or an innovation push, i.e., that stakeholders
opportunistically adopt new technology. Pubic Safety and especially
Clinical Care appeared to be driven by demand pull, where even the
New robots were created to help with the new demand of how to
protect healthcare workers from exposure while swabbing a patient.
The demand clearly originated from healthcare needs. On the other
hand, the adoption of robots for Public Safety, Continuity of Work
and Education, Quality of Life, and Non-Hospital Care appeared to
be partially opportunistic, where the availability of commercial robots
allowed the stakeholders to creatively employ the robots for New uses.

The second question was: How robust and reliable should robots be
in order to be adopted? The high frequency of Heritage (74%) over the
first four months of pandemic implies that robustness and reliability,
hallmarks of those levels of technical readiness, are essential. While the
high frequency might be explained by suitability and availability of
Heritage systems, Public Safety, Clinical Care, and Laboratory Automa-
tion are risk-adverse work domains, supporting the role of robustness
and availability. The answer to the follow up question, is something
better than nothing or robots which reproduce existing capabilities with
well understood limitations more likely to be adopted, appears to be
clear. Something is not better than nothing. Consider that the largest
number (10) of New systems was in Clinical Care. Those 10 instances
were predominately due to clones of existing robots for disinfection
because of lack of availability; the clones were so similar that they were
in possible violation of intellectual property rights (Demaitre, 2020).
The effort was not in developing a new robot to perform disinfection, it
was in closely duplicating robots with established capabilities and work
flows. Thus, the observation is that mature technologies are preferred
over immature technologies.

The third question posed in the Introduction was: What are the
barriers to adoption during a disaster? with follow on questions of Do
regulations or economic costs play notable roles? Is trust by the end-
users that the robots are reliable and will perform as expected? Or is
the lack of availability at scale a barrier? Overall, regulations did not
appear to be a barrier to adoption of even New robot systems. Only
three of the robot instances were for use as a medical device, which
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would have required extensive testing. However even then, medical
regulatory agencies, as well as medical insurers and institutions, have
mechanisms for expedited review and waiver of regulations. Economic
costs of existing robots appeared to have more of an influence, but
still slight, with nine clones being built explicitly to serve as cheaper
alternatives. The high percentage of Heritage (74%) and Engineering
(13%) systems over four and half months could indicate that suitability,
availability, and risk are the primary drivers in meeting demand pull,
however, trust in the reliability and suitability as related to performance
and operational risk is hard to prove from the dataset. While there
is no way to estimate demand, it is reasonable to assume that given
the value of robots in Clinical Care to help protect healthcare workers
and cope with surge in demand for medical care and in Public Safety
for preventing and diagnosing infections, robots probably could have
been used more frequently and thus with greater impact if there were
more robots available. Thus availability of suitable, low risk robots, i.e.,
those already in use (Heritage) or having ability to be safely adapted
(Engineering), is the most significant barrier.

Although the R4ID dataset shows that the large majority (87%) of
use cases relied on existing robots, this does not mean existing robots
were optimally suitable for the pandemic, only that they were sufficiently
suitable, low-risk, and available to be adopted by generally conservative
stakeholders. The types of reports in the R4ID database generally do
not describe gaps or problems with the technology as they tend to
be written as positive press announcements. Thus the dataset is not
directly useful as a tool for documenting the need for specific robotic
technologies, such as manipulation and increased autonomy, but does
identify fundamental research topics.

9.2 A Formal Model of Diffusion of Robotic Innovation During
Disasters

The data supports the model of diffusion of robotic innovation during
disasters given in Figure 8.1 and suggests that the findings will apply to
all disasters. As predicted, existing systems with high technical maturity
are either used in greater numbers or adapted to meet demand pull,
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while truly novel systems are rare and reflect the opportunity for field
experimentation.

Consider that for the first four and a half months of the COVID-19
pandemic in 34 countries, the large majority of robot systems had
high technical maturity. The mechanical and software maturity was
high by TRL standards, given that 69 UGV and 21 UAS existing were
commercially available and thus were TRL 9. More importantly, the
TRA was high; out of the 203 instances, 15 (74%) were Heritage and 27
(13%) were Engineering while only 26 (13%) were New. Even with the
extended time of the pandemic as compared with the short response
times of a wildfire or flash flood, adoption favored existing robots and
when those were not available, some stakeholders created unauthorized
clones of those robots.

The model is expected to apply to all hazards because the pattern of
adoption was the same for six very diverse sociotechnical work domains.
The data indicates that adoption in all six sociotechnical work domains
appeared to be driven by demand pull and the availability of existing or
easily engineered systems to meet demand. While there was no direct
discussion of risk in the reports, the deployed systems appeared to
minimize risk of physical harm and risk of unintended consequences
because they showed high reliability, usability, and suitability.

9.3 Recommendations for the Robotics Community

While the dataset does not support the analysis of gaps in specific
functionality, the formal model of adoption highlights four barriers
which can guide robot research for disasters. As shown in Figure 9.1,
the inputs to the adoption process reflect opportunities to acceleration
adoption.

1. Identifying the a priori use cases and understanding the constraints
of the sociotechnical work domain that impact novel use cases
before the disaster. The model suggests that prior to, and worst
case during, a disaster, the focus should be on working directly
with users to determine their needs (demand pull) and meet
those needs with low risk systems rather than try to find ways to
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Figure 9.1: Four barriers to adoption implied by the model of adoption of robotics
innovation.
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insert their research (innovation push). The adoption process is
primarily driven by demand pull, so it is critical to understand
what the users want, or think they want, and to work with them.
Adoption is also influenced by understanding the work domain
in order to minimize risk of unintended consequences, ranging
from unreliable operation (performance risk) to increased demand
manpower (operational risk). Understanding the work domain
is also essential for successfully innovating Engineering or New
platforms. The model suggests that i) roboticists adopt a user-
centered research paradigm and ii) fundamental research is needed
on methods to predicting reliable use and on projecting increasing
in workload on the enterprise and cognitive workload on individual
users.

2. Creating new design and distribution mechanisms for the rapid
manufacture of reliable, easily adaptable robots to increase avail-
ability. The model shows that availability of trustworthy robots
is a key component to adoption. However, availability during a
disaster is challenging because the response poses a rapid, sud-
den surge in demand that may exceed existing inventory or the
budgets of adopting agencies. Therefore, a robotics infrastructure
is needed to meet on demand production capacity, providing the
ability to rapid produce and distribute low risk robots. Rather
than rely on caches of robots, which can become outdated, an
alternative strategy is to focus on general purpose designs that
optimize rapid manufacture and high usability (see Murphy et al.,
2020). Note, robotics for disasters should not be viewed just as
a manufacturing or open source problem, because such systems
must be suitable for the work domain during the disaster, most
notably support ease of use due to the lack of time to train. The
creation of a robotics infrastructure introduces a related major
challenge: How to evaluate designs and the correction operation
of any updates in hardware, software, and user experience in the
absence of actual disasters.

3. Creating formal methods to predict suitability and risk of robots
for work envelopes, complex sociotechnical work flows, and new
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use cases. The model indicates a strong preference for Heritage
systems (150 out of 203), which by definition have established
suitability and known risks. Indeed nine out of 26 New systems
were clones, rather than truly novel robots. While the data does
not capture how many more hospitals, agencies, companies, and
individuals could have adopted robots, the model, and prior em-
pirical evidence in Murphy (2014), suggests that their willingness
to adopt will be based on their comfort level that the robots
will not make matters worse. Currently robotics can only offer
subjective assurances or performance data on specific functions,
e.g., NIST Rescue Robot course (Jacoff et al., 2001). Therefore,
fundamental research is needed to create methods that can rapidly
assess i) the viability of a robot for a novel work envelope and ii)
its impact on the organization’s work flows. In order to predict the
risk of failure for new work envelopes, fundamental research in
how to represent work envelopes that capture distinctions between
working in a hospital intensive care unit with glass walls and in a
large warehouse with narrow aisles.

4. Creating general purpose robots that can be easily, and safely,
modified. In order to increase the rapid development and safe use
of Engineering and New systems during a disaster, fundamental
research and development is needed in creating general-purpose
robots capable of accepting plug-and-play payloads, supporting
physical modification, and enabling shared autonomy. Research is
also needed in projecting the risk incurred by such modifications.
Engineering systems accounted for 27 instances, and the majority
(18) used general-purpose UGV or UAS designed to safely accept
different payloads. In terms of shared autonomy, the UAS provide
teleoperation as a default mode of interaction, allowing the human
to adapt it to new uses; while this increases the cognitive workload
of the operator, it does provide flexibility. The UAS, especially
those by DJI, also permit third party software, which increases
shared autonomy functionality. In contrast, UGV tended to be spe-
cialized for specific uses, with autonomy either basic teleoperation
without guarded motion or full autonomy, and thus less adaptable.
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Robotics might have a bigger impact on pandemics, and disaster
response in general, if there are more general-purpose robots with
plug-and-play payloads, have the ability to be physically modified,
and provide open developer kits. However, as noted in the previous
barrier, the general purpose systems must be low risk as well as
available.

The findings suggest research and development of robots for future
disasters should focus on five goals: designing robots to meet pre-existing
demands, integrating robots into operational use prior to the disaster,
creating robots or software that support multiple uses, developing
formal methods for projecting the risk of using the robot in terms
of direct and indirect performance and consequences, and increasing
the availability and functionality of Heritage robots by reducing cost
and increasing on demand manufacture. The use cases for robots for
pandemics are mostly known, given that 29 of the 30 use cases employed
Heritage systems. What is missing are robots which are more affordable,
and thus more likely to be available, and easily manufactured, thus
increasing availability upon demand. The data suggests that the priority
is to design and operationalize robots for routine use, as the robots
already in use are the ones that are used during a disaster. The data
also suggests that the robots have to have a clear cost/benefit ratio
and be reasonably priced; this may require advances in manufacturing.
The findings also highlight the need for general purpose, easily adapted
robots where a robot routinely used for Use A can be physically modified
and directed for Use B. Such robots would also improve the cost/benefit
ratio. However, good robot design may not be enough. While regulations
did not appear to be a barrier to adoption, policy may be. Consider that
for Clinical Care, Laboratory Automation, and Non-clinical Care uses,
the adoption of robots depends on how insurers cover new technology
and government incentives, both of which are beyond the purview of
roboticists.
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9.4 Current and Future Work

Additional work analyzing the adoption of robots for disasters, espe-
cially the role of technical maturity over time and by country is in
progress. Data is continuing to be collected and scientific publications
are beginning to emerge which will better document uses and impact,
especially during the first few months and for applications that may not
have been deemed worthy of press releases or posting on social media.
These reports may retroactively change the specifics of the distribution
of use cases and the technical maturity rankings, but given the large
number of 203 existing instances, these new reports are likely to refine
and sharpen findings, not radically change them. Current work is fol-
lowing up on key work domains, especially Clinical Care, to determine
any technical barriers or need for improvements (e.g., needed software
to autonomously perform function F). Also follow up interviews with
end-users are being conducted to determine the relative weighting of
factors on their adoption decisions during the pandemic and how it
differed from normative adoption processes. As the model is restricted
to the exceptional adoption processes during a disaster, the model is
unlikely to accurately predict long-term adoption. The R4ID dataset is
available at roboticsForInfectiousDiseases.org to allow other researchers
to add new instances and to conduct their own analyses.
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