IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

833

HAM: Hotspot-Aware Manager for Improving
Communications With 3D-Stacked Memory

Xi Wang™, Antonino Tumeo

, Senior Member, IEEE, John D. Leidel

, Jie Li*, and Yong Chen

Abstract—Emerging High-Performance Computing (HPC) workloads, such as graph analytics, machine learning, and big data
science, are data-intensive. Data-intensive workloads usually present fine-grained memory accesses with limited or no data locality,
and thus incur frequent cache misses and low utilization of memory bandwidth. 3D-stacked memory devices such as Hybrid Memory
Cube (HMC) and High Bandwidth Memory (HBM) can provide significantly higher bandwidth than conventional memory modules.
However, the traditional interfaces and optimization methods for JEDEC DDR devices do not allow to fully exploit the potential
performance of 3D-stacked memory with the massive amount of irregular memory accesses of data-intensive applications. In this
article, we propose a novel Hotspot-Aware Manager (HAM) infrastructure for 3D-stacked memory devices capable of optimizing
memory access streams via request aggregation, hotspot detection, and in-memory prefetching. We present the HAM design and
implementation, and simulate it on a system using RISC-V embedded cores with attached HMC devices. We extensively evaluate
HAM with over 12 benchmarks and applications representing diverse irregular memory access patterns. The results show that, on
average, HAM reduces redundant requests by 37.51 percent and increases the prefetch buffer hit rate by 4.2 times, compared to

a baseline streaming prefetcher. On the selected benchmark set, HAM provides performance gains of 21.81 percent in average

(up to 34.28 percent), and power savings of 35.07 percent over a standard 3D-stacked memory.

Index Terms—Memory hotspot, 3D-stacked memory, coalescing, prefetching, HBM, HMC, communications

1 INTRODUCTION

MERGING High-Performance Computing (HPC) applica-

tions, such as graph analytics, machine learning, and big
data science are data-intensive. They are memory and latency
bound [1], [2], and often exhibit irregular behaviors. They use
large data sets, stored in pointer-based data structures
(graphs, imbalanced trees, unstructured grids, sparse matri-
ces) that lead to fine-grained (word-size) and unpredictable
memory accesses. On conventional high-performance pro-
cessors with complex memory subsystems and multi-level
data caches, the non-deterministic memory accesses and
poor locality lead to low reuse and high cache miss rates,
which inevitably translate to high access latency [3] and poor
bandwidth utilization.

3D-stacked memory devices, such as High Bandwidth
Memory (HBM) [4] and Hybrid Memory Cube (HMC) [5],
provide significantly higher bandwidth with respect to con-
ventional Double Data Rate synchronous Dynamic Random
Access Memory (DDR DRAM), and offer an opportunity to
better address requirements of data-intensive applications.

o Xi Wang, Jie Li, and Yong Chen are with the Department of Computer Sci-
ence, Texas Tech University, Lubbock, TX 79415 USA. E-mail: {xi.wang,
jieli, yong.chen}@ttu.edu.

o Antonino Tumeo is with the High Performance Computing Group of
Pacific Northwest National Laboratory, Richland, WA 99352 USA. E-
mail: Antonino.Tumeo@pnnl.gov.

e John D. Leidel is with the Tactical Computing Laboratories, Muenster, TX
76252 USA. E-mail: jleidel@tactcomplabs.com.

Manuscript received 20 Aug. 2020; revised 2 Mar. 2021; accepted 7 Mar. 2021.
Date of publication 18 Mar. 2021; date of current version 17 May 2021.
(Corresponding author: Xi Wang.)

Recommended for acceptance by L. Chen and Z. Lu.

Digital Object Identifier no. 10.1109/TC.2021.3066982

In these devices, the DRAM dies are stacked on top of a
logic die via 3D packaging. The logic layer implements the
memory controller that manages communication between
stacked DRAMs and processors. Well-known commercial
devices using this technology include the latest generations
of NVIDIA’s Graphic Processing Units (GPUs), Intel’s Xeon
Phi processors, and Fujitsu PrimeHPC FX100. As shown in
Fig. 1, Through Silicon Vias (TSV) connect the various layers
of the stack, providing high bandwidth for data transactions
within the 3D-stacked memory [5], [6]. Parallel high-speed
links in the interposer layer connect the logic die to the host
processor.

Several studies have started looking at opportunities to
embed processing elements in the logic die of 3D-stacked
memory, with the objective to overcome the issues brought
by the so-called memory wall [7]. Near data processing
(NDP) and processing in-memory (PIM) [8], [9] aim at
reducing the redundant data traffic and overall memory
access latency by effectively moving computation to data.
However, the amount of logic actually embeddable in the
logic layer of a 3D-stacked memory device is limited, both
by production (the manufacturing processes for memory
devices are not as refined as those used for high-perfor-
mance cores) and by thermal issues. For these reasons, the
logic die is typically only used to either accelerate some spe-
cific instructions or to improve the actual memory manage-
ment operations [9], [10].

From a practical point of view, because of the constraints
on the actual logic implementable in a memory controller
die and the poor effectiveness of cases, the problem of opti-
mizing memory accesses for data intensive applications in
systems with 3D-stacked memory devices becomes a prob-
lem of optimizing the communication between a processor

0018-9340 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1998-6733
https://orcid.org/0000-0002-1998-6733
https://orcid.org/0000-0002-1998-6733
https://orcid.org/0000-0002-1998-6733
https://orcid.org/0000-0002-1998-6733
https://orcid.org/0000-0001-9452-120X
https://orcid.org/0000-0001-9452-120X
https://orcid.org/0000-0001-9452-120X
https://orcid.org/0000-0001-9452-120X
https://orcid.org/0000-0001-9452-120X
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-5311-3012
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
mailto:xi.wang@ttu.edu
mailto:jie.li@ttu.edu
mailto:yong.chen@ttu.edu
mailto:Antonino.Tumeo@pnnl.gov
mailto:jleidel@tactcomplabs.com

834

Fig. 1. Example of 3D-stacked memory layout.

(cores and “uncore”) and the actual 3D stacked memory
device, and in the 3D-stacked memory device itself. Techni-
ques may be applied at the processor, at the memory side,
or both, and the overall key result is an improvement of the
communication between the two components (reduction in
overheads, reduction in data movements, higher bandwidth
utilization, and related energy benefits).

From the memory side perspective, a number of efforts
have exploited the stacked memory logic layer to implement
prefetching [11], [12]. Prefetching is a well-known latency
reduction approach adopted in cache-based architectures. The
hardware predicts the data that an application will load, typi-
cally considering the previous access patterns, fetching them
in advance into caches and thus significantly reducing the
latency of subsequent communications between memory devi-
ces and processors [13], [14]. Conventional prefetchers are,
however, optimized for regular workloads with predictable
data accesses, such as sequential or unit-stride access patterns.
These are not applicable to irregular applications [15], [16]. For
instance, neither hardware predictors nor compilers can pre-
dict the target address of the scatter operation a[b[i]] = ¢
[1] withrandom indexesb[i].

Another challenge for many data-intensive applications
is the frequent generation of memory hotspots, due to the
fine-grained nature of their data accesses. Memory hotspots
are frequently accessed memory locations that may significantly
hinder the performance of DRAM devices, due to their
banked design. In fact, frequent accesses to the same mem-
ory banks increase the probability of bank conflicts, thus
increasing the access latency latency [17]. Given the non-
deterministic nature of memory accesses in irregular appli-
cations, bank-interleaving is insufficient to avoid hotspots.

Additionally, neither developers nor compilers can accu-
rately infer hotspots statically without analyzing the dynamic,
runtime data-access patterns [18], thus making identification
of hotspots highly challenging for data-dependent algorithms
with changing datasets. Hence, new approaches capable of
optimizing irregular memory traffic are needed.

As demonstrated in previous works, implementing the
prefetching logic in the stacked memory device, rather than
in the processor die, allows to further optimize communica-
tion between processor and memory device, which is criti-
cally expensive (also in terms of energy) because it happen
across different dies (on the same interposer) or even across
different chips. Coupling hotspot detection with the pre-
fetching logic also allows improving communication perfor-
mance between the DRAM dies and the logic die in the 3D
Stack.

In this paper, we introduce the Hotspot-Aware Manager
(HAM), a new near-memory component applicable to dif-
ferent 3D-stacked memories (i.e., HBM, HMC, etc.) aimed at

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

improving performance of data-intensive applications that
exhibit irregular memory access patterns. HAM resides in
the logic die of the 3D-stacked memory. It implements a
coalescing mechanism to aggregate fine-grained memory
operations, and a hot bank table that identifies hotspots at
the level of DRAM rows and banks. HAM includes a hot-
spot prefetcher that preloads data of “hot” memory loca-
tions into memory-side buffers, reducing latency to access
contended locations and improving bandwidth utilization
of the 3D-stacked memory. In general, HAM provides sig-
nificant improvements to communication between proces-
sor and 3D-stacked memory devices and communication
inside the 3D-stacked memory device itself. We evaluated
HAM by simulating it in an architecture based on RISC-V
cores [19] with an attached HMC device.

This research study makes five specific key contributions.
First, we investigate the performance challenges of the data-
intensive workloads that exhibit irregular memory access
patterns on 3D-stacked memory. We also analyze the mem-
ory request distributions to study the characteristics of
diverse data-intensive applications. Second, we present the
architecture of the hotspot-aware memory manager (HAM),
and describe its integration in the logic layer of general 3D-
stacked memory devices. Third, we design a coalescing
methodology that aggregates the raw requests hitting the
same DRAM row with a coalesced request queue (CAQ)
within the 3D-stacked memory to eliminate the latency and
power cost of redundant memory accesses. Fourth, we
introduce a novel memory hotspot detection mechanism to
record the frequently accessed physical memory hotspots
with a hot bank table at the level of DRAM rows and banks.
We also introduce a hotspot prefetcher to reduce the latency
of accessing contended locations and improve bandwidth
utilization. Fifth, we provide a comprehensive evaluation of
the HAM design from the perspectives of the performance,
power efficiency, and bandwidth utilization, respectively,
with selected data-intensive applications representing
diverse irregular memory patterns.

The remainder of this paper is organized as follows.
Section 2 provides background and motivations for this
research. Section 3 overviews the HAM architecture, des-
cribing its near-memory design and its overall operation
principles. Section 4 details the design of each HAM compo-
nent and provides associated analyses. Section 5 discusses
the HAM experimental results. Finally, Section 7 draws the
conclusions.

2 BACKGROUND

This section provides background information on 3D-
stacked memory row buffer policies and memory hotspot
detection.

2.1 3D-Stacked Memory

3D-stacked DRAMSs provide substantially higher band-
width than typical DDR DRAM modules, potentially satis-
fying requirements of emerging data-intensive workloads
in high-performance scientific computing or high-end enter-
prise computing. These workloads often exhibit unpredict-
able patterns of fine-grained accesses, leading to poor
spatial or temporal locality. Typical examples are sparse

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 835

Row Hits

Row Miss

b}
S48

3 & 3 3
3

waLsana
Wass
4555
TINILS

Benchmarks

Fig. 2. Row-buffer hit and miss rates.

linear solvers and graph kernels. To better cope with these
workloads, and to reduce energy consumption, 3D-stacked
memory devices implement smaller row buffers: they
respectively are 1 KB large in HBM, and 256 Bytes large in
HMC. Recent research work confirms that even smaller
rows (e.g., 64 Bytes) provide higher performance improve-
ments and reduced power consumption [20].

However, compared with the 8 KB~16 KB rows in DDR3,
the smaller row size in 3D-stacked memory increases the
probability of row buffer misses. This potentially causes
more bank conflicts and makes the open-page mode ineffi-
cient [21]. Furthermore, the increasingly higher degree of
data-level parallelism in applications also reduces the row-
buffer hit rates. In Fig. 2 we show the row-buffer hit and
miss rates with a variety of data-intensive workloads on a
4 GB HMC device, configured with the open-page mode
(environment settings are detailed in Section 5.2). On aver-
age, across all the tested workloads, 86.78 percent of the
memory accesses generated row-buffer misses, highlighting
the limited spatial locality of the data and leading to ineffi-
cient communication between host processor and DRAMs.

The open-page policy leaves the DRAM row open after
each memory access and caches the data in row buffers,
thus a row buffer miss requires writing the data back into
the DRAM row, closing the current opened row, and subse-
quently opening the requested row to complete the memory
access. This entire procedure significantly slows down pipe-
lined memory accesses. To reduce power consumption and
access latency, the DRAM operation in a 3D-stacked mem-
ory device, such as the HMC, follows instead a closed-page
policy [5]. In HMC, at the completion of a memory access,
the sense amplifiers are precharged and the DRAM row is
subsequently closed [22]. Consequently, in a 3D-stacked
memory, the row-buffer hit harvesting memory controller
[23], which prioritizes requests hitting an opened row, is
not applicable for this type of irregular memory accesses.

Furthermore, 3D-stacked memories rely on the vault and
channel controllers to eliminate bank conflicts by reordering
the request sequences. However, the high number of inde-
pendent vaults or channels potentially limits the request
queue size of each vault or channel [22]. As a result, a lim-
ited number of slots in each request queue greatly hinders
the effectiveness of request schedulers. Moreover, reorder-
ing access streams also introduces additional latency (.e.,
read-to-read cycle time (tccp): 2.5-10 ns) [24] and wastes
internal bandwidth on repetitive data transactions (N
requests hitting the same row need N transactions). Since
banks within the same channel/vault share the data bus,

request reordering may also delay the execution of subse-
quent memory accesses. Additionally, the size of the request
queue in each vault or channel is much smaller than the
request queue of the Serializer/Deserializer (SerDes) links
that connect the 3D-stacked device to the host processor.
Because there are multiple internal queues elements (e.g.,
for link, crossbar, channel/vault, etc.) inside a 3D-stacked
memory, delays due to bank conflicts not only stall queues,
but also increase power consumption.

2.2 Memory Hotspot

Hotspots in regular workloads are usually mitigated by pre-
dicting the access streams and monitoring frequently
accessed data segments. Meswani et al. [25] have explored
the replacement of frequently accessed physical pages
between the on/off-package memory devices to reduce the
cost of accessing the “hot” physical pages. The approach is
ideal for regular workloads. However, irregular applica-
tions present large amounts of unpredictable memory
accesses that increase cache miss rates and, consequently,
the latency of the memory accesses themselves. As a result,
such a page replacement approach may not effectively
reduce redundant communications to the off-package mem-
ory when executing irregular workloads. Because it is com-
plex to predict the access patterns statically through the
compiler or dynamically by profiling the processor’s perfor-
mance counters, we investigate the data request patterns
from the point of view of the memory. To characterize the
request distributions in data-intensive applications, we exe-
cute 12 memory-bound workloads with various memory
access patterns and then randomly select a time window
during runtime to trace the physical destination addresses
of the memory accesses.

We cluster the memory traces depending on the values of
physical addresses to identify frequently accessed memory
regions. Since we cannot predict the number of clusters, we
use the unsupervised density-based spatial clustering of
applications with noise (DBSCAN) algorithm [26]. We set
the epsilon distance of DBSCAN to 1 KB, which is equiva-
lent to the row size of HBM, to group adjacent memory
accesses. We set the time windows for the analysis to 10,000
clock cycles. The detailed test environment is described in
Section 5.2.

In Fig. 3 circles represent request clusters, and distinct
clusters are differentiated by colors. Crosses identify unclus-
tered requests with limited data locality. In each tested work-
load, we observe multiple request clusters, demonstrating
the presence of memory hotspots. We can, thus, conclude
that some DRAM banks are more frequently accessed than
others. A higher bank utilization leads to a higher probability
of bank conflicts [17]. However, if we were able to monitor
memory hotspots, we could employ the information to opti-
mize the performance of the memory itself when executing
data-intensive applications.

3 ARCHITECTURE

In this section, we present an overview of the HAM archi-
tecture and its operation.

In a 3D-stacked memory, the local controller for each
vault or channel resides in the logic layer. HAM is also

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

836 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021
SR0aL080760 tunoaiosazes
B — o
it ot inlicaloy - = p0o0E4ELLD axpooonarLee
8 8 cuososarncao J——
H 2 : 2
3 cooncosassn - p— . p—
< < <
K] W onocoramoen T woeoeranees
- p— £ :
= 3 nsoooacanis S sconnicesss
£ 3 £
£ onvcosrooma £ £
CROO0ITEISAD
mono0coss
0 = a0 = o 030
Time (cycle)
(a) SSCAv2
AE0H1080760 txonLoanies axnoasosares
BRBOR0EEICD swcootstics] xO0OAELE
a 9 a
B suoocontacin xnosenCI0 mneooarecze
-4 4 4
]] -]
o g B 00000maess
< < - <
E CHO0TZIOED W csosTareEs . . T amncoorrtoes
% b :]
2 wovosecanio O g i B onsosnscaas
o o . .2 o
aponzesA no0eaz6A . 3 tR000TaTsAS
onoooese| e SV S WA e A HD02000000 EDC00000200
[2000 4000 w0]] 0
Time (cycle) Time (cycle)
(d) BFS (e) SparseLU
2031000760 tmnoaine0Tee
P RN P R Y e na
Bos0EEIC anos0nTIN0 ROOEAELCE
g p— g Pr— gn-mru)c
3 - J— 3 oo
< < <
5 txpo0aTaI0En E ouis0saa08 E
w] i
z 2 Benosoiciss
& P amisin e e s e T £
faB0N2E5A = = tunoos1ERIED tn0001AI9A0
02000000 000008

X000000000

0X0001080760 0X00010BO760 1

OX0O00E4ELCO: OX0D0OE4ELCD

§ OXO000BEBC2O | g OXO000BEBC20

‘-; 0%0000989680 E 0X0000989680

W OX00DOTZTOED

S oxooovacasan
a
0X00002625A0

W 0X00007270E0
o

‘ﬁ.oxowuacasao
a
0X00002625A0

0X0000000000 0X0000000000

4000 6000 8000 10000

Time (cycle)

(i) SSSP

0X0000DSIFE0,
¥ OX0000871800
g OXO00098IEE0| =
3 oxoooorn1200

‘g 0X00005B8DBO

5

2 0X0000300900
OX00001EB4BO

Pl

0XOO00000000

[2000
Time (cycle) Time (cycle) Time (cycle)
(j) BC (k) Dijkstra () BP

Fig. 3. Memory accesses distribution.

implemented in the memory logic die, providing fine-
grained control over bank accesses and optimizing commu-
nication between logic and processor dies. High bandwidth
memory (HBM) and hybrid memory cube (HMC) are two
representative 3D-stacked memory devices, widely utilized
in both industry and academia. Hence, to demonstrate
HAM'’s applicability, we illustrate its HAM placement in
both these devices, as presented in Fig. 4a. A typical 4 GB
HBM device with 4 DRAM dies implements 2 channels per
DRAM die, 8 in total. Each channel owns 16 banks that
share the same data bus and implements a private controller
that manages accesses independently from the other chan-
nels [4]. Therefore, as shown on top of Fig. 4a, we imple-
ment a HAM unit inside each HBM channel controller.
Since each vault/channel in a 3D-stacked memory has pri-
vate data paths and is independently managed, sharing
HAM and prefetch buffers between banks interleaved in
distinct vaults/channels would break their inherent paral-
lelism and cause performance degradation. Thus, distrib-
uted HAMs and prefetch buffers are preferred.

In the case of HMC, the stacked DRAMs are vertically
partitioned into 32 vaults and every 8 vaults are grouped in
a quadrant [5]. As shown at the bottom of Fig. 4a, since in
HMC each vault within a quadrant shares the same link
between the memory device and the host processor, we
implement a quadrant-based HAM rather than a vault-
based design to minimize the space overhead and die area
occupation.

As illustrated in Fig. 4b, HAM consists of four major
components: Coalesced Access Queue, hot bank Table, Hotspot
Prefetcher, and Prefetch Buffer. We briefly introduce each
component below, and provide further details in the next
section.

3.1 Coalesced Access Queue

The coalesced access queue (CAQ) is a First In First Out
(FIFO) queue that aggregates raw requests from the host
processor based on the respective row addresses. Each
CAQ entry merges the requests hitting the same DRAM

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 837

HEM Logic Die

HBM

Channel 0
HMC Vault 0
Bank0
HMC Logic Die F ey
Bank 1
- Bank3
§ [HAM uarant 3 T Banks /S
ool o
...... Bank 7
’ b
Tov
HMC —
§ LHAM) quadraen o | TR S
Controller |

HMC e

Vault 7
Controller

HMC Quadrant 0

(a)

Response Queue "
DRAM
Banks

+ Row Buffers -

Request Queue

> Hit
Coalesced
Access Queue X 3
. Prefetch Miss | Vault/Channel | | X
Buffer Controller
Raw k3 »
Request i Crossbar
, HotBank | Hotspot | of Prefetch
Table Prefetcher
Ll
x
Epoch |
Counter |
HAM

(b)

Fig. 4. Architecture of HAM (hotspot-aware manager) in 3D stacked memory.

row and signals the prefetcher when popping out the
requests. The aggregated requests are further analyzed by
the hotspot prefetcher to enable prefetching, if needed.

3.2 Hot Bank Table

The hot bank table (HBT) records the number of accesses to
each DRAM bank in the 3D-stacked memory and identifies
whether a requested bank is hot or cold. The HBT analyzes
the raw requests and accordingly updates the access
counter for each bank and the associated bank status (hot/
cold).

As shown in Fig. 4b, each HBT also implements an epoch
counter. This counter, which records the total number of
accesses, allows setting a time window for learning memory
hotspots. Once the number of accesses reaches a predefined
value, an epoch ends and the HBT sends the captured bank
status to the hotspot prefetcher. The HBT then resets both
its entries and the epoch counter to start a new iteration of
hotspot detection.

3.3 Hotspot Prefetcher

The hotspot prefetcher manages the prefetching logic. As
soon as a request is received from the CAQ, the prefetcher
parses it to identify the target bank. It then retrieves the
stored bank status and inquires the prefetch buffer to check
whether the requested row is cached or not. If the row is
found in the prefetch buffer, then no prefetching is needed.
Otherwise, the prefetcher continues checking the target row
and bank status of this request. Once a hot row or hot bank
is recognized, the prefetcher issues a request to the specific
vault or channel and loads the entire row. The prefetched
data is saved into the in-memory prefetch buffer, which
resides in the logic die, thus not consuming any of the exter-
nal bandwidth between the 3D-stacked memory and the
host processor.

3.4 Prefetch Buffer

As shown in Fig. 4b, in HAM we employ a two-port pre-
fetch buffer. The first port handles the accesses from the
request queue. The second port manages inquiries from the

hotspot prefetcher, which only searches for addresses of
prefetch buffer entries. This implies that prefetcher inquiries
never manipulate the data cached in the prefetch buffer. To
reduce the space and energy overhead of the replicated
hardware comparators for the two ports, we employ hard-
ware hashing functions to organize and manage the pre-
fetch buffer.

3.5 Workflow

As shown in Fig. 4b, the raw requests are first simultaneously
routed to the CAQ and HBT. As previously discussed, the
CAQ aggregates the requests, and the HBT detects the mem-
ory hotsposts. The CAQ and HBT work in parallel, and there
is no dependency between each other. At the end of each
epoch, the HBT only sends the bank status to the prefetcher,
while the CAQ forwards the aggregated requests to the
request queue following a FIFO policy. If the CAQ entries
indicate the need for prefetching, then the aggregated
requests and the respective row status are delivered to the
hotspot prefetcher after they pop out of the CAQ. If a miss in
the prefetch buffer falls into a hot row/bank, then HAM
issues a prefetch request to the target vault or channel to per-
form the DRAM access. Once the requested row is loaded
into the row buffer, the entire row is brought into the pre-
fetch buffer to accelerate the subsequent accesses. For com-
mon load and store requests (not prefetching), the access
streams in the request queue are routed to the prefetch
buffer. If there is a hit, then a response is directly returned.
Otherwise, the request is conveyed to the specific DRAM
bank depending on the request address. Finally, the request
is served and a response is inserted into the response queue
heading back to the host processor.

4 HAM DESIGN

The prefetch buffer design is analogous to typical direct-
mapped data caches, so in this section we focus on describ-
ing the other HAM components: the Coalesced Access Queue
(CAQ), the Hot Bank Table (HBT), and the Hotspot Prefetcher.
In addition, we also analyze the latency of HAM and of the
associated page policy.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

838
| Bankip | H | Access# | : Ay — FULL |— Cou
| Bl | ! Bs — ADDR
—) | HotBank : Ce — Bit3 — Sum
BankID | H | Access# Lo i .
o BankID | H | Access# i Ar — FOLL }CSo
S| Y1 | B ADDR
@ r 1 1 } |
Adder : Bit2 Sum
—] —
Raw] ! T
Request ¢ | Row o | Rast n i As —] FULL |
| Astinto : B — ADDR
...... | i Cm — Bit1 Sum
- c Row ID | Rqst!rno i L
3 Row ID | Rast Info i a0 —JFOLL |5
=] | I ! By - ADDR
|
— i Cin . Bit0 — Sum
_ - compara\or)l Mk]Y-s 'I i
|
i
I

(a) CAQ and HBT Design

Fig. 5. HAM (Hotspot-aware manager) design.

4.1 Coalesced Access Queue

3D-stacked memory devices have much lower clock rates
than processing elements. For example, HBM2 devices have
frequencies from 600 to 1000 MHz [27], while modern CPUs
easily run from 2 GHz to over 3.3 GHz. We leverage the fre-
quency gap between the processor and the 3D-stacked
memory to aggregate and prefetch the request streams.
Rather than blocking the input when the request queue is
full, the CAQ is designed to aggregate raw requests.

Requests hitting the same row of a specific bank can be
served with a single DRAM access, so we set the granularity
of request aggregation to the size of the DRAM row buffer.
As shown in Fig. 5a, the CAQ aggregates and buffers the raw
requests from the host processor. Each CAQ entry consists of
four segments: coalescing bit (C), read bit (R), row ID, and
request information. The row ID stores the requested DRAM
row address, which is utilized as an index for each CAQ
entry. The coalescing bit (C) indicates whether two or more
read requests hitting the same row are merged into one CAQ
entry. The read bit (R) flags the CAQ entry if there exists at
least one read request merged in each entry. This bit is
checked when requests are popped out. The request infor-
mation contains the request operation, requested cache block
number, and a unique tag associated with the request itself.

Each raw request is first compared with all CAQ entries
simultaneously through the hardware comparators. If there
is a match, then the raw request is aggregated into a corre-
sponding CAQ entry. Otherwise, the raw request is pushed
into the CAQ as a new entry. The R bit is set to 1 if the ope-
ration of the inserted raw request is a read. Once a raw
request is merged, the respective request information is
appended to the target segment. Since requests aggregated
in one CAQ entry address the same DRAM row, we only
need a few bits to denote the requested cache block. For
instance, with 64 Bytes cache lines, each row in HMC
(256 Bytes) contains 4 cache blocks. Therefore, only 2 bits are
needed to indicate the requested block ID. Once more than
one read request are aggregated in the same CAQ entry, then
the respective C bit is set to 1, implying the need of prefetch-
ing. Otherwise, the C bit remains 0.

According to the miss handling policy of mainstream
architectures employing write-back caches, write misses in
the last-level cache (LLC) are also translated as read
requests to the memory devices. In fact, write operations
from the processor store data in a cache line, and the

(b) Carry-Driven Update

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Request Address l

BankID H Access# 1' R
f =i 1 Bank# | 0 |1 |2 (3|4 |-
Bank
0x3 | 0| 11111111 I e | el])
— - I Bitmap | 0 |1 |1 | 0|0 |.. | Bitmap
7 i |] L] B el B
r i
1 ! "
| caQ e)
ADDER ‘__ + i Ragisat C bit
]
1 1
i Roy (
Carry Sum Prefetch | |
! Buffer | L
I
[il 7 ! Bit 0
i B 0000 o000 : "'
BankID H Access# :
I
i
I
I

(c) Hotspot Prefetcher

majority of write requests to the memory derives from evic-
tions of dirty cache lines, due to poor data locality. There-
fore, there should not be prefetching of data for write
requests. We further investigate this phenomenon in Fig. 7.
When requests are popped out from the CAQ, the R bit is
checked. If the R bit is 0, implying that the requests merged
in the CAQ entry are all write requests, then the respective
requests are only pushed into the request queue. Otherwise,
the requests and associated C bit are also sent to the pre-
fetcher for further analysis.

4.2 Hot Bank Table

Besides the coalescer, we also design a hot bank table to
learn the frequently accessed banks in the 3D-stacked mem-
ory. The HBT is a lookup table with multiple entries. Each
entry corresponds to a specific bank, and the number of
entries is determined by the number of banks of a 3D-
stacked memory. For instance, a 4 GB HBM device has 16
banks per channel, thus it requires a 16-entry HBT per HBM
channel. An HBT entry consists of the bank ID, Hot bit (H),
and access counter. The bank ID is utilized as an index for
referencing the HBT. The Access Number field serves as a
counter that records the number of accesses to each bank.
Once a bank entry is referenced in the HBT, the access
counter is incremented by one to update the number of
accesses to the said bank. If the value stored in the access
counter reaches a defined hot-bank threshold, then the hot
bit (H) is set to 1. This indicates that the bank is frequently
accessed. Otherwise, the H bit remains 0.

4.2.1 Carry-Driven Update Method

Since a 3D-stacked memory device handles requests in pipe-
lining, we need to implement a pipelined HBT execution
model to hide latency. However, setting the H bit requires an
access counter accumulation as well as a comparison
between the threshold and the current number of bank
accesses. For each bank entry, this procedure induces a pipe-
line delay and the space overhead of a dedicated hardware
comparator. To accelerate the H bit updating logic and avoid
comparisons between the access counter and the threshold,
the HBT implements a carry-driven update method via a
hardware adder shared by all access counters.

As shown on the left of Fig. 5a, a 4-bit adder consists of
four full adders. Each adds two bits (i.e., Ay and By, A; and

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 839

By, etc.) with the carry bit from the previous full adder.
Larger adders are trivially obtained by cascading more full
adders. Since a n-bit binary number represents values from
0 to 2" — 1, if we set the HBT threshold value to 2" (n is a
non-negative integer) and enable n full adders to complete
the n-bit addition, then we can leverage the final output
carry bit to indicate the hot banks.

For instance, if the threshold is 256 and the number of
accesses to bank 0x3 is 255, then the threshold will be
reached at the next access to such a bank, as illustrated on
the right of Fig. 5b. Since the threshold (256) is equal to 2°,
only 8 bits are needed to perform the add operation. When
the next access to the bank 0x3 happens, the output binary
sequence of the adder becomes “1 0000 0000”. The carry bit
(1) is stored into the H bit and the remaining sum bits are
written back to the access counter. In this way, bank 0x3 is
identified as a hot bank without any redundant compari-
sons between the threshold and access counter, thus simpli-
fying the logic of the H bit update and minimizing the
associated latency. Once a bank is recognized as a hotspot
(i.e., H bit = 1), the accumulation of the associated access
counter will be temporarily suspended to save energy until
the next epoch.

4.3 Hotspot Prefetcher
4.3.1 Bank Bitmap

Since, at each epoch, H bits of the HBT are reset, we
designed a bank bitmap data structure to buffer the bank
status. As shown in Fig. 5c, each bank ID corresponds to a
single bit in the bank bitmap. 1 and 0 respectively stand for
hot and cold. The prefetcher first takes the requested bank
as the index to obtain the corresponding H bit in the bank
bitmap. The H bit value is then routed to a logic OR gate,
together with the C bit of an aggregated request. Meantime,
the prefetcher inquires whether the requested row is cached
in the prefetch buffer. As discussed in Section 3.4, since the
prefetcher employs hardware hashing functions to check
the address of a prefetch buffer entry without touching the
buffered data, the inquiries from the prefetcher will not
delay normal accesses to the prefetch buffer. Return values
0 and 1 stand for hit and miss, respectively. Subsequently,
the OR gate output becomes the input of a logic AND gate
with the return value from the prefetch buffer. An AND
gate output of 1 will enable prefetching.

4.3.2 Prefetch Bit

We also introduce a prefetch bit to hold the AND gate out-
put and help the vault/channel controller to distinguish
prefetch requests from common load/store operations. To
minimize space overhead, we add a prefetch bit in the phys-
ical address of the request itself to identify the requests for
prefetching. Since the minimum granularity of a request in
HMC and HBM are 16 Bytes and 32 Bytes, respectively, sev-
eral least significant bits of the request address are actually
ignored (4 bits in HMC and 5 bits in HBM). Therefore, we
define bit 0 of the physical address as the prefetch bit. In
this way, the hotspot prefetcher simply writes the prefetch
bit into the request address to trigger the prefetching. Since
cache lines are 64 Bytes in the majority of modern architec-
tures, the addresses of common read or write requests from

the last level cache are supposed to be 64 Bytes-aligned.
Hence, the unused 0~6 address bits will not collide with the
defined prefetch bit.

Given the aforementioned design and configuration, the
output of the AND gate is written into the prefetching bit
(bit 0) of the request address. If the prefetch bit is set, then
the address decoder in each vault/channel can recognize
the prefetch request and replace the size of memory opera-
tions with the row-buffer size. Once the bank access com-
pletes, the entire row is fetched into the prefetch buffer.

Fig. 5c illustrates a prefetcher example. Suppose a
request from the CAQ targets bank 2. Thus, the H bit of
bank 2 is delivered to the OR gate. If bank 2 is recognized as
a hot bank (bitmap[2] = 1), then the OR gate outputs 1,
regardless of the C bit value of the read request from the
CAQ. If the requested row is not found in the prefetch
buffer, then the two input bits of the AND gate are both 1.
Thus, the AND gate sets the prefetch bit in the request
address to 1, and a prefetch request is dispatched.

The HAM design also supports atomic operations. On
the CPU side, if an atomic operation does not hit the multi-
level data caches, then the memory request size is still iden-
tical to the cache line size. Hence, this will not affect the
logic of the Prefetch Indicator. On the memory side, the
8B~16B in-memory atomic operations supported in HMC
also ignore the address bits 0~2 as well.

With the standard HMC controller, we can leverage one
of the unused bits in the request packet header, such as the
bits 58~60. In HBM, however, the implementation may
vary, due to different protocols in memory controllers from
different vendors (Open-Silicon, Xilinx, etc.).

4.4 Latency Analysis

We employ a pipelined execution model to hide HAM
latency. As discussed in Section 4.2.1, we avoid redundant
comparisons and overlap the access counter accumulation
with the H bit updates through the carry-driven method.
The HBT pipeline implements two stages: bank entry
lookup, and H bit update. Similarly, the CAQ operates with
a 3-stage pipeline, which includes the row number compari-
sons, the request merging, and the C/R bits update. Consid-
ering the high number of memory accesses produced by
data-intensive workloads and the frequency gap between
the processor and the 3D-stacked memory, we can easily
saturate the request queue and keep the HAM pipeline
busy. Since a coalesced request inserted into the request
queue is simultaneously dispatched to the prefetcher by the
CAQ, we can further hide the latency of prefetching if we
have enough request queue entries. Given a default 64-entry
request queue and a latency of 2 ns for accessing the pre-
fetch buffer, the aggregated requests from the CAQ need at
least 128 ns to approach the prefetch buffer through the
pipelined memory access model. In this scenario, consider-
ing the average HMC access latency of 93 ns [22], [28], the
prefetching latency can also be perfectly hidden, if no bank
conflict occurs.

Additionally, by employing a hit-first scheduling policy,
each vault controller can still significantly reduce the cost of
subsequent accesses hitting the same DRAM row, also in
case of a prefetch request delayed by bank conflicts.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

840

-

Hot Banks wesss

z =3 w
I =

= o
b

Benchmarks

Cold Banks =

z =
ERE

Benchmarks

(%),

=
o

Row Hi_‘t Rate
i =

E = = 52 31
Row Hit Rate (%)

S w 2 o s

144 _

o
> e

131
n e

=

4555 _
TONALS —

wilsaia |
TDINALS
vyLSANg

Fig. 6. Row hit rate in hot/cold banks.

4.5 Page Policy

The page policy manages the row buffers of each DRAM
bank in the memory device. This directly influences the row
hit rate and the cost of row misses. For instance, if a row
miss occurs at one bank with the open-page policy, then the
latency of writing data back to the currently opened row (if
write requests are performed), precharging the current row,
and activating a new row, will induce longer delay for the
following row accesses, when compared with the closed-
page policy that automatically precharges a row after each
bank access. Therefore, to enable HAM, we need to design
an appropriate page policy for the 3D-stacked memory.

Driven by this motivation, we tested the open-page policy
and measured the average row hit rate in both hot and cold
banks in HMC. As shown in Fig. 6, on average, only 0.2911
percent of the requests hit rows in hotspots. This implies that
HAM fetched the majority of frequently accessed rows into
the prefetch buffer. In this case, the probability of reusing
prefetched rows in the DRAM banks becomes extremely
low. At the opposite of the case with hot banks, we observe
much higher row-hit rates for requests falling into the cold
banks across each test suite. Nevertheless, row misses (86.51
percent) still dominate accesses to cold memory spots for
each data intensive workload in out benchmark set.

Basing on these observations, we employ the closed-page
policy with HAM to eliminate the overhead induced by row
buffer misses. As discussed in Section 2.1, the standard
HMC configuration also employs a closed-page policy.

5 EXPERIMENTAL EVALUATION

5.1 Simulation Infrastructure
We implemented and simulated the HAM infrastructure on
embedded RISC-V cores with the RISC-V RV64IMAFDC
instruction set. We first extended the RISC-V Spike simulator
to trace raw memory requests from multiple cores and to
record the latency of the execution pipeline as well as of the
cache hierarchy. We then implemented the pipelined HAM
80r Write
70

|
60

50
400
30!
¥ 20
210
< i
» o
n a

Overall w—

ation Rate (%)

S4Y —

dd
n
4d

————————
Y —
dSSS —

el ke

N35¥YdS
0SS |
TONILS —

VHLSAND -

Benchmarks

Fig. 7. Aggregation rate (CAQ = 32).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

TABLE 1

Simulation Environment Configurations
Parameters Value
ISA RV64IMAFDC
Core 8 Cores, 2 GHz
Cache 8-Way, (16KB) L1, (8MB) L2
CAQ Entries 32
Request Queue Entries 64
Threshold 32
Epoch 8192
Prefetch Buffer Direct-Mapped, 256KB/Quad
HMC 4 Links, 4GB, 256B Row
Avg. HMC Access Latency 93 ns

design and connected it with the Spike simulator to process
raw requests along the following steps. First, the row num-
ber of each raw request is compared with all CAQ entries to
perform request aggregation. Then, the CAQ forwards the
aggregated requests to the request queue and the hotspot
prefetcher, which issues the prefetch requests if needed. Our
simulation infrastructure then routes the coalesced requests
to a cycle-accurate 3D-stacked memory simulator, HMC-Sim
3.0 [29], to obtain data/responses from the 3D-stacked mem-
ory. This also allows us to gather statistics related to latency
and power consumption of the memory system. Finally, the
simulation infrastructure serves LLC misses once it receives
data/responses from the 3D-stacked memory.

5.2 Benchmarks and Environment

To evaluate the efficacy of HAM, we selected 12 bench-
marks that well represent both dense (aligned) and sparse
(random) memory access patterns typical in data-intensive
applications, including scientific (physical) simulations,
core numerical solvers, and analytics workloads. The bench-
mark suite includes the Rodinia Benchmarks, Dijkstra
Benchmark, Adept Kernel OMP Benchmarks, SSCAv2, Bar-
celona OpenMP Tasks Suite (BOTS), NAS Parallel Bench-
marks (NAS-PB), and GAP Benchmark Suite (GAPBS) [30],
[31], [32], [33], [34], [35].

We compiled the aforementioned benchmark set with the
RISC-V GCC 7.1 cross compiler and tested it on the RISC-V
Linux image based on the extended RISC-V Spike simula-
tor. We set the HBT threshold value at 32, derived from
dividing the epoch (8192) by the total number of banks (256)
in HMC. This represents the ideal case where memory
accesses are evenly distributed to each DRAM bank. We fur-
ther analyze the impacts of threshold value upon the HBT in
Section 5.3.2 to justify our configuration. As discussed in
Section 4.5, we employ the closed-page policy as the baseline
implementation for the 3D-stacked memory. Table 1 shows
the detailed parameter set of the simulation environment.

5.3 Results and Analysis
5.3.1 Request Aggregation

To quantify the efficacy of request aggregation, we first
define a metric named aggregation rate to represent the

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 841

a0 4 CAQ=16 s CAQ=064
CAQ=8 wem CAQ=32 mem—m

=60

555J1L]1[[LJ]

Benchmarks

vdLSANa
N3syvds
ZAYISS
L33
TINILS

Fig. 8. Aggregation Rate.

proportion of reduced requests, as derived from:

Aggregated Rqsts
Total Rgsts

Aggregation Rate = (1)

By measuring the number of total input raw requests and
the number of aggregated requests popped out from the
CAQ, we derive the aggregation rate of different memory
operations for each benchmark. As reported in Fig. 7, the
majority of aggregated requests in the CAQ are read
requests. These achieve an average aggregation rate of 34.45
percent. Only 3.29 percent of the write requests fall into the
same DRAM row. This observation validates the design of
our request aggregation model, discussed in Section 4.1. It
should be noted that write operations from the CPU directly
write to data caches. Write cache misses will issue load
operations to the main memory and write operations are
completed once the required data is loaded into the cache.
As a result, write operations to the main memory are write-
back operations from the last-level cache (LLC). Since write-
back requests triggered by evicting dirty cache blocks
exhibit very limited data locality, optimizations such as pre-
fetching should only be applied to read requests. Overall,
HAM aggregates 37.52 percent requests on average via the
CAQ. This largely eliminates the redundant memory
accesses and the associated power consumption for queuing
requests in the 3D-stacked memory.

We also investigate the impact of the CAQ size on the
aggregation rate. Fig. 8 shows an increase in aggregation
rate, from 8.24 to 40.13 percent, as the number of CAQ
entries grows. However, this does not necessarily imply
that the CAQ should be as large as possible. Fig. 8 shows
that there is a diminishing return as the number of CAQ
entries doubles. As the number of CAQ entries increase to
8, 16, 32, and 64, the aggregation rate increases by 43.41,
15.91, 8.64, and 6.96 percent, respectively.

Considering the tradeoff between space overhead and
aggregation rate, we select the 32-entry CAQ as the configu-
ration of HAM for the rest of the experimental evaluation.

By combining requests directed to the same DRAM row,
request aggregation potentially reduces the frequency of
request reordering in each vault controller of the HMC and
its associated latency. Thus, we further measure the reduc-
tion in request reorderings, and compare it to the baseline
HMC with the open-page mode. In both cases, we use a hit-
first scheduling policy. As illustrated in Fig. 9, HAM
removes in total 0.78 billion of request reorderings, and
65 million on average. Overall, each benchmark presents
a considerably lower amount of request reorderings,

1010
1u°|
10°
107

H msI
S104
103
10°
10}
100.

B 3 S 3 E 3 2
nv‘ | =

TAYISS
d555
TINILS

VHLSAHO
RERY. L

Benchmarks

Fig. 9. Reduced request reordering.

(¥
»

()

Ngrmalized Hit Rate
e
=

Rz e
b

2 £ 3 3
q = =

WHLSHNG
M3SYVdS
ZAYISS
dS85
TDINILS

Benchmarks

Fig. 10. Prefetch buffer hit rate.

translating into a reduction of the latency of the memory
accesses in each vault.

5.3.2 Prefetching

In this section, we further investigate the efficacy of the hot-
spot prefetcher. To compare performance, beside HAM
(which includes both CAQ and HBT) we further imple-
mented 3 additional prefetching schemes. The baseline
scheme (BASE) implements a memory-side streaming pre-
fetcher that loads the entire row (256B) into the prefetch
buffer if a miss occurs. The second scheme, which only uses
the CAQ (no HBT), prefetches a row if it is requested by
two or more read requests in the CAQ. The third scheme,
instead, only uses the HBT (no CAQ) to prefetch data resid-
ing in the hot banks.

We first record and compare the hit rates of the prefetch
buffer for each benchmark, as shown in Fig. 10. HAM
exhibits the highest hit rate (61.21 percent) for the prefetch
buffer, achieving an average of 4.19X improvement com-
pared with the baseline case. Only using the CAQ or the
HBT improves the hit rates by 2.41X and 3.40X, respec-
tively. Notably, the CAQ scheme outperforms the HBT
scheme for benchmarks with better data locality, such as
BP (Back Propagation), PF (Particle Filter), Stencil, etc. The
HBT scheme, instead, provides better performance when
executing applications with very limited row locality
between adjacent request streams, such as BC (Between-
ness Centrality), BFS (Breadth-First Search), SSSP (Single-
Source Shortest Paths), etc.

Next, we measure the reduction of redundant prefetch
requests in comparison with the BASE scenario to study the
prefetching efficiency. As plotted in Fig. 11, CAQ, HBT and
HAM reduce prefetch requests in average by 80.81, 68.82, and
61.37 percent, respectively. This observation implies that the
HAM issues more prefetch requests as compared to the CAQ
and HBT. However, this does not indicate that HAM gener-
ates more redundant data transactions. Compared with CAQ,
HAM provides a prefetch buffer hit rate 18.11 percent higher

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

842

cAQ HET mss HAM m—

Proportion (%)

05288888388

da

g g
n wi

TAYISS
d555
TINILS

VHLSANa
N3sHYds

Benchmarks

n - = ®
J & % =2
Benchmarks

3

Fig. 11. Prefetching reduction.

= 60
2 50
] 40'
§' 30
& 20l
10
d
A3 2

Fig. 12. Row conflict reductions.

]

zayoss I
dsss
TONILS

VHLSH(

16 mems 64—
32 mmmm 128 w—

= 3 3
c w @

Benchmarks

Y

Normalized Hit R
o200 e
D Py B Oh 00 b P
O e

SO
O |
TS | —
dSSS P——
TONILS |—

VHLSNNG
M3SYvds

Fig. 13. Prefetch buffer hit rate.

by using 19.44 percent more prefetch requests. This is a rea-
sonable trade-off between performance and overhead.

Although we employ the closed-page policy as the base-
line for the evaluation, HAM is additionally capable of opti-
mizing the 3D-stacked memory with an open-page policy.
As shown in Fig. 12, we also measure the reduction in row
conflicts that HAM provides when using the open-page pol-
icy. In comparison with the standard open-page policy,
HAM dramatically reduces the row conflicts across each
test. DIJKSTRA, FFT (Fast Fourier Transform), and PF
shows the highest reduction, with over 90 percent fewer
row-conflicts. On average, HAM removes approximately
75.11 percent of the row conflicts, significantly boosting the
overall performance by eliminating redundant delays
between DRAM accesses.

We also analyze the effects of various thresholds on the
HBT. As discussed in Section 4.2.1, the carry-driven update
model requires to set the value of the threshold to a power
of two. We evaluate the effects of six thresholds from 4 to
128. Since the threshold value only impacts the HBT, we
measure the prefetch buffer hit rate only using HBT (the
third scheme), removing any performance impacts of CAQ.

We consider the threshold of 4 as the baseline and derive
the normalized hit rates as shown in Fig. 13. We can observe
that the hit rate increases as the HBT threshold increases
from 4 to 32 for the majority of the workloads. On average,
the HBT threshold value of 32 provides an improvement of
30.67 percent with respect to the baseline and achieve the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

zln

4
28 4
6
22
@ 3
]
:21
S
=Y
B 2 8
b

Fig. 14. Avg. hot banks.

16 memm 64 mmmm
32 s 125 w——

Il

16 w64 m—

38 2 3

ZAYISS

TDNILS

Benchmarks

viLsana
M3SHVAS

-
Y

A
1.2 32 mems 125 m——
LI
= 1
§ Y
ED.B:-
;0_5}
HO.4
"B
E0.2
o |
Z 0
B 2 %8 8 3 E R 2 % 8 4 1
R 89z
w =
E Benchmarks = & 2
b [

Fig. 15. Prefetch count.

peak hit rate. We also observe a rapid decline of the hit rate
when the threshold further increases from 32 to 128. This
decrease depends on the fact that the larger threshold cap-
tures fewer hot banks.

To validate this assumption, we also test each workload
with different HBT thresholds and derive the average num-
ber of hot banks for each epoch. As presented in Fig. 14, we
observe a downward trend from 241.56 to 1.25 of the average
number of hot banks per epoch, as the threshold progres-
sively increases from 4 to 128. With a total of 256 banks, a
threshold of 4 results in 94.36 percent of the DRAM banks set
as hot by the HBT. This behavior can be simply explained
with the fact that, if the threshold is too low, then all banks
are considered hot and every memory request can then trig-
ger prefetching, resulting in the thrashing of the prefetch
buffer. At the opposite, a threshold too high does not allow
to identify any potential hot bank, thus not triggering any
prefetching. We can also verify this behavior by checking the
number of prefetch requests. To this end, we record the num-
ber of prefetch requests for each possible threshold value,
still considering 4 as the baseline. As shown in Fig. 15, as the
threshold increases from 4 to 128, the number of prefetch
requests reduces in average by 91.87 percent.

In general, a threshold value of 32 achieves the peak hit
rate (30.67 percent higher than the baseline), and reduces
the number of prefetch requests by 39.43 percent with
respect to the baseline, therefore justifying its choice. As dis-
cussed in Section 5.2, this threshold value is derived by
dividing the epoch by the total number of banks, consider-
ing the ideal case where memory accesses are evenly dis-
tributed to each DRAM bank. We expect this heuristic for
setting the threshold to hold with longer epochs and/or
higher number of banks.

5.3.3 Hotspot Distribution

In this section, we analyze the memory hotspot distribution
of the tested applications. First, we randomly select an
epoch during the runtime and record the number of

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 843

60
50
40
30
20

0 2 4 6 8 101214 16 18 20 22 24 26 28 30
Vault

Bank
L T T R]

Fig. 16. BC heatmap.

60
50
a0
30

20

7
6
1!
4
i.m
2
1 i B 1N

0 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
Vault

10

Fig. 17. BFS heatmap.

: i L
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Vault

Fig. 18. BP heatmap.
- - 55

£ J 50
6 45
[40

0 2 4 6 8 101214 16 18 20 22 24 26 28 30
Vault

Bank
- N W B

Fig. 19. Dijkstra heatmap.

accesses for each bank in the hot bank table. To visualize the
memory hotspot distribution, we plot the heatmap with a
2D layout of the DRAM banks in HMC for each benchmark
as presented in Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
and 27. In general, we observe distinct hotspots for each
tested benchmark within the considered epoch. For exam-
ple, Fig. 21 reports the memory heatmap of LU, showing
that banks 1, 3, 5 and 7 of vaults 16~32 are rarely accessed.
In contrast, the rest of the DRAM banks are more frequently
accessed. Overall, for LU, the number of accesses to each
bank varies from 1 to 58.

We can also see that for the other benchmarks (such as
BFS, PR (Page Rank), SparseLU, SSCA, SSSP and Stencil),
some hot DRAM banks are accessed 5 to 6 times more than
the cold ones during the selected epoch. These heatmaps
confirm that irregular applications may cause significant
imbalance in memory accesses.

. N 50
w i
40

Bank

7
6
5
4
3
2
1

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Vault

Fig. 20. FFT heatmap.

60
50
40

30

Bank

= N oW B oW B N

20

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Vault

Fig. 21. LU heatmap.

45
40
35

30

Bank

I T Y .

25

B 20

i ||

8 10 12 14 16 18 20 22 24 26 28 30
Vault

15

a § L1y
0 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30 9
Vauit

Fig. 23. PR heatmap.

60
50
40
30

Bank
O = N W s o N

= = L1y

0 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
Vault

Fig. 24. SparseLU heatmap.

It should be noted that the memory hotspots are caused
by the applications rather than the memory address map-
ping. Some data regions can be frequently accessed in the
program and thus result in memory hotspots. A good mem-
ory mapping can alleviate bank conflicts and split fre-
quently accessed data blocks into distinct DRAM rows.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

844

T .

R

Bank

=N W B oW O N
B
=1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 10
Vault

Fig. 25. SSCA heatmap.

1 mi |l.| InR
1 | I'mi g
i .

30

AW] 10
i 1[3[IH'III;IIH)

0 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
Vault

g

R W B W N

Fig. 26. SSSP heatmap.

Bank

L= R T T -
'
[=]

CNRSEDENCAN MONNREY mETEDC MW o

0 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
Vault

Fig. 27. Stencil heatmap.

However, hotspots cannot be simply eliminated by refining
the memory address mapping.

The vault-interleaved data mapping in HMC evenly dis-
tributes data along the sequence of bank 0 of vault 0, bank 0
of vault 1, bank 0 of vault 2, etc. This potentially mitigates
the formation of hotspots when applications perform data
accesses on easily partitionable data structures with regular
strides (e.g., dense matrices and tensors). Such vault-inter-
leaving in HMC can help alleviate the performance penalty
of hotspots as compared to the bank-interleaving in conven-
tional DDRx devices with large DRAM rows. However, this
data mapping cannot efficiently avoid hotspots with the
unpredictable, data-dependent and fine-grained memory
accesses patterns of irregular applications (e.g., graph ker-
nels, highly sparse matrices) as observed in Figs. 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, and 27, thus requiring more
refined hot-spot management approaches like HAM to opti-
mize the overall performance.

5.3.4 Communication

We also investigate if HAM can improve the communication
between processor and 3D-stacked memory by analyzing the
bandwidth utilization. Each HMC memory access couples a
pair of packets (request and response). Each packet contains
a header, a payload, and a tail [5]. Header and tail contain
control information, such as cyclic redundancy check, error
codes, request tag, etc. Every request or response packet has

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

25

BW. Saving (%)
=

144

m

4d

Ud
IMOSS
555
FINILS

[=]
=
in
q
=
=

M3suvds

Benchmarks

Fig. 28. Bandwidth saving.

16 Bytes of control information, thus a complete memory
transaction involves 32 Bytes of control overhead, regardless
of the data payload. For instance, an HMC request with 8
Bytes payload requires 40 Bytes of data movement in total,
implying that 80 percent of the bandwidth is wasted on trans-
ferring the control information. As a result, the large amount
of fine-grained raw requests in irregular workloads may lead
to a significant proportion of bandwidth wasted on control
overheads in the communication between CPU and 3D-
stacked memory device. Such overhead in communications
inevitably results in performance degradation, including
higher memory access latency, and increased power con-
sumption. Since the size of the headers and tails for each
request is fixed, issuing larger requests achieves higher band-
width utilization. Request aggregations and prefetching in
HAM can effectively reduce the redundant control overhead
for requests hitting the same DRAM row. We first measure
the number and size of transactions in a standard HMC
device and compare it with the traffic generated when res-
pectively employing CAQ, HBT, and HAM, to determine the
bandwidth saving between the host processor and the 3D-
stacked memory. As shown in Fig. 28, HAM improves HMC
bandwidth utilization by over 10 percent for 9 benchmarks.
In Particle Filter (PF), HAM even achieves a bandwidth utili-
zation improvement of 21.77 percent. Overall, CAQ, HBT
and HAM reduce redundant transactions in communications
with HMC across the tested workloads by 9.61, 8.47 and
12.68 percent, respectively. The measurements confirm that
HAM effectively increases bandwidth utilization of the 3D-
stacked memory, especially for memory-bound workloads.
Additionally, the 4-link connections employed between
HMC and host processor can achieve a peak bandwidth of
320 GB/s by issuing the largest request packets (256B) in
HMC [5], [21], [36]. However, since irregular workloads
exhibit sparse request distributions featuring limited spatial
locality, the majority of aggregated request sizes are 64B and
128B. As a result, the tested workloads achieve an average
peak bandwidth of 253.63 GB/s between HMC and CPU.

5.3.5 Space Overhead

As discussed in Section 4.2, each HBT entry consists of bank
ID, H bit, and access counter. Since each quadrant of a 4 GB
HMC has 64 banks, the bank ID segment occupies 6 bits per
HBT entry. Furthermore, we employ a 16-bit access counter
supporting up to 64K accesses, which is large enough for a
hot bank threshold of 32. Thus, each HBT entry requires a
23-bit buffer, including the H bit. In total, for a 256-bank
HMC device, only 0.72 KB are needed. Moving to CAQ,
each entry requires: 1 bit for the coalescing (C) bit, 1 bit for

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 845

I

Avg. Rgst per CAQ Entry
o a - : Y] w L

(= T -
c 7 =

Benchmarks

09
s49
49 I
valsano I
14
M13sdvds I
Zaydss I
4555
ToNaLs

Fig. 29. Avg. request/CAQ-entry.

the read (R) bit, 24 bits for the row ID, and a number of bits
to store the request information segments. The latter size
depends on the number of aggregated requests per CAQ
entry. In order to configure an appropriate size for the
request information segment, we measured the average
requests merged in each CAQ entry. As shown in Fig. 29,
on average each CAQ entry merges 1.74 requests across all
our benchmarks. Thus, we configure the request informa-
tion segment to hold up to 8 requests. Considering that each
request needs 20 bits, including a 2-bit operation (read/
write/atomic memory operation), a 2-bit block ID (as dis-
cussed in Section 4.1) and a 16-bit transaction tag support-
ing up to 64K requests on the fly, four CAQs (one per
quadrant) require the space of 2.91 KB in total. Since each
hotspot prefetcher also uses 64 bits for the bank bitmap, the
overall buffer space required by HAM is 3.66 KB.

In addition, the space complexity of HAM is propor-
tional to the number of banks. Differently from previous hot
page replacement approaches, such as the one in [25]
(HPR), which implemented a counter for each TLB entry
and page table entry to detect hot pages [25], HAM has a
much lower buffer space overhead. Fig. 30 shows that, as
the memory size increases from 2 GB to 256 GB, the space
overhead of HPR rapidly increases from approximately 1.06
MB to 136 MB. However, the space overhead of HAM only
increases from 1.83 KB to 234 KB, i.e., HAM is up to 595.15
times smaller than HPR.

5.3.6 Performance

We measure and report the runtime statistics of the HMC
device for each benchmark to quantify the performance
improvements on the memory subsystem provided by
HAM. This analysis directly summarizes the overall
improvements (reduced latency, better bandwidth utiliza-
tion) provided by HAM for the communication between
host processor and 3D-stacked memory, as well as the com-
munication between logic die and DRAM dies in the 3D-
stacked memory device itself. First, we evaluate the baseline
case with the closed-page HMC device and the standard

ZJIJ.
2|s.
=218
Egla
J:ZID

anlll

Memory Size (GB)

Fig. 30. Space overhead comparison.

2 CAQ HET mems HAM S—

{11111

Benchmarks

Power Saving (%)
s 8 38 8

=

o

wuLsAia
NI3SYds
TAYISS
4555
TONILS

Fig. 31. Power saving.

HMC controller [5]. Then, we test each benchmark with
CAQ, HBT, and HAM respectively, to quantify the corre-
sponding performance gain with respect to the baseline. As
confirmed by Fig. 32, we observe significant performance
improvements for all the memory-bound benchmarks. On
average, CAQ, HBT, and HAM provide memory perfor-
mance improvements of 16.29, 14.51 and 21.81 percent,
respectively. The best performance improvements, 31.72
and 32.33 percent, are recorded for PF and Stencil, respec-
tively. These results confirm the effectiveness of the HAM
design for 3D-stacked memories.

5.3.7 Power Saving

We investigate the power saving provided by HAM for 3D-
stacked memory devices. We first measure the power con-
sumption of a standard HMC device with each benchmark
to obtain the baseline costs. Then, we enable CAQ, HBT and
HAM, respectively, comparing the measured power con-
sumption to the base case and deriving the power saving. On
average, CAQ, HBT and HAM reduce power consumption
by 25.57, 24.34 and 35.07 percent, respectively, as observed
in Fig. 31. Overall, HAM provides up to 56.41 percent power
savings on all the tested benchmarks with irregular behav-
iors. Improvements in power consumption also are are a
direct consequence of the improvements in communication
efficiency between host processor and 3D-stacked memory
and within the 3D-stacked memory device itself.

6 RELATED WORK

6.1 Aggregation

Request aggregation is a technique that buffers, reorders,
and then combines many small requests into a lower num-
ber of large requests [37]. Request aggregation is widely uti-
lized in modern single-instruction multiple-data (SIMD)

CAQ HET m— HAM —

g 35

£ 30]

=

‘= 25

(&}

o 20

=

£15

§ 10|

"5 5

a o

A F B g 3 E % 2 % 8 &2 3
123 = > - z
4 2 £z A
f= = ™~ F
[=
Benchmarks

Fig. 32. Performance improvement.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

846

architectures to improve memory bandwidth utiliza-
tion [38]. In GPUs, a memory coalescer is responsible for
combining memory accesses to the same cache line made by
multiple threads in a warp [39]. In addition to aggregated
cache accesses, many out-of-order processors employ non-
blocking caches and merge data requests for cache misses
on the same cache line through the Miss Status Holding
Registers (MSHRs) [37], [40].

However, the maximum bandwidth for 3D-stacked
memory devices (such as HMC) is achieved with transac-
tions that employ large request packets (e.g., 128B or 256B)
rather than small ones (e.g., 32B or 64B) [21], [36]. Cache-
line based coalescing methodologies only produce requests
at cache-line size, which in current architectures are signifi-
cantly smaller than the requests in a 3D-stacked memory
device, and therefore are not sufficient to reach the peak
throughput of such devices [37], [39], [41]. Hence, other coa-
lescing mechanisms, such as the one provided by HAM, are
required.

6.2 Prefetching

Prefetching is a widely utilized technique that predicts and
fetches the data before it is accessed to reduce memory
access latency. Traditional core-side prefetchers residing in
the processor preload data into the cache or stream buffers
to efficiently serve upcoming memory requests by exploit-
ing a predictor [15], [16]. Existing prefetching techniques
such as stride prefetching [42], stream buffers [43], etc.,
have been proven to improve performance of workloads
with regular memory access patterns. There are some efforts
exploring prefetching for irregular memory access pat-
terns [18], [44] that leverage the correlation between data
accesses. However, core-side prefetching [18], [44] utilizes a
significant amount of bandwidth between processor and
memory devices. Moreover, mispredicted prefetching
causes unnecessary evictions of cache lines or stream buf-
fers, inducing higher latency. Data-intensive applications
with irregular memory accesses leave most data loaded in a
cache line untouched when the line is evicted [18], leading
to “cache-trashing” effects. Cache-trashing, in turn, leads to
redundant data transactions between memory and core,
wasting memory bandwidth and power.

HAM implements memory-side prefetching, improving
utilization of the bandwidth between memory device and
processor, and lowering power consumption by removing
redundant memory transactions. By placing prefetchers
inside the memory devices, the prefetched data remains in
the memory controller, and they are only delivered to the
core-side cache on demand [45]. Because the memory con-
troller is aware of detailed memory mappings, internal bank
states, request scheduling, queuing states, etc., these infor-
mation can be further exploited to optimize prefetching.

6.3 3D-Stacked Memory

3D-stacked memory provides more opportunities for the
optimization of the communication in the memory device
itself than traditional DDRx devices. As discussed in Sec-
tion 2.1, 3D-stacked memory devices (HBM/HMC) employ
narrow rows that bring fewer data into the sense amplifiers
compared to DDRx devices. This makes prefeching an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

entire row less wasteful than in a DDRx memory device,
and more suitable for the irregular access patterns of data-
intensive workloads that may only require a single memory
word of the whole row. At the same time, this feature (as
previously shown in Fig. 2) provides additional opportuni-
ties to optimize the behaviors of a 3D-stacked memory
device with irregular workloads.

While the logic die of a 3D stacked memory with current
fabrication constraints cannot really implement entire high-
performance cores, it can definitely provide enough area
and a sufficient thermal envelope to accommodate some
additional components as part of the actual memory con-
troller that can further optimize access to the DRAM dies on
top and communication with the actual processor die
(through links either on the same substrate, or on a conven-
tional printed circuit board).

The Through Silicon Vias (TSVs) among logic die and
DRAM dies in the 3D-stacked memory provide bandwidth
in abundance, allowing to efficiently perform memory-side
prefetching without consuming link bandwidth, which in
turn remains available to the processor for other useful
memory operations.

However, there is little research exploring prefetching in
3D-stacked memory. Literature [11] proposed a prefetcher
in each vault for regular workloads, based on the frequency
of row-buffer conflicts in HMC. However, this is not effec-
tive when running data-intensive applications with poor
row locality. Compared with the quadrant-based prefetch-
ing in HAM that serves requests at the link side, private pre-
fetchers and vault-local caches require more power and do
not improve performance as much. For instance, requests
hitting the prefetch buffer still need to go through multiple
queues and require performing redundant data transactions
between the links and vaults to access the data from local
prefetch buffers. On the other hand, conventional in-mem-
ory prefetchers are not applicable to 3D-stacked memories,
due to the use of multiple parallel high-speed links between
the processor die and the stacked memory device. Employ-
ing these methods in a 3D-stacked memory would require
synchronization across distinct links, thus jeopardizing the
inherent memory-level parallelism.

7 CONCLUSION

In this work, we have introduced a novel hotspot-aware
manager (HAM) infrastructure and the associated method-
ologies for request aggregation, memory hotspot detection,
and prefetching. We designed HAM as near-memory com-
ponent added in the logic die of a 3D-stacked memory
device to solve, in particular, issues caused by data-inten-
sive applications with irregular memory access patterns.
While 3d-stacked memories today provide a considerable
increase in bandwidth and reduction in latency with respect
to conventional DDR devices, irregular memory access pat-
terns lead to a significant under-utilization of their addi-
tional capabilities, making the tradeoffs of density, speed,
and costs much less appealing than for other workloads. By
identifying memory hotspots, HAM allows to efficiently
prefetch hot DRAM rows or banks, while at the same time
enabling aggregation of requests hitting those rows or
banks. This improves performance, power efficiency, and

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: HAM: HOTSPOT-AWARE MANAGER FOR IMPROVING COMMUNICATIONS WITH 3D-STACKED MEMORY 847

increases bandwidth utilization, both inside the 3d-stacked
memory device and between the processor and the memory
device itself. Our evaluation shows that with HAM, on a set
of representative benchmarks for data-intensive applica-
tions, 37.52 percent of the requests are aggregated and 61.21
percent hit the prefetch buffer. On this benchmark set, on
average, HAM improves the overall memory system perfor-
mance by 21.81 percent and reduces the power consump-
tion by 35.07 percent with minimal modifications to a
standard 3D-stacked memory device. These improvements
are a direct consequence of the optimized communication
between host processor and 3D-stacked memory and within
the 3D-stacked memory itself enabled by HAM. These
results and observations confirm the impact of HAM on the
design of custom system architectures for the increasingly
important class of data-intensive applications.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant CCF-1409946, Grant CCF-1718336,
Grant OAC-1835892, Grant CNS-1817094, and Grant
CNS-1939140, and in part by the Pacific Northwest National
Laboratory’s High Performance Data Analytics (HPDA)
Program and Data-Model Convergence (DMC) Initiative.

REFERENCES

[1] R. Panda and L. K. John, “HALO: A hierarchical memory access
locality modeling technique for memory system explorations,” in
Proc. Int. Conf. Supercomput., 2018, pp. 118-128.

[2] S. Ainsworth and T. M. Jones, “Software prefetching for indirect
memory accesses,” in Proc. Int. Symp. Code Gener. Optim., 2013,
pp- 305-317.

[3] L. Schares et al., “A throughput-optimized optical network for
data-intensive computing,” IEEE Micro, vol. 34, no. 5, pp. 52-63,
Sep./Oct. 2014.

[4] “JEDEC standard high bandwidth memory (HBM) DRAM
specification,” 2013. [Online]. Available: https:/ /www .jedec.org/
standards-documents/docs/jesd235a

[5] “Hybrid memory cube specification 2.1,” 2015. [Online]. Available:
https://www.hybridmemorycube.org/files/SiteDownloads/
HMC-30G-VSR_HMCC _Specification_Rev2.1_20151105.pdf

[6] S. Aga and S. Narayanasamy, “InvisiMem: Smart memory
defenses for memory bus Sside channel,” in Proc. ACM/IEEE 44th
Annu. Int. Symp. Comput. Archit., 2017, pp. 94-106.

[7]1 W.A.Wulf and S. A. McKee, “Hitting the memory wall: Implica-
tions of the obvious,” ACM SIGARCH Comput. Archit. News,
vol. 23, pp. 20-24, 1995.

[8] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data process-
ing for in-memory analytics frameworks,” in Proc. Int. Conf. Paral-
lel Archit. Compilation, 2015, pp. 113-124.

[9] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“GraphPIM: Enabling instruction-level PIM offloading in graph
computing frameworks,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2017, pp. 457—468.

[10] J. Huang, et al., “Active-routing: Compute on the way for near-
data processing,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit., 2019, pp. 674-686.

[11] M. M. Rafique and Z. Zhu, “Camps: Conflict-aware memory-side
prefetching scheme for hybrid memory cube,” in Proc. 47th Int.
Conf. Parallel Process., 2018, Art. no. 63.

[12] M. Islam, K. M. Kavi, M. Meswani, S. Banerjee, and N. Jayasena,
“HBM-resident prefetching for heterogeneous memory system,”
in Proc. Int. Conf. Archit. Comput. Syst., 2017, pp. 124-136.

[13] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and
D. A. Jiménez, “Perceptron-based prefetch filtering,” in Proc. 46th
Int. Symp. Comput. Archit., 2019, pp. 1-13.

[14] C. Ortega, V. Garcia, M. Moreto, M. Casas, and R. Rusitoru, “Data
prefetching on in-order processors,” in Proc. Int. Conf. High Per-
form. Comput. Simul., 2018, pp. 322-329.

[15] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB improve-
ments for chip multiprocessors: Inter-core cooperative prefetchers
and shared last-level TLBs,” ACM Trans. Archit. Code Optim., vol.
10,2013, Art. no. 2.

[16] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-
thread aware prefetching mechanisms for GPGPU applications,”
in Proc. 43rd Annu. IEEEJACM Int. Symp. Microarchit., 2010, pp.
213-224.

[17] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: A
DRAM page-mode scheduling policy for the many-core era,” in Proc.
44th Annu. IEEEJACM Int. Symp. Microarchit., 2011, pp. 24-35.

[18] X. Yu, C.J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect
memory prefetcher,” in Proc. 48th Annu. IEEEJACM Int. Symp.
Microarchit., 2015, pp. 178-190.

[19] X.Yu, C.]. Hughes, N. Satish, and S. Devadas., “IMP: Indirect mem-
ory prefetcher,” in Proc. 48th Int. Symp. Microarchit., 2015, pp. 178-190.

[20] N. Chatterjee, et al., “Architecting an energy-efficient dram system
for GPUs,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
2017, pp. 73-84.

[21] P. Rosenfeld, “Performance exploration of the hybrid memory
cube,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Maryland,
College Park, MD, 2014.

[22] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay,
S. Yalamanchili, and H. Kim, “Demystifying the characteristics of
3D-stacked memories: A case study for hybrid memory cube,” in
Proc. IEEE Int. Symp. Workload Characterization, 2017, pp. 66-75.

[23] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and]J. Owens,
“Memory access scheduling,” in Proc. 27th Annu. Int. Symp.
Comput. Archit., 2000, pp. 128-138.

[24] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu,
“The blacklisting memory scheduler: Balancing performance, fair-
ness and complexity,” 2015, arXiv:1504.00390.

[25] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous memory architectures: A HW/
SW approach for mixing die-stacked and off-package memories,”
in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit., 2015,
pp- 126-136.

[26] M. Ester et al., “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl.
Discovery Data Mining, 1996, pp. 226-231.

[27] “High Bandwidth Memory (HBM2) Interface Intel® FPGA IP
User Guide,” 2018. [Online]. Available: https:/ /www.intel.com/
content/dam/www /programmable/us/en/pdfs/literature/ug/
ug-20031.pdf

[28] M. Gokhale, S. Lloyd, and C. Macaraeg, “Hybrid memory cube per-
formance characterization on data-centric workloads,” in Proc. 5th
Workshop Irregular Appl., Architectures Algorithms, 2015, Art.no. 7.

[29] J. D. Leidel and Y. Chen, “HMC-Sim: A simulation framework for
hybrid memory cube devices,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops, 2014, pp. 1465-1474.

[30] S. Che et al, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44-54.

[31] U. Brandes, “A faster algorithm for betweenness centrality,” |.
Math. Sociol., vol. 25, pp. 163-177, 2001.

[32] N. J. et al, “Adept deliverable D2.3 - updated Rreport on
adept benchmarks,” 2015. [Online]. Available: http://www.
adept-project.eu/images/Deliverables/ Adept%20D2.3.pdf

[33] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona OpenMP tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in openmp,” in Proc. Int. Conf.
Parallel Process., 2009, pp. 124-131.

[34] D.H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS paral-
lel benchmark results,” in Proc. ACM/IEEE Conf. Supercomputing,
1992, pp. 386-393.

[35] S. Beamer, K. Asanovi¢, and D. Patterson, “The GAP benchmark
suite,” 2015, arXiv:1508.03619.

[36] R.Hadidi et al., “Performance implications of NoCs on 3D-stacked
memories: Insights from the hybrid memory cube,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., 2018, pp. 99-108.

[37] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory
access patterns to improve memory performance in data-parallel
architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1,
pp- 105-118, Jan. 2011.

[38] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonian, “Managing DRAM latency divergence in
irregular GPGPU applications,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2014, pp. 128-139.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
https://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf
http://www.adept-project.eu/images/Deliverables/Adept%20D2.3.pdf
http://www.adept-project.eu/images/Deliverables/Adept%20D2.3.pdf
http://www.adept-project.eu/images/Deliverables/Adept%20D2.3.pdf

848

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. Kloosterman, et al., “Warppool: Sharing requests with inter-
warp coalescing for throughput processors,” in Proc. 48th Annu.
IEEE/ACM Int. Symp. Microarchit., 2015, pp. 433-444.

N. Fauzia, L-N. Pouchet, and P. Sadayappan, “Characterizing
and enhancing global memory data coalescing on GPUs,” in Proc.
13th Annual. IEEE/ACM Int. Symp. Code Gener. Optim., 2015,
pp- 12-22.

S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimizing
memory access patterns for heterogeneous systems,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2011, pp. 1-11.

J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetch-
ing in scalar processors,” ACM SIGMICRO Newslett., vol. 12,
pp- 102-110, 1992.

N. P. Jouppi, “Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buf-
fers,” ACM SIGARCH Comput. Archit. News, vol. 18, pp. 364-373,
1990.

A. Jain and C. Lin, “Linearizing irregular memory accesses for
improved correlated prefetching,” in Proc. 46th Annu. IEEEJACM
Int. Symp. Microarchit., 2013, pp. 247-259.

P. Yedlapalli, J. Kotra, E. Kultursay, M. Kandemir, C. R. Das, and
A. Sivasubramaniam, “Meeting midway: Improving cmp perfor-
mance with memory-side prefetching,” in Proc. 22nd Int. Conf.
Parallel Architectures Compilation Techn., 2013, pp. 289-298.

Xi Wang received the MS and PhD degrees in
computer science from Texas Tech University, in
2016 and 2020, respectively, under the advise-
ment of Dr. Yong Chen and Dr. John D. Leidel. He
is a research scientist of the RISC-V International
Open Source (RIOS) Laboratory, Tsinghua Uni-
versity. His research interests include computer
architecture design, memory systems, data-
intensive computing, compilers, machine-learn-
ing based system optimizations, and parallel pro-
gramming models.

Antonino Tumeo (Senior Member, IEEE) received
the MS degree in informatic engineering and the
PhD degree in computer engineering from Politec-
nico di Milano in ltaly, in 2005 and 2009, respectively.
Since February 2011, he has been a research sci-
entist with the PNNL'’s High Performance Comput-
ing group. He Joined PNNL in 2009 as a post
doctoral research associate. Previously, he was a
post doctoral researcher at Politecnico di Milano.
His research interests are modeling and simulation
of high performance architectures, hardware-soft-
ware codesign, FPGA prototyping, and GPGPU
computing.

intensive computing,
co-design, and advanced compiler optimization techniques.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

" John D. Leidel received the PhD degree in com-

puter science from Texas Tech under the advise-
ment of Dr. Yong Chen. He is the founder and
chief scientist of Tactical Computing Laboratories
where he leads efforts in programming model,
compiler and algorithm research for advanced
computing architectures. He is also an adjunct
researcher with the Data Intensive Scalable Com-
puting Laboratory at Texas Tech University. His
research interests include programming model
exploitation of advanced architectures, data

domain specific languages for hardware

dJie Li received the MS degree from Texas Tech
University, in 2019. He is working toward the PhD
degree in computer science at Texas Tech Univer-
sity. His advisor is Dr. Yong Chen in Data-Intensive
Scalable Computing Laboratory (DISCL). His cur-
rent research interests include high-performance
computing (resource management & job schedul-
ing, power and Eenergy efficiency, system moni-
toring) and computer srchitecture.

Yong Chen is an associate professor and director
of the Data-Intensive Scalable Computing Labora-
tory, Computer Science Department, Texas Tech
University. He is also the site director of the NSF
Cloud and Autonomic Computing Center, Texas
Tech University. His research interests include
data-intensive computing, parallel and distribu-
ted computing, high-performance computing, and
cloud computing. For more information please
visit http://www.myweb.ttu.edu/yonchen/.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 01,2021 at 18:00:08 UTC from IEEE Xplore. Restrictions apply.

http://www.myweb.ttu.edu/yonchen

