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Abstract—Analyzing temporal event sequences play an im-
portant role in many application domains, such as workload
behavior analysis, hardware fault diagnosis, and natural disaster
resilience. As data volume keeps growing, real-world temporal
event sequences are often noisy, missing, and complex, thus
making it a daunting task to convey much of the information
from a comprehensive overview for analysts. This work proposes
a visual approach based on clustering and superimposing to
construct a high-level overview of sequential event data while
balancing the amount of information and its cardinality. We also
implement an interactive prototype, called TimeRadar, that allows
domain analysts to simultaneously analyze sequence clustering,
extract distribution patterns, drill multiple levels of detail to
accelerate the analysis. This work aims to provide an abstracted
view of temporal event sequences where significant events are
highlighted. The TimeRadar is demonstrated through case studies
with real-world temporal datasets of various sizes.

I. INTRODUCTION

A variety of visualization techniques and methods have

been proposed in the literature in response to the needs of

temporal event sequence analysis from the storytelling of

personal events [1], events flow [2], multiple sequences

view [3], comparing variants [4] to reducing volume and

variety of data [5], [6]. The data mining technique is also

adapted to facilitate sequential patterns from large and high

dimensional data [7], [8]. Although much effort has been

made to accelerate temporal event sequential data analysis,

the challenge to create a simple, intuitive, comprehensive

overviews and easy to interpret visual layout still remains.

For example, the Sankey diagram [2] was not able to handle

a large volume of noisy data with high dimensions due to

the vertical alignments and space. Sequential Pattern Mining

algorithms [7], [8] often provide excessive redundant patterns,

which in turn require analysts more time to find patterns of

interest. Patterns based on clustering techniques may produce

clusters that are difficult to convey information [9], [10]. In

this paper, we propose a visual approach based on two strate-

gies: clustering for grouping similar multivariate statuses into

major groups of interests using popular clustering methods,

such as k-means [11]. superimposing overlays multivariate

representations on top of the clustering bundles, which allow

users to explore high-dimensional data in a given period

and individual sequences. Our technique, called TimeRadar,

visually summarizes the original temporal event sequences

with clustering while recovering individual sequences from

the stacked radar chart. The challenge is to identify a set of

clusters for a meaningful visual summary without imposing

redundant patterns and inducing information loss. To tackle

this issue, we first define a small set of operating statuses

within the multivariate data and then represent them onto the

timeline where repeated statuses are compressed into a color-

coded horizontal line. To summarize, the main contributions

of this paper include:

• We propose a visual approach for representing large mul-

tivariate time series. Our approach consists of multivariate

clustering, visual abstracting, and superimposing high-

dimensional data points.

• We compare our TimeRadar visualization to another time-

line visualization technique that has been widely studied

and used for various applications. The comparisons are

made in both forms of qualitative and quantitative feed-

back from a user study on 30 participants.

• We provide the use cases on real-world datasets and user

feedback from experts and general users to assess the

usability and effectiveness of our TimeRadar approach.

The rest of the paper is organized as follows: Section ??
summarizes similar work. We present our system design

in Section II. A user study on TimeRadar is presented in

Section III by using the Technology Acceptance Model. We

conclude our paper with future work in Section V.

II. TimeRadar DESIGN

In this section, we present the motivation and design choices

for our proposed TimeRadar application that facilitates the

identification and exploration of temporal event patterns over

a given period of time. We first studied existing work to

collect high-level task requirements, as suggested by Plaisant

and Shneiderman [12]. Second, we gather requirements from

experts in a specific domain: High-performance computing

systems. This application domain requires constant monitoring

of a large number of computing nodes via various health

metrics, such as CPU temperatures, fan speeds, CPU usage,

and power consumption. At each time step, a computing node

is characterized by these nine dimensions; we call it the

operating status of a computing node. We summarized and

categorized high-level tasks into the four most common ones
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and centered our design around these tasks [13]. They are as

follows:

• T1: Provide an overview of temporal event sequence of a

large number of computing nodes in the data center [14].

• T2: Capture the major operating statuses and display

them in aggregated views which allow users to grasp their

meanings at a glance quickly.

• T3: Automatically characterize interesting events (e.g.,

identifying sudden change on the time series and de-

tecting multivariate outliers) and highlight them on the

timeline view.

• T4: Customize visual layouts (e.g., reordering events,

running jobs, and grouping computing nodes with similar

timelines) based on user’s preferences.

We design TimeRadar to support the above tasks while

following the general considerations of timeline visualiza-

tions [15]. Starting from the left of the high-level overview

(T1), users can identify unusual events which are signified

by the encoded color timeline and the superimposed radar

chart (T2). Status changes (from one radar group to another)

can be visually tracked along the timeline. Aggregated views

presented at the end of the timelines allow a user to summarize

a subset of events in a given time (T3). The radar charts

superimposed on top of the timelines enable analysts to

identify the behavior pattern of many profiles. Similar profiles

can be ranked, ordered vertically, and grouped to focus on the

entries with different temporal behaviors (T4).

A. The timeline view

The timeline window allows an analyst to have a holistic

overview of the evolution of multiple event sequences (Visu-

alization task T1). Each sequence of events is represented as a

horizontal line (from left to right) since tracing lines is easier

compared to tracing curves [16], especially when the number

of timelines increases.

TimeRadar superimposes color-coded glyphs onto the time-

line event (Visualization task T2) on the timeline to indicate

group changes [17] while unchanged statuses are represented

as straight lines. This allows users to focus on important events

and highlight the causal relationships (triggering similar group

changes) across various entries: A new job is allocated on

multiple machines, or a hurricane affects neighboring states.

B. The control panel

The control panel allows analysts to customize/adjust the

visual space. In particular, options in this panel include:

• Reorder the entries vertically by their groups (such as

computers allocated to the same jobs/users) and the

similarity of their timelines [18].

• Show/hide a group of entries. For example. Users may

want to remove the normal entries (with the metrics

within a usual range) or stable entries (never change their

status group) to focus on the unusual behaviors.

• Adjust the timeline scales or the number of radars ap-

pearing on the timeline by a given threshold.

The radar settings: This panel allows users to customize

the order of dimensions which is considered to be significant

in perceiving the morphology of radar layouts [19]. Radar plots

are used for quickly discerning abnormal dimensions [20].

Clustering: We adapt the existing clustering algorithms,

such as k-means [21] to summarize the major operating

statuses (or clusters) of computing nodes. The parameters of

k-means are customizable via the control panel. The k-means

method requires an appropriate convergence criterion such as

no reassignment of patterns to new cluster centers or minimal

decrease in squared error [22]. We avoid the infinity loop

by inputting the maximum number of iterations to stop the

computation when no further improvements are made.

III. USECASES

This section demonstrates our proposed visualization tool

on the two datasets: the High-Performance Computing Center

dataset, US employment dataset, and Rest Useful Life dataset.

A. High Performing Computing Center data

The High-Performance Computing Center data includes 467

computing nodes with nine metrics: CPU1 vs. CPU2 Temper-

ature, Fan speeds, Memory usage, and Power consumption.

Figure 1 illustrates a use case where analysts can use

TimeRadar to capture dynamic behaviors of multiple events

(host) over time. Through the overview, the presence of many

vertically aligned radar charts (with clustering and ordering)

shows that there are abnormal activities around 3 am, 7 pm,

and 10 pm where the system changes from normal activity to

high memory usage. This information can be used for further

investigation, such as which job causes the issues and who

owns the corresponding jobs. Knowing this information in

advance can help the system administrator have better resource

allocations and management strategies.

B. US employment data

The US employment dataset is about the number of em-

ployees in 51 states and 15 industrial fields from February

2000 to May 2019. Original data come from the US Bureau

of Labor Statistics website [23]. Instead of the raw number of

employees, the net change has been using in the TimeRadar
visualization Figure 2. TimeRadar presents the events by the

density of the radar appear on the top chart. The first orange

markers in TimeRadar matched the Y2K crisis (2001) when

the dotcom bubble collapsed. The second markers correspond

with the Great Recession of 2007–2009 [24]. The final marker

shows that the COVID-19 has a significant impact on the

economy and the effect is even more than the Great Recession

(base on the size of the radar).

C. Rest Useful Life data

The Rest Useful Life data includes 100 simulated turbofan

engines with ten sensors and 200 timesteps. In particular, we

use the run-to-failure datasets of a turbofan engine simulation

model obtained from NASA’s Prognostics Center of Excel-

lence in 2008 [25]. In Figure 3 (a), data has been clustered into
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Fig. 1. A usecase of TimeRadar on HPCC dataset: Red circles indicates enclose the time point when many instances change their status

Fig. 2. The TimeRadar visualizations for US employment net rate: Orange
marker - US crisis in 2001 and Great Recession 2007-2009 and COVID-19.

seven groups. According to Figure 3 (b), the second cluster

(orange) and the third cluster (blue) is the common state of

the data. TimeRadar clearly shows that the three last groups

(in the red box) are the sign of RUL run out.

IV. USER STUDY:

Our method to evaluate TimeRadar was conducted using

the controlled experiment where some factors are changed

at a time. Sixteen users were asked to answer readability

questions for both representations of the same dataset varying

in complexity (size and dimension). Time taken to answer each

question, error, and feedback were recorded for analysis.

2 Visualizations (TimeRadar, Bundling) x 3 Levels of size

x 3 Levels of timepoint x 2 Tasks = 36 questions in total.

A. Participants and Apparatus

Sixteen participants were recruited in this study, including

seven females and nine males, at the study site. Their educa-

tional backgrounds are ranged from undergraduate to Ph.D. (8

Ph.D. students, two undergraduates, and 6 Masters). As studied

by Camilla [26], when it comes the how many experimenters

to engage in the evaluation, the number of recommended

experts is five; we considered our recruited users were ex-

perts since all of them took the Human-Computer Interaction

classes. The study was conducted using a laptop (equipped

with a 15.4-inch screen of 1920 x 1080 in resolution).
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Fig. 3. The TimeRadar visualizations for Rest Usefull Life: (a) Major radar represent cluster. (b) Histogram of instance value in each cluster, (c) TimeRadar
of RUL data with RUL value decrease from left to right.

B. Visualizations and Datasets

For our dataset, we defined the level of difficulty by the

number of instances and the number of time points. As the

number of instances and time points increases, the difficulty

levels are linearly increased.

For each example, we generated two figures of TimeRadar
vs. edge bundling. To ensure that our tasks were isomorphic

with both TimeRadar and Bundling, the same data was used

in both static figures. However, to avoid memorizing the result

from the previous question, we shuffled the set of questions.

C. Tasks

In this study, we want to find out, which is a more efficient

way to capture the dynamics of a system via two tasks.

• T1: Find the most dynamic instance (the instance that

exhibits multiple statuses over time).

• T2: Find the most dynamic time point (the timestamps,

when many instances change their status).

D. Procedure

We performed the study with multiple participants at a

time. The study is about 20 minutes in total, with a set
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of 36 questions. We set up our own page on Github to

collect data. Responses from users were saved on the cloud

repository, which is Firebase from Google Service. JSON data

format from the repository was converted into Excel (.csv)

for analysis. Before the controlled experiment, all participants

were given a tutorial explaining TimeRadar and Bundling to

make sure that they understood the concepts of visual design,

how data was transformed to visual encoding, how color

was mapped. All participants were informed why the study

was conducted and what type of information was collected

before starting the survey. The tutorial was provided by means

of direct conversation with the conductor or watching the

introduction video created by the conductor. The video was

embedded directly at the beginning of the survey page. Next,

the participants used the provided computers that showed the

figure represented by either TimeRadar or Edge Bundling

method and answered question associated with it. When a user

started a new question, our survey page started recording time

spent on that question.

The order of tasks was dynamic - meaning that all questions

were randomized in order to avoid memorization. After com-

pleting 36 questions, users were asked to provide feedback on

each visualization design in terms of readability and mental

efforts. Level of education and gender were also collected for

categorization.

E. Hypotheses

Our study has the following Hypotheses:

• H1: Superimposing will outperform Bundling in com-

pletion time for discerning the dynamic tasks (T1, T2).

We also believe that Superimposing requires less time for

these types of tasks, as visually detecting the color-coded

radars is much easier and quicker than following/tracking

the curves.

• H2: Bundling will outperform Superimposing in accuracy

and completion time for overview tasks (T3). The group

sizes in the Bundling option are easier to discern as

groups are ordered vertically.

F. The results

We considered time and accuracy are both equally important

for the evaluation. Because when participants were given

enough time, the likelihood to get the correct answers was high

with enough mental effort. Since visualization helps people

carry tasks easier, time should be taken into account to mea-

sure this criterion. 2 Visualizations (TimeRadar, Bundling) x 3

Levels of size (10, 30, 50) x 3 Levels of timepoint (10, 30, 50)

x 2 Tasks (finding instance and finding timepoint). Repeated

Measures Analysis of Variance (RM-ANOVA) method was

used to analyze accuracy and completion time results. The

analysis is within-subject design.

G. Accuracy

On average, for all cases, 64% of the total answers from

both tasks were correctly answered. Users achieved an accu-

racy of 88.09% for identifying the dynamic instances using the

superimposing technique. However, the performance is worst

for the same task using the bundling visualization technique

on the same data with an accuracy of 21.42%. For this task,

TimeRadar were 66.67% more accurate than the bundling

chart.

Regarding the overview task, the performance of using

the superimposing technique was decreased with an accuracy

of 79.52%, while the performance of using the Bundling

technique was increased significantly from 21.42% to 64.56%.

The accuracy difference between these two techniques was

14.96%.

H. Completion Time

On average, the task for finding dynamic instances using

superimposing took 15.03 seconds (SD =10.56) to complete,

and the task for finding dynamic instances using the bundling

method took 20.98 seconds (SD = 12.2). Overall, the dif-

ference between means of superimposing and bundling is

statistically significant, F(1, 126) = 28.68, p ¡ .0001. This

result supported our hypothesis (H1). In detailed, the study

found a difference between the level of size 10 and level of

time point 30 (F(1,13) = 9.52, p = 0.009), the level of size 30

and level of time point 50 (F(1,13) = 5.67, p = 0.03), and the

level of size 50 and level of time point 50 (F(1,13) = 5.68, p

= 0.033) with the significant level of 0.5.

Regarding the second task (the overview), there is no statis-

tically significant difference between using superimposing and

bundling techniques, F (1, 125) = 1.99 and p = 0.161 with a

significant level of 0.5. The average time taken on answering

questions associated with superimposing technique was 13.76

seconds, and for Bundling was 15.05 seconds. Unsurprisingly,

as the number of sizes and time points increased, it took more

time for users to answer. The distribution of time spent on tech

type of charts is depicted in Figure 4 where the red vertical

line represents the median.

Fig. 4. The contingency table that shows the distribution of time spent and
correct answer of two visualization charts

I. User feedback

Users provided feedback based on their preferences after

completing all tasks. We collected all the comments and

summarized them for qualitative analysis. Overall, users prefer

to use TimeRadar to answer questions on the survey because

identifying shape is easier than use color, especially when the

radars were aligned horizontally and guided by a timeline.
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The bundling technique needs more mental effort to trace

the dynamic instance; this issue gets worst when multiple

instances overlapped when they changed their statuses. One

user reported that ‘I gave up when I tried to answer the
questions related to trace a dynamic instance using Bundling
visualization, for a small figure, I can look up each instance
one by one; however, when there are so many instances it
is impossible for me. I just picked a random answer, so I
chose the one that shows the change first’ or ‘I prefer the one
without the transitioning lines because you can count shapes
and it is much easier to see the changes.’, or ”A time radar
chart is much easier to follow since it has less object and
intersection. A time bundling chart is really hard to read in
60 seconds to find the answer. This feedback was aligned

with the accuracy result of 21.42%. For an overview task,

participants still reported that superimposing visualization is

more favorable because ‘at least I can count the number of
glyphs vertically, for bundling there are so many crossings’,
the visual clutter makes them end up with ‘time radar, I made
a random guess on bundle chart. Only pick the first one from
the left that shows change’.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel technique for visualizing

temporal event sequences. Our proposed approach was based

on the clustering and superimposing techniques to construct

a high-level overview of sequential event data. TimeRadar
allows domain analysts to simultaneously capture sequence

clustering, extract useful distribution patterns, drill multiple

levels of detail to accelerate interactive data analysis. The

TimeRadar was demonstrated through case studies with real-

world temporal datasets. Our approach was evaluated by 30

participants to measure its efficiency and effectiveness. The

quantitative result showed that superimposing technique out-

performed the bundling technique in terms of completion time

and accuracy for the task of tracing dynamic instances. User

feedback indicated that superimposing was a better choice for

exploring interesting visual patterns. Although analysts can

apply TimeRadar on the variety of domains, it still has some

limitations: since users perceived the radar chart as an area,

change in one dimension will increase area, and 2) order

the bundling lines is challenging because of the crossing or

intersection, resulting in visual clutter. We try to address this

issue in future work.
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