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Abstract— The landscape of miniaturized wireless biomedical
devices (MWBDs), including various injectables, ingestibles, im-
plantables, and wearables, is rapidly expanding as proactive
mobile healthcare proliferates. While the growth of MWBDs
increases the flexibility of medical services, the adoption of these
technologies poses privacy and security risks to their users.
As a result, while being restricted in resources (size, power,
processing, and storage), these devices require trust and must
be at least minimally secure in the face of evolving threats.
Making MWBDs secure begins with threat modeling. Therefore,
this research reviews and summarizes the information on threat
modeling applicable to MWBDs. Then, we propose a domain-
specific qualitative-quantitative threat model that aims to help
the designers and manufacturers of MWBDs to identify threats
and embed security in their designs in the pre-market phase of
the lifecycle of an MWBD. This model is tailored to a wide range
of MWBDs. Among the different stakeholders, this model focuses
on the user. It also prioritizes non-invasive direct attacks against
telemetry interfaces. To discuss the advantages and disadvantages
of the proposed model, it is compared to some other threat
models. To illustrate how the model can be adopted by a threat-
modeling team, it is then applied to representative case studies
from each category of MWBDs. The outcomes of the performed
risk analysis reveal that the model is easy to apply and sufficient
to disclose threats.

Index Terms—Security, privacy, threat modeling, risk as-
sessment, miniaturized wireless biomedical devices, injectables,
implantables, ingestibles, wearables, the Internet of Things (IoT).

I. INTRODUCTION

R ising interest in remote health monitoring and treatment
stimulates an increase in the variety and the volume of

miniaturized wireless biomedical devices (MWBDs) [1]–[4].
The need for these smart-and-connected health technologies
is foreseen to continue rising globally as their share in the
reduction of healthcare costs grows [5]. Being convenient,
low-cost, and easy-access, MWBDs support a transition from
traditional reactive medicine to the proactive, personalized
precision healthcare model [6], [7]. There has been a raise
in interactive communication between patients and healthcare
providers with the help of remote monitoring devices, includ-
ing MWBDs, especially after the global crisis of the public
health system caused by the COVID-19 pandemic [8], [9]. This
trend is expected to create even more demand for MWBDs
among patients and healthcare providers [10], [11].
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Fig. 1: A typical biomedical system. Adapted from [20].

While novel designs are regularly presented, more applica-
tions and use scenarios are envisioned for MWBDs. Therefore,
they are still considered emerging devices. MWBDs may be
divided into four main categories: (1) injectables, injected
underneath the human tissue; (2) implantables, implanted into
the human body during a surgery; (3) ingestibles, ingested by
the patient in the form of a regular pill; and (4) wearables,
worn on the human body.

MWBDs are capable of collecting and transmitting sensi-
tive, private information, like bio-electrical activity [12], [13]
and vital signs [14], [15], and affecting the human body
through stimulation [16], [17] and drug delivery [18], [19].
Therefore, while being convenient, they produce privacy and
security risks for their users [20]–[23]. Traditionally, designers
and manufacturers of MWBDs tend to prioritize functionality
and user experience over security [21]–[23]. As a result,
protection mechanisms are missing at the architectural level for
most of MWBDs [13]–[19]. Multiple attacks for the misuse
of sensitive medical information and the malfunctioning of
MWBDs may be implemented, for example, forging, alter-
nating, or replaying previously captured messages, depleting
the battery, or unauthorized reprogramming [24]. Professionals
are now tasked with defeating well-funded attacks that, in
some cases, can cause immediate physical harm for the user.
For instance, the first security issues with pacemakers were
identified over a decade ago [25]. Nevertheless, additional
hacks on pacemaker devices were announced as of 2018 [26]–
[28], indicating that the problem is far from being resolved.
Another example is the malicious use of an insulin pump that
could cause hypoglycemia for its user [22]. Attackers may
also be attracted by the assets belonging to other primary
stakeholders of MWBDs, as described in Table I.

To formulate security objectives efficiently, it is necessary
to have a perspective on the whole system. A typical next-
generation biomedical system, outlined in Fig. 1, consists of
an MWBD wirelessly connected to an external controller. An
MWBD usually has limited functionality: (1) it may serve as
a controllable actuator, capable of processing a small set of
external instructions from the controller; or (2) it can operate
as a smart sensor, which transmits the collected medical data
to the controller. The controller typically acts as a gateway
and transfers the user health-related data to a cloud service
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TABLE I
Examples of Potential Risks for Stakeholders of MWBDs

Stakeholder Potential Risk

User

(1) The corruption of medical data may lead
to wrong diagnoses, and therefore wrong
therapies. (2) Privacy leakage may result in
stolen identities and electronic fraud. (3) De-
nial of service (DoS) may harm the patient
or even cause their death.

Manufacturer

(1) The leakage of intellectual property (IP)
may be used by competitors to increase their
market share. (2) The leakage of IP may also
lead to an increase in the number of coun-
terfeits and attacks. (3) If an attack harms
the patient, it may damage the manufacturer’s
reputation. (4) Additionally, lawsuits may be
filed against the manufacturer.

Hospital

If hospitals deal with corrupted MWBDs or
counterfeits, they could (1) lose their profes-
sional reputation and trust, (2) be involved in
lawsuits, or (3) lose their accreditation.

for post-processing. The data processed in the cloud is then
sent to a dashboard for the authorized users [20]. The current
biomedical systems implement protection mechanisms mainly
beginning from the gateway [29]. The lack of security in the
MWBD puts the whole system in danger. Therefore, security
should be built into MWBDs to protect their users [30].

The MWBDs in the scope of this work typically have
at least one network interface (wireless telemetry) and at
least one transducer (sensor or actuator). These capabilities
allow categorizing MWBDs as the Internet of Things (IoT)
devices [7]. The National Institute of Standards and Technol-
ogy (NIST) maintains a cybersecurity program dedicated to
IoT [31], reflecting the high demand for security for these
devices. Some NIST standards applicable to MWBDs include
NISTIR8200 [7], NISTIR8228 [32], NISTIR8259 [4], and
NISTIR8259A [33]. The developers of MWBDs should also
be aware of the drafts from NIST [34]–[37], which will
eventually be turned into standards.

A. Motivation

While the manufacturers and designers of MWBDs may
often not have direct experience with cybersecurity-related
technologies [36], implementing these mechanisms is of high
importance and must be systematic. Accordingly, a standard-
ized approach to profile potential attackers and to catalog
potential threats is needed for the diverse architectures of
emerging MWBDs, as the US Food and Drug Administration
(FDA) announced recently [38]. The process of understanding,
documenting, and evaluating system vulnerabilities, followed
by addressing the protective measures, is known as threat
modeling [39]. Threat modeling can play a critical role in ad-
dressing the weaknesses of a system against specific adversary
scenarios, especially when conducted in the early stages of the
device lifecycle [40]. This work proposes a methodology for
modeling and semi-quantitatively assessing potential threats
for the next-generation MWBDs.

B. Contributions

The contributions of this work are summarized as follows:

1) We proposed a novel qualitative-quantitative threat mod-
eling and risk assessment methodology designed specifi-
cally for next-generation MWBDs. The proposed frame-
work analyzes these devices at the architectural level
and considers their constraints. We examined the recent
literature on IoT devices and available threat modeling
and risk assessment for MWBDs and did not find concrete
competitors.

2) We applied our risk assessment methodology to repre-
sentative case studies from each category of MWBDs
to illustrate how it can be adopted by a threat-modeling
team.

3) We performed an extensive literature review on threat
modeling procedures applicable to MWBDs. Further-
more, we summarized the relevant information to educate
and assist medical device designers in integrating threat
modeling into their design and manufacturing processes.

4) We discussed various security challenges for emerging
MWBDs to raise awareness about associated risks among
the key stakeholders and stimulate interest in proactive
risk mitigation.

C. Organization of the Paper

The remainder of this publication is organized as follows.
Section II provides the background on the security challenges
in MWBDs. Section III presents some general considerations
for the threat modeling process. In Section IV we review some
existing threat modeling frameworks. Section V describes the
proposed threat model for MWBDs. Section VI compares the
proposed model with some existing threat models. Section VII
presents an application of the proposed model to real case
studies of the four primary categories of MWBDs. Section VIII
discusses the results and makes suggestions for future work.
Section IX concludes the work.

II. SECURITY CHALLENGES FOR EMERGING MWBDS

This section discusses various security challenges for emerging
MWBDs. Some of these challenges have already been detected
and require immediate attention. Other challenges are only
anticipated in the future. However, both of these categories of
challenges illustrate the importance of security for MWBDs.

A. Limited Resources

Multiple designs of emerging MWBDs are known to have
reduced area, weight, power, storage, network interfaces, and
computing resources [30]. Therefore, they stand apart from
classical IT devices (for example, smartphones, servers, or
laptops), which have been used to define device cybersecurity
capabilities [4]. The limited resources available to MWBDs
constrain the range of security mechanisms applicable to these
devices. Such as, the limited area excludes the integration of
complex security units occupying a lot of silicone on the
chip. Constraints on power exclude complex cryptographic
computations and reduces the bandwidth and range of com-
munications. Memory and performance limitations prevent the
use of sophisticated cryptographic algorithms [24]. Therefore,
even though multiple modern cryptographic algorithms are

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on May 23,2022 at 02:12:35 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3144130, IEEE Internet of
Things Journal

3

reliable, the simplicity of MWBDs makes them unavailable for
these devices [4]. Correspondingly, lightweight cryptographic
algorithms, suitable for constrained environments, need to be
developed and standardized [24], [41], [42].

B. Multiple Attack Channels

There are two primary ways to access an MWBD. It may
be accessed physically or wirelessly. For these two types of
access, there are multiple underlying interfaces. MWBDs are
often equipped with diverse transducers (sensors and actua-
tors) and employ various wireless communication and power
delivery schemes. All these interfaces may be considered as
potential channels which can be used by an intruder to ma-
liciously interact with the device [43]. For a typical MWBD,
five such channels may be identified. Three input channels
include the control channel, the sensing channel, and the power
delivering channel. Two output channels include the user data
transferring channel and the actuating channel. Apart from the
attacks on these five external interfaces, additional internal
attacks include the ones on the memory and on the digital
hardware. An attacker model covering mentioned channels was
presented in [44].

C. Patient’s Safety

Given the limited resources and multiple attack channels,
MWBDs should employ protective schemes that would not
endanger a patient’s life in an emergency [24]. Therefore,
while these devices require server-side authentication to ensure
that commands are authorized, critical care services must be
able to access the device even when the normal authentication
method is unavailable. Hence, including the patient in authen-
tication schemes, such as that proposed in [45], is potentially
dangerous. Also, a direct disregarding of authentication and
authorization in an emergency might introduce many potential
threats. Because of that, authentication in medical devices
remains an open problem [24].

In general, for MWBDs, security and privacy requirements
of a device should not affect its safety, reliability, and re-
silience [32]. Traditional IT security prioritizes confidentiality,
integrity, and availability. The ability of MWBDs to interact
with the physical world through sensors and actuators requires
addressing threats to patients and their environments. Depend-
ing on the functionality of a particular biomedical device
and its vital necessity for the patient, availability or integrity
may be the highest priority, followed by privacy and finally
confidentiality [7].

D. Distributed Supply Chain

The manufacturing of MWBDs relies on a complex and
distributed supply chain. This chain includes multiple entities,
distribution channels, technologies, and different laws and
practices. This multifariousness affects the design, fabrication,
distribution, deployment, usage, and maintenance of MWBDs.
Therefore, whether intentionally or unintentionally, the final
users of MWBDs are at risk of supply chain attacks. Sup-
ply chain risks for MWBDs may include the insertion of
malicious logic blocks, the use of unauthorized components
and counterfeits, tampering, poor manufacturing and design

practices, etc [46]. Component suppliers often have poor cyber
hygiene, and these vulnerabilities are more of an issue than
the ingenuity of the attackers [47].

E. Lack of Incentives

There is a lack of incentives to build security and privacy into
IoT devices. Cybersecurity has been often an afterthought to
getting to market, with price and features prioritized. There
is also a general lack of consumer education, leading to a
lack of demand for better cybersecurity and privacy. There
are guidelines available to help manufacturers mitigate risks,
but a lack of incentives to adhere to them [47], [48].

F. Oncoming Challenges

IT innovation is outpacing the development of supporting
standards. With the changing threat environment, the cyber-
security needs of the future should be considered [7]. One
such challenge for cryptography as a whole is that if large-
scale quantum computers are ever built, many current public-
key cryptosystems will be broken [46]. That would com-
promise the information security of digital communication.
Therefore, NIST initiated a process of post-quantum cryptog-
raphy standardization, including quantum-resistant lightweight
algorithms for resource-restricted devices [49], [50].

The list of challenges for MWBDs is not limited by the
preceding examples. Any influx of new technologies will intro-
duce new security challenges [51], and new countermeasures
should be proposed accordingly. Security requires resources
and places demands on the device (e.g., exceeding a tight
power budget, increasing time delays, or causing extra memory
usage, etc.) [24]. Considering all the limitations, it might
be adequate to talk about the compromises between security
and other parameters, when these biomedical devices contain,
at least, some basic protective mechanisms against the most
possible attacks. Lightweight security does not mean weak
security. However, the lightweight security properties may be
different from those desired for general use: it may be less
robust, less misuse resistant, and have fewer features [52].

However, if developers follow well-articulated and transpar-
ent principles and practices, adding secure mechanisms into
devices is repeatable [53]. Therefore, developers should have
a guidance of the threat modeling process, allowing them to
estimate and mitigate threats in the early stages of the device
lifecycle. In the following section, general considerations on
the threat modeling process will be provided.

III. THREAT MODELING METHODOLOGY

Considering the potential effects of cyberattacks against the
emerging MWBDs, it is necessary to plan for these intrusions
and to take steps to prevent them [54]. Therefore, a high-
level method aimed to reveal, document, and address the
security flaws of a system is demanded for these devices. This
method is called threat modeling. Threat modeling uses special
security terms, the main of which are assets, vulnerabilities,
threats, attacks, risk, and risk assessment. Interconnection of
these terms is shown in Fig. 2.
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Fig. 2: Interconnection of terms in threat modeling and risk assessment.
Adapted from [55].

An asset is any item of value present in the system that must
be kept secure and that an adversary aims to steal, modify, or
disrupt [39], [44]. A vulnerability is a weakness in a system
caused by a bad design or implementation. A threat is a
circumstance or an event with the potential to have a malicious
effect on assets, individuals, or organizations [56]. An attack
is a malicious activity that attempts to threaten an asset by
exploiting a vulnerability [40]. Risk is a measure of the extent
to which an entity is threatened by a potential circumstance or
an event, and typically is a function of (1) the adverse impacts
that would arise if the circumstance or event occurs; and (2) the
likelihood of occurrence [56]. Risk assessment is the process
of identifying, estimating, and prioritizing risks to assets,
individuals, or organizations [56]. In particular, qualitative-
quantitative risk assessment is a set of methods, principles, or
rules for assessing risk based on the use of qualitative terms
and assigning them numerical ratings [56].

1. Assemble the threat-
modeling team

2. Identify assumptions
and constraints

3. Enumerate
protected assets

4. Define attackers

5. Reveal threats

6. Manage risks

2a. Analyze the
operational environment

2b. Define security
domains and boundaries

2c. Define use scenarios

6a. Assess risks

6b. Respond to risks

6c. Monitor risks

Fig. 3: Six primary steps of the threat modeling process. Adapted from [39],
[40], [56].

Threat modeling is a multistage iterative process that pro-
vides insights on the assets that adversaries may be attracted by
and detects the most probable attack vectors [40], [57], [58].
The ultimate goal of threat modeling is to reduce the overall

threat risk to an acceptable level. During threat modeling,
all its steps should be collected and organized into a threat-
model document [39], [58], [59]. This document should be
kept current, reflecting new threats and mitigations as they
originate [39]. Threat modeling should be included in the
overall development-and-documentation lifecycle [58]. Setting
it apart from the overall design lifecycle may decrease the
number of developers recognizing its importance [39].

The following subsections provide a high-level description
of the primary phases of the threat modeling process, shown
in Fig. 3. Activities highlighted for each phase build on the
outcomes of prior activities. The steps provided for each phase
are meant as a starting point and do not entirely define each
activity.

A. Assemble the Threat-Modeling Team

A team that will perform threat modeling should be assembled
first. A threat modeling team should consist of at least one
member from each engineering group (hardware, wireless link,
software, and others) to guarantee a complete understanding
of underlying technologies [40].

B. Identify Assumptions and Constraints

The next step in the process is to identify security assumptions
and constraints under which the threat modeling is performed.
It allows capturing the information at an appropriate level of
abstraction. These assumptions must be verified later [39].
This step includes three substeps:

1) Analyze the Operational Environment: the team captures
the information about the infrastructure and describes the
environment in which risk-based decisions are made. It helps
to understand how different objects and elements in the system
(an MWBD, a controller, a user, medical personnel, and other
participants) interact with each other.

2) Define Security Domains and Boundaries: in this step,
the primary logical components (for example, the analog front-
end, the power management module, the data link, etc.) in the
system are identified. Each logical component may be com-
posed of several physical components and have different entry
points and threats [39], [43]. Later, these logical components
may be decomposed or merged to achieve a manageable level
of granularity. For example, it may be appropriate to talk about
the analog front-end of a device as a whole, or it may be
essential to analyze the individual functional blocks that form
this front-end.

No components are completely trusted, but rather various
trust levels may be assigned to them (for example, high and
low trusted components). After the high and low trusted logical
components in the system are identified, the boundaries and
interfaces between them should be determined [40]. After as-
sumptions about the trust boundaries are made, threat analysis
is usually performed for the data crossing these boundaries.
The analysis must consider the direction of the data moving
between trusted and untrusted components.

3) Define Use Scenarios: security measures are
application-dependent [60]. For each system component,
use scenarios provide a high-level description of how it
will be implemented, deployed, and used. In order to better
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understand the system behavior, it may also be useful to list
”anti-scenarios”, which are the settings or the usage scenarios
that are known to be vulnerable or restricted [39], [60].

C. Enumerate Protected Assets

At this stage, assets that will be protected should be identified
and listed for the investigated design. Assets may be tangible
(such as user’s personal information, therapies, or encryption
keys) and intangible (for example, data consistency, data
secrecy, data integrity, or data availability) [61]. The list of
protected assets is later used in the risk analysis. This list for
a particular design must be made considering the perspective
of different stakeholders [44].

D. Define Attackers

Understanding the attacker type is important to understand the
resources and capabilities that they have at their disposal [61].
While real attackers rarely fit into one category, at a high level,
they can be classified based on: (1) their position relative to
the system (external or internal adversaries), (2) their ability
to intervene into the system (passive or active adversaries),
(3) their number (a single entity or a coordinated group), and
(4) the level of their expertise and equipment (sophisticated or
unsophisticated) [24], [60], [62].

An external intruder is an outside entity that is not a part of
the system and does not have an authorized access [60]. An
internal intruder may be: (a) a malicious user who performs
attacks to learn the secrets of the manufacturer or to get access
to restricted functionality, and (b) a malicious manufacturer
who has the ability to exploit the technology to collect
information about the user or other devices [60]. A passive
eavesdropper is capable only to listen to the communication
channel and to get access to the exchanged messages. These
attackers are able to compromise the patient’s privacy. They
can determine if a person has a biomedical device; discover
the type of device, its model, and serial number; capture the
information about the patient, such as the identifier (ID) of
their health records, name, age, diagnosis, therapy, and so
forth [24]. An active adversary is not only capable to listen to
the channel, but also to send or replay commands to the device
and to modify or block messages. The motivation for the active
attacks may be, for example, to cause malfunctioning or DoS
to the device [24].

E. Reveal Threats

In the next step, threats will be revealed using systematic
analysis. For example, threats can be identified by defining
participants (like the user, the attacker, etc.), their actions, and
the consequences of those actions [39]. The objective is to
enumerate the ways by which an attacker can compromise the
system [40].

Threat modeling appears to be more productive when people
have an understanding of how to attack systems [40]. For
example, a kill-chain model [63] studies intrusions from
the adversaries’ perspectives by incorporating the analysis
of adversaries, their capabilities, objectives, attitudes, and
limitations. In a kill-chain model, intrusions are described not
as singular events but as phased progressions. This model

illustrates that, in fact, the adversary must successfully move
through each stage of the chain to achieve the desired goal.
Therefore, just one mitigation breaks the chain and stops the
adversary [63].

F. Manage Risks

Once the risks for a system have been defined, the risk
management process should include three steps:

1) Assess Risks: risk assessment is a crucial part of ef-
fective risk management. It is used to identify, estimate, and
prioritize risks. The purpose of risk assessment is to inform
decision-makers and to plan for risk responses. The result of
risk assessment is a ranked list of threats that reflects the
impact of attacks and the likelihood that harm will occur [56].

Risk and its contributing factors can be assessed in a
variety of ways, including quantitatively, qualitatively, or semi-
quantitatively [56]. While both quantitative and qualitative
assessments have their limitations, the semi-quantitative as-
sessment provides the benefits of both these approaches.
This method typically employs bins, scales, or representative
numbers. Bins or scales translate easily into qualitative terms
and also allow relative comparisons between values. The
role of expert judgment in assigning values is more evident
than in a purely quantitative approach. Also, when scales or
sets of bins provide enough granularity, relative prioritization
among results is better supported than in a purely qualitative
approach [56].

2) Respond to Risks: in this step, the corresponding tech-
niques and technologies should be chosen to respond to the
discovered threats. Depending on the threat model, customers,
and expected use cases, various countermeasures may be
proposed [33], [64]. As a starting point for MWBDs, the
model for the lightweight implementation of data security
may be applied [44]. While providing a guideline on how to
start protecting MWBDs, this model primarily focuses on data
security. Therefore, other interfaces (sensing channel, power
delivery channel, and actuating channel) require a separate
analysis of available protective mechanisms. In general, engi-
neers should weigh the value of each security countermeasure
for MWBDs to reach a trade-off between safety, reliability,
resilience, security, and privacy risks.

3) Monitor Risks: risk assessment is not simply a one-time
activity that provides permanent and definitive information for
decision-makers. Monitoring risk factors (threats, vulnerabili-
ties, capabilities and intent of adversaries, etc.) over time can
provide critical information on changing conditions that could
potentially affect the security of systems. Information derived
from the ongoing risk monitoring can be used to refresh risk
assessments [56].

In the next section, we will review and discuss some existing
threat modeling frameworks.

IV. EXISTING THREAT MODELING FRAMEWORKS

Multiple threat modeling frameworks have been developed in
IT. Twelve of them, including STRIDE, PASTA, LINDDUN,
CVSS, Attack Trees, Persona non Grata (PnG), Security Cards,
Hybrid Threat Modeling Method (hTMM), Quantitative Threat
Modeling Method (QTMM), Trike, VAST, and OCTAVE, were
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summarized in [65]. Four more threat modeling frameworks
(Attack Graph, Privilege Graph, Probabilistic Logic Modeling
(PLM), and Insecurity Flow) have been reviewed in [43].
While all of these frameworks are most useful in their ap-
plication areas, they have mainly been developed for pure
software systems and networking systems. However, emerging
MWBDs are predominantly hardware systems, which differ
from classical IT devices [4], and these existing threat mod-
eling techniques may be less efficient for them. Di et al. [43]
also proposed a hardware threat modeling methodology. How-
ever, this work was preliminary, did not include any detailed
threats/attack severity analysis mechanism, and did not involve
any real-life assessment. ISO/IEC 15408 ”Evaluation Criteria
for IT Security” [66] defines the general methodology for
threat modeling and a quantitative attack potential calculation,
but it is a general framework that requires IT security ex-
pertise and an extended time to be applied to a product area.
Section VI of this work will also introduce more threat models
that are dedicated to the IoT devices, including the health IoT.

In the next section, a specific threat model for emerging
MWBDs will be introduced. According to the described threat
modeling methodology, assumptions about the operational
environment, security boundaries, and use scenarios will be
identified first. Then, suggestions about protected assets and
attackers will be provided. Finally, a risk assessment method-
ology will be proposed.

V. PROPOSED THREAT MODEL FOR MWBDS

Generic models, such as the one proposed in [44], may be
a good starting point for implementing security in MWBDs.
However, each particular device would require a separate
threat analysis. Security expertise is needed to develop a threat
model. Once the threat model is defined, the threat analysis
becomes an engineering task that can be performed by non-
experts in security [40].

We propose a domain-specific qualitative-quantitative threat
model that aims to help the designers and manufacturers
of MWBDs to identify threats and embed security in their
designs in the pre-market phase of the lifecycle of an MWBD.
Although some elements of the proposed threat modeling
process may or may not be applicable to a specific MWBD,
the overall process is valid for a wide range of devices.

A. Assumptions

1) Operational Environment: this model considers a single
victim using an MWBD in a public space, accessible to
multiple people, including but not limited to adversaries. Being
in a public space, attackers can neither have physical access
to the user (device) nor utilize large high-end equipment. For
each particular case study of MWBDs, additional assumptions
about its operational environment may be required.

2) Security Domains and Boundaries: in general, an
MWBD controls and monitors some physical process (a health
condition) in the human body. A set of sensors report the state
of this health condition to the processor. Based on the informa-
tion received from sensors, the processor defines the control
signals to actuators to maintain the desired state. The processor
often communicates with an external controller that monitors
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Fig. 4: General architecture of an MWBD. Attack points are shown in red.
Adapted from [48].

or configures the device. This communication is performed via
a wireless telemetry interface (data/control link). The power
is typically also delivered wirelessly, except in more complex
battery-powered wearables or implantables, like pacemakers.
The processor may store various sensitive data (end users’
private data, the chip ID, etc.) in the off-chip memory. This
general architecture, presented in Fig. 4, considers eleven
attack points, for which examples are provided in Table II.

TABLE II
Attack Points - Examples of Attacks

Attack point Attack example
1 Fault injection attack [67].

2, 4, 6, 8 Probing [68].
3 Hardware trojans [69].
5 Control spoofing [70].
7 Microprobing [71].
9 Shielding / cutting the antenna.
10 Denial of sleep [72]. Power Analysis [73].
11 Man-in-the-middle (MIM) [74].

This work focuses on non-invasive direct attacks because
the direct channels, missing security mechanisms, should
be protected in the first place. Among the eleven defined
attack points, direct interfaces include sensors (attack point
1), actuators (attack point 5), and telemetry (attack points 9,
10, and 11). For MWBDs, sensors and actuators are mainly
located on/in the body. Therefore, it is hard to access them
once they are deployed. Also, before deployment, there is
a rigorous calibration for MWBDs, which makes it harder
to deploy a tampered device. Therefore, for direct channels,
attacks against telemetry (wireless data and power transfer)
are prioritized in this work. Attack points 2 - 4 and 6 - 8 are
out of scope for this model. Securing the remaining elements
of the biomedical system (the physical process, the controller,
the cloud, and the dashboard) needs separate analysis and is
out of scope for this study.

To have a manageable level of complexity in the model,
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we consider that integrated circuits (ICs) are trustable after
fabrication and testing, which means that malicious logic
blocks are not inserted into the design and a chip manufacturer
is trustable. After deployment, the IC design is fixed, in
other words, there are no dynamic attacks on hardware. Semi-
invasive (chip imaging, laser probing, voltage contrast, photo-
emission, etc.) and invasive (reverse engineering, laser fault
injection, etc.) hardware attacks are out of scope for this work.

3) Use Scenarios: use scenarios are unique for each device,
and therefore cannot be generalized. Each specific MWBD
would require listing its use scenarios. To give the readers
a clearer picture through examples, Section VII of this work
provides case studies for injectables, implantables, ingestibles,
and wearables.

B. Protected Assets

Among various stakeholders of MWBDs, this model focuses
on the user. This perspective requires balancing safety, service
availability, resilience, and privacy. Safety protects from haz-
ards, risks, or injury caused by the operation of the device.
Service availability protects against denial of device service.
Resilience means security against most attacks and the ability
to return to a safe state in case of a successful attack. Privacy
means protecting the confidentiality and integrity of personally
identifiable information (PII). Privacy goals include: (1) de-
vice-existence privacy; (2) device-type privacy; (3) unique de-
vice ID privacy; (4) measurement and log privacy; (5) patient
privacy; and (6) patient location privacy [62]. Confidentiality
prevents the improper disclosure of information, and data
integrity prevents the improper modification of information.

Assets are unique for each MWBD. Therefore, each case
study of MWBDs would require specific analysis. After the
assets are listed, attacks for each of them should be defined.

C. Attackers

This model considers sophisticated attackers, who have the
intent and capabilities to attack the MWBD. The attacker
may be either an individual (outsider, insider, trusted insider,
or privileged insider) or an established group. The attacker
may be both passive and active. The adversary, however, does
not have physical access to the user of the MWBD, and as
such all attacks are remote. For this reason, attacks on the
physical process are not considered in the proposed model.
However, for the smartwatch-like wearables, the attacker may
manipulate the device for a limited period of time before
the user begins to use it, for example, if the device was
left unattended after deployment. Large high-end equipment
is excluded from consideration in this paper since an attacker
is not able to bring it to a public place.

D. Risk Assessment

The smartcard community introduced the guidance metrics to
calculate the total effort required by an attacker to perform a
successful attack. This guidance is described in the CCDB-
2009-03-001, Common Criteria ”Application of Attack Po-
tential to Smartcards” [75]. In the proposed model, based on
some recommendations from [75], six relevant characteristics
of threats are selected to assess risks for an MWBD (see
Table III):

1. Expertise of the attacker reflects the extent to which re-
lated knowledge is necessary for the adversary to perform
a successful attack.

2. Equipment required to carry out the attack describes the
tools that an adversary needs to use to carry out an attack.

3. Physical proximity to the attacked device shows how close
the adversary should be to the user of an MWBD to
mount a successful attack.

4. Device access time evaluates how long the attacker can
access the attacked device.

5. Device information evaluates the need for the particular
information assisting the attack, which cannot be substi-
tuted by a related combination of time and expertise [75].

6. Severity of the attack estimates the loss caused by its
occurrence. In this model, severity corresponds to the
physical harm for the user caused by a successful attack.

Further, the scoring system and the technique that is used to
represent the final results of risk assessment will be described.

1) Scoring System: For each characteristic C1 −C6 in Ta-
ble III, a three-tiered qualitative-quantitative scale is assigned.
While this scale may provide limited granularity, it makes the
first iteration of the proposed model less complex and easier
to apply. Additional tiers may be added when required.

Characteristics C1 − C5 in Table III define the probability
of an attack. The quantitative values for these categories are
assigned in the reverse order: the fewer efforts are needed
to perform an attack, the higher its likelihood, and therefore
the higher the corresponding score. The total probability P of
an attack equals to the sum of the values for C1 − C5. The
impact of an attack I equals the value of the characteristic C6

in Table III, for which the highest score corresponds to the
highest severity. In the current scoring system, we differ three
levels of severity. Attacks with low severity have a limited
adverse effect on the user. Attacks with moderate severity
temporarily impact the health of the user. Attacks with high
severity lead to constant damage or a loss of human life. Since
the impact reflects the effect on the patient’s health condition,
adding more levels to the impact would require an expertise of
physicians who could define a finer border between different
levels of severity.

To illustrate how these characteristics can be applied and
scored, a case study of concrete MWBDs will be presented
in Section VII. Since this scoring system is done by human
judgement, the values do not have a formal basis. However,
the relative values of the selected characteristics appear to
be correct, based on the further provided analysis of case
studies and the performed literature review. Our scoring sys-
tem makes threat analysis systematic since it quantifies the
relevant characteristics of threats. Therefore, it allows relative
comparison between values and supports prioritization among
results. It was noted by the authors that the proposed risk
assessment method, which establishes a global conclusion by
analyzing contributing individual factors, is similar to what has
been adopted in other domains that face complex evaluation
and decision making. A known example is the Building
Security in Maturity Model (BSIMM) method [76], which is
used by software developers to measure the quality of the
internal development process towards creating secure software.
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TABLE III
Risk Assessment - Characteristics and Scales

Characteristic QLV QNV Description

Expert 1
The attacker has broad expertise in cybersecurity, familiar with the target device at the developer level, and
experienced with / equipped by sophisticated tools, for which the expertise in using is difficult to obtain.

Proficient 2
The attacker is familiar with security behavior, classical attacks [75], and related disciplines (electrical
engineering, software development, etc.).

C1: Expertise
of the attacker

Layman 3 The attacker has no particular expertise.
Custom 1 The attacker can use bespoke equipment.

Specialized 2
The attacker can use expensive commercially available equipment, for which sales are controlled by
manufacturers. The expertise in using the equipment is difficult to obtain, for example, the type of expensive
equipment which universities have in their possession [75].

C2: Equipment
required to carry
out the attack

Standard 3
The attacker can use only mass-market commercially available equipment, for example, smartphones or laptops.
The expertise in using the equipment may be acquired from publicly available resources.

Nearby 1
The attacker is in the vicinity (the same room) of the victim and is immediately visible. No physical obstacles,
like walls and doors, exist between the attacker and the victim (device).

Moderate 2
The attacker is in the same space with the victim, there are no physical obstacles between the attacker and the
victim, but the distance between the attacker and the victim does not allow the victim to see the attacker.

C3: Physical
proximity to
the attacked
device

Remote 3 The attacker is capable to mount an attack while in a different location than the victim.
Long 1 The attacker is able to access the device continuously.
Moderate 2 The attacker is able to access the device multiple times.

C4: Device
access time

Short 3 The attacker is able to access the device once in real time.
Critical 1 Low-level information about hardware design or source code is available for the attacker [75].

Restricted 2
Proprietary confidential developer’s information, such as specifications or guidances, is available
for the attacker [75].

Pr
ob

ab
ili

ty

C5: Device
information

Public 3 Public domain information is available for the attacker.

Low 1
Attacks have a limited adverse effect on the user (pose surmountable problems for the victim). For example,
under certain context, loss of personal information does not prevent the MWBD from its correct functioning.

Moderate 2
Attacks have a moderate adverse effect on the user. For example, alternating the sensor data may cause
wrong commands to actuators, directly impacting the health of the victim, but the malicious effect is temporary.Im

pa
ct C6: Severity

of the attack

High 3
Attacks have a severe or catastrophic adverse effect on the user. In some circumstances, DoS attacks
may lead to an irreparable harm, such as stroke, or even a loss of human life.

Note: QLV and QNV stand for a qualitative value and a quantitative value accordingly.

The BSIMM uses a ranking mechanism that combines many
different factors - similar to the one proposed in this work - to
measure the overall quality of secure software development.
The BSIMM is an industry standard that has been adopted by
multiple companies in several different sectors.

2) Representation of Final Results: After potential threats
are identified, and their principal characteristics are captured,
the total risk R for each of them may be defined based on
their impact I and probability P . In risk management, the
risk matrix approach is a typical qualitative-quantitative tool
to evaluate various risks. Even though it is not mathematically
rigorous, its visibility and ease of application make it well-
received in various industries [77].

TABLE IV
Risk matrix

Impact (I)Probability (P)
Low (1) Moderate (2) High (3)

Low (5-7) Very Low Moderate High
Moderate (8-12) Low Moderate High

High (13-15) Moderate High Very High

For this model, the risk matrix shown in Table IV is used
to assess risks, where different colors code different levels of
risk. Since our model focuses on users, prioritizing their safety,
between the total probability of an attack and its impact, the
impact is more important as it corresponds to the physical
harm for the user caused by a successful attack. After the
risk assessment is completed for each threat and the data are
filled in the risk matrix, the results appear sorted according to
their risk levels. While these results suggest which threats are

perilous and require more attention, designers should decide
which threat to address first, based on their abilities and
specific requirements for the design.

VI. COMPARISON OF THREAT MODEL FEATURES

This section presents a comparison between the proposed
threat model and four existing models [57], [60], [78], [79].
Out of four of these models, two models are dedicated to
the general IoT devices [60], [78]. The other two models are
designed for the health IoT devices [57], [79]. We will first
discuss how these models perform risk assessment and if they
may be efficiently applied to MWBDs. Then, we will present
the results of comparison between our proposed model and
these models in Table V.

The model proposed by Atamli et al. [60], while empha-
sizing the importance of careful consideration of the impact
and likelihood of potential hazards, does not provide a scoring
system to assess them. Aydos et al.’s model [78] evaluates the
impacts of possible threats on IoT platforms and their likeli-
hoods using a three-level system. This model is qualitative and
does not provide any numerical levels for their nonnumerical
categories. Therefore, using these models, different experts
could produce significantly different assessment results relying
on their individual experiences [56].

Cagnazzo et al.’s model [57] uses the STRIDE model and
the DREAD model to classify and evaluate threats. Both
STRIDE and DREAD are described in [40]. The STRIDE
model appears to be one of the most known models [65] to
help people remember the types of threats to which system
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TABLE V
Comparison of Threat Models

Features
Models This

work
[60]

2014
[78]

2019
[57]

2018
[79]

2020
MWBD-specific 3 7 7 3 3

Applicable to various types of MWBDs 3 7 7 3 7

Qualitative-quantitative 3 7 7 3 3

Visualizes results using risk matrices 3 7 3 7 3

Considers a device deployed in a public space 3 7 7 7 3

Prioritizes the patient 3 7 7 7 7

Prioritizes attacks against the wireless link 3 7 7 7 3

Classifies threats according to IoT layers 7 7 3 7 7

Evaluates the expertise of the attacker 3 7 7 3 7

Evaluates the equipment of the attacker 3 7 7 7 3

Evaluates the proximity to the device 3 7 7 7 7

Evaluates the device access time 3 7 7 7 3

Evaluates the need for the device information 3 7 7 7 7

Evaluates the impact of an attack 3 3 3 3 3

Evaluates the overall likelihood of an attack 3 3 3 3 3

Analyzes risks for other system elements (Fig. 1) 7 3 3 7 3

Applied to real devices (case studies) 3 7 7 7 7

Proposes possible risk mitigation strategies 7 3 7 3 3

3: the model supports that feature; 7: the model does not support that feature.

components might be exposed. STRIDE is an abbreviation
for spoofing, tampering, repudiation, information disclosure,
denial of service, and elevation of privilege [40]. In [57],
Cagnazzo et al. use STRIDE to analyze the security and
privacy of data flows across networks. STRIDE was developed
for software systems whereas MWBDs are predominantly
hardware systems. Therefore, the application of STRIDE to
MWBDs to analyze threats at the device level seems less
effective. DREAD is an acronym for damage potential, re-
producibility, exploitability, affected users, and discoverability.
DREAD was initially designed to rank errors, flaws, or faults
in software [40]. Since MWBDs are predominantly hardware
systems, DREAD is not entirely suitable for them. For exam-
ple, in the case of MWBDs, there is only one user and, as
such, the criteria of the affected users would not contribute to
the final decision. The category of discoverability also does
not seem to be informative as it is difficult to estimate and is
usually set equal to the maximum possible value [40].

Ngamboé et al.’s model [79] carries out risk assessment
according to the ISO/IEC 27005 [80] standard and the
NIST SP 800-30 guide [56]. This work focuses solely on
cardiac implantable electronic devices. The authors proposed
to extend their study to other implantables. However, other
categories of MWBDs, such as ingestibles, injectables, and
wearables, are missing in their research.

As presented in Table V, the model proposed in this
manuscript appears to be efficient for MWBDs when compared
to [57], [60], [78], [79], and therefore would eventually
provide better security for these devices. As it can also be
observed in Table V, our model is applicable to a wide range
of MWBDs and provides a qualitative-quantitative scoring
system for risk assessment. This system makes the role of
expert judgement in assigning values more evident and also
allows better prioritizing results than in purely quantitative
approach [56].

We also examined the recent literature in IEEE IoT Journal
and did not find concrete competitors for our threat modeling
and risk assessment methodology. For example, in the specific
area of medical devices, Masud et al. [81] introduced a
lightweight security protocol to provide mutual authentication
and secret key establishment between a physician and a sensor
node. Wu et al. [82] surveyed access control schemes to
prevent unauthorized access to implantable medical devices.
Rahman et al. [83] examined nine COVID-19 diagnostic
methods, involving medical IoT devices and relying on deep
learning, with adversarial examples. Gatouillat et al. [84]
reviewed recent contributions, dealing with robustness, secu-
rity, reliability, verification, and validation for cyber-physical
systems in medicine. Sun et al. [85] proposed a mutual
authentication scheme for the device-to-server communication
in the Internet of Medical Things. None of these authors
propose threat modeling and risk assessment for miniaturized
wireless medical devices, which is a specific novelty claim in
our work.

In the next section, we will apply the proposed model
to representative injectables, ingestibles, implantables, and
wearables. Our goal is to cover enough information to illustrate
how the proposed model can be applied, but also to keep
it less complex, so that non-experts in security could add
threat modeling in their design and manufacturing processes.
Moreover, the proposed model is intended to be used in
the pre-market phase of the lifecycle of an MWBD. While
applying our model to already existing devices appears to be
beneficial, the case studies are used only to illustrate the threat
modeling process.

VII. CASE STUDIES FOR EMERGING MWBDS

This chapter aims to provide meaningful examples of MWBDs
(see Table VI) and their associated threats (see Table VII),
which are disclosed and prioritized with the application of
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TABLE VI
Case Studies - Devices and Assets

Number Name Category Purpose Status Assets Ref.

D1 BioMote Injectable

A wireless sensor node for
continuous monitoring of the
blood alcohol content
(ethanol, background, and pH).

In-vitro
tests.

1. Backscattered user sensor data
(blood alcohol content).

[14]

D2
Wireless

Capsule Endoscope
Ingestible

A wireless spherical endoscopic
capsule for ColoRectal Cancer (CRC)
screening with a locomotion control.

In-vitro
tests.

1. User data (cancer information,
video frames).
2. Control signals from an external
device.

[86]

D3

Trimodal wireless
implantable

neural interface
System-on-Chip (SoC)

Implantable

A wireless trimodal neural interface
SoC, providing optical/electrical
stimulation capabilities and neural
recordings.

In-vivo
tests
in freely
behaving
animals.

1. Recording/stimulation
parameters (BLE and on-off-keying
(OOK) signals at 13.56 MHz).
2. Evoked neural activities
(OOK RF signals at 433 MHz).

[87]

D4

An integrated readout
circuit for a transcutaneous
oxygen sensing wearable

device

Wearable
A fluorescence-based readout
dedicated to sensing transcutaneous
oxygen diffusing through the skin.

Ex-vivo
tests.

1. User data (partial pressure
of transcutaneous O2).
2. Control signals from
an external controller.

[88]

TABLE VII
Case Studies - Threats

Probability Impact
Number Threat Threat violates Device

C1 C2 C3 C4 C5 Total C6

T1
The attacker uses a counterfeit wearable controller to power up the
device and to collect the sensitive private health data. As a result,
the confidentiality of the patient’s personal information is violated.

Confidentiality
Authenticity

D1 3 3 2 3 3
14

(High)
1

(Low)

T2

The attacker conducts a MIM attack using special equipment to tamper
with the data / control signals, producing a false report about the health
condition / a false command, causing a false treatment or therapy. This
may result in temporary or permanent health damage. Even if the device
does not have actuators, a physician working with the corrupted sensor
data can prescribe a wrong treatment or therapy.

Integrity
D1
D3

1 2 2 3 3
11

(Moderate)
3

(High)

T3

The attacker jams the wireless data link. Sensor data cannot be
collected accurately, and stimulation cannot be applied correctly.
This may result in permanent health damage due to the incorrect
or missing treatment.

Availability
D1
D3

1 2 3 2 3
11

(Moderate)
3

(High)

T4
The attacker uses a software-defined radio or an external hub to
collect the data about the evoked neural activities of the user. This
leads to a leak of the patient’s personal confidential information.

Confidentiality
Authenticity

D3 2 3 2 3 3
13

(High)
1

(Low)

T5
The attacker eavesdrops the data, using the standard Bluetooth
equipment. This leads to a leak of the patient’s confidential
information.

Confidentiality
Authenticity

D2
D4

2 2 2 3 3
12

(Moderate)
1

(Low)

T6
The attacker interferes with the communication channel and
substitutes the user data by some counterfeit data. This may result
in permanent health damage due to a wrong or missing therapy.

Authenticity
D2
D4

1 2 2 3 3
11

(Moderate)
3

(High)

T7

The attacker replays a command to decrease the illumination or
to switch the Bluetooth module off to decrease the amount of
information that can be extracted from video frames. This would
require to repeat the measurements with a different device.

Availability D2 2 2 2 3 3
12

(Moderate)
1

(Low)

D2
1

(low)
T8

The attacker sends a high-volume radio traffic to deplete the battery.
Even if the device supports authentication, the process of commands’
and data validation would consume extra power, which could lead
eventually to denial of service.

Availability
D4

2 2 2 3 3 12
(Moderate)

3
(High)

Note: for D2 and D4, T8 has different impacts. D2 is used for short-term monitoring of the digestive tract. Measurements are performed in a laboratory under the
supervision of a physician. In this case, the denial of service may be quickly resolved and the procedure may be repeated with another device. However, D4 can be used
outside the hospital. In the event of DoS, it may not be quickly replaced with another device. Therefore, the impact of T8 is higher for D4.

our proposed threat model. The values in Table VII were
assigned based on the scales presented in Table III and the
available information about selected example devices. For each
category of MWBDs, one representative device was selected.
At the time of writing this paper, most MWBDs were either in
the proof-of-concept stage or in the stage of pre-clinical trials
in freely-behaving animals. Nevertheless, since they have a
potential for large-scale manufacturing and are intended to be
ultimately used in humans, it is of interest to analyze threats

for them using the proposed threat model.

Since the primary purpose of this section is to illustrate
the application of the designed model, but not to perform
a comprehensive threat modeling for the selected devices,
it does not guarantee to include all potential threats for the
selected case studies. Another reason why a more in-depth
threat analysis has not been performed is that these devices are
not commercially available and widely accessible; moreover,
we have learned about them from the available academic
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publications, which we used as datasheets. The following
subsections will provide brief overviews of these case studies,
including information about their purposes, internal structure,
and operational environments. For each of them, risk assess-
ment results will be presented in the form of risk matrices.

A. Case study 1 - Injectable

Fig. 5: Device 1: block diagram. Adapted from [14].

BioMote [14], shown in Fig. 5 and further referred to as de-
vice 1 (D1), is a wireless sensor node intended for continuous
monitoring of the blood alcohol content. D1 is routinely used
outside of a clinical laboratory. D1 is subcutaneously injected
into the interstitial fluid and wirelessly paired with an external
wearable controller. The D1’s electrochemical sensor array
measures alcohol and pH. These measurements are unidirec-
tionally transmitted to the controller through backscatter using
a current-to-frequency converter. D1 is wirelessly powered by
the controller via an inductive link.

TABLE VIII
Risk matrix - Device 1

Impact (I)Probability (P)
Low Moderate High

Low – – –
Moderate – – T2, T3

High T1 – –

For D1, the risk matrix is presented in Table VIII. It shows
that T1 has a moderate risk while T2 and T3 have high risks.

B. Case study 2 - Ingestible

Illumination
Board

Imager
Board
Connector

Control &
Power Board

Telemetry
Board

Illumination
Boards

Camera
+ Optics

Internal MagnetFrame

RFID

Battery

Telemetry
Board

Control Board(a) (b)

Fig. 6: Device 2: (a) 3D design. (b) Block diagram. Adapted from [86].

A wireless capsule endoscope [86], shown in Fig. 6 and further
referred to as device 2 (D2), is intended for ColoRectal Cancer

(CRC) screening with locomotion control. The primary mod-
ules of D2 include an image sensor with optics, an illumination
board, a control unit, a telemetry board, an actuation system,
a localization unit, and a battery with a recharging circuit.
D2 is used in a clinical laboratory and swallowed by the
patient. The image sensor of D2 captures the condition of the
patient’s digestive tract. The collected images are streamed via
Bluetooth to the external controller.

TABLE IX
Risk matrix - Device 2

Impact (I)Probability (P)
Low Moderate High

Low – – –
Moderate T5, T7, T8 – T6

High – – –

For D2, the risk matrix is presented in Table IX. It demon-
strates that, among four detected threats, T6 has a high risk
and T5, T7, and T8 have low risks.

C. Case study 3 - Implantable

Fig. 7: Device 3: block diagram. Adapted from [87].

A trimodal wireless implantable neural interface system on
chip (SoC) [87], shown in Fig. 7 and further referred to as de-
vice 3 (D3), provides optical/electrical stimulation capabilities
and neural recordings. D3 consists of optical and electrical
stimulation blocks, an analog front-end, a data packetizer,
telemetry blocks, a timing control unit, and a power man-
agement module. D3 is used in a clinical laboratory. D3 is
implanted into the brain and wirelessly paired with a control
arena. The recording/stimulation parameters are sent to the
arena via Bluetooth Low Energy (BLE) from an external
terminal (computer). The arena relays the BLE parameters to
D3 by on-off-keying (OOK) of a 13.56 MHz power carrier
via inductive coils. D3 generates optical/electrical stimulation
pulses based on the received parameters. The evoked neural
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activities are sensed, processed, and transmitted by D3 to the
terminal by OOK at 433 MHz. The terminal receives the
data by a pair of software-defined radios (SDRs). D3 is not
currently used in humans but for scientific experiments in
freely behaving animals (rodents). However, it was selected as
a case study since its functionality is similar to that of commer-
cial products like [89]. In addition, the commercial products
themselves are proprietary, which makes them unavailable for
the analysis based on public data.

TABLE X
Risk matrix - Device 3

Impact (I)Probability (P)
Low Moderate High

Low – – –
Moderate – – T2, T3

High T4 – –

For D3, the risk matrix is presented in Table X. It shows
that T2 and T3 have high risks, whereas T4 has a moderate
risk.

D. Case study 4 - Wearable

Fig. 8: Device 4: block diagram of the readout IC. Adapted from [9].

An integrated readout circuit [88], shown in Fig. 8 and further
referred to as device 4 (D4), is used for non-invasive transcuta-
neous oxygen sensing, which correlates with the blood oxygen
level. D4 primary blocks include an analog front-end, a light-
emitting diode (LED) driver, and a power management block.
D4 is routinely used both in a home setting and in a clinical
environment. D4 is intended to be used with dry electrodes in
the form of a smart watch or a smart patch. D4 is projected
to be a battery-powered device transmitting the sensor data to
the external controller via BLE.

For D4, the risk matrix is presented in Table XI. It reveals
that T6 and T8 have high risks while T5 has a low risk.

TABLE XI
Risk matrix - Device 4

Impact (I)Probability (P)
Low Moderate High

Low – – –
Moderate T5 – T6, T8

High – – –

VIII. DISCUSSION AND FUTURE WORK

The use of the proposed model revealed and prioritized threats
for the case studies of injectables, ingestibles, implantables,
and wearables, showing that the model is applicable for a
wide range of devices. However, the proposed threat model
enables performing further validation, which would involve
additional case studies. This validation may be done by
investigating known vulnerabilities in devices and comparing
the results of the analysis with the outcome of other models. It
would also be of interest to include more commercial devices.
However, being proprietary and closed source, these devices
are challenging to be analyzed based on the public domain
information [62]. Based on the results of these additional in-
vestigations, it may become apparent if separate threat models
for each category of MWBDs may provide more information
for designers and manufacturers. In addition, as discussed in
Section V, more levels for selected characteristics of threats
would provide higher granularity and more comprehensive
threat analysis. Another suggestion for future work is to
design threat models focused on other primary stakeholders
of MWBDs, including manufacturers and hospitals.

IX. CONCLUSION

This work discussed the importance of security for the emerg-
ing miniaturized wireless biomedical devices. The combina-
tion of valuable assets belonging to different stakeholders
and multiple attack surfaces makes MWBDs a target for
cybercriminals. Since MWBDs pose significant risks for their
stakeholders, security should be embedded into MWBDs in a
structured and repeatable way during the pre-market phase.

The initial step in embedding security into a design is
to perform threat modeling. However, it has been shown
that MWBDs are distinct from conventional IT devices and
require a unique threat model. Therefore, first, this work
described the threat modeling process for MWBDs. Then, a
domain-specific qualitative-quantitative threat model, suitable
for a wide range of MWBDs, was proposed. ISO/IEC 15408
”Evaluation Criteria for IT Security” [66] defines the general
methodology for threat modeling and a quantitative attack
potential calculation, but it is a general framework that requires
IT security expertise and an extended time to be applied to a
product area.

The model suggested using six relevant characteristics
of attacks to assess their probability and impact. For each
characteristic, a three-tiered qualitative-quantitative scale was
assigned. This approach makes the role of expert judgement
in assigning values more evident than in purely quantitative
and purely qualitative models. The three-tiered scale makes
the first iteration of our model less complex, but still provides
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enough granularity and supports relative prioritization among
results. The rationale behind this decision was to motivate
more medical device creators, including those who do not
have adequete expertise in cyber security, to integrate threat
modeling into their designs. The total risk of an attack was
defined using the risk matrix approach. While this approach
is not mathematically rigorous, its intuitive graphic form, ease
of understanding, and ease of application make it common in
various industries [77].

To demonstrate utility of this model, we compared it to
some other existing models in Section VI and applied it to
representative case studies in Section VII. The primary intent
of case studies was to detect several threats to show how the
model may be adopted by a threat modeling team. The model
appeared to be easy to apply and sufficient to describe threats
for selected case studies. This paper also made suggestions for
future work.
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