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Structures of Spurious Local Minima in k-means
Wei Qian, Yuqian Zhang, Yudong Chen

Abstract—The k-means clustering problem concerns finding a
partition of the data points into k clusters such that the total
within-cluster squared distance is minimized. This optimization
objective is non-convex, and not everywhere differentiable. In
general, there exist spurious local solutions other than the global
optimum. Moreover, the simplest and most popular algorithm
for k-means, namely Lloyd’s algorithm, generally converges to
such spurious local solutions both in theory and in practice.
In this paper, we investigate the structures of these spurious
local solutions under a probabilistic generative model with k
ground truth clusters. As soon as k = 3, spurious local minima
provably exist, even for well-separated clusters. One such local
minimum puts two centers at one true cluster, and the third
center in the middle of the other two true clusters. We prove
that this is essentially the only type of spurious local minima
under a separation condition. In particular, any local minimum
solution only involves a configuration that puts multiple centers
at a true cluster, and one center in the middle of multiple true
clusters. Our results pertain to the k-means formulation for
mixtures of Gaussians or bounded distributions, and hold in
the over- and under-parametrization regimes where the number
of centers in k-means may not equal to the number of true
clusters. Our theoretical results corroborate existing empirical
observations and provide justification for popular heuristics for
k-means clustering.

Index Terms—k-means, Gaussian mixture, non-convex opti-
mization, spurious local minima, structured minima

I. INTRODUCTION

k-means clustering is one of the most fundamental problems
in unsupervised learning, with a wide range of applications
in multiple fields including machine learning, image analysis,
computer graphics and beyond; see the survey [1] and the
references therein. The k-means problem can be formulated as
follows: given n data points x1, . . . ,xn ∈ Rd, find k centers
β = (β1, . . . ,βk) ∈ Rd×k such that the following sum of
squared distances is minimized:1

Gn(β) :=

n∑
i=1

min
j∈[k]
‖xi − βj‖2, (1)
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1Another common way of formulating the k-means problem involves finding
a partition of the data points into k clusters such that the within-cluster sum of
squared distance is minimized. This partition-based formulation is equivalent to
the center-based formulation (1) used in this paper, as we show in Appendix A.

where ‖ · ‖ denotes the `2 norm. The k-means objective func-
tion (1) is non-convex: it involves the minimization of quadratic
functions and is symmetric with respect to permutation of
the indices of components of β. This optimization problem
is NP-hard in general [2, 3, 4]. It has been observed that
standard algorithms for k-means often converge to spurious
local solutions of (1) that are not globally optimal [5, 6].
Moreover, these local minima of k-means are prevalent in
practice [7, 8].

Recent theoretical work has made progress in understanding
the k-means and related clustering problems with two clusters.
In particular, if the data is generated from a balanced mixture of
two identical and spherical Gaussians, the work in [9, 10, 11]
effectively shows that there is no spurious local minima, and
that greedy algorithms such as the Lloyd’s algorithm and
Expectation-Maximization (EM) are guaranteed to converge to
a global minimizer from a random initialization. However, as
soon as there are more than two clusters, non-trivial spurious
local solutions do exist, even when the ground truth clusters are
well-separated and balanced. Worst yet, these spurious local
solutions may have objective values arbitrarily worse than the
global optimum, and randomly-initialized greedy algorithms
may provably converge to these local solutions with high
probability [12].

Despite the above negative results, not all hope is lost.
In this paper, we show that even with a general number of
clusters, a lot can be said about the structural properties of
these spurious local minima. In particular, under certain mixture
models, we prove that all spurious local minima of k-means
are well-behaved, in the sense that they possess the same type
of structure that partially recovers the global minimum. We
elaborate below.

A. Main Contributions

Consider the k-means problem under the following proba-
bilistic generative model. Let β∗1 , . . . ,β

∗
k ∈ Rd be k∗ distinct

unknown true cluster centers. For each s ∈ [k∗], let fs be
the density of a distribution with mean β∗s . Each data point
x ∈ Rd is sampled independently from a mixture f of these
k∗ distributions {fs}s∈[k∗], with the density

f(x) =
1

k∗

k∗∑
s=1

fs(x). (2)

If each fs is a Gaussian distribution centered at β∗s , the above
distribution becomes the (balanced/equally-weighted) Gaussian
Mixture Model (GMM). Under the generative model (2), we
consider the following population version of the k-means
objective function:

G(β) =

∫
min
j∈[k]
‖x− βj‖2f(x)dx



=
1

k∗

k∗∑
s=1

∫
min
j∈[k]
‖x− βj‖2fs(x)dx. (3)

The objective function above can be viewed as the infinite-
sample (n → ∞) limit of the empirical objective function
in equation (1). Note that this population objective is also
non-convex.

Below for simplicity we assume k = k∗, that is, the number
of fitted centers in the k-means formulation is the same as that
of the true mixture, though our theoretical results hold more
generally.

a) Existence of spurious local minima.: Under general
conditions, the ground truth centers β∗ = (β∗1 , . . . ,β

∗
k) ∈

Rd×k and any permutation thereof are (close to) a global
minimum of G; see Proposition 1. However, there exist
additional spurious local minima, even in the simple one-
dimensional setting with k = 3 clusters and when the densities
{fs}s∈[k] have bounded and disjoint supports. In particular, we
show that one spurious local minimum β = (β1,β2,β3) has
the following configuration:

β1 ≈ β2 ≈ β∗1 , β3 ≈
β∗2 + β∗3

2
. (4)

In words, this local solution uses two centers to fit one true
cluster, and the third center to fit the other two true clusters.
See Proposition 2 for details. A similar observation was made
in [12] for the log-likelihood objective function of Gaussian
mixtures.

b) Structures of spurious local minima.: The local solu-
tion in equation (4) involves disjoint many-fit-one and one-fit-
many associations. As our main result, we show that this is
essentially the only type of spurious local minima for k-means
under a separation condition:

Theorem (Informal). For well-separated mixture models, any
non-degenerate local minima β = (β1, . . . ,βk) of G only
involves the following configurations: (i) multiple centers
{βj} lie near a true cluster β∗s , and (ii) one center βj lies
near the mean of multiple true clusters {β∗s}. Moreover, the
configurations (i) and (ii) involve disjoint sets of βj’s and
β∗s ’s.

See Theorems 1 and 2 for the precise statement of this result.
In words, viewing a solution β as an assignment of the centers
{βj} for fitting the ground truth clusters, we show that a local
minimum β can only involve many-fit-one associations (case
(i) above) and one-fit-many associations (case (ii) above), and
each fitted center βj or true center β∗s only participates in
one of these associations. Any other solution β with many-fit-
many associations (or other configurations) cannot be a local
minimum.

We illustrate the above results in Figure 1 under a two-
dimensional GMM with 4 components. The top panels show
different candidate solutions of k-means. The ground-truth
centers are the only global minimum, as in Panel 1a. Panel 1b
shows a spurious local minimum, where the orange center fits
two clusters, and the blue and purple centers fit one cluster. In
Panel 1c, the blue and green centers together fit 3 clusters; in
Panel 1d, the blue and purple centers together fit 2 clusters.

These two solutions contain many-fit-many associations and
are not local minima.

For further verification, we run the Lloyd’s algorithm [13]
with the above four solutions as the initial solution. The
Lloyd’s algorithm is an iterative greedy method that alternates
between assigning each data point to its closest center and
updating the centers to be the means of the new clusters.
It can be viewed as a quasi-Newton algorithm applied to
the objective function (1) with a specific choice of step
size [14]. The bottom panels in Figure 1 show the trajectories
of intermediate solutions of Lloyd’s algorithm and the final
solutions they converge to. When initialized at a global or
local minimum, the algorithm stays at the initial solutions
as expected (Panels 2a and 2b). In Panel 2c, the algorithm
escapes from the initial solution, which is not a local minimum,
and then converges to the spurious local minimum plotted
in Panel 1b. In Panel 2d, the algorithm again escapes from
the initial solution and converges to the globally optimal
ground-truth solution plotted in Panel 1a.

To put the above results in context, we note that even
the existence (or the lack thereof) of spurious population
local minima in GMM, posted as an open problem in the
Conference on Learning Theory (COLT) 2007 [15], was not
rigorously resolved until recently [10, 11, 12]. As mentioned, in
general spurious local minima do exist [12], as demonstrated
by an example similar to that in equation (4). Our results
above provide a positive message in the context of the
k-means objective: all local minima partially recover the global
minimum, in the sense that they identify some of true cluster
centers and the means of the other true cluster centers. Again
see Panel 2b in Figure 1 for an illustration.

On the technical side, note that the k-means objective
function G is complicated due to the min operator in its
definition (3), and in particular is not everywhere differentiable.
Our analysis makes uses of a new technique based on analyzing
the Voronoi sets and boundaries associated with the min
operator as well as the directional derivatives of certain smooth
upper bounds of G. Doing so allows us to leverage both the first
and second order optimality conditions to deduce the structures
of a local minimum. We hope that this technique is useful for
studying other mixture and clustering problems.

B. Related Work
With a history of more than 50 years [13, 5], the k-means

problem has found broad applications in computer science,
astronomy, biology, social science and beyond. We refer to the
papers [16, 1] for a comprehensive survey of the work on this
problem.

Without additional assumptions on the data points, optimiz-
ing the k-means objective in (1) is NP-hard when the number of
components k is fixed [2] or when the dimension d is fixed [3].
Even finding a (1 + ε) approximation with varying (k, d) is
hard [4]. Progress has been made on designing constant-ratio
approximation algorithms; see, e.g., the results in [17, 18]
among many others.

Lloyd’s algorithm [13], often called the k-means algorithm,
is arguably the most popular method for the k-means problem.
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Figure 1. Top panels: Local minima and non-minima in GMM with 4 components. Solutions with many-fit-many configurations are not local minima. Bottom
panels: Trajectories of greedy algorithm when initialized at different solutions. The colored circles correspond to an initial configuration of β. Running the
Lloyd’s k-means algorithm from this initialization converges to a solution denoted by colored squares. The black lines correspond to the trajectory of the
intermediate iterates. The algorithm escapes from non-minima and converges to a global or local minimum.

In general, Lloyd’s algorithm is only guaranteed to converge
to a local minimum and is sensitive to initialization [19].
Moreover, it may take exponentially many steps to converge in
the worst case [20, 21]. Under certain probabilistic assumptions
of the data, several theoretical guarantees have been established
for the Lloyd’s algorithm [9, 22, 23]. In particular, the work
in [22] shows that under a separation condition of the clusters,
Lloyd’s algorithm can learn a mixture of Gaussians as well as a
mixture of bounded distributions, after (i) a dimension reduction
step via PCA and (ii) an initialization that has a constant-factor
approximation guarantee. There is also substantial work on
designing provably efficient initialization schemes for Lloyd’s
algorithm [24, 25]. Particularly relevant to us is the work
in [26], which considers over-parametrized k-means/EM (which
fits k∗ clusters using k > k∗ centers) equipped with extra
pruning steps. Interestingly, the fitted centers they try to prune
correspond to, in our language, many-fit-one associations (and
sometimes almost-empty associations as well; see our main
theorems). As Lloyd’s algorithm finds local minima of k-means,
our results can be used to characterize the structural properties
of the output of Lloyd’s. We emphasize that our results are in
fact more general, applicable to the general k-means objective
function (with or without over-parametrization) and hence not
tied to a specific algorithm.

A recent line of work also considers convex relaxation
methods for the k-means problem based on linear or semidef-
inite programming [27, 28, 29]. Theoretical guarantees have
been established on when the solution of the convex program
coincides with (or approximates) the global minimum of
k-means [30, 31, 32, 33].

The k-means objective function can be viewed as a “hard”
or limit version of the negative log-likelihood function for
the Gaussian Mixture Model (GMM); see Section II-B. As
such, our results are related to recent theoretical work on the
Expectation-Maximization (EM) algorithm [34], which is a
local/greedy algorithm for optimizing the likelihood function.

Positive results have been obtained on provable convergence of
EM under GMM with k = 2 components [35, 10, 11, 36, 37].
In particular, these results show that the negative log-likelihood
function has no spurious local minima for a balanced mixture
of two Gaussians with the same covariance matrix. However, in
more general mixture models, it has been proved that spurious
local minima do exist with high probability. Examples include
a mixture of k ≥ 3 equally weighted components [12], and a
mixture of k = 2 unequally weighted components with known
mixing weights [38].

II. PROBLEM SETUP

In this section, we introduce the statistical models for our
main results. Recall the mixture model in equation (2) with k∗

true clusters. We consider two concrete instantiations of this
model.

A. Ball Mixture
The first instantiation is a mixture of uniform distributions

on k∗ disjoint balls. For each u ∈ Rd, let Bu(r) denote the
Euclidean ball centered at u with radius r. As the true centers
{β∗s}s∈[k∗] and the radius r are fixed throughout this paper,
we use the shorthand Bs ≡ Bβ∗s (r) for brevity. We assume
that each data point x is sampled independently and uniformly
from one of k∗ disjoint balls centered at the true centers β∗s ;
that is, x ∼ unif (Bs) with probability 1

k∗ .
This model, sometimes called the Stochastic Ball Model [30],

is formally described below.

Definition 1 (Stochastic Ball Model). The Stochastic Ball
Model is the mixture (2) where each component has density

fs(x) =
1

Vol(Bs)
1Bs

(x), s ∈ [k∗].

Here Vol(T ) denotes the volume of a set T ⊆ Rd with
respect to the Lebesgue measure, and 1T is the indicator
function for the set T .
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B. Gaussian Mixture

The second instantiation is the (spherical) Gaussian mixture
model, where each data point x is sampled independently from
one of k∗ Gaussian distributions whose means are the true
centers {β∗s}; that is, x ∼ N (β∗s , σ

2I) with probability 1
k∗ . A

formal description of GMM is given below.

Definition 2 (Gaussian Mixture Model). The (spherical) Gaus-
sian Mixture Model is the mixture (2) where each component
has density

fs(x) =
1

(
√

2πσ)d
exp

(
−‖x− β

∗
s‖2

2σ2

)
, s ∈ [k∗].

We point out that the population negative likelihood function
of GMM (with a posited variance parameter τ2), namely2

Lτ (β) := −
∫

log

[ ∑
j∈[k]

exp

(
−‖x− βj‖

2

2τ2

)]
f(x)dx,

is closely related to the population k-means objective function
G defined in equation (3). As the log-sum-exp function
above is a form of soft maximum, Lτ can be viewed as
a smooth approximation of G. Moreover, as τ → 0, we
have 2τ2Lτ (β) → G(β) for each β. In other words, the
k-means objective function corresponds to the limit case of
the GMM log-likelihood function, and hence results for one
have immediate bearing upon the other.

C. Model Parameters

For both of the above models, we define the quantities

∆max := max
s 6=s′
‖β∗s − β∗s′‖,

∆min := min
s6=s′
‖β∗s − β∗s′‖,

which are the maximum and minimum pairwise separations
between the true centers. Accordingly, we introduce two
quantities measuring the Signal-to-Noise Ratios (SNR) of the
models. In particular, for the Stochastic Ball Model we define

ηmax :=
∆max

r
,

ηmin :=
∆min

r
,

which are the maximum and minimum separations normalized
by the radius of the balls. For the Gaussian Mixture Model,
we similarly define

ηmax :=
∆max

σ
√

min(k + k∗, d)
,

ηmin :=
∆min

σ
√

min(k + k∗, d)
.

Note the
√

min(k + k∗, d) factor in the denominators above.
This factor is the typical value of the norm of a random vector
from a d-dimensional standard Gaussian distribution when
projected to the (k + k∗)-dimensional subspace spanned by
the true and fitted centers {β∗s}s∈[k∗] and {βi}i∈[k].

2Here we ignore a constant additive term that is independent of the variable
β.

The above models are sometimes said to be well-separated
if ηmin = Ω(1) [12]. Also note that the ratio ηmax

ηmin
∈ [1,∞)

measures how evenly-spaced the true centers are. This ratio is
close to 1 when the true centers are approximately equidistant
to each other.

D. Voronoi sets

Each candidate solution β = (β1, . . . ,βk) of the k-means
problem induces a Voronoi diagram, namely, a partition of the
space Rd based on proximity to the βs’s. The Voronoi diagram
plays a crucial role in understanding the k-means objective (3),
which is defined by the quantity minj∈[k] ‖x−βj‖, the distance
of a point x to its closest center. Here we review some basic
concepts related to Voronoi diagrams, which are useful for
future development.

Given a set of k centers β = (β1, . . . ,βk) ∈ Rd×k in Rd,
let Vi(β) be the region consisting of points that are closer
to βi than to any other center βj , j 6= i. Formally, for each
i ∈ [k] we define

Vi(β) :=
{
x ∈ Rd : ‖x− βi‖ ≤ ‖x− βj‖,∀j 6= i

}
. (5)

We call each Vi(β) the Voronoi set associated with βi. The
Voronoi diagram of β is the collection of the Voronoi sets,
that is, V(β) := {Vi(β) : i ∈ [k]}. Note that each Voronoi set
is a polyhedron in Rd with at most k − 1 facets,3 as we can
rewrite the definition in equation (5) as

Vi(β) =
{
x ∈ Rd :2〈βj − βi,x〉 ≤ ‖βj‖2 − ‖βi‖2,

∀j 6= i, j ∈ [k]
}
.

In addition, for each index pair (i, j) with i 6= j, we define the
Voronoi boundary ∂i,j(β) as the intersection of the Voronoi
sets associated with βi and βj ; that is,

∂i,j(β) := Vi(β) ∩ Vi(β) =
{
x : ‖x− βi‖ = ‖x− βj‖

}
.

Note that ∂i,j(β) is the set of points with equal distance to βi
and βj . If ∂i,j(β) has dimension d− 1, we say that Vi(β) is
adjacent to Vj(β), written as Vi(β) ∼ Vj(β). In this case, the
two Voronoi sets Vi(β) and Vj(β) intersect at a common (full
dimensional) facet of the two polyhedra. We use the notation
∂(β) := {∂i,j(β) : Vi(β) ∼ Vj(β)} to denote the collection
of the Voronoi boundaries of adjacent Voronoi sets.

III. MAIN RESULTS

In this section, we present our main theoretical results on
the structures of the local minima of the population k-means
objective G defined in equation (3). In what follows, we use P
to denote the probability measure with respect to f , the density
of the ground truth mixture. Similarly, for each s ∈ [k∗], we
use Ps to denote the probability measure with respect to fs,
the density of the s-th component of the ground truth mixture.

3A facet is a (d− 1) dimensional face of a d-dimensional polyhedron.
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Figure 2. One-dimensional Stochastic Ball Model with radius r < 0.4 and
ground truth cluster centers β∗ = (−2, 0, 2). The solution β = (−2 −
r
2
,−2 + r

2
, 1) is a spurious local minimum.

A. Stochastic Ball Model

Consider the Stochastic Ball Model in Definition 1. We first
state two simple results concerning the global and local minima
of the k-means objective G. The first proposition, proved in
Appendix A, states that the ground truth centers is the only
global minimum of G.

Proposition 1 (Ground truth is global minimum). Under
the Stochastic Ball Model with k∗ = k ≥ 1 and β∗ =
(β∗1 ,β

∗
2 , . . . ,β

∗
k) ∈ Rd×k. if ηmin ≥ 6

√
k, then the true centers

β∗ (up to permutation of its k components) is the unique global
minimum of G.

The next proposition, proved in Appendix A, states that in
general G has a spurious local minimum that is not a global
minimum. An illustration is given in Figure 2.

Proposition 2 (Existence of spurious local minima). Consider
the Stochastic Ball Model in one dimension with k∗ = k = 3
and β∗ = (β∗1 , β

∗
2 , β
∗
3) ∈ R1×3 with β∗1 = −2, β∗2 = 0,

β∗3 = 2, where each ground truth ball/interval has radius r.
When r < 0.4 or equivalently ηmin > 5, the solution β =
(β1, β2, β3) ∈ R1×3 with β1 = −2 − r

2 , β2 = −2 + r
2 and

β3 = 1 is a local minimum of G.

Proposition 2 is similar in spirit to the results in the work [12],
which proves the existence of spurious local minima for the
log-likelihood function of a Gaussian mixture. We note that
their results are established using a limiting argument with
ηmin →∞, whereas our result gives explicit values of β∗ and
β.

Conceptually, Proposition 1 shows that when k∗ = k,
the k-means objective G is a statistically sensible objective
function for clustering, as its global minimum recovers the
ground truth clustering. On the other hand, Proposition 2
highlights the computational difficulty of this optimization
task, due to the existence of spurious local minima in the
form of the configuration plotted in Figure 2.

As the main result of this paper, we show that the above
configuration is essentially the only local minimum. The
following theorem, proved in Section VI, holds in the general
setting where the number of centers k in the k-means objective
G is not necessarily equal to the number of clusters k∗ in the
true mixture.

Theorem 1 (Local minimum structures, Stochastic Ball Model).
Under the Stochastic Ball Model, for each constant integer
c0 ≥ 1 there exists a universal constant c > 0 for which the
following holds. Assume that max(k∗, k) ≤ c0, ηmax > 4c2

and ηmin ≥ 14c
√
ηmax. If β = (β1, . . . ,βk) ∈ Rd×k is a local

minimum of G, then the ground truth centers and fitted centers

can be partitioned as [k∗] =
⋃m
a=1 S

∗
a and [k] =

⋃m
a=0 Sa

respectively, such that for each a ∈ [m], exactly one of the
following holds:
• (many/one-fit-one association) |Sa| ≥ 1 and S∗a = {s}

for some s ∈ [k]; moreover,

‖βi − β∗s‖ ≤
10c
√
ηmax

∆max = 10c
√
r∆max, ∀i ∈ Sa.

• (one-fit-many association) Sa = {i} for some i ∈ [k]
and |S∗a | ≥ 2; moreover,∥∥∥∥βi − 1

|S∗a |
∑
s∈S∗a

β∗s

∥∥∥∥ ≤ 14c
√
ηmax

∆max = 14c
√
r∆max.

In addition, for each i ∈ S0, we have P
(
Vi(β)

)
≤ c√

ηmax

(almost-empty association).

Theorem 1 states that all local minima have the same type
of structure. In particular, if we view a candidate solution
β = (βi)

k
i=1 as configuring the centers βi’s to fit the true

clusters, then any local minimum β must be composed of only
the following configurations:

(i) many-fit-one: multiple βi’s are close to the same ground
truth center;

(ii) one-fit-many: one βi is close to the mean of several ground
truth centers;

(iii) almost-empty: a βi is far (relatively to other βj’s) from
any ground truth center, in the sense that the Voronoi set
of βi is almost empty with a small measure.

In configurations (i) and (ii) above, being close means that the
distance is order-wise smaller than the separation ∆max, by a
factor of 1/

√
ηmax; similarly, in configuration (iii), the measure

being small means that it is on the order of 1/
√
ηmax. Moreover,

the configurations (i), (ii) and (iii) must involve disjoint sets
of βjs’ and β∗s s’. For concrete examples, recall Figure 1: the
ground truth solution in Panel 1a has 4 one-fit-one associations,
whereas the spurious local minimum in Panel 1b consists of a
two-fit-one, a one-fit-two and a one-fit-one association.

Put differently, Theorem 1 implies that if a solution β
involves any configuration other than the three above, then β
can be perturbed locally to strictly decreases its objective value.
For example, the solutions in Panels 1c and 1d in Figure 1 use
two centers to fit three and two true clusters, respectively. The
objective value can be decreased by moving these two centers
away from each other and towards different true clusters, as
shown in Panels 2c and 2d. Our proof of Theorem 1 in fact
makes use of this geometric idea, by testing the optimality
conditions of the local minima along certain judiciously chosen
directions.

It is instructive to specialize Theorem 1 to the limit case
of a “point model”, where r → 0 or equivalently ηmax →∞;
that is, each ground truth cluster s has a point mass at β∗s .
In this case, the three possibilities guaranteed in the theorem
reduce to: (i) several βi’s are located exactly at one true cluster
β∗s (many-fit-one); (ii) one center βi is located at the mean
of several true β∗s ’s (one-fit-many); (iii) for all the other βi’s,
their Voronoi sets do not contain any true clusters.

In the general setting with r > 0, Theorem 1 guarantees that
the above result for the point model still holds approximately,
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with an approximation error due to each true cluster having
a mass spread around the true center. The three bounds in
Theorem 1 control the approximation errors with respect to
cases (i)–(iii) in the point model above. These error bounds
all scale with 1/

√
ηmax, which becomes smaller if the SNR

ηmax increases.
a) Tightness of the error bounds: The approximation

errors above are unavoidable in general. We have already
shown in Proposition 2 that there exists a local minimum
β = (β1,β2,β3) where β1 and β2 are close but not exactly
equal to β∗1 ; see Figure 2. Here the mass of the first true
cluster B1 is equally split between the Voronoi sets of β1 and
β2, each of which lies at the corresponding center of mass
(cf. Lemma 2), leading to a nonzero approximation error in
the many-fit-one association. In addition, in Example 2 in
Appendix 0c, we demonstrate another local minimum with a
non-zero approximation error in the one-fit-many association.

Theorem 1 gives upper bounds for these approximation
errors, where the bounds take the form 1/

√
ηmax. The proof of

the theorem in fact establishes a family of bounds that provide
a trade-off between the errors for the three types of associations
(see Theorem 4). In particular, when k∗ = k, for each number
λ ∈ (0, 1

2k2r ), one can derive the bounds
• many-fit-one – if S∗a = {s} and |Sa| ≥ 1,

‖βi − β∗s‖ ≤ O
(

max

(
k

λ
, kr + k2λr∆max

))
∀i ∈ Sa;

• one-fit-many – if Sa = {i} and |S∗a | > 1,∥∥∥∥βi − 1

|S∗a |
∑
s∈S∗a

β∗s

∥∥∥∥ ≤ O(kr + k2λr∆max +
k

λ

)
;

• almost-empty – P
(
Vi(β)

)
≤ λkr, ∀i ∈ S0.

where the partitions [k∗] =
⋃m
a=1 S

∗
a and [k] =

⋃m
a=0 Sa

may depend on λ. Taking λ = c√
r∆max

= c
r
√
ηmax

gives the
bounds in Theorem 1. We are currently not sure whether these
bounds are tight in general.

b) Separation condition: The result in Theorem 1 holds
under the separation/SNR condition ηmin = Ω(1). Note that this
kind of separation condition is needed even in recent work on
more restrictive settings of mixture problems and EM/k-means,
including those on k∗ = 2 clusters [35, 39, 40, 31], on the local
behavior of EM/k-means near the global optimum β∗ [41, 42],
and on the existence of spurious local minima [12] (the last
work assumes ηmin = Ω(

√
d)). In our setting, we believe

such a separation condition is in general necessary. Indeed,
Example 1 in Appendix 0c shows that if ηmin is too small,
then there exists a local minimum that involves a two-fit-three
configuration and hence qualitatively violates the structural
properties in Theorem 1. Under our separation condition and
additional assumptions, it may be possible to solve the mixture
estimation problem using specialized algorithms with a good
initialization (e.g., spectral initialization [43]). Nevertheless, as
is the case in a recent line of work on the landscape of non-
convex problems [44, 45, 46, 47], our results are not tied to a
specific algorithm, but rather concern the general geometry and
structure of the k-means problem itself. We have not attempted
to optimize the separation condition (particularly its scaling
with k∗) and leave it as an important future problem whether

this condition can be improved. Indeed, we empirically observe
that even with a much milder separation condition, such as the
four clusters in Figure 1 , the one-fit-many and many-fit-one
configurations still hold for local minimum solution.

c) Over/under-parametrization: Theorem 1 holds even
when the number of centers k in the population k-means
objective is different from the number of clusters k∗ in the
true mixture, including the over-parametrization regime k > k∗

and the under-parametrization regime k < k∗. As we discuss
in greater details in Section IV, such flexibility has important
algorithmic implications.

B. Gaussian Mixture Model

We next consider the Gaussian Mixture Model in Definition 2.
The main difference between this model and the Stochastic
Ball Model is that the Gaussian distribution has an unbounded
support and thus the tails of the mixture components overlap
with each other. Nevertheless, much of the results for the Ball
Model can be extended to the Gaussian case. For example, one
can establish results that are analogous to Propositions 1 and
2 regarding the global minima and the existence of spurious
local minima. Here we focus on establishing an analogue of
Theorem 1, which characterizes the structures of all local
minima of the population k-means objective G.

Our main result is given in the following theorem, whose
proof is given in Appendix A.

Theorem 2 (Local minimum structures, Gaussian Mixture
Model). Under the Gaussian Mixture Model, for each con-
stant integer c0 ≥ 1 there exists a universal constant
c > 0 for which the following holds. Assume that k̃ :=
max(k, k∗) ≤ c0 and let t ≥ 1 be any number satisfying
ϕ(t) := 2 exp(−t2 min(d, k̃)/8) < 1

4 and 7k̃ϕ(t) < 1. Further
assume that ηmax ≥ 16tc2 and ηmin ≥ 7c

√
tηmax+7ϕ(t)ηmax.

If β = (β1, . . . ,βk) ∈ Rd×k is a local minimum of G, then
the ground truth centers and fitted centers can be partitioned
as [k∗] =

⋃m
a=1 S

∗
a and [k] =

⋃m
a=0 Sa, respectively, such that

for each a ∈ [m], exactly one of the following holds:
• (many/one-fit-one association) |Sa| ≥ 1 and S∗a = {s}

for some s ∈ [k]; moreover,

‖βi − β∗s‖ ≤ ∆max

{
5c
√
t

√
ηmax

+ 7cϕ(t)

}
, ∀i ∈ Sa.

(6)

• (one-fit-many association) Sa = {i} for some i ∈ [k]
and |S∗a | ≥ 2; moreover,∥∥∥∥βi − 1

|S∗a |
∑
s∈S∗a

β∗s

∥∥∥∥ ≤ ∆max

{
7c
√
t

√
ηmax

+ 7cϕ(t)

}
.

(7)

In addition, for each i ∈ S0, we have P
(
Vi(β)

)
≤ c

√
t√

ηmax
+ϕ(t)

(almost-empty association).

Theorem 2 is qualitatively similar to Theorem 1 and shows
that the local minima in GMM have a similar type of structure.
The only differences are that the separation condition in
Theorem 2 has an additional t factor, and that the bounds
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for the three possibilities have an additional error term ϕ(t)
that decays exponentially in t2. The ϕ(t) term reflects the
influence of the exponential tail of a Gaussian distribution
outside a ball of radius tσ

√
min(d, k + k∗). In fact, the proof

of Theorem 2 proceeds by effectively reducing GMM to the
Stochastic Ball Model, treating the bulk of the Gaussian as
a bounded distribution and the tail as additional errors. The
choice of t here determines what is viewed as the tail and hence
controls the trade-off between the separation condition and the
two terms in the error bounds. For a rough interpretation of the
theorem, one could simply think of t as a numerical constant
large enough so that ϕ(t) is dominated by the other terms in
the error bounds.

IV. IMPLICATIONS AND CONNECTIONS

The theorems in the last section provide structural results
for the k-means objective. In this section, we discuss some
algorithmic implications of these results and remark on their
connections to the literature.

a) Algorithmic Implications: When k∗ = k, our result
implies that one can find the global minimum of k-means as
long as the characteristic many-fit-one association for local
minima can be avoided — in this case, one-fit-many association
will also disappear as the number of true clusters and that of
fitted centers are equal. This observation suggests that to avoid
many-fit-one, one should initialize a greedy clustering algorithm
without putting the fitted centers close to each other. Several
popular heuristics for k-means implement precisely this idea.
For instance, the celebrated k-means++ algorithm [24] is a
version of the Lloyd’s algorithm in which the initial centers
are generated iteratively as follows: the first center is selected
uniformly from the data points; after selecting j centers, one
computes the minimal distance of each data point to these j
centers, and select a data point randomly as the (j + 1)-th
center with probability proportional to the above distance. By
design, this procedure tends to pick k initial centers that are
far away from each other. Many other heuristics for k-means
follow a similar spirit; see, e.g., the work in [48, 49, 50, 51].

On the other hand, our structural results also highlight the
inherent combinatorial difficulty of the problem. In particular,
when the number of clusters grows, there is a growing number
of possible configurations with many-fit-one and one-fit-many
associations. It then becomes easier to get trapped in one
of the corresponding local minima. This is consistent with
the systematic empirical study in [52], which observes that
algorithms for k-means perform worse when there are more
clusters.

b) Connection to Over-Parametrization: Our structural
results in Theorem 1 and 2 hold in the over-parametrization
setting where k > k∗ centers are used to fit k∗ ground
truth clusters. Over-parametrization appears to be a promising
approach for avoiding local minima. In particular, when k is
sufficiently bigger than k∗, a random initial solution is likely
to assign at least one center to each true cluster. In this case,
one-fit-many association would be avoided. Running a greedy
algorithm from this initial solution, one would expect that it
converges to a solution with only many-fit-one and almost-
empty associations, which can then be pruned by inspecting

the pairwise distances of the fitted centers and the sizes of
their Voronoi sets. The work in [26] implements this idea in
the context of over-parametrized EM. In particular, after EM
converges, they remove fitted centers with low mixing weights
(corresponding to almost-empty association) and combine fitted
centers that are close to each other (corresponding to many-fit-
one association).

In fact, the extensive empirical study in [53] shows that the
above idea can be applied to other latent variable models, as
these models often have a similar solution structure, i.e., some
estimated latent variables having duplicated values or low prior
probabilities.

V. PRELIMINARY PROPERTIES FOR THE k-MEANS
OBJECTIVE

In this section, we derive several preliminary results on
the analytical properties of the population k-means objective
function G defined in equation (3), focusing on the Stochastic
Ball Model. These properties are later used in the proofs of
our main theorems.

When β has pairwise distinct components (i.e., βi 6=
βj ,∀i 6= j ∈ [k]), it is often convenient to rewrite the function
G using the notation of Voronoi sets:

G(β) =

k∑
i=1

∫
Vi(β)

‖x− βi‖2f(x)dx. (8)

We can see that G depends on β in a complicated way through
both ‖x − βi‖2 and Vi(β). As shall become clear later, the
dependence through the squared distance ‖x−βi‖2 determines
the first-order condition for local optimality for G; on the other
hand, understanding second-order conditions requires us to
study the behaviors of the Voronoi sets Vi(β) under small
perturbation of β. To deal with this complication, our main
strategy is to understand the directional behaviors of G along
certain (judiciously chosen) directions, and to construct upper
bounds on G that are easier to work with.

A. Directional Behaviors of G

Throughout the remainder of this section, we fix a candidate
solution β = (β1, . . . ,βk) ∈ Rd×k. For a given direction v =
(v1,v2 . . . ,vk) ∈ Rd×k, we are interested in how the objective
G(β) changes after we perturb β to β + tv. Restricting the
function G to the direction v, we define the directional objective
function

Hv(t) := G(β + tv), t ∈ R.

Note that β is a local minimum of G if and only if 0 is local
minimum of Hv for all v.

The functions G and Hv are not everywhere differentiable, as
they involve the minimum of quadratic functions. However, they
are differentiable almost everywhere. In particular, whenever
β has pairwise distinct components, the directional derivative
d
dtH

v(0) is guaranteed to exist and admits a simple expression,
as shown in the following lemma.

Lemma 1 (Directional derivative). Suppose that β satisfies
βi 6= βj whenever i 6= j. For any choice of direction v, the
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directional derivative d
dtH

v(0) exists and has the following
analytic formula:

d
dt
Hv(0) = −

k∑
i=1

∫
Vi(β)

2〈vi,x− βi〉f(x)dx.

The lemma follows from the Leibniz integral rule; we defer
the proof to Appendix A. Note that the above expression only
involves differentiating the integrand in the expression (8); the
Voronoi sets Vi(β) remain unchanged when only the first-order
derivative is concerned.

B. First-Order Necessary Condition for Local Optimality

Using the first-order derivative expression in Lemma 1,
we can derive a necessary condition for β being a local
minimum. In particular, the following lemma states that any
local minimum (satisfying a non-degeneracy condition) must
have pairwise distinct components, each of which must be the
center of its Voronoi set.

Lemma 2 (Local minimum must be Voronoi centers). Suppose
that β is a local minimum of G. Then for each pair i 6= j,
we must have βi 6= βj whenever Vi(β) ∪ Vj(β) having a
positive measure (with respect to f ). Moreover, for each βi
whose Voronoi set Vi(β) has a positive measure, βi must be
at the center of probability mass of the Voronoi set Vi(β); that
is,

βi =

∫
Vi(β)

xf(x)dx∫
Vi(β)

f(x)dx
. (9)

We prove Lemma 2 in Appendix A. The conclusion of the
above lemma can be written equivalently in a more explicit
way. In particular, for each pair (i, s) ∈ [k]× [k∗], let mi,s(β)
and ci,s(β) denote the probability mass and the center of mass
of the set Vi(β) with respect to fs respectively:

mi,s(β) :=

∫
Vi(β)

fs(x)dx,

ci,s(β) :=

∫
Vi(β)

xfs(x)dx

mi,s(β)
.

Then equation (9) can be rewritten as

βi =

∑k∗

s=1mi,s(β)ci,s(β)∑k∗

s=1mi,s(β)
.

C. Decomposition of Hv

Lemmas 1 and 2 provide a first-order characterization of the
local minima of G. For a more precise characterization, we
need to account for the change in the Voronoi sets V(β) and
its boundaries ∂(β) when perturbing β to β + tv. With t > 0
considered arbitrarily small, we make two observations:

1) The Voronoi set boundaries ∂(β+tv) change continuously
with respect to t.

2) When β is perturbed by tv, the points swept by the
boundaries ∂(β + tv) change their association from one
Voronoi set to another.

Formally, for each pair (i, j) ∈ [k]× [k] we define the set

∆v
i→j(t) := Vi(β) ∩ Vj(β + tv),

which is the set of points that change association from the i-th
fitted center to the j-th fitted center due to the perturbation tv.
Being the intersection of two polyhedra, the set ∆v

i→j(t) is
a also polyhedron. An illustration of ∆v

i→j(t) is provided in
Figure 3.

As previously shown in Lemma 2, any non-degenerate
local minimum β must have distinct components, so the
corresponding Voronoi sets are also distinct. The same holds
for the perturbed solution β+tv when t is sufficiently small. In
this case, we can decompose the directional objective function
Hv as follows:

Hv(t)

=

k∑
i=1

∫
Vi(β+tv)

‖x− βi − tvi‖2f(x)dx

=

k∑
i=1

∫
Vi(β)

‖x− βi − tvi‖2f(x)dx︸ ︷︷ ︸
Uv(t)

+
∑

(i,j):i 6=j

∫
∆vi→j(t)

(
‖x− βj − tvj‖2 − ‖x− βi − tvi‖2

)
f(x)dx

︸ ︷︷ ︸
Wv(t)

.

(10)

Here Uv(t) and W v(t) correspond to the change in the
objective value from two different sources. In particular, Uv(t)
is due to the change in the distance between the data points
and the centers, and W v(t) is due to the data points changing
association with the Voronoi sets.

Remark 1. By definition of ∆v
i→j(t), for each x ∈ ∆v

i→j(t),
the integrand ‖x−βj−tvj‖2−‖x−βi−tvi‖2 in the definition
of W v(t) is non-positive.

Proof of equation (10). When the Voronoi sets V(β) are per-
turbed to V(β + tv), each point x in Rd either remains
associated with the i-th center for some i, or changes its
association from the i-th center to the j-th center for some
j 6= i. In the first case, since x ∈ Vi(β) ∩ Vi(β + tv), we see
that the contribution from x to Hv(t) appears in Uv. In the
second case, since x ∈ ∆v

i→j(t) = Vi(β) ∩ Vj(β + tv), we
can write the contribution from x as

‖x− βj − tvj‖2

=‖x− βi − tvi‖2 +
(
‖x− βj − tvj‖2 − ‖x− βi − tvi‖2

)
,

which appears in both Uv and W v .

D. Smooth Upper Bounds of Hv

The expression (10) for Hv is quite complicated. To
understand the local minima of Hv , we instead study a simpler,
better-behaved upper bound function of Hv that preserves the
local minima and is amenable to calculus tools. In particular,
we make use of the following elementary lemma.

Lemma 3 (Smooth upper bound). Suppose that h, h̃ : R→ R
are two continuous functions that satisfy h ≤ h̃ and h(0) =
h̃(0). If 0 is a local minimum of h, then 0 is also a local
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Figure 3. Illustration of the set ∆vi→j(t). The red dots represent the original centers {βi} and the blue stars represent the perturbed centers {β′i = βi + tvi}.
The blue solid lines are the original Voronoi boundaries ∂(β), and the red dashed lines are the perturbed Voronoi boundaries ∂(β′). Top panel: the moving
direction v = (v1,v2,v3) satisfies v1 = v2 = v3, in which case the Voronoi boundaries are shifted parallelly by tv1. Bottom panel: the moving direction
satisfies v1 = −v2 = −v3, in which case the boundary ∂1,2(β′) rotates around the mid point β1+β2

2
, ∂1,3(β′) rotates around the mid point β1+β3

2
, and

∂2,3(β′) shifts parallelly in the direction of v2. Each colored region represents ∆vi→j(t), the set of points that change the association from the i-th center to
the j-th center.

minimum of h̃; moreover, we have limt→0
h̃(t)−h̃(0)

t = 0 and

limt→0
h̃(t)−h̃(0)

t2 ≥ 0 whenever the limits exist.

Proof. Since 0 is a local minimum of h, we have h̃(0) =
h(0) ≤ h(t) ≤ h̃(t) for all t in a neighborhood of 0, so 0 is
also a local minimum of h̃. The first-order optimality condition
for 0 gives limt→0

h̃(t)−h̃(0)
t = h̃′(0) = 0. Moreover, we have

h̃(t) − h̃(0) ≥ 0 =⇒ h̃(t)−h̃(0)
t2 ≥ 0 for all t 6= 0 in a

neighborhood of 0, which implies that limt→0
h̃(t)−h̃(0)

t2 ≥
0.

With the above lemma, we can study the structure of each
local minimum of Hv (and hence that of G) by exploiting the
optimality conditions of a smooth upper bound of Hv that is
tight at the minimum. Let us take a first step in constructing
such an upper bound. In view of the non-positivity result in
Remark 1, we can obtain an upper bound of the function W v

defined in (10) by only considering those pairs (i, j) for which
Vi(β) ∼ Vj(β) are adjacent:

W v(t)

≤
∑
(i,j):

Vi(β)∼Vj(β)

∫
∆vi→j(t)

(
‖x−βj−tvj‖2−‖x−βi−tvi‖2

)
f(x)dx

=
∑
(i,j):

Vi(β)∼Vj(β)

1

k∗

k∗∑
s=1

W v
i→j,s(t)

where the quantity W v
i→j,s, a shorthand for∫

∆vi→j(t)

(‖x− βj − tvj‖2 − ‖x− βi − tvi‖2)fs(x)dx,

represents the contribution from the points in the s-th true
cluster that change association from the i-th center to the j-th
center. Combining the above inequality with equation (10), we
obtain the following upper bound

Hv(t) ≤ Uv(t) +
∑
(i,j):

Vi(β)∼Vj(β)

1

k∗

k∗∑
s=1

W v
i→j,s(t). (11)

In the proofs of our main theorems, we build upon equation (11)
to derive further smooth upper bounds of Hv .

VI. PROOF OF THEOREM 1

In this section, we prove our main result under the Stochastic
Ball Model (Definition 1). We in fact establish a more general
and quantitative version of Theorem 1 that holds for any k∗

and k.

Theorem 3 (General version of Theorem 1). Under the
Stochastic Ball Model, assume that ηmax > 4c2k4 and
ηmin ≥

√
ηmax

(
2ck2

(
1 + 2k∗

k

)
+ 4k∗

(
3 + 2k∗

k

))
for some

universal constant c ≥ 3. If β = (β1, . . . ,βk) ∈ Rd×k is
a local minimum of G, then the ground truth centers and
fitted centers can be partitioned as [k∗] =

⋃m
a=1 S

∗
a and

[k] =
⋃m
a=0 Sa respectively, such that for each a ∈ [m], exactly

one of the following holds:

• (many/one-fit-one association) |Sa| ≥ 1 and S∗a = {s}
for some s ∈ [k∗]; moreover,

‖βi − β∗s‖ ≤ ∆max

(4k∗ + 2ck2)
(

1 + 2k∗

k

)
√
ηmax

, ∀i ∈ Sa.

• (one-fit-many association) Sa = {i} for some i ∈ [k]
and |S∗a | ≥ 2; moreover,

∥∥∥∥βi − 1

|S∗a |
∑
s∈S∗a

β∗s

∥∥∥∥ ≤ ∆max

2ck2
(

1 + 2k∗

k

)
+ 4k∗

(
3 + 2k∗

k

)
√
ηmax

.

In addition, for each i ∈ S0, we have P
(
Vi(β)

)
≤ ck√

ηmax

(almost-empty association).

Given Theorem 3, Theorem 1 follows immediately. The rest
of the section is devoted to proving Theorem 3.

Throughout the proof, let β be a fixed local minimum of the
k-means objective G. Note that G is invariant under translation
of the space and permutation of the true centers. Consequently,
we may assume without loss of generality that β∗1 = 0 and
maxs∈[k] ‖β∗s‖ ≤ ∆max.

9



A. Notations

We use Vd to denote the volume of a unit ball in Rd with
respect to the Lebesgue measure. For a set T ⊂ Rd, let int(T )
denote its interior, and ReVol(T ) denote the relative volume
of T with respect to the Lebesgue measure on the affine hull
of T , with the convention that ReVol(∅) = 0. For two vector
u,u′ ∈ Rd, ∠(u,u′) := arccos( u>u′

‖u‖‖u′‖ ) ∈ [0, π] is the angle
between u and u′. For each tuple (i, j, s) ∈ [k] × [k] × [k∗]
with i 6= j, we use Li,j,s(β) to denote the two-dimensional
plane that contains βi, βj and β∗s (if such a plane is not unique,
we fix an arbitrary one). Since we are concerned with a fixed
local minimum β, we sometimes suppress the dependency on
β and write, for example, Vi ≡ Vi(β), ∂i,j ≡ ∂i,j(β) and
Li,j,s ≡ Li,j,s(β).

B. Proof of Theorem 3

To prove Theorem 3, we establish an intermediate result
as given in Theorem 4, which provides a family of bounds
parametrized by λ > 0.

Theorem 4 (Family of bounds for ball model). Under the
Stochastic Ball Model, let β = (β1, . . . ,βk) be a local
minimum of the k-means objective function G defined in (3)
and λ > 0 be an arbitrary fixed number. For each i, j ∈ [k]
and s ∈ [k∗], let ρs(∂i,j) := 1

Vdrd
ReVol(∂i,j ∩ Bs). For each

i ∈ [k], define the sets

Ti :=
{
s ∈ [k∗] : Vi ∩ Bs 6= ∅

}
and

Ai :=
{
s ∈ [k∗] : β∗s ∈ int(Vi)

}
⊆ Ti.

Then the following is true for each i ∈ [k].
1) If ρs(∂j,`) > λ for some s ∈ Ti and some pair (j, `), then

‖βi − β∗s‖ ≤
k∗

λ
+ 3r.

2) For each s ∈ Ti, if ρs(∂j,`) ≤ λ for all pair (j, `), then
the following bounds hold:

Ps
(
Vi
)
≥1− k2λr, if s ∈ Ai,

Ps
(
Vi
)
≤kλr, if s ∈ Ti \Ai.

Furthermore, if ρs(∂j,`) ≤ λ for all s ∈ Ti and all pair
(j, `), then:
a) When |Ai| = 0, we have

P(Vi) ≤ kλr.

b) When |Ai| > 0, we have

‖βi − bi‖ ≤
k∗r

1− k2λr

+
k∗(k2λr2)(1 + (k∗k − k2)λr)

(1− k2λr)2

+
(k + 2k∗)kλr

1− k2λr
∆max,

where bi := 1
|Ai|

∑
s∈Ai

β∗s .

The proof of Theorem 4, which lies at the core of our
analysis, is given in Section VI-C.

We now derive Theorem 3 from Theorem 4. Doing so
involves several elementary though somewhat tedious steps
of a combinatorial flavor. To this end, we fix λ = c√

r∆max
=

c
r
√
ηmax

. Recall the assumption in the main theorem that
ηmax > 4c2k4 for c > 3. This assumption implies that
k2λr < 0.5. If ρs(∂i,j) > λ, we say that a true cluster Bs
encloses the Voronoi boundary ∂i,j with a large relative volume;
otherwise, we say that Bs encloses the Voronoi boundary ∂i,j
with a small relative volume.

We first state two simple implications of Theorem 4 used
frequently in the subsequent proof.

Observation 1. For each i ∈ [k], there exists at most one
s ∈ Ti such that ρs(∂j,`) > λ for some
pair (j, `). In words, each Voronoi set Vi
can intersect at most one true cluster Bs
that encloses some Voronoi boundary with
a large relative volume.

Observation 2. For each s ∈ [k], if ρs(∂j,`) ≤ λ for all pair
(j, `), then β∗s ∈ Vi implies that s ∈ Ai. In
words, if all Voronoi boundaries enclosed
by a true cluster Bs have small relative
volumes, then the center β∗s cannot itself
lie on a Voronoi boundary.

Proof of observations. We prove these observations by contra-
diction. For Observation 1, suppose otherwise that there exists
s 6= s′ ∈ Ti for which the statement holds. Part 1 of Theorem 4
ensures that ‖βi−β∗s‖ ≤ k∗

λ + 3r and ‖βi−βs′∗‖ ≤ k∗

λ + 3r.
Using the triangle inequality and the value for λ, we obtain
that ‖β∗s−β∗s′‖ ≤ 2k∗

λ +6r ≤ ∆max
8k∗

c
√
ηmax

, which contradicts
the assumption on ηmin.

For Observation 2, suppose otherwise that β∗s ∈ Vi and s /∈
Ai for some i ∈ [k], which implies that β∗s lies on a Voronoi
boundary and hence β∗s 6∈ Aj ,∀j ∈ [k]. If s ∈ Tj , then Part 2
of Theorem 4 ensures that Ps(Vj) ≤ kλr,∀j ∈ [k]; if s /∈ Tj ,
then Ps(Vj) = 0 by definition of Tj . Summing over j ∈ [k],
we obtain that 1 = Ps(Bs) =

∑
j∈[k] Ps(Vj) ≤ k2λr < 0.5,

which is a contradiction.

We now construct a partition
⋃m
a=0 Sa = [k] of the fitted

centers and a partition
⋃m
a=1 S

∗
a = [k∗] of the true centers that

satisfy the conclusion of Theorem 3. These partitions induce an
association between the fitted centers in Sa and the true centers
in S∗a , for each a = 1, . . . ,m. The construction proceeds in
three steps.

a) Step 1 (almost-empty association): First consider the
fitted centers indexed by the set

S0 :=
{
i ∈ [k] :ρs(∂j,`) ≤ λ,

∀(s, j, `) ∈ Ti × [k]× [k]; |Ai| = 0
}
.

Part 2(a) of Theorem 4 ensures that for all i ∈ S0, we have
P(Vi) ≤ kλr = ck√

ηmax
as claimed in Theorem 3.

b) Step 2 (many/one-fit-one association):: We next con-
sider the fitted centers indexed by the set

J := {i ∈ [k] : |Ai| ≤ 1} \ S0.

For each i ∈ J , there are two complementary cases:

10



• ρs(∂j,`) ≤ λ for all (s, j, `) ∈ Ti × [k] × [k]; that is,
all true clusters that intersect Vi only enclose Voronoi
boundaries with a small relative volume. Since i /∈ S0,
by definition of S0 and J we must have |Ai| = 1; say
Ai = {s}. Applying Part 2(b) of Theorem 4, we have

‖βi − β∗s‖ = ‖βi − bi‖

≤ k∗r

1− k2λr
+
k∗(k2λr2)(1 + (k∗k − k2)λr)

(1− k2λr)2

+
(k + 2k∗)kλr

1− k2λr
∆max

(i)
≤2k∗r + 2k∗r

[
1 + (k∗k − k2)

c
√
ηmax

]
+ 2k(k + 2k∗)

c
√
ηmax

∆max

(ii)
≤∆max

(4k∗ + 2ck2)(1 + 2k∗

k )
√
ηmax

, (12)

where in step (i) we plug in λ = c√
∆maxr

and use the
assumption that k2λr < 1

2 ; in step (ii), we use the
assumption that ηmax ≥ 4c2k4 with c > 3 to further
simplify the bound.

• ρs(∂j,`) > λ for some (s, j, `) ∈ Ti × [k] × [k]; that is,
there exists some ground truth cluster Bs that encloses a
Voronoi boundary with a large relative volume. Applying
Part 1 of Theorem 4 and plugging the value of λ, we
obtain that ‖βi − β∗s‖ ≤ k∗

λ + 3r ≤ ∆max
4k∗

c
√
ηmax

.

In both cases, we have ‖βi − β∗s‖ ≤ ∆max
(4k∗+2ck2)(1+ 2k∗

k )√
ηmax

as claimed in Theorem 3. For each distinct index s ∈ [k∗]
that appears in the above arguments, set S∗a = {s} and let the
corresponding Sa index those βi’s for which either of the two
cases holds. The sets {Sa} constructed in this way are disjoint.
Indeed, for each i the above two cases are exclusive, where in
the first case Ai contains s and only s, and in the second case
above the index s is unique by Observation 1.

c) Step 3 (one-fit-many association):: We are left with
the fitted centers indexed by the set

K := {i ∈ [k] : |Ai| ≥ 2} = [k] \
(
S0 ∪ J

)
.

Similarly to before, for each i ∈ K, there are two complemen-
tary cases:
• ρs(∂j,`) ≤ λ for all (s, j, `) ∈ Ti × [k] × [k]. Apply-

ing Part 2(b) of Theorem 4 and following the same
steps as in equation (12), we obtain that ‖βi − bi‖ ≤
∆max

(4k∗+2ck2)(1+ 2k∗
k )√

ηmax
. In this case, we let Sa = {i}

and S∗a = Ai. Note that |S∗a | = |Ai| ≥ 2 by definition of
K.

• ρs(∂j,`) > λ for some (s, j, `) ∈ Ti × [k] × [k]. In this
case, applying Part 1 of Theorem 4 would show that βi
is close to β∗s . In fact, we can establish a stronger result
showing that βi is close to the mean of all the true centers
contained in its Voronoi set, regardless of whether we
include or exclude β∗s . This is the content of the following
lemma, which is proved in Section A.
Lemma 4 (Proximity to mean of true centers). Under
the assumption of Theorem 3, let β be a local minimum

of G. The following is true for each i ∈ [k]. If ρs(∂j,`) >
λ = c√

r∆max
for some (s, j, `) ∈ Ti × [k] × [k] and

|Ai \ {s}| ≥ 1, then we have the bounds

‖βi − b−i ‖ ≤ ∆max

2ck2
(

1 + 2k∗

k

)
+ 4k∗

(
3 + 2k∗

k

)
√
ηmax

,

‖βi − b+
i ‖ ≤ ∆max

2ck2
(

1 + 2k∗

k

)
+ 4k∗

(
3 + 2k∗

k

)
√
ηmax

,

where b−i := 1
|Ai\{s}|

∑
s′∈Ai\{s} β

∗
s′ and b+

i :=
1

|Ai∪{s}|
∑
s′∈Ai∪{s} β

∗
s′ ; moreover, we have |Ai\{s} | ≥

2.
In this case, we set Sa = {i}. Also set S∗a = Ai \ {s}
if the index s has appeared in the sets {S∗a′} constructed
previously in Step 2 or in this step, and set S∗a = Ai ∪
{s} otherwise. Note that |S∗a | ≥ 2 by Lemma 4. As
shall become clear momentarily, the flexibility allowed
by Lemma 4 is important for ensuring that {S∗a} indeed
partitions [k∗].

In both cases above, we have the bound∥∥βi − 1
|S∗a|

∑
s′∈S∗a

β∗s′
∥∥ ≤ ∆max

2ck2(1+ 2k∗
k )+4k∗(3+ 2k∗

k )√
ηmax

as claimed in Theorem 3. It is clear that the sets {S∗a}
constructed in this step are disjoint from each other and from
those constructed in Step 2, because the sets {Ai} are disjoint
as each true center can be in the interior of only one Voronoi
set.

d) Summary: The above procedure constructs a collection
of sets {Sa}ma=0 and {S∗a}ma=1, which index the fitted and true
centers, respectively, and satisfy the bounds in Theorem 3. The
sets {Sa} indeed form a partition of [k], as we have

⋃m
a=0 Sa =

S0 ∪ J ∪ K = [k] by definition, and Sa ∩ Sb = ∅,∀a 6= b
by construction and the fact that the three sets S0,J ,K are
disjoint. For the sets {S∗a}, we have argued in the construction
above that they are disjoint. On the other hand, each true center
β∗s must belong to at least one Voronoi set Vi, in which case
we have s ∈ Ti. Consider two complementary cases: (i) If
∃(j, `) : ρs(∂j,`) > λ, then s must be covered in the second
case of either Step 2 or Step 3. (ii) If ∀(j, `) : ρs(∂j,`) ≤ λ,
then Observation 2 ensures that s ∈ Ai ⊆ Ti. In this case, if all
other s′ ∈ Ti satisfies ∀(j, `) : ρs′(∂j,`) ≤ λ as well, then s is
covered in the first case of either Step 2 or Step 3. Otherwise,
if there exists another s′ ∈ Ti satisfying ∃(j, `) : ρs′(∂j,`) > λ,
then s is covered in the second case of Step 3 (with the role
of s and s′ exchanged therein) as s ∈ Ai ⊆ Ai \ {s′}. We
conclude that the collection of sets {S∗a} covers all s ∈ [k] and
hence is indeed a partition of [k]. This completes the proof of
Theorem 3.

C. Proof of Theorem 4

In this section, we prove Theorem 4, which shows that a
local minimum β satisfies a family of bounds that imply our
main Theorem 3.

a) Proof strategy: To derive structural properties of the
local minimum β, we exploit the fact that t = 0 is a local
minimum of the directional objective Hv(t) (or a smooth upper
bound thereof) for any perturbation direction v ∈ Rd×k; see

11



Figure 4. Illustration of the quantities di,j , θvi,j , Di,j,s and ρs(∂i,j). The red
dots represent βi and βj , and the blue star represents the perturbed solution
βj + tvj . Here di,j is the distance between βi and the mid point βi+βj

2
(represented by a green dot); Di,j,s, which is represented by the red line
segment, is the distance between βi+βj

2
and the ball Bs when computed

within the hyperplane containing the Voronoi boundary ∂i,j ; θvi,j is the angle
between the perturbation direction vj and the direction of βi − βj ; ρs(∂i,j)
is the normalized relative volume of the set ∂i,j ∩ Bs, which is represented
by the blue line segment inside the ball.

Lemma 3 and the discussion in Section V. The expression (10)
of Hv involves the set ∆v

i→j , which are points that switch from
one Voronoi set from another when β is perturbed to β + tv.
For a general direction v, these sets are quite complicated. Our
main idea is to focus on a special class of directions satisfying

‖vi‖ = 1,∀i ∈ [k]; vi = vj or vi = −vj ,∀i 6= j. (13)

That is, we perturb the βi’s along the same or opposite
directions. For these choices of v, the Voronoi boundary
∂i,j(β + tv) behaves in a simple way. In particular, when
vi = vj , the boundary ∂i,j(β + tv) translates along the
direction of vi; when vi = −vj , the boundary rotates around
the mid point βi+βj

2 . See Figure 3 for an illustration. Using
this fact, we can construct simple, tractable upper bounds of
Hv, from which we can deduce the structural properties of
the local minimum β.

b) Key quantities: Our analysis involves several key
quantities related to the Voronoi sets of β and their boundaries.
In particular, for each pair i 6= j whose associated Voronoi sets
are adjacent, i.e., Vi(β) ∼ Vj(β), we introduce the following
four quantities.
(a) Denote by di,j := 1

2‖βi − βj‖ the distance between βi
(or βj) and the Voronoi boundary ∂i,j ≡ ∂i,j(β).

(b) Denote by θvi,j = ∠(vj ,βi − βj) the angle of the
perturbation direction vj with respect to βi − βj .

(c) Define Di,j,s := dist
(βi+βj

2 ,Bs ∩ ∂i,j
)
, with the conven-

tion that Di,j,s = 1 if Bs ∩ ∂i,j = ∅. Here Di,j,s is the
distance between the mid-point βi+βj

2 and s-th ground
truth cluster Bs, where the distance is computed within
the hyperplane containing the Voronoi boundary ∂i,j .

(d) Recall the quantity ρs(∂i,j) := 1
rdVd

ReVol(∂i,j ∩ Bs)
defined in the statement of Theorem 4. Note that ρs(∂i,j)
is the relative volume of the intersection of the Voronoi
boundary ∂i,j and the s-th ground truth cluster Bs,
normalized by the volume of Bs.

An illustration of these quantities is given in Figure 4.

We are now ready to prove Theorem 4. We begin with the
upper bound of Hv given in equation (11), restated in an
equivalent way below:

Hv(t) ≤ Uv(t) +
1

2k∗

∑
(i,j):Vi∼Vj

k∗∑
s=1

(
W v
i→j,s(t) +W v

j→i,s(t)
)
.

(14)

The above inequality holds with equality at t = 0, since
by definition Uv(0) = Hv(0) and W v

i→j,s(0) = 0,∀ i, j, s.
Moreover, when β is a local minimum of G, a quick calculation
using Lemma 2 shows that

lim
t→0

1

t

(
Uv(t)− Uv(0)

)
= 0,

lim
t→0

1

t2
(
Uv(t)− Uv(0)

)
= 1. (15)

Under the specific choice of the direction v in equation (13),
the function W v

i→j +W v
j→i can be further upper bounded, in

a small neighborhood of 0, by a smooth function with nice
analytical properties. In particular, when the directions vi = vj
are the same, such an upper bound W̃ v

i,j,s is given in the
following proposition, which is proved in Section VI-D.

Proposition 3 (Upper bound, same direction). Let β be a local
minimum of G and v satisfy ‖vi‖ = 1,∀i ∈ [k]. If vi = vj ,
then W v

i→j,s +W v
j→i,s is upper bounded in a neighborhood

of 0 by some smooth function W̃ v
i,j,s satisfying the following

properties:
1) W̃ v

i,j,s(0) = 0;

2) d
dtW̃

v
i,j,s(t) |t=0= 0;

3) limt→0
1
t2 W̃

v
i,j,s(t) |t=0= −2 cos2(θvi,j)di,j · ρs(∂i,j).

When the directions vi = −vj are opposite and d ≥ 2,
an upper bound Ŵ v

i,j,s is given in the following proposition,
which is proved in Section VI-E.

Proposition 4 (Upper bound, opposite direction). Let β be
a local minimum of G and v satisfy ‖vi‖ = 1,∀i ∈ [k]. If
vi = −vj and vi,vj ∈ Li,j,s, then W v

i→j,s +W v
j→i,s is upper

bounded in a neighborhood of 0 by some smooth function
Ŵ v
i,j,s satisfying the following properties:

1) Ŵ v
i,j,s(0) = 0;

2) d
dtŴ

v
i,j,s(t) |t=0= 0;

3) limt→0
1
t2 Ŵ

v
i,j,s(t) |t=0= −2

D2
i,j,s

di,j
sin2(θvi,j) · ρs(∂i,j).

Also note that W v
i→j,s ≤ 0,∀(i, j, s) by Remark 1. For each

s ∈ [k∗] and each un-ordered pair (i, j) ∈ [k]× [k] satisfying
Vi ∼ Vj , combining equation (14) and the last two propositions
give the following smooth upper bound H̃vi,j of Hv:

Hv(t) ≤ H̃vi,j(t) :=Uv(t) +
1

k∗
W̃ v
i,j,s(t)1{vi=vj}

+
1

k∗
Ŵ v
i,j,s(t)1{vi=−vj∈Li,j,s},

which is valid in a neighborhood of 0 and satisfies H̃vi,j(0) =
Hv(0). Since t = 0 is a local minimum of Hv, Lemma 3
ensures that

lim
t→0

1

t2

[
H̃vi,j(t)− H̃vi,j(0)

]
≥ 0. (16)

12



Moreover, by combining equation (15), Proposition 3 and
Proposition 4, we obtain that

lim
t→0

1

t2

[
H̃vi,j(t)− H̃vi,j(0)

]
=1− 2

k∗
cos2(θvi,j)di,j · ρs(∂i,j)1{vi=vj}

− 2

k∗
D2
i,j,s

di,j
sin2(θvi,j)ρs(∂i,j)1{vi=−vj∈Li,j,s}.

(17)

Since equation (17) holds for any choice of v satisfying the
condition (13), we may choose v judiciously to simplify the
right hand side of (17). By doing so we can show that for each
s ∈ [k∗] and each pair i 6= j ∈ [k] satisfying Vi ∼ Vj , there
hold the inequalities

di,j · ρs(∂i,j) ≤
k∗

2
and (18)

D2
i,j,s

di,j
· ρs(∂i,j) ≤

k∗

2
, (19)

where the second inequality is valid when d ≥ 2. To prove
the inequality (18), suppose otherwise that di,j · ρs(∂i,j) > k∗

2
for some (i, j, s). We can choose the directions vi = vj =
βi−βj

‖βi−βj‖ , which satisfies θvi,j = 0. Combining with equa-
tion (17) gives

lim
t→0

1

t2

(
H̃vi,j(t)− H̃v(0)

)
< 0,

which contradicts the inequality (16). Similarly, to prove the
inequality (19), suppose otherwise that

D2
i,j,s

di,j
· ρs(∂i,j) > k∗

2

for some (i, j, s) when d ≥ 2. We can choose vi and vj to
be two unit vectors in the two-dimensional plane Li,j,s such
that vi = −vj and vi ⊥ (βj − βi), which satisfies θvi,j = π

2 .
Combining with equation (17) gives

lim
t→0

1

t2

(
H̃vi,j(t)− H̃v(0)

)
< 0,

which again contradicts the inequality (16).

In the remaining of the proof, fix an index i ∈ [k] and a
number λ > 0. We shall use equations (18) and (19) to derive
the structural properties of βi and its Voronoi set Vi. To this
end, we consider two complementary cases that correspond to
Part 1 and Part 2 of Theorem 4. Recall that Ti := {s ∈ [k∗] :
Vi ∩ Bs 6= ∅}.

Case 1: there exists some (s, j, `) ∈ Ti × [k]× [k] such that
ρs(∂j,`) > λ.: In this case, the Voronoi set Vi intersects a true
cluster Bs that encloses some Voronoi boundary ∂j,` with a
large relative volume. Note that this case corresponds to Part 1
of Theorem 4.

Under the case condition, the inequality (18) implies that
dj,` ≤ k∗

2ρs(∂j,`) ≤
k∗

2λ ; equivalently,∥∥∥βj + β`
2

− βj
∥∥∥ =

∥∥∥βj + β`
2

− β`
∥∥∥ ≤ k∗

2λ
.

We consider the one-dimensional and high-dimensional cases
separately. When d = 1, the case condition ρs(∂j,`) > λ

further implies that βj+β`

2 ∈ Bs and hence |βj+β`

2 − β∗s | ≤ r.
It follows that |βj − β∗s | ≤

∣∣βj − βj+β`

2

∣∣ +
∣∣βj+β`

2 − β∗s
∣∣ ≤

k∗

2λ + r. When d ≥ 2, we have Dj,`,s ≤ k∗

2λ by multiplying

the inequalities (18) and (19). Let z ∈ Bs ∩ ∂j,` be the point
that attains

∥∥βj+β`

2 − z
∥∥ = dist

(βj+β`

2 ,Bs ∩ ∂j,`
)

= Dj,`,s.
It follows that

‖βj − β∗s‖ ≤
∥∥∥βj − βj + β`

2

∥∥∥+
∥∥∥βj + β`

2
− z

∥∥∥+ ‖z − β∗s‖

≤ k∗

2λ
+
k∗

2λ
+ r =

k∗

λ
+ r.

In either case of d, we have the bound ‖βj −β∗s‖ ≤ k∗

λ + r.
Since s ∈ Ti, there exist a point x ∈ Bs ∩ Vi. It follows that

‖βi − β∗s‖ ≤‖βi − x‖+ ‖x− β∗s‖
(i)
≤‖βj − x‖+ ‖x− β∗s‖

≤(‖βj − β∗s‖+ ‖x− β∗s‖) + ‖x− β∗s‖
(ii)
≤ k∗

λ
+ 3r,

where step (i) follows from x ∈ Vi, and step (ii) follows from
x ∈ Bs and the bound on ‖βj − β∗s‖ proved above. We have
established Part 1 of Theorem 4.

Case 2: for all (s, j, `) ∈ Ti×[k]×[k] there holds ρs(∂j,`) ≤
λ.: In this case, for all true clusters {Bs} that intersect the
Voronoi set Vi, all the Voronoi boundaries enclosed by Bs have
a small relative volume.

Let us partition the set Ti := {s ∈ [k∗] : Vi ∩ Bs 6= ∅} into
two subsets defined as follows:

Ai := {s ∈ Ti : β∗s ∈ int(Vi)} and
Bi := Ti \Ai = {s ∈ Ti : β∗s 6∈ int(Vi)}.

Here Ai indexes the ground truth clusters whose centers are
in the interior of the Voronoi set Vi; Bi indexes the ground
truth clusters that intersect Vi but their centers are outside
its interior (i.e., the center either lies on a Voronoi boundary
or in some other Voronoi set Vj). Also recall the quantities
mi,s ≡ mi,s(β) and ci,s ≡ ci,s(β) introduced after Lemma 2;
in particular, mi,s is the probability mass of Vi ∩ Bs with
respect to Ps, and ci,s is the corresponding center of mass.

Note the Voronoi set Vi is a polyhedron with at most k
facets. For each s ∈ Bi, if ρs(∂j,`) ≤ λ for all ∀(j, `) (and in
particular, for j = i), then all facets of Vi intersect the ball Bs
with a small relative volume. Moreover, β∗s is not in int(Vi).
With these two facts, an elementary geometric argument
(formally given in Lemma 8) shows that the intersection Vi∩Bs
must have a small mass; that is,

mi,s = Ps(Vi) ≤ kλr, ∀s ∈ Bi. (20)

On the other hand, for each s ∈ Ai, we must have β∗s /∈
int(Vj),∀j 6= i, since the interiors of Voronoi sets are disjoint.
Repeating the same argument above shows that Ps(Vj) ≤
kλ, ∀j 6= i, whence

mi,s = Ps(Vi) =1−
∑
j:j 6=i

Ps(Vj) ≥ 1− k2λr, ∀s ∈ Ai.

(21)

The inequalities (20) and (21) establish the first two bounds
in Part 2 of Theorem 4.

We next turn to Part 2(a) of Theorem 4, which concerns
the case with Ai = ∅. This means that Ti = Bi. We therefore
have

P(Vi) =
1

k∗

∑
s∈[k∗]

mi,s ≤ kλr,
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where the last step holds due to equation (20) and the fact that
mi,s = 0,∀s /∈ Ti.

Finally, we consider Part 2(b) of Theorem 4, which concerns
the case with Ai 6= ∅ and hence P(Vi) > 0. Since β is a local
minimum, Lemma 2 and the discussion thereafter ensure that

βi =

∑k∗

s=1mi,sci,s∑k∗

s=1mi,s

=

∑
s∈Ti

mi,sci,s∑
s∈Ti

mi,s
.

Recalling the definition bi := 1
|Ai|

∑
s∈Ai

β∗s , we can decom-
pose the quantity (βi − bi) of interest as follows:

βi − bi =

∑
s∈Ai

mi,sci,s +
∑
s∈Bi

mi,sci,s∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s
− 1

|Ai|
∑
s∈Ai

β∗s

=

∑
s∈Ai

mi,sci,s +
∑
s∈Bi

mi,sci,s∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s
−
∑
s∈Ai

mi,sci,s∑
s∈Ai

mi,s︸ ︷︷ ︸
µ

+

∑
s∈Ai

mi,sci,s∑
s∈Ai

mi,s
− 1

|Ai|
∑
s∈Ai

β∗s︸ ︷︷ ︸
ν

. (22)

The following two lemmas, proved in Section VI-F, control
the norms of the vectors µ and ν.

Lemma 5. We have ‖µ‖ ≤ k∗r
1−k2λr + k∗·(kλr)·(k2λr2)

(1−k2λr)2 +
2k∗kλr
1−k2λr∆max.

Lemma 6. We have ‖ν‖ ≤ k2λr2

1−k2λr + k2λr
1−k2λr∆max.

Applying these two lemmas to bound the right hand side of
equation (22), we obtain that

‖βi − bi‖ ≤
k∗r

1− k2λr
+
k2λr2(1 + (k∗k − k2)λr)

(1− k2λr)2

+
(k + 2k∗)kλr

1− k2λr
∆max,

thereby proving Part 2(b) of Theorem 4.
We have completed the proof of Theorem 4.

D. Proof of Proposition 3 (Same Direction)

Under the perturbation direction vi = vj , the new Voronoi
boundary ∂i,j(β+ tv) is a translation of the original boundary
∂i,j(β) by the amount tv; see top panel of Figure 3. When
∂i,j(β) intersects Bs trivially, with measure 0 with respect
to Ps, setting W̃ v

i,j,s ≡ 0 satisfies the conclusions of the
proposition as ρs(∂i,j) = 0 in this case. Thus we only need
to consider the case where ∂i,j(β) intersects Bs non-trivially.
We assume WLOG that Ps(∆v

i→j) > 0 and upper bound
W v
i→j,s + W v

j→i,s by W v
i→j,s (as W v

j→i,s is non-positive). It
remains to upper bound W v

i→j,s.
Recall expression for W v

i→j,s:

W v
i→j,s(t)

:=

∫
∆vi→j(t)

(‖x− βj − tvj‖2 − ‖x− βi − tvi‖2)fs(x)dx

=

∫
∆vi→j(t)

[
2〈x,βi + tvi − βj − tvj〉

+ (‖βj + tvj‖2 − ‖βi + tvi‖2)

]
fs(x)dx.

Since the integrand above only involves the Euclidean norm,
we are free to choose any coordinate system. In particular, we
choose the origin to be 1

2 (βi+βj), the principal axis to be the
direction of βi−βj , and the secondary axis to be the direction
orthogonal to βi − βj and in span{βi − βj ,vi}. Under this
coordinate system, we have

W v
i→j,s(t) = 2

∫
∆vi→j(t)

(‖βi − βj‖x1 − t〈βi − βj ,vi〉)fs(x)dx

= 2

∫
x2,...,xd:x∈∆vi→j(t)

∫ t cos(θ)

x1=0

[
‖βi − βj‖x1

− t‖βi − βj‖ cos(θ)

]
fs(x)dx1dx2 . . . dxd,

where we introduce the shorthand θ ≡ θvi,j := ∠(βi−βj ,vj) =
∠(βi − βj ,vi) and, slightly abusing notation, still use fs to
denote the density function under the new coordinate system.
Note that the region

S(z, t) := {(x2, . . . , xd) : x ∈ ∆v
i→j(t), x1 = z}

is a vertical slice under the current coordinate system; in
particular, S(z, t) is the intersection of the set ∆v

i→j,s(t) and
the hyperplane that is parallel to ∂i,j and at a distance z from
∂i,j . Defining the integral

ρvi→j,s(z, t) :=

∫
S(z,t)

fs(z, x2, . . . , xd)dx2 . . . dxd,

we can write

W v
i→j,s(t) =2

∫ t cos(θ)

x1=0

[
‖βi − βj‖x1

− t‖βi − βj‖ cos(θ)
]
ρvi→j,s(x1, t)dx1. (23)

When t is small, we have the sandwich bound m(t) ≤
ρvi→j,s(x1, t) ≤M(t), where

m(t) := min
x1∈[0,t cos(θ)]

ρvi→j,s(x1, t),

and
M(t) := max

x1∈[0,t cos(θ)]
ρvi→j,s(x1, t).

Here m(t) and M(t) are well-defined as they are the max/min
of the bounded function ρvi→j,s over the compact interval
[0, t cos(θ)]. Moreover, m(t) and M(t) satisfy

lim
t→0

m(t) = lim
t→0

M(t) =
ReVol(∂i,j)
Vol(Bs(r))

= ρs(∂i,j).

Bounding the two terms in the bracket in equation (23)
separately, we obtain that

2

∫ t cos(θ)

x1=0

‖βi − βj‖x1ρ
v
i→j,s(x1, t)dx1

∈
[
2di,j cos2(θ) ·m(t)t2, 2di,j cos2(θ) ·M(t)t2

]
and

2t

∫ t cos(θ)

x1=0

‖βi − βj‖ cos(θ)ρvi→j,s(x1, t)dx1

∈
[
4di,j cos2(θ) ·m(t)t2, 4di,j cos2(θ) ·M(t)t2

]
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Figure 5. Illustration of the local coordinate system and the upper bound function. The local coordinate system has the origin at βi+βj

2
, represented by the

dark green dot. Its principal axis is in the direction of βi − βj , plotted as the x1 axis, and its secondary axis is plotted as the x2 axis. In the left panel, the
red dots represent βi and βj respectively; the blue stars represent βi + tvi and βj + tvj respectively, with vi = −vj . The dark blue arrow indicates the
direction of vj and it has an angle θvi,j with the vector βi − βj , the x1 axis. Correspondingly, the Voronoi boundary ∂i,j(β + tv) rotates around the origin
with an angle ψ(t). The boundaries ∂(β + tv) are plotted using dotted lines. The shaded green region in the left panel corresponds to the set ∆vi→j(t), in
which the point becomes closer to βj + tvj than βi + tvi after β is moved to β + tv. In the right panel, we demonstrate the set ∆̃vi→j(t) using the shaded
green region. It is a subset of ∆vi→j(t), enclosed by the hyperplane {x : x1 = 0} and the translated hyperplane {x : x1 = Di,j,s tan(ψ(t))}.

whence

2(m(t)− 2M(t))di,j cos2(θ)t2 ≤W v
i→j,s(t)

≤2(M(t)− 2m(t))di,j cos2(θ)t2.

It is then easy to see that W v
i→j,s(0) = 0, d

dtW
v
i→j,s(t) |t=0= 0

and

lim
t→0

W v
i→j,s(t)

t2
= −2di,j cos2(θ)ρs(∂i,j).

In summary, setting W̃ v
i,j,s = W v

i→j,s, we have established that
W v
i→j,s+W v

j→i,s ≤ W̃ v
i,j,s and that W̃ v

i,j,s satisfies the desired
analytical properties in Proposition 3.

E. Proof of Proposition 4 (Opposite Direction)
Under the perturbation direction vi = −vj , the Voronoi

boundary ∂i,j(β) rotates around the mid point βi+βj

2 ; see
right panel of Figure 3. When ∂i,j(β) intersects Bs trivially,
with measure 0 with respect to Ps, setting Ŵi,j,s ≡ 0 satisfies
the conclusion of the proposition, as ρs(∂i,j) = 0 in this
case. When 1

2 (βi +βj) ∈ Bs, we can also set Ŵ v
i→j,s ≡ 0, as

Di,j,s = 0 in this case. Thus in the rest of the proof, we assume
WLOG that 1

2 (βi + βj) 6∈ Bs and Ps(∆v
i→j,s(t)) > 0. In this

case we have ρs(∂i,j) > 0 and Di,j,s > 0. We upper bound
W v
i→j,s + W v

j→i,s by W v
i→j,s (as W v

j→i,s ≤ 0). It remains
to find an upper bound of W v

i→j,s that satisfies the desired
analytical properties.

Similarly to Section VI-D, a convenient coordinate system is
used. In particular, we choose the origin to be 1

2 (βi +βj), the
principal axis to be the direction of βi−βj , and the secondary
axis to be the direction that is orthogonal to βi − βj and in
the plane Li,j,s; see the left panel of Figure 5. Under this
coordinate system, we have the representation

βi = (di,j , 0, . . . , 0), βj = (−di,j , 0, . . . , 0),

β∗s = (b∗1, b
∗
2, 0, . . . , 0) (24)

for some b∗1, b
∗
2 ∈ R. The orientation of the secondary axis can

be chosen to satisfy b∗2 < 0. We note that the boundary ∂i,j(β)
rotates around 1

2 (βi + βj) by an angle ψ(t) that satisfies

tan(ψ(t)) =
t sin(θ)

di,j − t cos(θ)
, (25)

where θ ≡ θvi,j ∈ [0, π/2] is the (unsigned) angle between
vj and βi − βj . Moreover, since we assume Ps(∆v

i→j(t)) >
0, the directions vi and vj have the following coordinate
representation:

vj =
(

cos(θ),− sin(θ), 0, . . . , 0
)

= −vi.

We now proceed to upper bound the function W v
i→j,s. Define

the polyhedron set

∆̃v
i→j(t) :=

{
x ∈ ∆v

i→j(t) : x1 ≤ Di,j,s tan(ψ(t))
}
. (26)

The set ∆̃v
i→j(t) is sandwiched between the two hyperplanes

x1 = 0 and x1 = Di,j,s tan(ψ(t)); see the right panel of
Figure 5 for an illustration. With the above notations, we can
upper bound W v

i→j,s as follows:

W v
i→j,s

(i)
≤
∫

∆̃vi→j(t)

[
2〈x,βi + tvi − βj − tvj〉

+
(
‖βj + tvj‖2 − ‖βi + tvi‖2

)]
fs(x)dx

(ii)
=

∫
∆̃vi→j(t)

2〈x,βi + tvi − βj − tvj〉fs(x)dx

=

∫
∆̃vi→j(t)

[
2‖βi − βj‖x1 − 4t cos(θ)x1

+ 4t sin(θ)x2

]
fs(x)dx, (27)

where step (i) holds because the integrand in the definition
of W v

i→j,s is non-positive and thus integrating over a smaller
set ∆̃v

i→j(t) ⊆ ∆v
i→j(t) does not decrease the value of the

integral, and step (ii) holds since under the current coordinate
system, βi = −βj and vi = −vj .

To proceed, we let

D(t) := max
{
x2 : x ∈ ∆̃v

i→j(t) ∩ Bs
}
. (28)

denote maximum of the second coordinate of the set ∆̃v
i→j(t)∩

Bs under the current coordinate system. The following lemma,
proved at the end of this section, characterizes the limit property
of D(t).

Lemma 7 (Negative second coordinate at the boundary).
Suppose that v satisfies ‖vi‖ = ‖vj‖ = 1 and vi =
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−vj ∈ Li,j,s, βi+βj

2 6∈ Bs and ∆v
i→j(t) ∩ Bs 6= ∅. We have

limt→0D(t) = −Di,j,s.

Lemma 7 ensures that limt→0D(t) = −Di,j,s < 0.
Consequently, when t is sufficiently small, we have D(t) < 0
by the continuity.

Continuing from the last display equation (27), we obtain
our final upper bound Ŵ v

i,j,s(t):

W v
i→j,s ≤

∫
∆̃vi→j(t)

[
2‖βi − βj‖x1 − 4t cos(θ)x1

+ 4t sin(θ)D(t)
]
fs(x)dx =: Ŵ v

i,j,s(t).

To establish the analytical properties of Ŵ v
i,j,s(t), we follow a

similar argument as in Section VI-D. Define the integral

ρvi→j,s(z, t) :=

∫
x2,...,xd:

x∈∆̃vi→j(t),x1=z

fs(z, x2, . . . , xd)dx2 . . . dxd,

and rewrite Ŵ v
i,j,s(t) compactly as follows:

Ŵ v
i,j,s(t) =

∫ Di,j,s tan(ψ(t))

0

[
2‖βi − βj‖x1 − 4t cos(θ)x1

+ 4t sin(θ)D(t)
]
ρvi→j,s(x1, t)dx1.

We have the sandwich bound m(t) ≤ ρvi→j,s(x1, t) ≤
M(t), valid for x1 ∈

[
0, Di,j,s tan(ψ(t))

]
, where

m(t) := min
x1∈
[
0,Di,j,s tanh(ψ(t))]

ρvi→j,s(x1, t) and M(t) :=

max
x1∈
[
0,Di,j,s tan(ψ(t))

] ρvi→j,s(x1, t).

Moreover, the functions m(·) and M(·) satisfy

lim
t→0

m(t) = lim
t→0

M(t) =
ReVol(∂i,j)

Vol(Bs)
= ρs(∂i,j).

With some algebra as well as the non-positivity of D(t), we
obtain the following sandwich bound for Ŵ v

i,j,s over a small
neighborhood of 0:

Ŵ v
i,j,s(t) ≥ 2m(t)di,jD

2
i,j,s tan2(ψ(t))

+ 4tDi,j,s sin(θ)D(t)M(t) tan(ψ(t))

− 2tD2
i,j,s cos(θ)M(t) tan2(ψ(t));

and

Ŵ v
i,j,s(t) ≤ 2M(t)di,jD

2
i,j,s tan2(ψ(t))

+ 4tDi,j,s sin(θ)D(t)m(t) tan(ψ(t))

− 2tD2
i,j,s cos(θ)m(t) tan2(ψ(t)).

Proposition 4 follows immediately from the limit properties of
m(t), M(t), D(t) and tanh(ψ(t)).

Proof of Lemma 7. We use the same notations and coordinate
system as before. Observe that in equation (28), the maximum
that defines D(t) must be attained at a point in ∆̃v

i→j(t) ∩ Ss,
where Ss is the hypersphere of the ball Bs; see the right
panel of Figure 5. We claim that the maximum must also be
attained by a point in the hyperplane Li,j,s. Indeed, recalling
the representation in equation (24), we see that each point
x ∈ ∆̃v

i→j(t) ∩ Ss must satisfy

(x1 − b∗1)2 + (x2 − b∗2)2 +
∑
j≥3

x2
j = r2 and

x1 ∈
[
0, Di,j,s tan(ψ(t))

]
From the above equation it is clear that for each fixed z ∈
[0, Di,j,s tan(ψ(t))], over the set Ss∩∆̃v

i→j(t)∩{x : x1 = z},
the maximum of x2 is attained exactly when xj = 0 for all
j ≥ 3, that is, x ∈ Li,j,s. Combining these observations, we
conclude that

D(t) = max
{
x2 : x ∈ ∆̃v

i→j(t) ∩ Ss ∩ Li,j,s
}
.

Note that the set ∆̃v
i→j(t) ∩ Ss ∩ Li,j,s is compact, which is

represented by the solid blue segment in Bs in the right panel
of Figure 5; as t→ 0, this set shrinks continuously to a single
point (0,−Di,j,s, . . . , 0). It thus follows that limt→0D(t) =
−Di,j,s. This completes the proof of Lemma 7.

F. Proofs of Lemmas 5 and 6

For convenience we restate the bounds in equations (20) and
(21) as follows:{

mi,s ≤ kλr, if s ∈ Bi,
mi,s ≥ 1− k2λr, if s ∈ Ai,

(29)

where we recall that mi,s = P(Vi) is the probability mass
of the set Vi with respect to the uniform distribution on the
ball Bs ≡ Bβ∗s (r), and cs is the corresponding center of mass.
Applying the simple geometric result in Lemma 10, we further
obtain the bound

‖β∗s − ci,s‖ ≤
r · (1−mi,s)

mi,s
≤

{
r

mi,s
, if s ∈ Bi,

k2λr2

mi,s
, if s ∈ Ai,

(30)

where the last step follows from the fact that mi,s ≤ 1 and
equation (29). We are ready to prove the two lemmas.

Proof of Lemma 5. We have the following decomposition of
the vector µ:

µ =

∑
s∈Ai

mi,sci,s +
∑
s∈Bi

mi,sci,s∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s
−
∑
s∈Ai

mi,sci,s∑
s∈Ai

mi,s

=

∑
s∈Bi

mi,sci,s∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s

−
∑
s∈Bi

mi,s

∑
s∈Ai

mi,sci,s

(
∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s)
∑
s∈Ai

mi,s

=

∑
s∈Bi

mi,s(ci,s − β∗s )∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s

−
∑
s∈Bi

mi,s

∑
s∈Ai

mi,s(ci,s − β∗s )

(
∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s)
∑
s∈Ai

mi,s

+

∑
s∈Bi

mi,sβ
∗
s∑

s∈Ai
mi,s +

∑
s∈Bi

mi,s

−
∑
s∈Bi

mi,s

∑
s∈Ai

mi,sβ
∗
s

(
∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s)
∑
s∈Ai

mi,s
.

It follows that

‖µ‖ ≤
∑
s∈Bi

mi,s‖ci,s − β∗s‖∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s

+

∑
s∈Bi

mi,s

∑
s∈Ai

mi,s‖ci,s − β∗s‖
(
∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s)
∑
s∈Ai

mi,s
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+
2
∑
s∈Bi

mi,s∑
s∈Ai

mi,s +
∑
s∈Bi

mi,s
∆max.

(i)
≤ k∗r

1− k2λr
+
k∗ · (kλr) · (k2λr2)

(1− k2λr)2
+

2k∗kλr

1− k2λr
∆max,

where the last step holds due to the inequalities (29) and (30)
as well as the fact that |Ai|, |Bi| ∈ [1, k∗]. This completes the
proof of Lemma 5.

Proof of Lemma 6. We have the following decomposition of
the vector ν:

ν =

∑
s∈Ai

mi,sci,s∑
s∈Ai

mi,s
− 1

|Ai|
∑
s∈Ai

β∗s

=

∑
s∈Ai

mi,s(ci,s − β∗s )∑
s∈Ai

mi,s

+

∑
s∈Ai

(
mi,s − 1

|Ai|
∑
s′∈Ai

mi,s′
)
β∗s∑

s∈Ai
mi,s

.

Using the inequalities (29) and (30) as well as the triangle
inequality, we obtain that

‖ν‖ ≤ k2λr2

1− k2λr
+

k2λr

1− k2λr
∆max,

thereby proving Lemma 6.

VII. CONCLUSION

In this paper, we characterize the structures of all local
minima in the k-means problem for general values of k. We
show that under an appropriate separation condition of the
ground truth clusters, the local minima are always composed
of one-fit-many, many-fit-one or almost-empty type associations
between the fitted and ground truth centers.

Several future directions are of interests for both theory
and applications. An immediate direction is to generalize our
results from the population case to the finite sample case,
and from balanced spherical GMMs to more general mixture
models with imbalanced clusters, general covariance matrices
and heavy-tailed distributions. To transfer the population case to
the finite sample case, we might be able to adapt a set of general
techniques based on localization and uniform concentration
arguments; see [44, 54]. Also, while we have focused on
the k-means formulation, we expect that similar structural
results hold for a much broader class of clustering formulations,
including the maximum likelihood formulation of mixture
problems. On the computational side, we have discussed the
implications of our results for improving clustering algorithms.
Rigorously justifying these algorithms (which are largely
heuristic so far) in a broad range of models would be interesting.

Finally, it would be of great interest to establish similar
structural results for other non-convex optimization problems
that arise in machine learning and statistics applications [55,
46, 47, 45, 44].

APPENDIX

EQUIVALENCE TO THE PARTITION-BASED FORMULATION

A common way of formulating the k-means clustering prob-
lem is as follows: given a set of observations x1, . . . ,xn ∈ Rd,
we find a partition S = {S1, . . . , Sk} of these observations

such that the within-cluster sum of squared distances is
minimized:

min
S

k∑
j=1

∑
x∈Sj

‖x− µj‖2, (31)

where µj = 1
|Sj |

∑
x∈Sj

x is the mean of points in cluster i.
Meanwhile, the formulation (1) used in this paper, restated
below,

min
β

n∑
i=1

min
j∈[k]
‖xi − βj‖2,

is based on optimizing over the centers β = (β1, . . . ,βk).
Note that each solution β induces a partition {Sj(β)} of the
observations via the Voronoi diagram. Also note that the sum
of squared distances to a set of points is minimized by the
mean of these points. Combining this observations, we obtain
that for any β:

min
S

k∑
j=1

∑
x∈Sj

‖x− µj‖2 ≤
k∑
j=1

∑
x∈Sj(β)

‖x− βj‖2

=

n∑
i=1

min
j∈[k]
‖xi − βj‖2. (32)

On the other hand, for any partition S = {S1, . . . , Sk} of
the data points and its corresponding means (µ1, . . . ,µk), we
have

k∑
j=1

∑
x∈Sj

‖x− µj‖2 ≥
n∑
i=1

min
j∈[k]
‖xi − µj‖2

≥min
β

n∑
i=1

min
j∈[k]
‖xi − βj‖2. (33)

Taking the minimum over β of both sides of equation (32), and
the minimum over S for equation (33), we conclude that the
two formulations (31) and (1) have the same optimal values.
Moreover, an optimal solution for one formulation induces an
optimal solution for the other. Hence these two formulations
are equivalent.

PROOF OF PROPOSITION 1

In this section we prove Proposition 1, which states that
under the Stochastic Ball Model with k∗ = k, the ground truth
centers β∗ is the global minimum of the k-means objective
function G.

Proof. We begin by upper bounding the objective value of the
ground truth:

G(β∗) =
1

k

∑
s∈[k]

∫
min
i∈[k]
‖x− β∗i ‖2fs(x)dx

≤ 1

k

∑
s∈[k]

∫
‖x− β∗s‖2fs(x)dx

≤ r2,

where the second inequality follows from the fact that each
true cluster Bs has radius r.

17



Now let β be a global minimum of G. By optimality of β,
we have for each s ∈ [k]:

r2 ≥ G(β)
(i)
≥ 1

k

∫
min
i∈[k]
‖x− βi‖2fs(x)dx

(ii)
≥ 1

k

∫
min
i∈[k]

(
1

2
‖β∗s − βi‖2 − ‖x− β∗s‖2

)
fs(x)dx

(iii)
≥ 1

2k
min
i∈[k]
‖β∗s − βi‖2 −

r2

k
.

where step (i) holds by ignoring k − 1 clusters, step (ii) holds
by the inequality (a − b)2 ≥ 1

2a
2 − b2, and step (iii) holds

because fs is a probability density. From the above equation
we obtain that

min
i∈[k]
‖β∗s − βi‖ < 2

√
kr, ∀s ∈ [k];

that is, each true center β∗s is 2
√
kr-close to at least one βi.

We further observe that each βi is 2
√
kr-close to at most one

true center β∗s ; otherwise, by the triangle inequality we woud
have ∆min ≤ ‖β∗s −β∗s′‖ ≤ ‖β∗s −βi‖+‖β∗s′ −βi‖ < 4

√
kr,

contradicting the SNR assumption ηmin := ∆min

r ≥ 6
√
k. Since

the number of βi’s is equal to that of β∗s ’s, we deduce that each
βi is 2

√
kr-close to exactly one β∗s . Without loss of generality,

we may assume that

‖β∗s − βs‖ < 2
√
kr, ∀s ∈ [k].

When the above inequality and the SNR assumption ηmin :=
∆min

r ≥ 6
√
k hold, we have for each pairs (s, s′) ∈ [k]× [k]

with s 6= s′ and each x ∈ Bs:

‖x− βs‖ ≤ ‖x− β∗s‖+ ‖β∗s − βs‖
< r + 2

√
kr

≤ 6
√
kr − r − 2

√
kr

< ‖β∗s − β∗s′‖ − ‖x− β∗s‖ − ‖βs′ − β∗s′‖
≤ ‖x− βs′‖,

which implies that Bs ⊆ Vs(β). Applying Lemma 2 to the
global minimum β, we obtain that

βs =

∫
Vs(β)

xf(x)dx∫
Vs(β)

f(x)dx
=

∫
Bs
xf(x)dx∫

Bs
f(x)dx

= β∗s , ∀s ∈ [k].

thereby proving that β∗ is the only global minimum.

PROOF OF PROPOSITION 2

In this section we prove Proposition 2, which states that under
the one-dimensional Stochastic Ball Model in Figure 2 with
r < 0.4, the solution β = (β1, β2, β3) = (−2− r

2 ,−2 + r
2 , 1)

is a local minimum of the k-means objective function G.

Proof. Observe that V1(β) = (−∞,−2], V2(β) =

[−2, −1+r/2
2 ], V3(β) = [−1+r/2

2 ,∞], ∂1,2(β) = −2 and
∂2,3(β) = −1+r/2

2 . When r < 0.4, it is easy to see that for
any b = (b1, b2, b3) ∈ R3 in a small neighborhood of β, the
Voronoi boundary ∂2,3(b) remains strictly between −2 + r and
−r, and ∂1,2(b) remains strictly between −2− r and −2 + r.

Therefore, for any such b we can explicitly write down its
objective value:

G(b) =

∫ b1+b2
2

−2−r
(x− b1)2dx+

∫ −2+r

b1+b2
2

(x− b2)2dx

+

∫ r

−r
(x− b3)2dx+

∫ 2+r

2−r
(x− b3)2dx.

We compute the derivative and Hessian for G at b:

∇bG =


−2

∫ b1+b2
2

−2−r (x− b1)dx
−2

∫−2+r
b1+b2

2

(x− b2)dx

−2
∫ r
−r(x− b3)dx− 2

∫ 2+r
2−r (x− b3)dx


and

∇2
bG =


b1−b2

2 + 2(
b1+b2+2+r

2 )
b1−b2

2 0
b1−b2

2
b1−b2

2 + 2(−2 + r − b1+b2
2 ) 0

0 0 8r

 .
Evaluating the above expressions at b1 = β1 = 2 = r

2 , b2 =
β2 = −2 + r

2 and b3 = β3 = 1, we find that the derivative
vanishes and the Hessian is positive definite:

∇bG
∣∣
b=β

= 0,

∇2
bG
∣∣
b=β

=

 1.5r −0.5r 0
−0.5r 1.5r 0

0 0 8r

 � 0.

Therefore, β is indeed a local minimum of G.

PROOFS FOR SECTION V

In this section, we prove the technical lemmas stated in
Section V.

Proof of Lemma 1

Proof. Our goal is to derive the existence and expression of
the derivative of the function

Hv(t) := G(β + tv) =

∫
x

min
i∈[k]
‖x− βi − tvi‖2f(x)dx,

at t = 0. We make use of the following measure-theoretic
version of the Leibniz integral rule.

Proposition 5 (Leibniz’s integral rule). Let T be an open subset
of R, and X be a measure space. Suppose g : T ×X → R
satisfies the following conditions: (i) g(t,x) is a Lebesgue-
integrable function of x for each t ∈ T ; (ii) for almost all
x ∈ X , the partial derivative ∂

∂tg(t,x) exists for all t ∈ T ;
(iii) There is an integrable function θ : X → R such that
| ∂∂tg(t,x)| ≤ θ(x) for all t ∈ T and almost every x ∈ X ,
then we have

d
dt

∫
X

g(t,x)dx =

∫
X

∂

∂t
g(t,x)dx.

We verify the above three conditions in the proposition for
Hv . Without loss of generality, assume that ‖vi‖ ≤ 1,∀i ∈ [k].
Let ∆ := mini 6=j ‖βi − βj‖, which satisfies ∆ > 0 by the
assumption that {βj}kj=1 are pairwise distinct. For condition
(i), we see that the function g(t,x) := mini∈[k] ‖x − βi −
tvi‖2f(x) is integrable in x for each bounded t, since the
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density f has bounded second moment. For condition (ii),
note that when t ∈ T := [−∆

4 ,
∆
4 ], the perturbed solution

β + tv remains pairwise disjoint, hence the Voronoi boundary
∂(β+ tv) has measure 0. For all t ∈ T and all x /∈ ∂(β+ tv),
the minimizer in the definition of g(t+ε,x) remains fixed when
|ε| is sufficiently small, hence the partial derivative ∂

∂tg(t,x)
exists at all t ∈ T and satisfies

x ∈ Vi(β + tv)

=⇒ ∂

∂t
g(t,x) = −2〈vi,x− βi − tvi〉f(x). (34)

Finally for condition (iii), for each x ∈ support(f) =
∪s∈[k]Bs(r), we have the bound |〈vi,x− βi − tvi〉| ≤
maxs∈[k] ‖β∗s‖+ r+ ‖βi‖+ ∆

4 when t ∈ T , hence | ∂∂tg(t,x)|
is bounded by an integrable function. Applying the Leibniz’s
integral rule and equation (34), we obtain that

d
dt
Hv(0) =

∫
x

∂

∂t
g(0,x)dx

=−
k∑
i=1

∫
Vi(β)

2〈vi,x− βi〉f(x)dx

as claimed.

Proof of Lemma 2

Proof. In view of the decomposition (10) and Remark 1, we
have the following upper bound for Hv:

Hv(t) ≤ hv(t) :=

k∑
i=1

∫
Vi(β)

‖x− βi − tvi‖2f(x)dx, (35)

which satisfies hv(0) = Hv(0). Since β is a local minimum
of G, we know that t = 0 is local minimum of Hv for all v ,
hence Lemma 3 ensures that t = 0 is also a local minimum of
hv .

Suppose that we have β1 = β2 and V1(β) = V2(β) has a
positive measure with respect to f , and that all other βj , j ≥ 3
are pairwise distinct and different from β1 and β2. We may
partition V1(β) = V2(β) into two disjoint sets S1 and S2,
each with positive measure. For i ∈ {1, 2} denote by si :=∫

Si
xf(x)dx∫

Si
f(x)dx the center of mass of Si with respect to f . We can

choose the partition in such a way that s1 6= β1 and s2 6= β2.
Fix a direction v = (v1,v2,0, . . . ,0) with v1 = s1 − β1 and
v2 = s2 − β2. In this case the upper bound hv can be written
as

hv(t) =

∫
S1

‖x− β1 − tv1‖2f(x)dx

+

∫
S2

‖x− β2 − tv2‖2f(x)dx+ constant

=

∫
S1

‖x− s1‖2f(x)dx+

∫
S1

‖s1 − β1 − tv1‖2f(x)dx

+

∫
S2

‖x− s2‖2f(x)dx+

∫
S2

‖s2 − β2 − tv2‖2f(x)dx

+ constant.

(In the calculation above we have avoided double counting
the contribution from V1(β) = V2(β), and the constant part
corresponds to the contribution from Vi(β) for i ≥ 3) With

the above choices of v1 and v2, we see that hv(0) > hv(t) for
all t ∈ (0, 1) and hence t = 0 is not a local minimum of hv,
which is a contradiction. Therefore, we must have β1 6= β2

whenever Vi(β) ∪ Vj(β) has a positive measure. The more
general statement in Lemma 2 can be established in a similar
manner.

Now suppose that βi has a Voronoi set Vi(β) with a positive

measure. In this case the center of mass ci :=

∫
Vi(β)

xf(x)dx∫
Vi(β)

f(x)dx

is well-defined. Choose the direction v = (0, . . . ,0, ci −
βi,0, . . . ,0). Since t = 0 is a local minimum of Hv, its
derivative must vanish at t = 0. Using the derivative expression
from Lemma 1,4 we obtain that

0 =
d
dt
Hv(0) = −

∫
Vi(β)

2〈vi,x− βi〉f(x)dx

= −2〈vi, ci − βi〉
∫
Vi(β)

f(x)dx

= −2‖ci − βi‖2
∫
Vi(β)

f(x)dx,

where the last step follows from our choice of v. Since∫
Vi(β)

f(x)dx is the measure of Vi(β) and positive, we must
have βi = ci as claimed.

We state and prove several technical lemmas that are used
in Section VI.

Proof of Lemma 4

Recall that mi,s and ci,s denote the mass and the center of
mass of the set Vi with respect to the density fs. We similarly
define

m̃i,s =
∑

s′∈Ti:s′ 6=s

mi,s′ and

c̃i,s =

∑
s′∈Ti:s′ 6=smi,s′ci,s′∑
s′∈Ti:s′ 6=smi,s′

,

which are the mass and the center of mass of the set Vi with
respect to the density

∑
s′ 6=s fs′ . With this notation, the local

minimum β must satisfy the necessary condition

βi =
mi,sci,s + m̃i,sc̃i,s

mi,s + m̃i,s
, (36)

which follows from Lemma 2 and the text thereafter. Rearrang-
ing the expression (36) gives

c̃i,s =
(m̃i,s +mi,s)βi −mi,sci,s

m̃i,s
.

It then follows from the triangle inequality that

‖c̃i,s − βi‖ =
mi,s

m̃i,s
‖ci,s − βi‖

≤mi,s

m̃i,s
(‖ci,s − β∗s‖+ ‖β∗s − βi‖). (37)

4Lemma 1 is applicable for the following reason: we can ignore those
Vi(β)’s with zero measure in the integrals defining G and Hv , in which case
we have just established that β must have pairwise distinct components and
thus satisfy the premise of Lemma 1.
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We are now ready to prove Lemma 4, whose assumption
states that ρs(∂j,`) > λ = c√

r∆max
for some (s, j, `) ∈ Ti ×

[k]× [k]. Observation 1 ensures that such an s is unique, hence
for all other s′ ∈ Ti \ {s}, we must have ρs′(∂j,`) ≤ λ,∀(j, `).
Observation 2 ensures that for all these s′, if β∗s′ ∈ Vi then
s′ ∈ Ai. In view of these properties and equation (36), we
can see that c̃i,s is similar to βi except that the density of the
s-th true cluster is ignored. Therefore, we can follow the same
arguments for proving Part 2(b) of Theorem 4 as well as the
simplification step in (12) to obtain that

‖c̃i,s − b−i ‖ ≤ ∆max

(4k∗ + 2ck2)(1 + 2k∗

k )
√
ηmax

(38)

On the other hand, under the assumption of the lemma, Part 1
of Theorem 4 ensures that

‖βi − β∗s‖ ≤
k

λ
+ 3r ≤ ∆max

4k∗

c
√
ηmax

. (39)

We proceed by bounding ‖b−i − β∗s‖ as follows:

‖b−i − β
∗
s‖ ≤‖b−i − c̃i,s‖+ ‖c̃i,s − βi‖+ ‖βi − β∗s‖

≤‖b−i − c̃i,s‖+
mi,s

m̃i,s
(‖ci,s − β∗s‖+ ‖β∗s − βi‖)

+ ‖βi − β∗s‖ (40)

≤∆max

(4k∗ + 2ck2)(1 + 2k∗

k )
√
ηmax

+
mi,s

m̃i,s
· ∆max

ηmax
+

(
mi,s

m̃i,s
+ 1

)
∆max

4k∗

c
√
ηmax

,

(41)

where step (40) follows from the bound (37), and step (41)
follows from the bounds (38) and (39) as well as the fact
that ci,s ∈ Bs so ‖ci,s − β∗s‖ ≤ r = ∆max

ηmax
. Now, note that

since |Ai \ {s}| ≥ 2 by assumption, there exists some s′ ∈
Ai ⊆ Ti such that s′ 6= s. We have established above that this
s′ must satisfy ρs′(∂j,`) ≤ λ,∀(j, `), hence applying Part 2
of Theorem 4 we obtain that mi,s′ = Ps′(Vi) ≥ 0.5, which
further implies mi,s

m̃i,s
≤ 2. Continuing from the above display

equation, we obtain

‖b−i − β
∗
s‖ ≤∆max

(4k∗ + 2ck2)(1 + 2k∗

k )
√
ηmax

+ 3∆max
4k∗

c
√
ηmax

+ ∆max
2

ηmax

≤∆max

2ck2(1 + 2k∗

k ) + 4k∗(2.5 + 2k∗

k )
√
ηmax

, (42)

where the last step follows from the assumption that c > 3
and ηmax ≥ 4ck2. Combining the inequalities (39) and (42),
we obtain

‖b−i − βi‖ ≤‖b
−
i − β

∗
s‖+ ‖β∗s − βi‖

≤∆max

2ck2(1 + 2k∗

k ) + 4k∗(3 + 2k∗

k )
√
ηmax

, (43)

thereby proving the first bound in Lemma 4.

To prove the second bound in Lemma 4, we observe that
by definition of b+

i and b−i , there holds

b+
i :=

1

1 + |Ai \ {s} |

 ∑
s′∈Ai\{s}

β∗s′ + β∗s


=
|Ai \ {s} |

1 + |Ai \ {s} |
b−i +

1

1 + |Ai \ {s} |
β∗s .

whence ‖b+
i − β∗s‖ = |Ai\{s}|

1+|Ai\{s}|‖b
−
i − β∗s‖. It follows that

‖b+
i − βi‖ ≤‖b

+
i − β

∗
s‖+ ‖β∗s − βi‖

≤‖b−i − β
∗
s‖+ ‖β∗s − βi‖

≤∆max

2ck2(1 + 2k∗

k ) + 4k∗(3 + 2k∗

k )
√
ηmax

,

where the last step follows from equation (43).
It remains to show that |Ai \ {s} | ≥ 2. Note that Ai 6= ∅

under the assumption |Wi\{s} | ≥ 1 of the lemma. For the sake
of deriving a contradiction, assume that Wi \ {s} = {s′}, in
which case b−i = β∗s′ . It then follows from inequality (42) that

‖β∗s′−β∗s‖ ≤ ∆max
2ck2(1+ 2k∗

k )+4k∗(3+ 2k∗
k )√

ηmax
, contradicting the

separation assumption on ηmin in Theorem 3. This completes
the proof of Lemma 4.

Controlling the Volume

In this section, we show that the intersection of a Voronoi
set and a ground truth cluster must be small if (i) the true
center is not in the Voronoi set and (ii) the intersection of the
true cluster and the boundary of the Voronoi set is small. This
is formalized in the following lemma.

Lemma 8 (Controlling the volume of intersection). Let µ be the
uniform distribution on B0(r). Let P be a closed polyhedron
with at most k facets satisfying 0 6∈ int(P ). If each facet
F of P satisfies 1

rdVd
ReVol(F ∩ B0(r)) ≤ λ, then we have

µ(P ) ≤ kλr.

Proof. Introduce the shorthand B := B0(r). We may assume
that P ∩ B 6= ∅, because otherwise the lemma is trivially true.
We claim that one may shift the polyhedron P by a distance r
so that its intersection with the ball B has zero measure. That is,
there exists a unit vector v such that

(
P+(r+ε)v

)
∩B = ∅ for

all ε > 0. We further claim that v can be chosen in such a way
that the intersection P ∩B is enclosed by the original boundary
and the shifted boundary; that is, P ∩ B ⊆ (∂P ∩ B) + Lr,
where we Lr := {tv : t ∈ [0, r]} is a line segment. Figure 6
provides an illustration of these two claims, whose proof is
deferred to the end of this section. Therefore, we have the
bound

µ(P ) =
Vol(P ∩ B)

Vol(B)
≤

Vol
(
(∂P ∩ B) + Lr)

Vol(B)

≤
r
∑
F∈F ReVol(F ∩ B)

rdVd
≤ rkλ,

where F := {F : F is a facet of P} satisfies |F| ≤ k by
assumption. This completes the proof of the lemma.

Let us prove the two claims above. Because P is convex and
0 /∈ int(P ), the separating hyperplane theorem ensures that
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P

0

Figure 6. Shifting the boundary of the polyhedron P to bound the volume of
P ∩ B0(r).

there exists some unit vector v such that 〈x,v〉 ≥ 0,∀x ∈ P .
Therefore, for all x ∈ P and ε > 0, we have

‖x+ (r + ε)v‖2 = ‖x‖2 + 2(r + ε)〈x,v〉+ (r + ε)2‖v‖2

≥ 0 + 0 + (r + ε)2 > r2,

whence x + (r + ε)v /∈ B, proving the first claim. To prove
the second claim, fix an arbitrary x ∈ P ∩ B and consider the
half line ` := {x− tv : t ≥ 0}. Note that ` must intersect the
boundary ∂P ; otherwise we would have ` ⊆ P and hence the
separating hyperplane property implies that 〈x − tv,v〉 ≥ 0
for all t ≥ 0, which cannot hold as v has unit norm. Since
P is convex, ` intersects ∂P at a unique point, say x0 =
x − t0v. We must have t0 ≤ r; otherwise we would have
x = x0 + t0v ∈ P + (r + ε)v for some ε > 0 and hence
x /∈ B by the first claim, which is a contradiction. Using the
separating hyperplane property 0 ≤ 〈x − t0v,v〉 ≤ 〈x,v〉
again, we have

‖x0‖2 =‖x− t0v‖2

=‖x‖2 + 〈−t0v,x〉+ 〈x− t0v,−t0v〉 ≤ r2 + 0 + 0

and thus x0 ∈ B ∩ ∂P . Combining pieces, we conclude that
x = x0 + t0v ∈ (∂P ∩ B) + Lr. As x ∈ P ∩ B is arbitrary,
we have P ∩ B ⊆ (∂P ∩ B) + Lr as claimed.

Below we state a analogous version of Lemma 8 under the
Gaussian density. This result is used in the proof of our main
Theorem 5 for the Gaussian Mixture model.

Lemma 9 (Controlling the volume of intersection, Gaussian).
Let µ be the probability measure with respect to a spherical
Gaussian distribution in Rd with mean 0 and variance σ2.
Let P be a closed polyhedron with at most k facets satisfying
0 6∈ int(P ). If each facet F of P satisfies ρ1(F ) ≤ λ, where
ρ1(F ) is defined as in equation (48) with β∗1 = 0, then we
have µ(P ∩ B0(r)) ≤ kλr for any r > 0.

Proof. We fix r and introduce the shorthand B ≡ B0(r).
From the proof of Lemma 8, there exists a unit vector
v = (v1, . . . , vd) satisfying (i) 〈v,x〉 ≥ 0 for all x ∈ P ;
(ii) P ∩ B ⊆ ∂P ∩ B + Lr, where Lr := {tv : t ∈ [0, r]}. It
follows that

µ(P ∩ B) ≤µ(∂P ∩ B + Lr) ≤
∑
F∈F

µ(F ∩ B + Lr),

where F := {F : F is a facet of P}. Since by assumption
|F| ≤ k and each facet F ∈ F satisfies ρ1(F ) ≤ λ, the lemma
follows if we can show that µ(F ∩ B + Lr) ≤ ρ1(F ) · r.

Without loss of generality, we may use an orthonormal basis
{w1, . . . ,wd} such that w1 is the normal vector of F and
〈v,w1〉 ≥ 0 . Under this basis, we have x1 = 〈x,w1〉 = c
for all x ∈ F , where c is a fixed number. We define a vertical
slice at x1 = c as follows:

SF := {(x2, . . . , xd) : (c, x2, . . . , xd) ∈ F ∩ B} .

With this notation, the definition of ρ1(F ) is equivalent to

ρ1(F )

=

∫
(x2,...,xd)∈SF

1(√
2πσ2

)d exp

(
−
c2 +

∑d
j=2 x

2
j

2σ2

)
dx2 . . . dxd,

and the set F ∩ B + Lr admits the explicit expression

F ∩ B + Lr =
{
z :z = (c, x2, . . . , xd) + tv,

(x2, . . . , xd) ∈ SF , t ≤ r
}
. (44)

We are now ready to bound the quantity of interest

µ(F ∩ B + Lr)

=

∫
z∈F∩B+Lr

1

(
√

2πσ2)d
exp

(
−
∑d
j=1 z

2
j

2σ2

)
dz1 . . . dzd.

Using the expression (44), we may rewrite the above integral
by a change of variable from (z1, z2, . . . , zd) to (t, x2, . . . , xd).
To this end, note that the corresponding Jacobian matrix is

J =


v1 0 0 . . . 0
v2 1 0 . . . 0
...
vd 0 0 . . . 1

 ,
which is a lower triangular matrix satisfying |det(J)| = |v1|.
Consequently, we have

µ(F ∩ B + Lr)

=

∫ r

0

[ ∫
(x2,...,xd)∈SF

1

(
√

2πσ2)d
·

exp

(
−

(c+ tv1)2 +
∑d
j=2(xj + tvj)

2

2σ2

)
dx2 . . . dxd

]
|v1|dt.

To upper bound the Gaussian density above, we note that for
any t ≥ 0 and (c, x2, . . . , xd) ∈ F ⊆ P , the property of the
separating hyperplane ensures that t(v1c +

∑d
j=2 vjxj) ≥ 0,

whence

exp

(
−

(c+ tv1)2 +
∑d
j=2(xj + tvj)

2

2σ2

)

= exp

(
−
c2 +

∑d
j=2(xj)

2

2σ2

)
exp

(
−
t(v1c+

∑d
j=2 vjxj)

σ2

)
·

exp

(
− t2

2σ2

)
≤ exp

(
−
c2 +

∑d
j=2 x

2
j

2σ2

)
.

It follows that

µ(F ∩ B + Lr)

≤
∫ r

0

[ ∫
(x2,...,xd)∈SF

1

(
√

2πσ2)d
·
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exp

(
−
c2 +

∑d
j=2(xj)

2

2σ2

)
dx2 . . . dxd

]
|v1|dt

=

∫ r

0

ρ1(F ) · |v1|dt ≤ ρ1(F ) · r,

where the last step holds since v is a unit vector with |v1| ≤ 1.
This completes the proof of Lemma 9.

Controlling the distance to the center

In this section, we prove the following result:

Lemma 10 (Bound on the center of mass, ball). Let µ be the
uniform distribution over the ball B0(r) ⊂ Rd. Suppose that
a subset S ⊂ Rd has probability measure µ(S) > 0. Let cS
be the center of mass of the set S with respect to µ. We have
the bound

‖cS‖ ≤
r · µ(Rd \ S)

µ(S)
.

Proof. Recall the expression of the center of mass cS =∫
x1S(x)dµ
µ(S) . We have

µ(S) · ‖cS‖ =

∥∥∥∥∫ x1S(x)dµ
∥∥∥∥

(i)
=

∥∥∥∥− ∫ x1Rd\S(x)dµ
∥∥∥∥

(ii)
≤
∫
‖x‖1Rd\S(x)dµ

(iii)
≤ rµ(Rd \ S),

where step (i) holds since µ has mean 0, and step (ii) holds by
the Jensen’s inequality, and step (iii) holds because ‖x‖ ≤ r
for all x ∈ support(µ) = B0(r). Rearranging the inequality
proves the desired bound.

Lemma 11 (Bound on the center of mass, Gaussian). Let µ be
the Gaussian distribution N (0, σ2Id). Suppose that a subset
S ⊂ Rd has probability measure µ(S) > 0. Let cS be the
center of mass of the set S with respect to µ. We have the
bound

‖cS‖ ≤
2σ ·

√
µ(Rd \ S)

µ(S)
.

Proof. Recall the variational characterization of the center of
mass cS :

Since 0 is the mean of µ, we have

0 ≤‖cS‖2

=

∫
‖x− cS‖2dµ−

∫
‖x‖2dµ

=

∫
‖x− cS‖21S(x)dµ−

∫
‖x‖21S(x)dµ

+

∫
‖x− cS‖21Rd\S(x)dµ−

∫
‖x‖21Rd\S(x)dµ

(i)
≤
∫
‖x− cS‖21Rd\S(x)dµ−

∫
‖x‖21Rd\S(x)dµ

=µ(Rd\S)‖cS‖2 − 2

∫
〈x, cS〉1Rd\S(x)dµ. (45)

where step (i) follows from the variational characterization of
the center of mass

cS = argminz∈Rd

∫
‖x− z‖21S(x)dµ.

Rearranging equation (45) gives

µ(S)‖cS‖2 ≤ −2

∫
〈x, cS〉1Rd\S(x)dµ

(ii)
≤ 2‖cS‖

√∫ 〈
x,

cS
‖cS‖

〉2

dµ ·

√∫
1Rd\S(x)dµ

(iii)
= 2‖cS‖σ ·

√
µ(Rd \ S),

where step (ii) follows from Cauchy-Schwarz and step (iii)
follows from the fact that any one-dimensional margin of
N (0, σ2Id) is the univariate Gaussian distribution N (0, σ2).
Rearranging the above equation proves the desired bound.

PROOF OF THEOREM 2

We prove a more general and quantitative version Theorem 2
that holds for any k∗ and k.

Theorem 5 (General version of Theorem 2). Let t be any num-
ber satisfying ϕ(t) := 2 exp(−t2 min(d, k + k∗)/8) < 1

4 . Un-
der the Gaussian Mixture Model, assume that ηmax ≥ 16tc2k4

and ηmin ≥
[
k∗

k
√
t

(
2 + c

√
t√

ηmax

)
+ 3ck(k∗ + k)

√
t
]√

ηmax +

2(2k∗ + 1)ϕ(t)ηmax for some constant c ≥ 3. If β =
(β1, . . . ,βk) ∈ Rd×k is a local minimum of G, then the
ground truth centers and fitted centers can be partitioned
as [k] =

⋃m
a=1 S

∗
a and [k] =

⋃m
a=0 Sa, respectively, such that

for each a ∈ [m], exactly one of the following holds:
• (many/one-fit-one association) |Sa| ≥ 1 and S∗a = {s}

for some s ∈ [k]; moreover,

‖βi − β∗s‖ ≤ ∆max

{
2k∗

ck
√
t

+ 2ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
∀i ∈ Sa. (46)

• (one-fit-many association) Sa = {i} for some i ∈ [k]
and |S∗a | ≥ 2; moreover,∥∥∥∥βi − 1

|S∗a |
∑
s∈S∗a

β∗s

∥∥∥∥
≤∆max

{
2k∗

ck
√
t

+ 3ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
(47)

In addition, for each i ∈ S0, we have P
(
Vi(β)

)
≤ ck

√
t√

ηmax
+ϕ(t)

(almost-empty association).

Given Theorem 5, Theorem 2 follows immediately. The rest
of this section is devoted to proving Theorem 5.

As before, we use P to denote the probability measure with
respect to f and Ps to denote the probability measure with
respect to fs, where f is the density of the Gaussian mixture
and fs is the density of the s-th Gaussian component. Recall
the population k-mean objective function:

G(β) =

∫
x

min
j∈[k]
‖x− βj‖2f(x)dx
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=
1

k∗

k∗∑
s=1

∫
x

min
j∈[k]
‖x− βj‖2fs(x)dx.

Reduction to lower dimensions

We first argue that it suffices to prove the theorem in
dimension d′ ≤ k + k∗. Once this is established, then the
theorem for d > k∗+ k dimensions can be deduced as follows.
Suppose that β∗ ∈ Rd×k∗ is the ground truth solution and
β ∈ Rd×k is a candidate solution. We may choose a coordinate
system such that the first d′ = k∗+k dimensions correspond to
span{β∗1 , . . . ,β∗k∗ ,β1, . . . ,βk}. In this case, for each s ∈ [k∗]
we have β∗s = (β∗′s ,0) for some β∗′s ∈ Rd′ and for each i ∈ [k],
we have and βi = (β′i,0) for some β′i ∈ Rd′ . Moreover,
thanks to Gaussian’s rotational invariance, the d-dimensional
Gaussian mixture is a product distribution with respect to the
first d′ dimensions and the last d− d′ dimensions, where the
first d′-dimensional margin is itself a Gaussian mixture. Indeed,
for any x = (x′, z) ∈ Rd with x′ ∈ Rd′ and z ∈ Rd−d′ , the
density of the Gaussian mixture factorizes:

f(x) ∝ 1

k∗

k∗∑
s=1

exp

(
‖x− β∗s‖2

2σ2

)

=
1

k∗

k∗∑
s=1

exp

(
‖(x′, z)− (β∗′s ,0)‖2

2σ2

)

=

[
1

k∗

k∗∑
s=1

exp

(
‖x′ − β∗′s ‖2

2σ2

)]
· exp

(
‖z‖2

2σ2

)
.

Now, if β is a local minimum of G, then β′ is also a
local minimum of G restricted to the first d′ = k∗ + k
dimensions. Applying the theorem with dimension d′, we
obtain bounds on the quantities ‖β′i−β∗′s ‖, ‖β′i−

∑
s∈S β

∗′
s ‖

and P(Vi(β′)). We claim that these three quantities are equal
to ‖βi − β∗s‖, ‖βi −

∑
s∈S β

∗
s‖ and P(Vi(β)), respectively.

Indeed, the first two equalities are immediate under our
coordinate system; the last equality holds because the Gaussian
mixture factorzes (shown above) and so do the Voronoi
sets: Vi(β) = Vi(β′) × Rd−d′ . We conclude that the same
collection of bounds hold in dimension d as well. In the rest
of the proof, we can safely assume that d ≤ k∗ + k, in which
case min{k∗ + k, d} = d.

As in the proof for the Stochastic Ball Model, we first
establish a general result, an analogue of Theorem 4, that
provides a family of bounds parametrized by two positive
numbers λ and t. To state this result, we introduce some
additional notation. Set r = tσ

√
d and let

Bs(r) := {x ∈ Rd : ‖x− β∗s‖ ≤ r}.

denote the ball centered at β∗s with radius r. Recall that for
each i, j ∈ [k] and s ∈ [k∗], the Voronoi boundary ∂i,j lies in
a (d− 1)-dimensional affine subspace L. Since the distribution
fs of the s-th component is rotationally invariant, we may
assume WLOG that L = {x ∈ Rd : x1 = z} for some number
z. Accordingly, we define the quantity

ρs(∂i,j) :=

∫
1
{

(z, x2, . . . , xd) ∈ ∂i,j ∩ Bs(r)
}
·

fs(z, x2, . . . , xd) dx2 . . . dxd, (48)

which is a measure of the relative probability mass of the
Voronoi boundary ∂i,j when restricted to the ball Bs(r).5 Also
recall the function ϕ(·) defined in the statement of Theorem 5,
which satisfies ϕ(t) = 2 exp(−t2d/8) when d ≤ k∗ + k.

We now state the family of bound in the Gaussian case:

Theorem 6 (Family of bounds for Gaussian). Under the
Gaussian mixture model, let β = (β1, . . . ,βk) be a local
minima for the k-means objective function G defined in (3).
Let λ > 0 and t > 0 be two arbitrary fixed numbers and set
r := tσ

√
d. For each i ∈ [k], define the sets:

Ti :=
{
s ∈ [k∗] : Vi ∩ Bs(r) 6= ∅

}
and

Ai :=
{
s ∈ [k∗] : β∗s ∈ int(Vi)

}
⊆ Ti.

Then the following is true for each i ∈ [k]:
1) If ρs(∂j,`) > λ for some pair (j, `) and s ∈ Ti, then

‖βi − β∗s‖ ≤
k∗

λ
+ 3r.

2) For each s ∈ Ti, if ρs(∂j,`) ≤ λ for all pairs (j, `), then
the following bounds hold

Ps(Vi) ≥1− k2λr − ϕ(t), ∀s ∈ Ai,
Ps(Vi) ≤kλ+ ϕ(t), ∀s ∈ Ti \Ai.

Furthermore, if ρs(∂j,`) ≤ λ for all pair (j, `) and and
s ∈ Ti, then:

a) When |Ai| = 0, we have

P(Vi) ≤ kλr + ϕ(t).

b) When |Ai| > 0, we have

‖βi − bi‖

≤ 2k∗σ

1− k2λr − ϕ(t)

+
2σ
√
k2λr + ϕ(t)(1 + (k∗k − k2)λr + (k∗ − 1)ϕ(t))

(1− k2λr − ϕ(t))2

+
(2k∗ + k)kλr + (2k∗ + 1)ϕ(t)

1− k2λr − ϕ(t)
∆max,

where bi := 1
|Ai|

∑
s∈Ai

β∗s .

We prove Theorem 6 in Section 0c to follow. Note that
Theorem 6 is similar to Theorem 4 except that the error bounds
here have an additional error term ϕ(t).

The procedure to derive the main Theorem 5 from Theorem 6
is exactly same as that for the Stochastic Ball Model. In
particular, with r fixed to be tσ

√
d, we set λ = c√

r∆max
.

The assumptions on t and ηmax ensure that λk2r < 1
4 and

ϕ(t) = 2 exp(−t2d/8) < 1
4 . Moreover, Observations 1 and 2

still hold in the current setting. We then construct, in three
steps, a partition of the fitted centers {βi}i∈[k] as well as the
true centers {β∗s}s∈[k∗]. We provide a brief description here
and reuse all the notation from the proof of Theorem 3.

5Note that when fs is the uniform distribution over Bs(r), the definition
here reduces to ρs(∂i,j) = 1

Vdr
d ReVol(∂i,j ∩Bs(r)) and hence is consistent

with our previous definition in the ball model.
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a) Step 1 (almost empty association): We consider the
set

S0 :=
{
i ∈ [k] :ρs(∂j,`) ≤ λ,

∀(s, j, `) ∈ Ti × [k]× [k]; |Ai| = 0
}
.

Part 2(a) of Theorem 6 ensures that for all i ∈ S0, we have
P(Vi) ≤ kλr + ϕ(t) = ck

√
t√

ηmax
+ ϕ(t).

b) Step 2 (many/one fit one association):: We then
consider the fitted centers indexed by the set

J := {i ∈ [k] : |Ai| ≤ 1} \ S0.

For each i ∈ J , there are two complementary cases:
• ρs(∂j,k) ≤ λ for all (s, j, `) ∈ Ti × [k] × [k]. We must

have |Ai| = 1; say Ai = {s}. Applying Part 2(b) of
Theorem 6, we have

‖βi − β∗s‖
=‖βi − bi‖

≤ 2k∗σ

1− k2λr − ϕ(t)

+
2σ
√
k2λr + ϕ(t)(1 + (k∗k − k2)λr + (k∗ − 1)ϕ(t))

(1− k2λr − ϕ(t))2

+
(2k∗ + k)kλr + (2k∗ + 1)ϕ(t)

1− k2λr − ϕ(t)
∆max

(i)
≤4k∗σ + 4

√
2σ(1 + c(k∗k − k2)/

√
ηmax/t+ (k∗ − 1)ϕ(t))

+ 2(c(2k∗ + k)k/
√
ηmax/t+ (2k∗ + 1)ϕ(t))∆max

(ii)
≤∆max

{
2k∗

ck
√
t

+ 2ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
(49)

where in step (i) we plug in λ = c√
∆maxr

with r = tσ
√
d

and use the assumption that k2λr+ϕ(t) < 1
2 ; in step (ii),

we use the assumption that ηmax ≥ 16tc2k4 to further
simplify the bound.

• ρs(∂j,`) > λ for some (s, j, `) ∈ Ti × [k] × [k]; that is,
there exists some ground truth cluster Bs that encloses a
Voronoi boundary with a large relative volume. Applying
Part 1 of Theorem 4 and plugging the value of λ, we
obtain that ‖βi − β∗s‖ ≤ k∗

λ + 3r ≤ ∆max
4k∗
√
t

c
√
ηmax

.

For each distinct s ∈ [k∗] that appears in the above arguments,
let S∗a = {s} and let the corresponding Sa index those βi’s
for which either of the two cases holds.

c) Step 3 (one-fit-many association):: We are left with
the fitted centers indexed by the set

K := {i ∈ [k] : |Ai| ≥ 2} = [k] \
(
S0 ∪ J

)
.

Similarly to before, for each i ∈ K, there are two complemen-
tary cases:
• ρs(∂j,`) ≤ λ for all (s, j, `) ∈ Ti × [k] × [k]. Applying

Part 2(b) of Theorem 4 and following the same steps as
in equation (49), we obtain that

‖βi − bi‖ ≤ ∆max

{
2k∗

ck
√
t

+ 2ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
.

In this case, we let Sa = {i} and S∗a = Ai.

• ρs(∂j,`) > λ for some (s, j, `) ∈ Ti × [k]× [k]. We then
have an analogous lemma as Lemma 4 to show that βi is
close to the mean of all the true centers contained in its
Voronoi set, regardless of whether we include or exclude
β∗s . The proof is exactly the same as in Section A; we
omit its proof.
Lemma 12 (Proximity to mean of true centers, Gaussian
case). Under the assumption of Theorem 5, let β be a local
minimum of G. The following is true for each i ∈ [k]. If
ρs(∂j,`) > λ = c√

r∆max
for some (s, j, `) ∈ Ti× [k]× [k]

and |Ai \ {s}| ≥ 1, then we have the bounds

‖βi − b−i ‖ ≤ ∆max

{
2k∗

ck
√
t

+ 3ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
and

‖βi − b+
i ‖ ≤ ∆max

{
2k∗

ck
√
t

+ 3ck(k∗ + k)
√
t

√
ηmax

+ 7k∗ϕ(t)

}
,

where b−i := 1
|Ai\{s}|

∑
s′∈Ai\{s} β

∗
s′ and b+

i :=
1

|Ai∪{s}|
∑
s′∈Ai∪{s} β

∗
s′ ; moreover, |Ai \ {s} | ≥ 2.

In this case, we let Sa = {i}; also let S∗a = Ai \ {s} if
the index s has appeared in the sets {S∗a′} constructed
previously in Step 2 or in this step, and set S∗a = Ai∪{s}.

The reason that the above construction corresponds to a partition
for the fitted centers {βi}i∈[k] as well as a partition for the
true centers {β∗s}s∈[k∗] is the same as the proof in Theorem 3.

Proof of Theorem 6

To establish Theorem 6 for the Gaussian model, we follow
the same strategy as in the proof of Theorem 4 for the
ball model. The only technical hurdle is that each Gaussian
component distribution has unbounded support. Our main idea
is to identify a bounded ball, namely Bs(r), that contains most
of the probability mass of the s-th Gaussian component. Using
a standard concentration inequality for χ2 random variables
(e.g., [56, Example 2.28]), we know that when t > 2, there
holds the tail bound

Ps
(
Bs(r){

)
≤ ϕ(t) = 2 exp(−t2d/8), (50)

where S{ denotes the complement of a set S ⊆ Rd. By
restricting each s-th ground truth component to the ball Bs(r)
and treating the tail mass in equation (50) as additional error
terms, we can repeat most of the arguments used in the proof
of the ball model. In what follows, we sketch the analysis and
point out the minor modifications needed to adapt the proof
of Theorem 4 to the Gaussian case.

The main step in the proof for the Ball model involves
constructing smooth upper bounds for the function W v

i→j,s +
W v
j→i,s, as done in Proposition 3 and Proposition 4. These

two propositions still hold in the Gaussian case under the
definition (48) of the “relative volume” ρs(∂i,j). In particular,
the value of the integral defining W v

i→j,s +W v
j→i,s does not

increase if we restrict integration to the small set subset (Bs(r)),
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as the integrand is non-positive. Consequently, we can establish
the two key inequalities (18) and (19), restated below:

di,j · ρs(∂i,j) ≤
k∗

2
and

D2
i,j,s

di,j
· ρs(∂i,j) ≤

k∗

2
.

(51)
We can then derive the structural properties of a local

minimum β from the inequalities (51). As in the proof of
Theorem 4, for each i ∈ [k] indexing the fitted center βi and
its Voronoi set Vi, we consider two complementary cases.

Case 1: there exist some (s, j, `) ∈ Ti × [k] × [k] such
that ρs(∂j,`) > λ.: In this case, following exactly the same
argument as in the Ball model proof, we can derive from the
inequalities (51) that ‖βi−β∗s‖ ≤ k∗

λ + 3r. This proves Part 1
of Theorem 6.

Case 2: for all (s, j, `) ∈ Ti×[k]×[k] there holds ρs(∂j,`) ≤
λ.: Recall that mi,s is the probability mass of Vi with respect
to the Gaussian density fs and ci,s is the corresponding center
of mass of Vi. If we restrict the density fs onto the ball Bs(r),
the values of mi,s and ci,s do not change much; in particular,
we can control the amount of change using the tail bound (50).
With this in mind, we proceed by considering two sub cases.
• Case 2(a): Ai = ∅, in which case Ti = Bi. Following the

same argument for deriving equation (20) and using the
Gaussian Lemma 9 in place of Lemma 8, we obtain that

mi,s ≤ kλr + Ps
(
Bs(r){

)
≤ kλr + ϕ(t), ∀s ∈ Bi,

(52)
where the second RHS term accounts for the tail proba-
bility on Bs(r){. It follows that

P(Vi) =
1

k

∑
s∈Ti

mi,s ≤ kλr + ϕ(t).

This proves Part 2(a) of Theorem 6.
• Case 2(b): Ai 6= ∅. By Lemma 2, β must satisfy the

expression

βi =

∑
s∈[k∗] ci,smi,s∑
s∈[k∗]mi,s

.

Using this expression, we have the decomposition βi −
bi = µ+ν for some vectors µ and ν as in equation (22).
To bound µ and ν, we follow our general strategy to
decompose the Gaussian density fs into two parts, one
supported on the ball Bs(r) and the other the tail, where
the tail probability is bounded by ϕ(t) as in equation (50).
By doing so, we can establish analogous versions of the
bounds (29) and (30) as given below:{

mi,s ≤ kλr + ϕ(t), if s ∈ Bi,
mi,s ≥ 1− k2λr − ϕ(t), if s ∈ Ai,

and

‖β∗s − ci,s‖ ≤


2σ
mi,s

, if s ∈ Bi,
2σ
√
k2λr+ϕ(t)

mi,s
, if s ∈ Ai,

where the bound on ‖β∗s − ci,s‖ follows from Lemma
11. Using the above two bounds, we can further establish
analogous versions of Lemmas 5 and 6 as given below:

‖µ‖ ≤ 2k∗σ

1− k2λr − ϕ(t)

+
2k∗(kλr + ϕ(t))σ

√
k2λr + ϕ(t)

(1− k2λr − ϕ(t)))2

+
2k∗(kλr + ϕ(t))

1− k2λr − ϕ(t)
∆max,

‖ν‖ ≤
2σ
√
k2λr + ϕ(t)

1− k2λr − ϕ(t)

+
k2λr + ϕ(t)

1− k2λr − ϕ(t)
∆max.

It follows that an analogue of inequality (??) holds:

‖βi − bi‖
≤‖µ‖+ ‖ν‖

≤ 2k∗σ

1− k2λr − ϕ(t)

+
2σ
√
k2λr + ϕ(t)(1 + (k∗k − k2)λr + (k∗ − 1)ϕ(t))

(1− k2λr − ϕ(t))2

+
(2k∗ + k)kλr + (2k∗ + 1)ϕ(t)

1− k2λr − ϕ(t)
∆max.

This proves Part 2(b) of Theorem 6.

ADDITIONAL EXAMPLES

In this section, we provide two concrete examples that give
additional insights on the behaviors of the local minima of
the k-means objective and corroborate the results in our main
theorems.

Our main theorem assumes certain separation conditions in
terms of the SNRs ηmin and ηmax. The first example shows
that if the SNR is too small, then a local minimum may fail
to have the structure described in Theorem 3. Therefore, a
separation condition on the true clusters is in general necessary.

Example 1 (Small Separation). Consider the Stochastic Ball
Model with k = 3 in dimension d = 1, where the ground
truth cluster centers are β∗1 = −1, β∗2 = 0 and β∗3 = 1,
and the radius r of the balls satisfies ( 9

√
2

2 − 1
4 )r > 1. Let

β = (β1, β2, β3) be a candidate solution with β1 = − 2
3 −

1
6r,

β2 = 2
3 + 1

6r and β3 > 0 sufficiently large.

When β3 is sufficiently large, the minimization mini∈[k] ‖x−
βi‖2 in the objective G is never attained by i = 3. In this case,
the only effective variables for G are the first two centers β1

and β2. The Voronoi boundary ∂1,2(β) (which is 0) intersects
the second ground truth cluster. Note that these properties
continue to hold under small perturbation of β. Consequently,
for any solution b in a small neighborhood of β, its objective
value has the following expression:

G(b) =
1

6r

[ ∫ −1+r

−1−r
(x− b1)2dx+

∫ b1+b2
2

−r
(x− b1)2dx

+

∫ r

b1+b2
2

(x− b2)2dx+

∫ 1+r

1−r
(x− b2)2dx

]
.

We compute the gradient and Hessian of G at b (recall that
only the first two coordinate of b are effective):

∇bG =
1

6r

 −2
∫ −1+r

−1−r (x− b1)dx− 2
∫ b1+b2

2
−r (x− b1)dx

−2
∫ r

b1+b2
2

(x− b2)dx− 2
∫ 1+r

1−r (x− b2)dx

 ,
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1 2 3 1 2 3

Figure 7. Two-dimensional Stochastic Ball Model, where the true centers
are β∗1 = (−1, 0), β∗2 = (0, 0) and β∗3 = (1, 0). The third fitted center
β3 is far away from the origin, so the only effective variables are β1 and
β2 . Left panel: β1 = β∗1 and β2 = 1

2
(β∗2 + β∗3). The green line is the

Voronoi boundary ∂1,2(β). Right panel: A perturbed solution (β′1,β
′
2) and

the corresponding Voronoi boundary.

∇2
bG =

1

6r

[
6r + (b1 + b2)− b2−b1

2
− b2−b1

2

− b2−b1
2

6r − (b1 + b2) + b1−b2
2

]
.

Evaluating these expressions at β1 = − 2
3−

1
6r and β2 = 2

3 + 1
6r,

we find that the gradient vanishes ∇bG |b=β= 0 and the
Hessian is

∇2
bG |b=β=

1

6r

[
35
6 r −

2
3 − 2

3 −
1
6r

− 2
3 −

1
6r

37
6 r + 2

3

]
.

When ( 9
√

2
2 −

1
4 )r > 1 or equivalently ηmin <

9
√

2
2 −

1
4 , the

Hessian is positive definite, so β is a local minimum of G.
Moreover, one can verify that G(β) < G(β∗), so β is not a
global minimum. We see that the spurious local minimum
β does not have the structure described in Theorem 3, as β
involves a 2-fit-3 association.

The second example shows that in higher dimensions,
there exists a local minimum β = (β1,β2,β3) such that
β1 approximately equals β∗1 , and β2 approximately equals
(β∗2 + β∗3)/2 — a structure guaranteed by Theorem 3 —
but neither approximation is exact. Therefore, the non-zero
approximation errors that appear in Theorem 3, is necessary
in general.

Example 2 (Approximation Errors). Consider the Stochastic
Ball model with k = 3 in dimension d = 2, where the true
cluster centers are β∗1 = (−1, 0), β∗2 = (0, 0) and β∗3 = (1, 0),
where the radius r of the balls satisfies r ≥ 1

4 . Let β be a
candidate solution with β1 = (−1, 0), β2 = ( 1

2 , 0) and β3

sufficiently far away from the origin. See the left panel of
Figure 7 for an illustration.

As in Example 1, here the only effective variables are β1

and β2. Assume first that r = 1
4 . In this case, the Voronoi

boundary ∂1,2 is at x1 = − 1
4 = β∗2 − r, the left boundary of

the second true cluster. We claim that β is a local minimum
of G; the proof is deferred to the end of this section. Now, let
us increase the radius r by a sufficient small amount, in which
case the objective function becomes G̃. By the continuity, there
exists a local minimum β̃ of G̃ near the original local minima
β. Recall that by Lemma 2, β̃1 and β̃2 must lie at the center
of mass of their Voronoi sets V1(β̃) and V2(β̃), respectively.
It is then not hard to see that the new Voronoi boundary ∂̃1,2

corresponding to β̃ necessarily intersects the interior of the
second true cluster B2. It follows that V1(β̃) = B1 ∪D and
V2(β̃) = (B2∪B3)\D for some subset D ⊂ B2 with a positive
measure. Applying Lemma 2 again, we conclude that β̃1 is
close but not equal to β∗1 , and that β̃2 is close but not equal
to (β∗1 + β∗2)/2.

Proof of the claim. Let t ∈ (0, 1/8) be a sufficiently small
number, and v1,v2 ∈ R2 be two arbitrary vectors satisfying
‖v1‖2 + ‖v2‖2 = 1. Consider perturbing β1 and β2 to β′1 =
β1 + tv1 and β′2 = β2 + tv2, respectively. Since Voronoi sets
only change by a small amount when the perturbation t is
small, we find that ∆v

2→1(t) ⊆ B2 is the only set of points
that change their association from one Voronoi set to another;
see the right panel of Figure 7. Using the expression (10) for
the directional k-means objective, we can write G(β′) as

G(β′) =Hv(t)

=
1

3

[ ∫
V1(β)∩B1

‖x− β1 − tv1‖2dx

+

∫
V2(β)∩(B2∪B3)

‖x− β2 − tv2‖2dx
]

+
1

3

∫
∆v2→1(t)

(
‖x− β1 − tv1‖2 − ‖x− β2 − tv2‖2

)
dx.

A quick calculation shows that

G(β′)−G(β)

=Hv(t)−Hv(0)

=
1

3

[
t2 −

∫
∆v2→1(t)

(
‖x− β2 − tv1‖2 − ‖x− β1 − tv2‖2

)
dx︸ ︷︷ ︸

K(t)

]
.

We decompose the term K(t) as follows:

K(t) =

∫
∆v2→1(t)

(
‖x− β2‖2 − ‖x− β1‖2

)
︸ ︷︷ ︸

κ1

dx

+

∫
∆v2→1(t)

t2
(
‖v2‖2 − ‖v1‖2

)
︸ ︷︷ ︸

κ2

dx

+

∫
∆v2→1(t)

2t
(
〈v1 − v2,x〉+ 〈v2,β2〉 − 〈v1,β1〉

)
︸ ︷︷ ︸

κ3

dx

For all x ∈ ∆v
2→1(t) ⊆ V2(β), we have ‖x−β2‖ ≤ ‖x−β1‖,

hence κ1 ≤ 0. We also have κ2 ≤ t2 since ‖v2‖2 − ‖v1‖2 ≤
‖v1‖2 ≤ 1. To bound κ3 we observe that 〈v1−v2,x〉 ≤ ‖v1−
v2‖‖x‖ ≤ 4r = 1 for all x ∈ ∆v

2→1(t) ⊆ B2, 〈β2,v2〉 ≤
‖β2‖‖v2‖ ≤ 1

2 , and 〈β1,v1〉 ≤ ‖β1‖‖v1‖ ≤ 1; it follows that
κ3 ≤ 5t. Combining pieces, we obtain that

G(β′)−G(β) ≥
[
t2 − 6t · Vol(∆v

2→1(t))
]
/3. (53)

It remains to control the volume of the set ∆v
2→1(t), which

is illustrated in Figure 8. Observe that the distance between
the old mid point (β1 +β2)/2 and the new Voronoi boundary
∂1,2(β′) can be bounded as

d1 := dist
(
β1 + β2

2
, ∂1,2(β′)

)
≤
∥∥∥∥β1 + β2

2
− β

′
1 + β′2

2

∥∥∥∥
≤ t.

Moreover, the (unsigned) angle ψ between the old and new
Voronoi boundaries ∂1,2(β) and ∂1,2(β′) satisfies

tanψ =

∣∣∣∣ t(v2,2 − v1,2)

2 + t(v2,1 − v1,1)

∣∣∣∣ ≤ t

1− t
≤ 2t.
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Figure 8. Illustration of ∆v2→1(t). The new boundary ∂1,2(β′) has an angle
ψ with the original Voronoi boundary ∂1,2(β).

From these two observations and the fact that r = 1/4,
elementary geometry shows that the distance d2 between β∗2
and ∂1,2(β′) satisfies

d2 =r cosψ − d1

=
r√

1 + tan2 ψ
− d1 ≥

r

1 + 2t
− 4r ≥ r(1− 6t),

whence

Vol(∆v
2→1(t)) ≤ 2 ·

√
r2 − d2

2 · (r − d2) ≤ 12t
√

12t.

Combining with equation (53) shows that G(β′) > G(β) when
t is sufficiently small. As this inequality holds for arbitrary
perturbation direction (v1,v2), we conclude that β is a local
minimum of G.

REFERENCES

[1] A. K. Jain, “Data clustering: 50 years beyond k-means,”
Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666,
2010.

[2] S. Dasgupta, “The hardness of k-means clustering,”
Department of Computer Science and Engineering, Uni-
versity of California, San Diego, Tech. Rep., 2008.

[3] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The
planar k-means problem is NP-hard,” in International
Workshop on Algorithms and Computation. Springer,
2009, pp. 274–285.

[4] P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K.
Sinop, “The hardness of approximation of Euclidean k-
means,” in 31st International Symposium on Computa-
tional Geometry. arXiv preprint arXiv:1502.03316, 2015,
pp. 754–767.

[5] J. MacQueen, “Some methods for classification and
analysis of multivariate observations,” in Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, no. 14. Oakland, CA, USA,
1967, pp. 281–297.

[6] J. A. Hartigan and M. A. Wong, “Algorithm AS 136:
A k-means clustering algorithm,” Journal of the Royal
Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100–108, 1979.

[7] D. Steinley, “Local optima in k-means clustering: what
you don’t know may hurt you.” Psychological Methods,
vol. 8, no. 3, p. 294, 2003.

[8] ——, “Profiling local optima in k-means clustering: De-
veloping a diagnostic technique.” Psychological methods,
vol. 11, no. 2, p. 178, 2006.

[9] K. Chaudhuri, S. Dasgupta, and A. Vattani, “Learning
mixtures of Gaussians using the k-means algorithm,”
arXiv preprint arXiv:0912.0086, 2009.

[10] J. Xu, D. J. Hsu, and A. Maleki, “Global analysis of
expectation maximization for mixtures of two Gaussians,”
in Advances in Neural Information Processing Systems,
2016, pp. 2676–2684.

[11] C. Daskalakis, C. Tzamos, and M. Zampetakis, “Ten
steps of em suffice for mixtures of two gaussians,” in
Conference on Learning Theory. PMLR, 2017, pp. 704–
710.

[12] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and
M. I. Jordan, “Local maxima in the likelihood of Gaussian
mixture models: Structural results and algorithmic conse-
quences,” in Advances in Neural Information Processing
Systems, 2016, pp. 4116–4124.

[13] S. Lloyd, “Least squares quantization in PCM,” IEEE
Transactions on Information Theory, vol. 28, no. 2, pp.
129–137, 1982.

[14] L. Bottou and Y. Bengio, “Convergence properties of the
k-means algorithms,” in Advances in Neural Information
Processing Systems, 1995, pp. 585–592.

[15] N. Srebro, “Are there local maxima in the infinite-
sample likelihood of Gaussian mixture estimation?” in
International Conference on Computational Learning
Theory, 2007, pp. 628–629.

[16] D. Steinley, “K-means clustering: a half-century synthesis,”
British Journal of Mathematical and Statistical Psychol-
ogy, vol. 59, no. 1, pp. 1–34, 2006.

[17] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time
(1+ ε)-approximation algorithm for k-means clustering in
any dimensions,” in Annual Symposium on Foundations
of Computer Science, vol. 45. IEEE Computer Society
Press, 2004, pp. 454–462.

[18] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu, “A local search approxi-
mation algorithm for k-means clustering,” Computational
Geometry, vol. 28, no. 2-3, pp. 89–112, 2004.

[19] G. W. Milligan, “An examination of the effect of six types
of error perturbation on fifteen clustering algorithms,”
Psychometrika, vol. 45, no. 3, pp. 325–342, 1980.

[20] S. Har-Peled and B. Sadri, “How fast is the k-means
method?” Algorithmica, vol. 41, no. 3, pp. 185–202, 2005.

[21] D. Arthur and S. Vassilvitskii, “How slow is the k-means
method?” in Symposium on Computational Geometry,
vol. 6, no. 32, 2006, pp. 1–10.

[22] A. Kumar and R. Kannan, “Clustering with spectral norm
and the k-means algorithm,” in 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science. IEEE,
2010, pp. 299–308.

[23] Y. Lu and H. H. Zhou, “Statistical and computational
guarantees of Lloyd’s algorithm and its variants,” arXiv
preprint arXiv:1612.02099, 2016.

[24] D. Arthur and S. Vassilvitskii, “k-means++: The advan-
tages of careful seeding,” in Proceedings of the Eighteenth

27



Annual ACM-SIAM Symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035.

[25] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy,
“The effectiveness of Lloyd-type methods for the k-means
problem,” Journal of the ACM (JACM), vol. 59, no. 6,
p. 28, 2012.

[26] S. Dasgupta and L. Schulman, “A probabilistic analysis
of EM for mixtures of separated, spherical Gaussians,”
Journal of Machine Learning Research, vol. 8, no. Feb,
pp. 203–226, 2007.

[27] J. Peng and Y. Xia, “A new theoretical framework for
k-means-type clustering,” in Foundations and Advances
in Data Mining. Springer, 2005, pp. 79–96.

[28] J. Peng and Y. Wei, “Approximating k-means-type clus-
tering via semidefinite programming,” SIAM Journal on
Optimization, vol. 18, no. 1, pp. 186–205, 2007.

[29] E. Elhamifar, G. Sapiro, and R. Vidal, “Finding exemplars
from pairwise dissimilarities via simultaneous sparse
recovery,” in Advances in Neural Information Processing
Systems, 2012, pp. 19–27.

[30] A. Nellore and R. Ward, “Recovery guarantees for
exemplar-based clustering,” Information and Computation,
vol. 245, pp. 165–180, 2015.

[31] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy,
S. Villar, and R. Ward, “Relax, no need to round:
Integrality of clustering formulations,” in Proceedings
of the 2015 Conference on Innovations in Theoretical
Computer Science. ACM, 2015, pp. 191–200.

[32] X. Li, Y. Li, S. Ling, T. Strohmer, and K. Wei, “When
do birds of a feather flock together? k-means, proximity,
and conic programming,” Mathematical Programming,
vol. 179, no. 1-2, pp. 295–341, 2020.

[33] Y. Fei and Y. Chen, “Hidden integrality of SDP re-
laxation for sub-Gaussian mixture models,” in Confer-
ence on Learning Theory (COLT), 2018, arXiv preprint
arXiv:1803.06510.

[34] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 39, no. 1, pp. 1–22, 1977.

[35] S. Balakrishnan, M. J. Wainwright, and B. Yu, “Statistical
guarantees for the EM algorithm: From population to
sample-based analysis,” The Annals of Statistics, vol. 45,
no. 1, pp. 77–120, 2017.

[36] W. Qian, Y. Zhang, and Y. Chen, “Global convergence of
least squares EM for demixing two log-concave densities,”
in Advances in Neural Information Processing Systems,
2019, pp. 4795–4803.

[37] J. Kwon, W. Qian, C. Caramanis, Y. Chen, and D. Davis,
“Global convergence of the EM algorithm for mixtures
of two component linear regression,” in Conference on
Learning Theory, 2019, pp. 2055–2110.

[38] J. Xu, D. J. Hsu, and A. Maleki, “Benefits of over-
parameterization with EM,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 10 662–10 672.

[39] X. Yi and C. Caramanis, “Regularized EM algorithms: A
unified framework and statistical guarantees,” in Advances

in Neural Information Processing Systems, 2015, pp. 1567–
1575.

[40] J. M. Klusowski, D. Yang, and W. D. Brinda, “Estimating
the coefficients of a mixture of two linear regressions
by expectation maximization,” IEEE Transactions on
Information Theory, 2019.

[41] B. Yan, M. Yin, and P. Sarkar, “Convergence of gradient
EM on multi-component mixture of Gaussians,” in Ad-
vances in Neural Information Processing Systems, 2017,
pp. 6956–6966.

[42] J. Kwon and C. Caramanis, “EM converges for a
mixture of many linear regressions,” arXiv preprint
arXiv:1905.12106, 2019.

[43] R. Kannan, H. Salmasian, and S. Vempala, “The spectral
method for general mixture models,” in International
Conference on Computational Learning Theory. Springer,
2005, pp. 444–457.

[44] S. Mei, Y. Bai, and A. Montanari, “The landscape of
empirical risk for non-convex losses,” The Annals of
Statistics, vol. 46, no. 6A, pp. 2747–2774, 2018.

[45] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global
optimality of local search for low rank matrix recovery,”
in Advances in Neural Information Processing Systems,
2016, pp. 3873–3881.

[46] I. Safran and O. Shamir, “Spurious local minima are com-
mon in two-layer ReLU neural networks,” in International
Conference on Machine Learning, 2018, pp. 4430–4438.

[47] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has
no spurious local minimum,” in Advances in Neural
Information Processing Systems 29, 2016.

[48] G. H. Ball and D. J. Hall, “PROMENADE – an on-line
pattern recognition system,” Stanford Research Institution,
Menlo Park, CA, Tech. Rep., 1967.

[49] M. M. Astrahan, “Speech analysis by clustering, or the
hyperphoneme method,” Stanford University, Department
of Computer Science, Tech. Rep., 1970.

[50] A. R. Barakbah and A. Helen, “Optimized k-means: an
algorithm of initial centroids optimization for k-means,”
in Proc. Seminar on Soft Computing, Intelligent System,
and Information Technology (SIIT), Surabaya, 2005.

[51] A. R. Barakbah and Y. Kiyoki, “A pillar algorithm
for k-means optimization by distance maximization for
initial centroid designation,” in 2009 IEEE Symposium
on Computational Intelligence and Data Mining. IEEE,
2009, pp. 61–68.

[52] P. Fränti and S. Sieranoja, “K-means properties on
six clustering benchmark datasets,” Applied Intelligence,
vol. 48, no. 12, pp. 4743–4759, 2018.

[53] R.-D. Buhai, A. Risteski, Y. Halpern, and D. Sontag, “Ben-
efits of overparameterization in single-layer latent variable
generative models,” arXiv preprint arXiv:1907.00030,
2019.

[54] R. Dwivedi, N. Ho, K. Khamaru, M. I. Jordan, M. J.
Wainwright, and B. Yu, “Singularity, misspecification,
and the convergence rate of EM,” arXiv preprint
arXiv:1810.00828, 2018.

[55] Y. Zhang, H.-W. Kuo, and J. Wright, “Structured local
minima in sparse blind deconvolution,” in Advances in

28



Neural Information Processing Systems 31, 2018, pp.
2328–2337.

[56] M. J. Wainwright, High-Dimensional Statistics: A Non-
asymptotic Viewpoint. Cambridge University Press, 2019,
vol. 48.

Wei Qian received her Ph.D. and M.S. degrees in Operations Research from
Cornell University in 2020, and B.S. degree in mathematics from The University
of Michigan, Ann Arbor in 2014. Her research work lie in machine learning,
reinforcement learning and optimization, with applications in transportation
systems.

Yuqian Zhang is an Assistant Professor with the Department of Electrical and
Computer Engineering at Rutgers University. She was a postdoctoral scholar
with the Tripods Center for Data Science at Cornell University. She obtained
her Ph.D. and M.S. in Electrical Engineering from Columbia University, and
B.S. in Information Engineering from Xi’an Jiaotong University. Her research
leverages physical models in data driven computations, convex and nonconvex
optimization, solving problems in machine learning, computer vision, signal
processing.

Yudong Chen is an Associate Professor with the School of Operations
Research and Information Engineering at Cornell University. He obtained
his Ph.D. degree in Electrical and Computer Engineering in 2013 from The
University of Texas at Austin, and M.S. and B.S. degrees in Control Science
and Engineering from Tsinghua University. He was a postdoctoral scholar in
the Electrical Engineering and Computer Sciences department at the University
of California, Berkeley from 2013 to 2015. He has served as area chairs for
AAAI, AISTATS and NeurIPS, and received a National Science Foundation
CAREER award. His research work lies in machine learning, reinforcement
learning, high-dimensional statistics, and optimization, with applications in
network scheduling, wireless communication, and financial systems.

29


	Introduction
	Main Contributions
	Related Work 

	Problem Setup
	Ball Mixture
	Gaussian Mixture
	Model Parameters
	Voronoi sets

	Main Results
	Stochastic Ball Model
	Gaussian Mixture Model

	Implications and Connections
	Preliminary Properties for the k-means Objective
	Directional Behaviors of G 
	First-Order Necessary Condition for Local Optimality
	for the toc
	for the toc

	Proof of Theorem 1
	Notations
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 3 (Same Direction) 
	Proof of Proposition 4 (Opposite Direction) 
	Proofs of Lemmas 5 and 6 

	Conclusion
	Appendix
	Biographies
	Wei Qian
	Yuqian Zhang
	Yudong Chen


