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Abstract—Analyzing temporal event sequences play an im-
portant role in many application domains, such as workload
behavior analysis, hardware fault diagnosis, and natural disaster
resilience. As data volume keeps growing, real-world temporal
event sequences are often noisy, missing, and complex, thus
making it a daunting task to convey much of the information
from a comprehensive overview for analysts. This work proposes
a visual approach based on clustering and superimposing to
construct a high-level overview of sequential event data while
balancing the amount of information and its cardinality. We also
implement an interactive prototype, called TimeRadar, that allows
domain analysts to simultaneously analyze sequence clustering,
extract distribution patterns, drill multiple levels of detail to
accelerate the analysis. This work aims to provide an abstracted
view of temporal event sequences where significant events are
highlighted. The TimeRadar is demonstrated through case studies
with real-world temporal datasets of various sizes.

I. INTRODUCTION

A variety of visualization techniques and methods have
been proposed in the literature in response to the needs of
temporal event sequence analysis from the storytelling of
personal events [1], events flow [2], multiple sequences
view [3], comparing variants [4] to reducing volume and
variety of data [5], [6]. The data mining technique is also
adapted to facilitate sequential patterns from large and high
dimensional data [7], [8]. Although much effort has been
made to accelerate temporal event sequential data analysis,
the challenge to create a simple, intuitive, comprehensive
overviews and easy to interpret visual layout still remains.
For example, the Sankey diagram [2] was not able to handle
a large volume of noisy data with high dimensions due to
the vertical alignments and space. Sequential Pattern Mining
algorithms [7], [8] often provide excessive redundant patterns,
which in turn require analysts more time to find patterns of
interest. Patterns based on clustering techniques may produce
clusters that are difficult to convey information [9], [10]. In
this paper, we propose a visual approach based on two strate-
gies: clustering for grouping similar multivariate statuses into
major groups of interests using popular clustering methods,
such as k-means [11]. superimposing overlays multivariate
representations on top of the clustering bundles, which allow
users to explore high-dimensional data in a given period
and individual sequences. Our technique, called TimeRadar,
visually summarizes the original temporal event sequences

with clustering while recovering individual sequences from
the stacked radar chart. The challenge is to identify a set of
clusters for a meaningful visual summary without imposing
redundant patterns and inducing information loss. To tackle
this issue, we first define a small set of operating statuses
within the multivariate data and then represent them onto the
timeline where repeated statuses are compressed into a color-
coded horizontal line. To summarize, the main contributions
of this paper include:

e We propose a visual approach for representing large mul-
tivariate time series. Our approach consists of multivariate
clustering, visual abstracting, and superimposing high-
dimensional data points.

o We compare our TimeRadar visualization to another time-
line visualization technique that has been widely studied
and used for various applications. The comparisons are
made in both forms of qualitative and quantitative feed-
back from a user study on 30 participants.

o We provide the use cases on real-world datasets and user
feedback from experts and general users to assess the
usability and effectiveness of our TimeRadar approach.

The rest of the paper is organized as follows: Section ??

summarizes similar work. We present our system design
in Section II. A user study on TimeRadar is presented in
Section III by using the Technology Acceptance Model. We
conclude our paper with future work in Section V.

II. TimeRadar DESIGN

In this section, we present the motivation and design choices
for our proposed TimeRadar application that facilitates the
identification and exploration of temporal event patterns over
a given period of time. We first studied existing work to
collect high-level task requirements, as suggested by Plaisant
and Shneiderman [12]. Second, we gather requirements from
experts in a specific domain: High-performance computing
systems. This application domain requires constant monitoring
of a large number of computing nodes via various health
metrics, such as CPU temperatures, fan speeds, CPU usage,
and power consumption. At each time step, a computing node
is characterized by these nine dimensions; we call it the
operating status of a computing node. We summarized and
categorized high-level tasks into the four most common ones
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and centered our design around these tasks [13]. They are as
follows:

o T1: Provide an overview of temporal event sequence of a
large number of computing nodes in the data center [14].

o T2: Capture the major operating statuses and display
them in aggregated views which allow users to grasp their
meanings at a glance quickly.

o T3: Automatically characterize interesting events (e.g.,
identifying sudden change on the time series and de-
tecting multivariate outliers) and highlight them on the
timeline view.

o T4: Customize visual layouts (e.g., reordering events,
running jobs, and grouping computing nodes with similar
timelines) based on user’s preferences.

We design TimeRadar to support the above tasks while
following the general considerations of timeline visualiza-
tions [15]. Starting from the left of the high-level overview
(T1), users can identify unusual events which are signified
by the encoded color timeline and the superimposed radar
chart (T2). Status changes (from one radar group to another)
can be visually tracked along the timeline. Aggregated views
presented at the end of the timelines allow a user to summarize
a subset of events in a given time (T3). The radar charts
superimposed on top of the timelines enable analysts to
identify the behavior pattern of many profiles. Similar profiles
can be ranked, ordered vertically, and grouped to focus on the
entries with different temporal behaviors (T4).

A. The timeline view

The timeline window allows an analyst to have a holistic
overview of the evolution of multiple event sequences (Visu-
alization task T1). Each sequence of events is represented as a
horizontal line (from left to right) since tracing lines is easier
compared to tracing curves [16], especially when the number
of timelines increases.

TimeRadar superimposes color-coded glyphs onto the time-
line event (Visualization task T2) on the timeline to indicate
group changes [17] while unchanged statuses are represented
as straight lines. This allows users to focus on important events
and highlight the causal relationships (triggering similar group
changes) across various entries: A new job is allocated on
multiple machines, or a hurricane affects neighboring states.

B. The control panel

The control panel allows analysts to customize/adjust the
visual space. In particular, options in this panel include:

« Reorder the entries vertically by their groups (such as
computers allocated to the same jobs/users) and the
similarity of their timelines [18].

« Show/hide a group of entries. For example. Users may
want to remove the normal entries (with the metrics
within a usual range) or stable entries (never change their
status group) to focus on the unusual behaviors.

o Adjust the timeline scales or the number of radars ap-
pearing on the timeline by a given threshold.
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The radar settings: This panel allows users to customize
the order of dimensions which is considered to be significant
in perceiving the morphology of radar layouts [19]. Radar plots
are used for quickly discerning abnormal dimensions [20].

Clustering: We adapt the existing clustering algorithms,
such as k-means [21] to summarize the major operating
statuses (or clusters) of computing nodes. The parameters of
k-means are customizable via the control panel. The k-means
method requires an appropriate convergence criterion such as
no reassignment of patterns to new cluster centers or minimal
decrease in squared error [22]. We avoid the infinity loop
by inputting the maximum number of iterations to stop the
computation when no further improvements are made.

III. USECASES

This section demonstrates our proposed visualization tool
on the two datasets: the High-Performance Computing Center
dataset, US employment dataset, and Rest Useful Life dataset.

A. High Performing Computing Center data

The High-Performance Computing Center data includes 467
computing nodes with nine metrics: CPU1 vs. CPU2 Temper-
ature, Fan speeds, Memory usage, and Power consumption.

Figure 1 illustrates a use case where analysts can use
TimeRadar to capture dynamic behaviors of multiple events
(host) over time. Through the overview, the presence of many
vertically aligned radar charts (with clustering and ordering)
shows that there are abnormal activities around 3 am, 7 pm,
and 10 pm where the system changes from normal activity to
high memory usage. This information can be used for further
investigation, such as which job causes the issues and who
owns the corresponding jobs. Knowing this information in
advance can help the system administrator have better resource
allocations and management strategies.

B. US employment data

The US employment dataset is about the number of em-
ployees in 51 states and 15 industrial fields from February
2000 to May 2019. Original data come from the US Bureau
of Labor Statistics website [23]. Instead of the raw number of
employees, the net change has been using in the TimeRadar
visualization Figure 2. TimeRadar presents the events by the
density of the radar appear on the top chart. The first orange
markers in TimeRadar matched the Y2K crisis (2001) when
the dotcom bubble collapsed. The second markers correspond
with the Great Recession of 2007-2009 [24]. The final marker
shows that the COVID-19 has a significant impact on the
economy and the effect is even more than the Great Recession
(base on the size of the radar).

C. Rest Useful Life data

The Rest Useful Life data includes 100 simulated turbofan
engines with ten sensors and 200 timesteps. In particular, we
use the run-to-failure datasets of a turbofan engine simulation
model obtained from NASA’s Prognostics Center of Excel-
lence in 2008 [25]. In Figure 3 (a), data has been clustered into
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Fig. 2. The TimeRadar visualizations for US employment net rate: Orange
marker - US crisis in 2001 and Great Recession 2007-2009 and COVID-19.

seven groups. According to Figure 3 (b), the second cluster
(orange) and the third cluster (blue) is the common state of
the data. TimeRadar clearly shows that the three last groups
(in the red box) are the sign of RUL run out.
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Summary.

A usecase of TimeRadar on HPCC dataset: Red circles indicates enclose the time point when many instances change their status

IV. USER STUDY:

Our method to evaluate TimeRadar was conducted using
the controlled experiment where some factors are changed
at a time. Sixteen users were asked to answer readability
questions for both representations of the same dataset varying
in complexity (size and dimension). Time taken to answer each
question, error, and feedback were recorded for analysis.

2 Visualizations (TimeRadar, Bundling) x 3 Levels of size
x 3 Levels of timepoint x 2 Tasks = 36 questions in total.

A. Participants and Apparatus

Sixteen participants were recruited in this study, including
seven females and nine males, at the study site. Their educa-
tional backgrounds are ranged from undergraduate to Ph.D. (8
Ph.D. students, two undergraduates, and 6 Masters). As studied
by Camilla [26], when it comes the how many experimenters
to engage in the evaluation, the number of recommended
experts is five; we considered our recruited users were ex-
perts since all of them took the Human-Computer Interaction
classes. The study was conducted using a laptop (equipped
with a 15.4-inch screen of 1920 x 1080 in resolution).
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Fig. 3.

The TimeRadar visualizations for Rest Usefull Life: (a) Major radar represent cluster. (b) Histogram of instance value in each cluster, (¢) TimeRadar

of RUL data with RUL value decrease from left to right.

B. Visualizations and Datasets

For our dataset, we defined the level of difficulty by the
number of instances and the number of time points. As the
number of instances and time points increases, the difficulty
levels are linearly increased.

For each example, we generated two figures of TimeRadar

C. Tasks

In this study, we want to find out, which is a more efficient
way to capture the dynamics of a system via two tasks.

e T1: Find the most dynamic instance (the instance that
exhibits multiple statuses over time).

o T2: Find the most dynamic time point (the timestamps,
when many instances change their status).

vs. edge bundling. To ensure that our tasks were isomorphic

with both TimeRadar and Bundling, the same data was used
in both static figures. However, to avoid memorizing the result
from the previous question, we shuffled the set of questions.

D. Procedure

We performed the study with multiple participants at a
time. The study is about 20 minutes in total, with a set
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of 36 questions. We set up our own page on Github to
collect data. Responses from users were saved on the cloud
repository, which is Firebase from Google Service. JSON data
format from the repository was converted into Excel (.csv)
for analysis. Before the controlled experiment, all participants
were given a tutorial explaining TimeRadar and Bundling to
make sure that they understood the concepts of visual design,
how data was transformed to visual encoding, how color
was mapped. All participants were informed why the study
was conducted and what type of information was collected
before starting the survey. The tutorial was provided by means
of direct conversation with the conductor or watching the
introduction video created by the conductor. The video was
embedded directly at the beginning of the survey page. Next,
the participants used the provided computers that showed the
figure represented by either TimeRadar or Edge Bundling
method and answered question associated with it. When a user
started a new question, our survey page started recording time
spent on that question.

The order of tasks was dynamic - meaning that all questions
were randomized in order to avoid memorization. After com-
pleting 36 questions, users were asked to provide feedback on
each visualization design in terms of readability and mental
efforts. Level of education and gender were also collected for
categorization.

E. Hypotheses

Our study has the following Hypotheses:

o HI: Superimposing will outperform Bundling in com-
pletion time for discerning the dynamic tasks (T1, T2).
We also believe that Superimposing requires less time for
these types of tasks, as visually detecting the color-coded
radars is much easier and quicker than following/tracking
the curves.

o H2: Bundling will outperform Superimposing in accuracy
and completion time for overview tasks (T3). The group
sizes in the Bundling option are easier to discern as
groups are ordered vertically.

F. The results

We considered time and accuracy are both equally important
for the evaluation. Because when participants were given
enough time, the likelihood to get the correct answers was high
with enough mental effort. Since visualization helps people
carry tasks easier, time should be taken into account to mea-
sure this criterion. 2 Visualizations (TimeRadar, Bundling) x 3
Levels of size (10, 30, 50) x 3 Levels of timepoint (10, 30, 50)
x 2 Tasks (finding instance and finding timepoint). Repeated
Measures Analysis of Variance (RM-ANOVA) method was
used to analyze accuracy and completion time results. The
analysis is within-subject design.

G. Accuracy

On average, for all cases, 64% of the total answers from
both tasks were correctly answered. Users achieved an accu-
racy of 88.09% for identifying the dynamic instances using the
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superimposing technique. However, the performance is worst
for the same task using the bundling visualization technique
on the same data with an accuracy of 21.42%. For this task,
TimeRadar were 66.67% more accurate than the bundling
chart.

Regarding the overview task, the performance of using
the superimposing technique was decreased with an accuracy
of 79.52%, while the performance of using the Bundling
technique was increased significantly from 21.42% to 64.56%.
The accuracy difference between these two techniques was
14.96%.

H. Completion Time

On average, the task for finding dynamic instances using
superimposing took 15.03 seconds (SD =10.56) to complete,
and the task for finding dynamic instances using the bundling
method took 20.98 seconds (SD = 12.2). Overall, the dif-
ference between means of superimposing and bundling is
statistically significant, F(1, 126) = 28.68, p ; .0001. This
result supported our hypothesis (H1). In detailed, the study
found a difference between the level of size 10 and level of
time point 30 (F(1,13) = 9.52, p = 0.009), the level of size 30
and level of time point 50 (F(1,13) = 5.67, p = 0.03), and the
level of size 50 and level of time point 50 (F(1,13) = 5.68, p
= 0.033) with the significant level of 0.5.

Regarding the second task (the overview), there is no statis-
tically significant difference between using superimposing and
bundling techniques, F (1, 125) = 1.99 and p = 0.161 with a
significant level of 0.5. The average time taken on answering
questions associated with superimposing technique was 13.76
seconds, and for Bundling was 15.05 seconds. Unsurprisingly,
as the number of sizes and time points increased, it took more
time for users to answer. The distribution of time spent on tech
type of charts is depicted in Figure 4 where the red vertical
line represents the median.

Correct answers Time

12:3 15.1

—  TimeRadar
0 16 0 60

M
4 _ 3 211
E Bundling o + 16 o + 60
N |

11.2 13.7
o TimeRadar | o . + - 16 0 + 60
% 9.1 14.3
= .
= Bundling L — + - 16 0 + 60
A

Fig. 4. The contingency table that shows
correct answer of two visualization charts

the distribution of time spent and

L. User feedback

Users provided feedback based on their preferences after
completing all tasks. We collected all the comments and
summarized them for qualitative analysis. Overall, users prefer
to use TimeRadar to answer questions on the survey because
identifying shape is easier than use color, especially when the
radars were aligned horizontally and guided by a timeline.
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The bundling technique needs more mental effort to trace
the dynamic instance; this issue gets worst when multiple
instances overlapped when they changed their statuses. One
user reported that ‘I gave up when I tried to answer the
questions related to trace a dynamic instance using Bundling
visualization, for a small figure, I can look up each instance
one by one; however, when there are so many instances it
is impossible for me. I just picked a random answer, so I
chose the one that shows the change first’ or ‘I prefer the one
without the transitioning lines because you can count shapes
and it is much easier to see the changes.’, or "A time radar
chart is much easier to follow since it has less object and
intersection. A time bundling chart is really hard to read in
60 seconds to find the answer. This feedback was aligned
with the accuracy result of 21.42%. For an overview task,
participants still reported that superimposing visualization is
more favorable because ‘at least I can count the number of
glyphs vertically, for bundling there are so many crossings’,
the visual clutter makes them end up with ‘time radar, I made
a random guess on bundle chart. Only pick the first one from
the left that shows change’.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel technique for visualizing
temporal event sequences. Our proposed approach was based
on the clustering and superimposing techniques to construct
a high-level overview of sequential event data. TimeRadar
allows domain analysts to simultaneously capture sequence
clustering, extract useful distribution patterns, drill multiple
levels of detail to accelerate interactive data analysis. The
TimeRadar was demonstrated through case studies with real-
world temporal datasets. Our approach was evaluated by 30
participants to measure its efficiency and effectiveness. The
quantitative result showed that superimposing technique out-
performed the bundling technique in terms of completion time
and accuracy for the task of tracing dynamic instances. User
feedback indicated that superimposing was a better choice for
exploring interesting visual patterns. Although analysts can
apply TimeRadar on the variety of domains, it still has some
limitations: since users perceived the radar chart as an area,
change in one dimension will increase area, and 2) order
the bundling lines is challenging because of the crossing or
intersection, resulting in visual clutter. We try to address this
issue in future work.
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