
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Towards a Unified Quadrature Framework for
Large-Scale Kernel Machines
Fanghui Liu Member, IEEE , Xiaolin Huang Senior Member, IEEE ,

Yudong Chen, Johan A.K. Suykens Fellow, IEEE

Abstract—In this paper, we develop a quadrature framework for large-scale kernel machines via a numerical integration representation.
Considering that the integration domain and measure of typical kernels, e.g., Gaussian kernels, arc-cosine kernels, are fully symmetric,
we leverage a numerical integration technique, deterministic fully symmetric interpolatory rules, to efficiently compute quadrature nodes
and associated weights for kernel approximation. Thanks to the full symmetric property, the applied interpolatory rules are able to reduce
the number of needed nodes while retaining a high approximation accuracy. Further, we randomize the above deterministic rules by the
classical Monte-Carlo sampling and control variates techniques with two merits: 1) The proposed stochastic rules make the dimension of
the feature mapping flexibly varying, such that we can control the discrepancy between the original and approximate kernels by tuning the
dimnension. 2) Our stochastic rules have nice statistical properties of unbiasedness and variance reduction. In addition, we elucidate the
relationship between our deterministic/stochastic interpolatory rules and current typical quadrature based rules for kernel approximation,
thereby unifying these methods under our framework. Experimental results on several benchmark datasets show that our methods
compare favorably with other representative kernel approximation based methods.

Index Terms—random features, quadrature methods, fully symmetric interpolatory rule, kernel approximation

F

1 INTRODUCTION

K ERNEL methods [1], [2], [3] have shown to be powerful
in statistical machine learning, but often scale poorly

to large datasets in terms of space and time complexity [4],
[5]. To make kernel methods scalable, the class of random
Fourier features (RFF) [6] is one of the most effective kernel
approximation techniques. RFF samples random features from a
specific distribution, corresponding to the original kernel function,
transforms input features to a new space via random features, and
then conducts linear learning in this space. It spawns the new
direction on kernel approximation for scaling up traditional kernel
methods [7], [8], recent neural tangent kernel [9], [10], [11], and
attention in Transformers [12], [13]. Partly due to its remarkable
repercussions, Rahimi and Recht [6] won the test-of-time award
for their seminal work on RFF at NeurIPS 2017.

Formally, given a positive definite kernel k(·, ·) : Rd × Rd 7→
R, we focus on kernel approximation in which the kernel k admits
the following d-dimensional integral representation Id

k(x,y) :=Id (fxy)=

∫
Rd

fxy(ω)µ(dω)=Eω∼µ[fxy(ω)] ,

(1)
with the integral (probability) measure µ being standard multivari-
ate Gaussian, i.e., ω = [ω1, · · · , ωd]> ∼ N (0, Id). The integrand

F. Liu and J.A.K. Suykens are with the Department of Electrical
Engineering (ESAT-STADIUS), KU Leuven, B-3001 Leuven, Belgium (email:
{fanghui.liu;johan.suykens}@esat.kuleuven.be).
X. Huang is with Department of Automation, and also with the MOE Key
Laboratory of System Control and Information Processing, Shanghai Jiao Tong
University, Shanghai 200240, P.R. China (e-mail: xiaolinhuang@sjtu.edu.cn).
Y. Chen is with School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14850 USA (e-mail: yudong.chen@cornell.edu).

Manuscript received xx Nov. 2020; revised xx May 2021; accepted 05 Oct.
2021. Date of publication xx xxxx 2021; date of current version xx xxxx 2021.
(Corresponding author: Fanghui Liu and Xiaolin Huang.)
Recommended for acceptance by xxx.
Digital Object Identifier no. xxx

fxy , f for short, is defined as f(ω) := 〈φ
(
ω>x

)
, φ
(
ω>y

)
〉 with

a nonlinear activation function φ. As demonstrated by [14], [15],
various kernels admit this d-dimensional integration representation
by choosing different φ. For example, the popular Gaussian kernel
corresponds to φ(x) = [cos(x), sin(x)]>; the zero-order arc-
cosine kernel [16] admits this representation by choosing φ(x)
as the Heaviside function; and the first-order arc-cosine kernel
[16] corresponds to φ(x) = max{0, x}, i.e., the ReLU activation
function commonly-used in deep neural networks.

To approximate the kernel function in Eq. (1), RFF1 uses
Monte-Carlo sampling to draw random features {ωi}Ni=1 from
N (0, Id) such that k(x,y) ≈ 1/N

∑N
i=1 fxy(ωi). Apart from

such random sampling based scheme, an alternative way is to use
quadrature rules in a deterministic fashion

k(x,y) ≈
N∑
i=1

aifxy(γi) = 〈Φ(x),Φ(y)〉 , (2)

where γi ∈ Rd is called the quadrature node, ai ∈ R is the
corresponding weight, and Φ : Rd → RN is the related explicit
feature mapping. The nodes and weights are deterministically given
by various quadrature rules such that there is no approximation
error whenever the integrand f belongs to all polynomials with
a total degree up to 2L − 1, where L is the accuracy level. For
example, in the univariate case (d = 1), Gaussian quadrature (GQ)
uses L nodes to deliver the exact value of polynomials up to (2L−
1)-degree without approximation error for ωi11 ω

i2
2 · · ·ω

id
d with∑d

j=1 ij ≤ 2L−1. If the integrand f is general, beyond a (2L−1)-
degree polynomial, Gaussian quadrature still works well. To be

1. In the original paper [6], RFF builds on Bochner’s theorem [17] that
requires the kernel to be shift-invariant, i.e., k(x,y) = k(x − y), which
excludes arc-cosine kernels used in this paper. However, RFF is still able
to provide an unbiased approximation of arc-cosine kernels by Monte-Carlo
sampling according to the integral representation (1).

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(a) Time cost (b) NSGQ −ND-FS

Figure 1. Benefits of D-FS against SGQ in time cost (a), and the reduction
on the required nodes in fifth-degree rules (b).

specific, if f has c-order bounded derivatives, the mean squared
error (MSE) of Gaussian quadrature decreases asymptotically as
O(N−c), which is better than the N−1/2-consistency of Monte-
Carlo sampling [18]. Gaussian quadrature in the univariate case can
be easily extended to multidimensional cases (d > 1) by product
rules but suffers from “curse of dimensionality”: the number of
required nodes is N = Ld in an exponential order of d. To
tackle this issue, sparse grid quadrature (SGQ) [19] uses a linear
combination of low-level tensor products of univariate quadrature
rules, and thus the number of nodes N by SGQ can be decreased
in a polynomial order of d.

Recall Eq. (1), where the integral is not generic but has a
nice property: both the integration domain Rd and the Gaussian
measure are fully symmetric, with definition deferred to Section 2.2.
Benefiting from this, the nodes and weights can be efficiently
obtained from a generator vector admitting permutations and sign
changes of its coordinates. Such fully symmetric property is helpful
to reduce the number of the required nodes N in quadrature rules.
For example, considering d = 25 with an accuracy level L = 4
for seventh-degree polynomial exactness approximation, Gaussian
quadrature requires 425 nodes; SGQ needs 24,751 nodes; while
the Deterministic Fully Symmetric intepolatory rule (termed as
D-FS) [20] needs 22,151 nodes, which reduces over 10% nodes.
In some cases, the required nodes can be even reduced over 50%
[21]. Figure 1 demonstrates the superiority of D-FS against SGQ
on time cost and the reduction on required nodes2.

Based on the above analysis, we propose to use deterministic
fully symmetric interpolatory rules [20], i.e., D-FS, for kernel
approximation. Further, we randomize such deterministic rules
to new stochastic versions, termed as S-FS (here “S” denotes
stochastic), which exhibit nice statistical properties: unbiased
estimation and variance reduction. In addition, we elucidate the
relationship among SGQ [22], stochastic spherical-radial (SSR)
rules [15] and the developed D-FS/S-FS. Thereby, the proposed
framework unifies these methods, as shown in Figure 2. We make
the following contributions:

• By virtue of the fully symmetric property of the integration (1),
we derive the third/fifth-degree D-FS for kernel approximation.
The obtained feature mapping Φ(·) is fixed-size given d, e.g.,
N = 2d + 1 in the third-degree rule and N = 1 + 2d2 in
the fifth-degree rule, and thus our method achieves O(d) time
and space complexity, see Section 3.

• We randomize D-FS to a stochastic version, S-FS, by
combining the classical Monte-Carlo sampling and control

2. D-FS requires the same number of nodes N = 2d+ 1 with SGQ in the
third-degree rule but needs smaller N than SGQ in higher-degree rules.

Deterministic
Fully Symmetric

(D‐FS)

Sparse‐grids
quadrature (SGQ)

Stochastic fully
symmetric (S‐FS)

Random Fourier
features (RFF)

deterministic generator

Stochastic
spherical rule

random orthogonal
projection

Stochastic
spherical‐radial

(SSR) rule

random
generator

deterministic

stochastic

control variates

Figure 2. Relationship between quadrature based methods.

variates techniques. The proposed S-FS has two merits: 1) The
dimension of the obtained feature mapping by S-FS can be
easily tuned to an arbitrary value for practical requirements. 2)
S-FS is theoretically demonstrated to be an unbiased estimator
for kernel approximation and achieves variance reduction, see
in Section 4.

• We build a unifying quadrature framework for kernel
approximation as shown in Figure 2, which unifies our D-
FS/S-FS, SGQ and SSR. We show that i) by choosing suitable
nodes and weights in the third-degree SGQ, it is equivalent to
the third-degree D-FS; ii) SSR can be regarded as a doubly
stochastic version of D-FS: one stochasticity comes from
random projection and another source is using a randomized
generator vector; see in Section 5.

Besides, experimental results on several benchmark datasets
show that the developed deterministic/stochastic fully symmetric
interpolatory rules achieve promising kernel approximation quality
and also performs well on classification tasks.

2 RELATED WORKS AND PRELIMINARIES

In this section, we give an overview of representative random
features based algorithms for kernel approximation, refer to a
recent survey [23] for details. Then we briefly introduce the related
fully symmetric concepts and basic ideas behind deterministic fully
symmetric interpolatory rules in numerical integration.

2.1 Related Works

To approximate the kernel function in Eq. (1), current kernel
approximation methods for finding the weights and nodes
{ai,γi}Ni=1, given by Eq. (2), can be divided into Monte Carlo
and quadrature based approaches.

Monte Carlo based methods are often equal-weight rules where
the nodes {γi}Ni=1 are obtained by variants of Monte Carlo
sampling, and then provide an unbiased estimator of the original
kernel. For example, to approximate the kernel in Eq. (1), the
standard RFF adopts γi ≡ ωi ∼ N (0, Id) by Monte Carlo
sampling and the equal weights a1 = · · · = aN ≡ 1/N . To
reduce the approximation variance, orthogonal random features
(ORF) [24] incorporates an orthogonality constraint on the
transformation matrix W = [ω1, · · · ,ωN], demonstrated by
theoretical guarantees on variance reduction [25]. Sampling
theory [26] suggests that the convergence rate of Monte-Carlo
used in RFF/ORF can be significantly improved by sampling
in a deterministic scheme instead of i.i.d. version. Accordingly,
quasi-Monte Carlo (QMC) sampling [27], as a possible middle-
ground method, utilizes a low-discrepancy sequence for sampling,
and achieves a convergence rate of order O((logN)c/N) on
discrepancy [28], where c is a constant independent of N , but may

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

depend on d. The convergence rate can be further improved if the
integrand has higher-order smoothness [29], [30]. In fact, a series
of empirical and theoretical results [14], [31] have demonstrated
that, coupling samples to be orthogonal to one another (i.e.,
uniformly distributed over the space), rather than being i.i.d.,
can significantly improve statistical efficiency. Apart from the
above data-independent sampling schemes used in random features,
another line is to utilize data-dependent sampling strategy for better
approximation quality and generalization properties for random
features. Typical examples include leverage score based sampling
[32], fast leverage score approximation [33], [34], Christoffel
functions [35], and Fourier sparse leverage scores [36].

In quadrature based methods, the nodes are usually given by
deterministic rules (can be extended to stochastic versions) and the
weights are often not equal. Examples include Gaussian quadrature
[37] and SGQ [22] based on the Smolyak formula [19]. Instead of
directly approximating the d-dimensional integration, the stochastic
spherical-radial (SSR) rules [38] transform the integration in Eq. (1)
to a double-integral over the unit d-sphere and over the radius,
which are then approximated by stochastic spherical rules and
stochastic radial rules, respectively. The idea of SSR has been
successfully applied to kernel approximation [15] and achieves
promising approximation quality. If the integrand f(·) belongs to a
RKHS, the above polynomial quadrature schemes are transformed
to kernel-based quadrature [39], [40]. Under this setting, the
studied problem is different from polynomial quadrature in terms
of functional spaces, model formulation, and scope of application.

2.2 Preliminaries: Fully Symmetric Properties and Rules

Here we briefly introduce fully symmetric sets and related symmetry
concepts, which is needed in this paper.

Definition 1. (Fully symmetric set [18], [39], [41]) Given
an integer-valued vector p = [p1, p2, · · · , pd] with pi ∈
{0, 1, . . . ,m}, let Πp be the set of all permutations of p and
Vd be the set of all vectors with the form ν = [ν1, ν2, · · · , νd]
with νi = ±1. Then, given a vector λp = [λp1 , λp2 , · · · , λpd]>,
the point set

{λp} :=
⋃
q∈Πp

⋂
ν∈Vd

{
(ν1λq1 , ν2λq2 , . . . , νdλqd)

}
⊂ Rd ,

is the fully symmetric set generated by λp.

Based on the above definition, the concepts of fully symmetric
domain, function, and measure follow naturally. To be specific,
a point domain A ⊆ Rd is said to be fully symmetric if λ ∈ A
implies λ′ ∈ A, where λ′ is obtained by permutations and sign
changes on the coordinates of λ. Naturally, Rd is a fully symmetric
domain. A function f : Rd → R is fully symmetric if it is constant
in each fully symmetric set, i.e., f(x) = f(x′) for any x,x′ ∈
{λp}. A measure µ is fully symmetric if its density (with respect to
the Lebesgue measure) is a fully symmetric function. The Gaussian
measure used in Eq. (1) satisfies this condition. In Definition 1, λp
is called a generator vector and its individual elements are called
generators. Further, assuming λ0 = 0, the fully symmetric basic
rule f(λp) is defined by [20]

f(λp) =
∑
q∈Πp

∑
ν∈Vd

f (ν1λq1 , ν2λq2 , . . . , νdλqd) .

For example, when d = 4 and p = (2, 0, 0, 0), we have

f(λp) = f(λ2, 0, 0, 0) + f(−λ2, 0, 0, 0) + f(0, λ2, 0, 0)

+ f(0,−λ2, 0, 0) + f(0, 0, λ2, 0) + f(0, 0,−λ2, 0)

+ f(0, 0, 0, λ2) + f(0, 0, 0,−λ2) .

Definition 2. (Fully symmetric interpolatory rules [20]) Define
P(m,d) as a set of all distinct d-partitions of the integers
{0, 1, . . . ,m}, i.e.

P(m,d) =
{
p ∈ Nd|p1 ≥ p2 ≥ · · · ≥ pd ≥ 0, ‖p‖1 ≤ m

}
,

the fully symmetric interpolatory rule is defined as

Q(m,d)(f) =
∑

p∈P(m,d)

a(m,d)
p f(λp) , (3)

where the weight a(m,d)
p is given by

a(m,d)
p = 2−K

∑
‖u‖1≤m−‖p‖1

d∏
i=1

bui+pi∏ui+pi
j=0,6=pi

(
λ2
pi − λ

2
j

) , (4)

where u = [u1, u2, · · · , ud] is the set of the integers
{0, 1, . . . ,m} and K is the number of nonzero components in p.
If q is one of the permutations of p, then a(m,d)

q = a
(m,d)
p . The

coefficient b0 = 1 and bi (i ≥ 1) satisfies

bi =
1√
2π

∫ +∞

−∞
e−x

2/2
i−1∏
j=0

(
x2 − λ2

j

)
dx (i ≥ 1) . (5)

According to Eq. (3), Q(m,d)(f) stands for the weighted
sum of evaluations of f at the nodes of the fully symmetric
set on the distinct d-partitions P(m,d). The theory for fully
symmetric interpolatory rules [20] demonstrates that Q(m,d)(f) is
an approximation to Id(f) that is exact for all polynomials with the
total degree 2m+ 1 or less. The third/fifth-degree rules Q(1,d)(f)
and Q(2,d)(f) correspond to m = 1 and m = 2, respectively.
Note that, although the mathematical foundations and derivations
of the fully symmetric rule are relatively complex, the obtained
feature mapping for kernel approximation in this paper is quite
simple and easy to be implemented. We will illustrate this in the
next section.
Different from previous works: When compared to the original
work on fully symmetric interpolatory rules [20], the contribution
of this paper lies in developing deterministic rules for kernel
approximation, especially the derivation of the fifth-degree rule,
devising a new stochastic version as an unbiased estimator for
kernel approximation, demonstrating nice statistical properties with
theoretical guarantees, and casting typical quadrature rules in a
unifying framework.

3 DETERMINISTIC RULES FOR KERNEL APPROXI-
MATION

In this section, we present the third-degree and fifth-degree D-FS
for kernel approximation based on the fully symmetric interpolatory
rules [20]. We do not employ higher-degree rules in this paper due
to sufficient approximation and efficient computation, refer to [42]
with detailed discussion.

According to Eq. (3), Q(m,d)(f) is a weighted sum of fully
symmetric basic rules f(λp). Therefore, the kernel k, a.k.a. the
d-dimensional integration (1), can be approximated by a weighted

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

sum of evaluations of f at the nodes of the fully symmetric set on
the distinct d-partitions P(m,d)

k(x,y) ≈ Q(m,d)(f) =
∑

p∈P(m,d)

a(m,d)
p f(λp) , (6)

where the weights a
(m,d)
p and the generator vector λp play

significant roles in quadrature rules. Different generation schemes
for λp lead to various quadrature based approaches. For example,
SGQ [22] uses deterministic values to generate λp; while λp in
SSR [15] is sampled from a probability distribution. The developed
D-FS in this section follows [20] that selects λp in a deterministic
scheme. In the next we present this generation procedure equipped
with the third/fifth-degree rules for kernel approximation.
Third-degree rule: the kernel k in Eq. (1) is approximated by the
third-degree rule Q(1,d)(f) such that k(x,y) ≈ Q(1,d)(f)

Q(1,d)(f) = a
(1,d)
0 f(0) + a

(1,d)
1

d∑
i=1

[f(λ1ei) + f(−λ1ei)] ,

(7)
where ei is a unit vector with the i-th element being 1. The weights
are given by a(1,d)

0 = 1− d/λ2
1 and a(1,d)

1 = 1/(2λ2
1) according

to Eq. (4). Finally, the third-degree rule outputs {ai,γi}2di=0 with
γi = 0d×1; ai = 1− d/λ2

1; i = 0

γi = λ1ei; ai = 1/2λ2
1; 1 ≤ i ≤ d

γi = −λ1ei; ai = 1/2λ2
1; d+ 1 ≤ i ≤ 2d ,

(8)

which results in the number of nodes N = 2d+ 1. The generator
vector λ = [λ0, λ1]> with λ0 = 0 usually selects λ1 by successive
extensions of the one-dimensional 3-point Gauss–Hermite rule so
that certain sets of weights vanish, i.e., λ1 =

√
3.

Feature mapping: According to the third-degree rule Q(1,d)(f),
we finally obtain the explicit feature mapping Φ for kernel
approximation

Φ(x)=[
√
a0φ(γ>0 x),

√
a1φ(γ>1 x),· · ·,

√
a2dφ(γ>2dx)]> , (9)

such that k(x,y) ≈ Q(1,d)(f) = 〈Φ(x),Φ(y)〉. Here the
weight a0 = 1 − d/λ2

1 might be negative, and we consider the
complex number

√
a0, and thus the approximated kernel is still

real-valued. It can be observed that, generating {ai,γi}2di=0 is
data-independent and deterministic. The transformation matrix
W = [γ0,γ1, · · · ,γ2d] ∈ Rd×(2d+1) can be obtained by Eq. (8)
as the following

W =

0 −λ1 λ1 0 0 · · · 0 0
0 0 0 −λ1 λ1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · −λ1 λ1

 . (10)

For better illustration of our method, here we take the Gaussian
kernel k(x,y) = exp

(
−‖x− y‖22/(2σ2)

)
as an example and

discuss the difference with RFF. According to Eq. (1), the Gaussian
kernel can be approximated by k(x,y) ≈

∑N
i=1 ai cos[ω>i (x−

y)] with the transformation matrix W = [ω1, · · · ,ωN] ∈ Rd×N
with N features as follows.
In RFF, ai ≡ 1/N and Wij ∼ N (0, 1/σ2) by Monte Carlo
sampling. The number of random features N can be manually
specified to an arbitrary value; while in D-FS, the transformation
matrixW ∈ Rd×(2d+1) and the weights {ai}2di=0 are deterministic.
Given d, the number of needed nodes is N = 2d+ 1 and cannot
be easily tuned. Nevertheless, one oblivious advantage of D-FS

RFF:

{
dense: W = [Wij]d×N with Wij ∼ N (0, 1/σ2)
ai ≡ 1/N

D-FS:

{
sparse: W = [γ0,γ1, · · · ,γ2d] in Eq. (10)
the weight ai is given in Eq. (8)

is that, W is extremely sparse with only 2d non-zero elements
±λ1. Accordingly, generating W needs O(d) space and time
complexity, which is better than RFF with O(Nd) complexity.
More importantly, when d is given, the nodes, the weights, and
the transformation matrix in our deterministic rules can be directly
determined, see Eqs. (8) and (10). That means, our deterministic
rules can be much more efficient for kernel approximation by a
look-up table.
Fifth-degree rule: When choosing m = 2 in Eq. (6), we obtain
a fifth-degree rule Q(2,d) with ‖p‖1 ≤ 2 to further improve the
approximation quality. To derive the fifth-degree D-FS, we cast it
to three cases, i.e., ‖p‖1 = 0, ‖p‖1 = 1, and ‖p‖1 = 2. Note
that, the derivation of the fifth-degree rule is relatively technical
and lengthy, so we put it in Appendix A. In fifth-degree rules, the
number of required nodes in D-FS is N = 1 + 2d2, which is
smaller than SGQ with 1 + 2d2 + 2d. Further, the feature mapping
in our fifth-degree rule can be obtained in a similar way with that
of the third-degree rule, and thus we omit it here.

4 STOCHASTIC RULES AND ITS PROPERTIES

The above D-FS rules are determinstic: given d, the number of
required nodes N is fixed, e.g., N = 2d+1 in the third-degree rule
and N = 1 + 2d2 in the fifth-degree rule. Unlike RFF, we cannot
flexibly tune N to control the discrepancy between the original and
approximate kernels. This is a common issue in deterministic rules,
e.g., SGQ [22]. To tackle this issue for kernel approximation, we
randomize the above deterministic rules by combining the classical
Monte-Carlo sampling and control variates techniques [43] for the
design of stochastic rules S-FS. By doing so, we can flexibly tune
the dimension of the obtained feature mapping with nice statistical
properties.

4.1 Formulation of Stochastic Rules

To design the third-degree stochastic rule, we introduce a “semi-
stochastic” version according to Eq. (10): we randomize the weights
in Eq. (8) but keep the (deterministic) nodes unchanged to maintain
the sparse transformation matrix. Observing that E[

∑d
i=1 ω

2
i] = d

with ω = [ω1, · · · , ωd]> ∼ N (0, Id), we define the weights in
our third-degree S-FS as functions of ω

ã
(1,d)
0 (ω) ≡ ã(1,d)

0 = 1−
d∑
i=1

ω2
i /λ

2
1

ã
(1,d)
1 (ω) ≡ ã(1,d)

1 =
d∑
i=1

ω2
i /(2dλ

2
1) .

(11)

Accordingly, by randomizing the weights, the “semi-stochastic”
version of the third-degree D-FS Q(1,d)(f) in Eq. (7) is given by

M (1,d)(f,ω)= ã
(1,d)
0 f(0) + ã

(1,d)
1

d∑
i=1

[
f(λ1ei) + f(−λ1ei)

]
.

(12)

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Note that the third-degree stochastic rule can be extended to general
degrees

M (m,d)(f,ω) =
∑

p∈P (m,d)

ã(m,d)(ω)f(λp) ,

where the nodes λp are the same as that of deterministic rules in
Eq. (6), while the randomized weights ã(m,d)

p (ω) are defined as

ã(m,d)
p (ω) =

1; if ‖p‖1 = 0 and ‖u‖1 = 0

2−K

d

∑
‖u‖1≤m−‖p‖1

d∑
i=1

∏ui+pi−1
j=0

(
ω2
i − λ2

j

)
∏ui+pi
j=0,6=pi

(
λ2
pi − λ

2
j

) ,
where K is the number of nonzero components in p. The
formulation of ã(m,d)

p (ω) is based on Eq. (4) to ensure the
summation to 1. Besides, the continued product in Eq. (4) is
substituted by the summation to provide a tighter estimate, as
E[(
∑d
i=1 ω

2
i)2] = d2 + 2d ≤ E(

∏d
i=1 ω

4
i) = 3d. Since typical

quadrature based methods for kernel approximation, e.g., SGQ [22]
and SSR [15], adopt the third-degree rule instead of higher-degree
rules, in the next we focus on the third-degree stochastic rule.

The feature mapping associated with M (1,d)(f) is given by

Φ̃(x,ω) = [
√
ã0(ω)φ(γ>1 x), · · · ,

√
ã2d(ω)φ(γ>2dx)]> , (13)

where {γ}2di=0 are given by Eq. (8), the randomized weights
{ãi}2di=0 refer to Eq. (11), and ω ∼ N (0, Id). Therefore,
M (1,d)(f,ω) is a randomized rule such that M (1,d)(f,ω) ≈
〈Φ̃(x), Φ̃(y)〉. Unfortunately, unlike that RFF is an unbiased esti-
mator of the original kernel, the obtained estimator M (1,d)(f,ω)
is biased, i.e., Eω[M (1,d)(f,ω)] = Q(1,d)(f) 6= Id(f). Besides,
albeit stochastic, the designed M (1,d)(f,ω) still outputs the fixed
dimension of the feature mapping, i.e., N = 2d+ 1. In this case,
we cannot flexibly tune it for practical requirements.

To tackle the above two issues, by virtue of Monte-Carlo
sampling and control variates techniques [43], the designed S-FS
is to pursue an unbiased estimator based on the formulation of
M (1,d)(f,ω). Besides, the dimension of the feature mapping by
S-FS can be flexibly tuned. According to Eq. (1), we have the
following equality

k(x,y) = Eω[M (1,d)(f,ω)] + Eω[f(ω)−M (1,d)(f,ω)]

= Q(1,d)(f) + Eω[f(ω)−M (1,d)(f,ω)] .

As a result, the Monte-Carlo sampling for f(ω) in Eq. (1) is
transformed to estimate the difference f(ω) −M (1,d)(f,ω). If
M (1,d)(f,ω) is close to f(ω) in the sense that the difference has
smaller variance than f(ω), variance reduction can be achieved.3

Formally, by defining

R1(f,ω) = Q(1,d)(f) + f(ω)−M (1,d)(f,ω) , (14)

then our third-degree S-FS is defined as R̄1(f,ω) such that

k(x,y) ≈ R̄1(f,ω) :=
1

D

D∑
i=1

R1(f,ωi) , (15)

with {ωi}Di=1 ∼ N (0, Id). Then by defining

ϕ(x) = 1/
√
D[φ(ω>1x), · · · , φ(ω>Dx)]> ∈ RD ,

3. It is possible to design other estimators close to f(ω) for variance
reduction. Roughly speaking, if the estimator is closer to f(ω), then more
variance reduction can be achieved.

the final feature mapping associated with R̄1(f,ω) is given by

Φ̂(x)=

ϕ(x)>,

(
i

D

D∑
i=1

Φ̃(x,ωi)

)>
,Φ(x)>

>∈ RD+4d+2 ,

(16)
where the symbol i is the imaginary unit, {ωi}Di=1 ∼N (0, Id),
and the mappings Φ(x) and Φ̃(x,ωi) are given by Eqs. (9)
and (13), respectively. As a consequence, we have k(x,y) =
E〈Φ̂(x), Φ̂(y)〉.
Remark: We make the following remarks.
1) The kernels used in this paper are real-valued. To approximate
them, we have to introduce the imaginary unit in the feature
mapping (16) due to the difference operation, i.e., a − b =
〈(
√
a, i
√
b), (
√
a, i
√
b)〉 for any a, b ≥ 0, but the approximated

kernels still remain real-valued.
2) The discrepancy between the original and approximated
kernels can be controlled by varying D in the feature mapping
Φ̂(x) ∈ RD+4d+2. Note that, the feature mappings Φ̃(x,ωi) and
Φ(x) in Eq. (16) have only 2d non-zero elements. The nodes
are independent of the sampling process and can be pre-given by
Eq. (8). In this case, S-FS still achieves the same space and time
complexity O(Dd) with RFF.
3) Sampling {ωi}Di=1 ∼ N (0, Id) is not limited to the standard
Monte Carlo sampling. It can be extended to other advanced
approaches, e.g., QMC, SSR, as alternative ways, for pursuing
further variance reduction. Our experimental results also verify this,
see Section 6.3 for details.

4.2 Statistical Properties

This subsection elucidates that i) our third-degree S-FS is unbiased,
see Theorem 1; ii) exhibits a variance reduction property in
Theorem 2.

Theorem 1. (Unbiased estimation) Our stochastic rule R̄1(f) in
Eq. (15) is an unbiased third-degree rule for Id(f) in Eq. (1).

Proof. Refer to Appendix B.1.

Remark: We have Q(1,d)(f) = Eω∼µ[M (1,d)(f,ω)], and thus
M (1,d)(f,ω) is an asymptotically unbiased estimator of Id(f).

Based on the above unbiased estimation, in the next,
we derive the variance of our third-degree S-FS for
Gaussian kernel approximation. Before proceeding, we
introduce some notations and definitions. For the Gaussian
kernel k(x,y) = exp

(
−‖x− y‖22/(2σ2)

)
, we use the

convenient shorthands z := (x − y)/σ and z := ‖z‖2.
For an algorithm A sampling {ωi}Di=1 ∼ µ, we define its
expectation E[A] := Eωi∼µ

[
1/D

∑D
i=1 cos(ω>i z)

]
and variance

V[A] := Vωi∼µ

[
1/D

∑D
i=1 cos(ω>i z)

]
.

Theorem 2. (Lower variance) For the Gaussian kernel k(x,y) =
exp

(
−‖x− y‖22/(2σ2)

)
, denoting z := ‖z‖2 with z := (x −

y)/σ, Q := Q(1,d)(f) for notational simplicity, then the variance
of our third-degree S-FS (15) is

V[R̄1(f,ω)]−V[RFF]=
2

Dd

([
(1−Q)− 1

2
z2e−

z2

2

]2

− 1

4
z4e−z

2

)
︸ ︷︷ ︸

,hS-FS(z)

,

(17)

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) d = 10 (b) d = 1

Figure 3. Comparison of h(z) versus the distance z := ‖z‖2 across ORF,
SSR (a) and S-FS (b). Since hS-FS(z) is no loner a radial function of z
due to Q depending on z, we just present the univariate case of hS-FS(z)
for intuitive display.

where V[RFF] =
(

1− e−z2
)2
/(2D) is given by [24]. In

particular, the variance reduction can be achieved by

V[R̄1(f,ω)]−V[RFF] < 0 when 1−Q < z2e−
z2

2 . (18)

Proof. Refer to Appendix B.2.

Remark: The condition 1 − Q < z2e−
z2

2 in Eq. (18) holds
for most cases with detailed discussion in Section 4.3. Even if this
condition does not hold in some rare cases, there is an alternative
way to make it attainable: normalizing z := ‖x − y‖2/σ to
z := ‖x− y‖2/

√
dσ2 by a scaling factor

√
d. This normalization

strategy implies that the used Gaussian kernel admits k(x,y) =
exp(−‖x− y‖22/(dσ2)), which is quite common in practice and
theory. For example, in SSR [15], the authors directly employ the
formulation k(x,y) = exp(−‖x − y‖22/d) in their algorithm
implementation. In theory, this setting is well studied in random
matrix theory and high-dimensional statistics, see [44], [45], [46],
and accordingly the used normalization strategy depending d is
common and fair.

Here we compare the obtained theoretical results with other
representative methods on the estimated variance reduction.
Variance of ORF [24] is bounded by

V[ORF]− V[RFF] ≤ 1

D

(
g(z)

d
− (d− 1)e−z

2

z4

2d

)
︸ ︷︷ ︸

,hORF(z)

,

where the function g is g(z) = ez
2 (
z8 + 6z6 + 7z4 + z2

)
/4

+ez
2

z4
(
z6 + 2z4

)
/(2d), at an exponential growth of z.

Variance of SSR [15] is bounded by

V[SSR]− V[RFF]≤ 1

D

(
8d+12

d− 2
− (1−e−z2)2

2

)
︸ ︷︷ ︸

,hSSR(z)>0

, (19)

with the positive hSSR(z) satisfying limz→∞ hSSR(z) = 8.
For better illustration, we plot the function h(z) including hORF,

hSSR, hS-FS versus the distance z := ‖z‖2 in Figure 3 for intuitive
explanation. In our simulation, we set d = 10 as an example.
It can be found that, 1) hORF is positive and thus the variance
reduction cannot be demonstrated in theory. More specifically,
hORF almost increases at an exponential order of z, which leads to
a quite loose bound for variance estimation. 2) SSR cannot strictly
guarantee V[SSR] < V[RFF] due to hSSR(z) > 0 in Eq. (19).
Instead, our theoretical result in Theorem 2 admits V[R̄1(f,ω)] <

Table 1
The maximum radius of the hyper-ball Sd(r) under various d.

d rmax d rmax

10 (magic04) 1.208 50 1.1837
16 (letter) 1.1964 54 (covtype) 1.1831

20 1.1896 100 1.18
22 (ijcnn1) 1.1909 200 1.1787

(a) magic04 (b) letter

(c) ijcnn1 (d) covtype

Figure 4. Empirical distribution of z in four datasets used in this paper.

V[RFF] under the condition in Eq. (18) for variance reduction, as
demonstrated by Figure 3(b) in the univariate case. Even if this
condition does not hold, we still have V[R̄1(f,ω)]−V[RFF] ≤
2/(Dd) at a certain O (1/(Dd)) rate as hS-FS(z) is bounded. This
is faster than SSR converging at a certain O(1/D) rate.

4.3 Discussion on the Condition (18) in Theorem 2

Here we verify that the condition (18) for V[R1(f,ω)]−V[RFF] <
0 in Theorem 2 holds for most cases. The description of the
used four datasets (magic04, letter, ijcnn1, covtype) for numerical
validation is deferred to our experiments in Section 6.

Under the Gaussian kernel setting, recall our third-degree D-FS
(7), the condition (18) is equivalent to

d

3
− 1

3

d∑
i=1

cos(
√

3e>i z)− ‖z‖22 exp(−‖z‖22/2) < 0 . (20)

For notational simplicity, we denote the left-hand side of the
above inequality as J(z). In the next, we first study the existence
of solutions to Eq. (20) and then numerically validate that the
condition under these solutions holds for most cases.

4.3.1 Existence

We consider a simple case: finding a d-dimensional Euclidean
ball Sd(r) = {z ∈ Rd : ‖z‖2 ≤ r} as the feasible region,
such that all points in Sd(r) admit J(z) < 0. As a result, our

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

target is transformed to maximize r by solving a one-dimensional
optimization problem

max r , s.t.
1

3
− 1

3
cos

(√
3r√
d

)
− r2

d
exp

(
−r

2

2

)
< 0 .

After numerical calculation, the maximum radius rmax under
different d is reported in Table 1. That means, given d, there
exists a hyper-ball Sd(rmax) such that any vector z ∈ Rd with
z := ‖z‖2 ≤ rmax admits the condition (18). We remark that, the
above inequality is not equivalent to Eq. (20) but a special case for
existence.

4.3.2 Numerical validation
Here we numerically validate that the obtained rmax in Table 1
holds for most cases in four datasets used in this paper.

In our numerical simulation, on each dataset, we randomly
select 1,000 data points {xi}1000

i=1 to compute the distance zij =
‖xi−xj‖2 with 1 ≤ i, j ≤ 1000, and then construct a histogram
with 30 bins for counting zij .4 Figure 4 shows the histogram for
counting zij and the fitted empirical distribution of z on these
four datasets. Observe that all the datasets admit zij < 2, which
shows the consistency with [24] (see Figure 2(c) in their paper).
Further, we also plot rmax in Table 1 on each dataset (see the black
line) in Figure 4, and find that, over 90% of {zij}1000

i,j=1 satisfy
z := ‖z‖2 ≤ rmax. That means, our condition (18) holds for most
cases and thus is fair and attainable.

5 UNIFYING FRAMEWORK FOR QUADRATURE
METHODS

In this section, we investigate the relations among third-degree rules,
including SGQ [22], SSR [15], and our deterministic/stochastic
rules, i.e., D-FS/S-FS. Subsequently, we cast them in our unifying
framework for kernel approximation.

5.1 Relations to SGQ
The sparse grids used in [22] are based on the Smolyak rule [19]
which can be approximated by a sequence of nested univariate
quadrature rules in a tensor product fashion

Id(f)≈Ad,L(f)=
L−1∑
q=0

∑
i∈Cdq

(∆i1 ⊗ · · · ⊗∆id)(f) , (21)

with the index vector i = [i1, i2, · · · , id]. The set Cdq ={
i ∈ Nd :

∑d
j=1 ij = d+ q

}
determines the possible accuracy

level ij for each univariate quadrature and the nonnegative q
prescribes the range of the accuracy level ij in each dimension.
Vij is the univariate quadrature rule with the accuracy level
ij ∈ i, which generates the difference ∆i(f) = Vi(f)−Vi−1(f),
∀i ∈ N. This rule is a weighted sum of product rules with different
combinations of accuracy levels i.

To study the relationship between SGQ and D-FS, we construct
the third-degree SGQ in Eq. (21) using the symmetric univariate
quadrature point set {−p̂1, 0, p̂1} and the weights (â1, â0, â1),
then the integration Id(f) can be approximated by SGQ

Id(f)≈(1−d+dâ0) f(0) + â1

d∑
j=1

[
f (p̂1ej)+f (−p̂1ej)

]
.

4. The diagonal elements zii = 0 are not counted and non-diagonal elements
are counted only once.

Table 2
Relationship between typical kernel approximation methods.

Methods Parameters in Eq. (23)

SSR β := d

M(1,d)(f) in Eq. (12) ρ := λ21 and Q := I
ORF β := d and ρ ∼ χ(d)

Q(1,d)(f) in Eq. (7) ρ := λ21, Q := I , and β := d

SGQ ρ := λ21, Q := I , β := d
{â0, p̂0, â1} ← λ1

If the nodes and their associated weights are chosen by the
following scheme

â0 := 1− 1

λ2
1

, p̂1 := λ1, â1 =
1

2λ2
1

,

then the third-degree SGQ is equivalent to D-FS in Eq. (7), as
shown in Figure 2.

5.2 Relations to SSR

The key step in SSR [38] is a change of variable from ω ∈ Rd to a
radius r and direction vector a ∈ Rd. Let ω = ra with a>a = 1
and r ∈ [0,∞), we have

Id(f) =
(2π)−

d
2

2

∫
Ud

∫ ∞
−∞
|r|d−1e−

r2

2 f(ra)dτ(a)dr

≈f(0)

(
1− d

ρ2

)
+

d∑
j=1

f(−ρQej) + f (ρQej)

2ρ2
,

where Q is a random orthogonal matrix, τ(·) is the spherical
surface measure or the area element on Ud, and ρ ∼ χ(d + 2).
SSR includes the following two stochastic integration rules: one is
stochastic radial rule for approximating the infinite range integral∫∞
−∞ e−

r2

2 |r|d−1f(r)dr; the other is stochastic spherical rule for
a surface integral over Ud

IQ,Ud
(f) =

|Ud|
2d

d∑
j=1

[f (Qej) + f (−Qej)] , (22)

where |Ud| = 2
√
πd/Γ(d/2) is the surface area of the unit sphere

with the Gamma function Γ.
Here we present the following theorem that states the

relationship between the third-degree stochastic spherical rule and
the third-degree D-FS.

Theorem 3. The third-degree stochastic spherical integration
rule (22) can be obtained by the random orthogonal projection of
D-FS in Eq. (7).

Proof. Refer to Appendix C.

Accordingly, SSR can be obtained by D-FS in Eq. (7) with the
following two randomized steps. 1) random projection: according
to Theorem 3, by projecting D-FS to the spherical surface of Ud
with a uniform random orthogonal matrix Q, we can obtain the
third-degree stochastic spherical rule. 2) random generator: the
deterministic generator λ1 in Eq. (7) by Gaussian quadrature is
substituted by a random variable ρ with ρ ∼ χ(d+ 2). By doing
so, we can transform D-FS to SSR, as shown in Figure 2.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Table 3
Dataset statistics and the number of nodes in fifth-degree rules.

datasets d #training #test #nodes N

SGQ Ours

magic04 10 9,510 9,510 221 201
letter 16 12,000 6,000 545 513
ijcnn1 22 49,990 91,701 1013 969

covtype 54 290,506 290,506 5941 5833

5.3 Unifying Framework
Apart from the relations between our deterministic rule and SSR,
here we also study the relationship between S-FS and SSR. On
the one hand, in Eq. (14), if we only consider R1(f,ω) := f(ω),
S-FS degenerates to RFF with the standard Monte-Carlo sampling
scheme. On the other hand, RFF (also ORF) can be regarded
as spacial cases of SSR as demonstrated by [15]. Furthermore,
if we only consider R1(f,ω) := M (1,d)(f,ω) in Eq. (14),
after the above two stochastic operations (random projection and
random generator), it is a triple-stochastic rule with the following
formulation

Id(f)≈f(0)

(
1− β

ρ2

)
+
β

d

d∑
j=1

f(−ρQej) + f (ρQej)

2ρ2
,

(23)
with β ∼ χ(d) and ρ ∼ χ(d + 2). Clearly, this rule is
also an unbiased estimator of Id(f). Finally, we summarize the
relations between D-FS/S-FS, SGQ, SSR, ORF under the unifying
framework in Table 2.

6 EMPIRICAL RESULTS

In this section, we empirically compare our deterministic/stochastic
rules, D-FS and S-FS, with several representative approaches for
kernel approximation, and then incorporate them into the kernel
ridge regression (KRR) for classification on several benchmark
datasets. Given nodes and weights in Eq. (8), our algorithm is
straightforward to be implemented for the feature mapping in
Eq. (9) by our deterministic rule and Eq. (16) by our stochastic
rule. We implement them in MATLAB and carry out on a PC with
Intelr i7-8700K CPU (3.70 GHz) and 64 GB RAM. The source
code of our implementation can be found in http://www.lfhsgre.org.

6.1 Experimental Settings
Kernel: According to the integral representation (1), we choose
the popular Gaussian kernel and the first-order arc-cosine kernel
for experimental validation. Here we use the following formulation
of the Gaussian kernel

k(x,y) = exp

(
−‖x− y‖

2
2

2dσ2

)
, (24)

where the feature dimension d is introduced into the kernel width
for scaling as suggested by the remark in Theorem 2. The parameter
σ2 is tuned via 5-fold inner cross validation over a grid of
{0.1, 0.5, 1, 5, 10}. The first-order arc-cosine kernel [16] used
in this paper is given by

k(x,y) =
1

π
‖x‖2‖y‖2 (sin θ + (π − θ) cos θ) ,

with θ = cos−1
(

x>y
‖x‖2‖y‖2

)
.

Datasets: We consider four typical classification datasets including
magic04, letter, ijcnn1, and covtype; see Table 3 for an overview.
These datasets can be downloaded from https://www.csie.ntu.
edu.tw/∼cjlin/libsvmtools/datasets/ or the UCI Machine Learning
Repository5. The ijcnn1 dataset by the provider has been already
scaled to [0, 1]d by the winner’s transformation [47]. The remaining
three datasets rescale each attribute/feature to [0, 1] by the min-max
normalization. Regarding to the training/test partition, it has been
pre-given on the letter and ijcnn1 datasets. For the remaining two
datasets, we randomly pick half of the data for training and the rest
for test.
Compared methods: We compare the developed D-FS/S-FS with
the following algorithms:
• RFF/MC [6]: The transformation matrix WRFF is constructed

by the standard Monte Carlo sampling scheme with Wij ∼
N (0, 1/(dσ2)) in Eq. (24) for Gaussian kernel approximation
and Wij ∼ N (0, 1) for the first-order arc-cosine kernel
approximation.

• ORF [24]: The transformation matrix WORF is constructed
by a random orthogonal matrix with W = ΛQ, where Λ is
a diagonal matrix with Λii ∼ χ(d) and Q is obtained from
the QR decomposition of WRFF. Note that, this approach
can be applied to the arc-cosine kernel in practice but lacks
theoretical guarantees.

• ROM [25]: The transformation matrixWROM is constructed by
a series of structural random orthogonal matrices with W =
c
∏t
i=1HΛi, whereH is a normalized Hadamard matrix and

Λi is the Rademacher matrix with P(Λii = ±1) = 1/2. Here
c is chosen as

√
2/σ2 for Gaussian kernel approximation and√

d for arc-cosine kernel approximation.
• QMC [27]: The transformation matrix WQMC is constructed

by a deterministic low-discrepancy Halton sequence.
• GQ/SGQ [22]: These two algorithms are deterministic

quadrature methods. GQ generates nodes and weights along
each dimension and thus the dimension of the obtained feature
mapping can be manually adjusted. However, the feature
dimension generated by SGQ is directly fixed if d is given.
Accordingly, we compare SGQ with D-FS in Section 6.2 and
compare GQ with S-FS in Section 6.3. For fair comparison,
we set the generator vector λ = [0,

√
3]> in GQ, SGQ and

D-FS/S-FS to be the same.
• SSR [15]: The feature mapping is constructed by the third-

degree stochastic spherical-radial rule with random orthogonal
matrices obtained by butterfly matrices [48].

Evaluation metrics: We evaluate the performance of all the
compared algorithms in terms of approximation error, time cost,
and test accuracy. The used kernel approximation measure here
is the relative error in Frobenius form ‖K − K̂‖F/‖K‖F on
a randomly selected subset with 1,000 samples. We record the
time cost of each algorithm on generating feature mappings. For
prediction (binary classification), we directly use the closed-form
formula of KRR [2] and the sign function to output a binary label.
The regularization parameter in KRR is tuned via 5-fold inner cross
validation over a grid of {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 10}. All
experiments are repeated 10 trials.

6.2 Evaluation for Deterministic Rules
Our deterministic rules D-FS generate the fixed-size feature
mapping Φ(x) ∈ RN when d is given, e.g., N = 2d + 1 in

5. https://archive.ics.uci.edu/ml/datasets.html.

http://www.lfhsgre.org
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets.html.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(i) magic04 (j) letter (k) ijcnn1 (l) covtype

Figure 5. Results on the Gaussian kernel in terms of approximation error (top), time cost (middle), and test accuracy (bottom).

(i) magic04 (j) letter (k) ijcnn1 (l) covtype

Figure 6. Results on the first-order arc-cosine kernel in terms of approximation error (top), time cost (middle), and test accuracy (bottom).

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

our third-degree rule (m = 1) and N = 1 + 2d2 in our fifth-
degree rule (m = 2). In this case, we consider a deterministic
setting, in which RFF, ORF, ROM, QMC and SSR are conducted
under the same feature dimension N with our third/fifth-degree
rules for fair comparison. Note that SGQ generates the same feature
dimension N = 2d + 1 with D-FS in the third-degree rules but
outputs the larger one N = 1 + 2d2 + 2d in the fifth rule, see in
Table 3.
Results on Gaussian kernel: Figure 5 shows approximation error,
time cost, and test accuracy (mean±std.) of all the compared
algorithms across the Gaussian kernel in terms of the third-degree
rules (see the blue bar) and the fifth-degree rules (see the yellow
bar), respectively. We find that, our third-degree D-FS decreases
the approximation error of RFF and QMC, achieves a comparable
performance with ORF and ROM, but is slightly inferior to SSR.
Besides, the third-degree SGQ performs the same with D-FS in
terms of the approximation error as the generated nodes in these
two algorithms are almost the same due to the same generator used.
Nevertheless, our fifth-degree D-FS not only requires smaller N
than SGQ, but also achieves the best approximation quality (with
noticeable reduction) of all the compared algorithms.

In terms of time cost on generating the feature mapping, there
is no distinct difference between our third/fifth-degree D-FS and
RFF. Interestingly, our fifth-degree D-FS is more efficient than
quadrature methods SSR and SGQ. For prediction, most algorithms
achieve the similar test accuracy on these datasets. Good kernel
approximation quality cannot guarantee the final good prediction,
which still remains an open question in theory. The reason may
be that the approximated kernel is not necessarily optimal for
prediction, as discussed by [23], [32], [49]. Nevertheless, for the
design of kernel approximation, it is reasonable to pursue small
approximation errors.
Results on arc-cosine kernel: Figure 6 shows the related
results across the first-order arc-cosine kernel. The trends of the
compared algorithms are analogous to those across the Gaussian
kernel in Figure 5. Generally, the approximation error of each
algorithm on the arc-cosine kernel is larger than that of Gaussian
kernel. The reason may be that the integrand f for the Gaussian
kernel corresponds to trigonometric functions that are infinitely
differentiable; while f for the first-order arc-cosine kernel is
actually a ReLU function that is non-differentiable. In fact, as
we discussed in the introduction, the differentiable property on the
integrand significantly affects the approximation performance in
Monte Carlo sampling, QMC, and quadrature methods.

Based on the above results, we conclude that our deterministic
third/fifth-degree rules are quite efficient to achieve promising
performance on the approximation quality, and comparable results
on classification accuracy.

6.3 Evaluation for Stochastic Rules

Here we evaluate the proposed third-degree S-FS under a dimension
adjustment setting, in which the feature dimension in Eq. (16) is
manually fixed with D = {2d, 4d, 8d, 16d, 32d}. In this case,
S-FS generates the feature mapping Φ̂(·) ∈ RD+4d+2, but still
achieves the same time/space complexity O(Dd) with RFF. We
begin with an intuitive comparison of S-FS in Eq. (16) against RFF
and then conduct a comprehensive experimental evaluation of all
the randomized algorithms.

First, to validate the effectiveness of S-FS on variance reduction,
Figure 7 shows the approximation error and the time cost across

(a) approximation error (b) time cost

Figure 7. Benefits of our S-FS rule in Eq. (16) against RFF across the
Gaussian kernel on the magic04 data set.

the Gaussian kernel on the magic04 data set between S-FS and
RFF. Both of them draw {ωi}Di=1 ∼ N (0, Id) by Monte-Carlo
sampling, so S-FS under this setting is termed as “S-FS+RFF”. It
can be noticed that, admittedly, “S-FS+RFF” takes a little more time
than RFF on generating the feature mapping. However, it achieves
significant improvement on RFF in terms of the approximation
quality, which demonstrates the effectiveness of the used control
variates technique in Eq. (16). Besides, we observe that, the
variance reduction effect weakens or even disappears when D
is large. One reason might be that, the variance of S-FS converges
to that of RFF at a fast O(1/(Dd)) rate, as demonstrated by
Theorem 2.

In the next, we present a comprehensive evaluation of the
proposed S-FS rule with other representative approaches. To purse
a better approximation performance, apart from the original Monte-
Carlo sampling in S-FS, we also incorporate various sampling
strategies into S-FS: {ωi}Di=1 in Eq. (16) are obtained by QMC
and SSR, termed as “S-FS+QMC” and “S-FS+SSR” respectively.
Results on Gaussian kernel: Figure 8 shows the approximation
error, time cost, and test accuracy (mean±std.) of all the compared
algorithms across the Gaussian kernel under different feature
dimensionality with D = {2d, 4d, 8d, 16d, 32d}. We find that,
when compared to the original RFF, QMC, SSR, our stochastic
rules including “S-FS+RFF”, “S-FS+QMC”, “S-FS+SSR” manifest
significant reduction on the approximation error, respectively.
In terms of time complexity, due to the used control variates
technique, our stochastic rules take more time than the original
RFF/ORF/QMC/ROM/GQ. Among these three sampling strategies,
“S-FS+RFF” and “S-FS+QMC” take the similar time cost on
generating the feature mapping, achieving the same time complexity
O(Dd) with RFF. However, “S-FS+SSR” is relatively time-
consuming on the ijcnn1 and covtype datasets as SSR itself requires
more time to obtain random orthogonal matrices in large scale
situations.

As mentioned before, the compared algorithms achieve the
similar test accuracy in the deterministic setting. There is almost
no distinct difference between these approaches on the final
classification accuracy under varying feature dimensionlity.
Results on arc-cosine kernel: Figure 9 shows the approximation
error and test accuracy of all the compared algorithms across the
first-order arc-cosine kernel on these four datasets. It can be found
that, the compared algorithms across the arc-cosine kernel are
generally inferior to them across the Gaussian kernel in terms of
the approximation quality and generalization performance.

In sum, we experimentally validate that our stochastic rules
are unbiased and achieve variance reduction in terms of the
approximation error. Since “S-FS+QMC” is more efficient than

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

(i) magic04 (j) letter (k) ijcnn1 (l) covtype

Figure 8. Kernel approximation (top), time cost (middle), and test accuracy (bottom) across the Gaussian kernel.

(e) magic04 (f) letter (g) ijcnn1 (h) covtype

Figure 9. Kernel approximation error (top) and test accuracy (bottom) across the first-order arc-cosine kernel.

SSR on these datasets, and thus is demonstrated to achieve a good
trade-off between the approximation quality and time cost.

7 CONCLUSION

We present deterministic/stochastic quadrature methods D-FS/S-FS
based on the fully symmetric interpolatory rule to approximate
the Gaussian kernel and the first-order arc-cosine kernel via the
integration representation (1). Our third/fifth-degree deterministic
rules achieve promising approximation quality while retaining

the same time cost with RFF. Our S-FS rules exhibit variance
reduction on the approximation error due to the used control
variates technique, and performs well on real datasets. By studying
the relations among the third-degree quadrature based methods,
our unified framework mainly demonstrates that, 1) D-FS recovers
SGQ by choosing suitable parameters; 2) SSR can be regarded as a
doubly stochastic version of D-FS via a random projection scheme
and a randomized generator.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the
European Research Council under the European Union’s Horizon
2020 research and innovation program / ERC Advanced Grant
E-DUALITY (787960). This paper reflects only the authors’ views
and the Union is not liable for any use that may be made of
the contained information. This work was supported in part by
Research Council KU Leuven: Optimization frameworks for deep
kernel machines C14/18/068; Flemish Government: FWO projects:
GOA4917N (Deep Restricted Kernel Machines: Methods and
Foundations), PhD/Postdoc grant. This research received funding
from the Flemish Government (AI Research Program). This work
was supported in part by Ford KU Leuven Research Alliance
Project KUL0076 (Stability analysis and performance improvement
of deep reinforcement learning algorithms), EU H2020 ICT-48
Network TAILOR (Foundations of Trustworthy AI - Integrating
Reasoning, Learning and Optimization), Leuven.AI Institute; and
in part by the National Natural Science Foundation of China
61977046, in part by National Science Foundation grant CCF-
1704828 and CAREER Award CCF-2047910, and in part by
SJTU Global Strategic Partnership Fund (2020 SJTU-CORNELL)
and Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102).

APPENDIX A
FIFTH-DEGREE RULE

When choosing m = 2 in Eq. (6), we obtain a fifth-degree rule
Q(2,d) with ‖p‖1 ≤ 2 to further improve the approximation
accuracy. To derive the fifth-degree rule, we cast it in three cases,
i.e., ‖p‖1 = 0, ‖p‖1 = 1, and ‖p‖1 = 2.

If ‖p‖1 = 0, we have pi = 0, λ = 0, and K = 0. Then the
weight a(2,d)

0 is

a
(2,d)
0 =

∑
‖u‖1≤2

d∏
i=1

bui∏ui

j=0, 6=0

(
λ2

0 − λ2
j

)
= 1− d

λ2
1

+
d(d− 1)

2λ4
1

+
d(3− λ2

1)

λ2
1λ

2
2

,

(25)

where b2 = 3 − λ2
1 is obtained by Eq. (5). In our derivation,

‖u‖1 ≤ 2 is cast into three cases: u = 0, ‖u‖1 = 1, and
‖u‖1 = 2 for calculation.

If ‖p‖1 = 1, only one element of p is 1 and the remaining are
zero. We thereby have K = 1 and λ = λ1ei with i = 1, 2, . . . , d,
where ei is a unit vector with the i-th element being 1. Without
loss of generality, assuming p = [1, 0, · · · , 0], the weight a(2,d)

1

is computed as

a
(2,d)
1 =

1

2

∑
‖u‖1≤1

d∏
i=1

bui+pi∏ui+pi
j=0,6=pi

(
λ2
pi − λ

2
j

)
=

1

2λ2
1

+
3− λ2

1

2λ2
1 (λ2

1 − λ2
2)
− d− 1

2λ4
1

,

(26)

where ‖u‖1 ≤ 1 is cast into two cases: u = 0 and ‖u‖1 = 1 for
derivation.

If ‖p‖1 = 2, the derivation is a little complex and we cast it
into two cases. One is that there are two elements in p being 1,
i.e., pi = pj = 1 with i 6= j. The other is only one element of p
being 2, i.e., pi = 2. For the pi = pj = 1 case, we have K = 2

and λ = λ1s
+
l or λ = λ1s

−
l , where the point sets of s+

l and s−l
are given by

{s+
l }

d(d−1)/2
l=1 := {ei + ej : i < j, i, j = 1, 2, · · · , d}

{s−l }
d(d−1)/2
l=1 := {ei − ej : i < j, i, j = 1, 2, · · · , d}

Without loss of generality, assuming p = [1, 1, 0, · · · , 0], the
weight a(2,d)

2 is

a
(2,d)
2 =

1

4

d∏
i=1

bpi∏pi
j=0,6=pi

(
λ2
pi − λ

2
j

)
=

1

4

[
b1

(λ2
1 − λ2

0)

]2

=
1

4λ4
1

.

(27)

For the pi = 2 case, we have K = 1 and λ = λ2ei. Without
loss of generality, assuming p = [2, 0, · · · , 0], the weight a(2,d)

3

is computed as

a
(2,d)
3 =

1

2

d∏
i=1

bpi∏pi
j=0,6=pi

(
λ2
pi − λ

2
j

) =
3− λ2

1

2λ2
2(λ2

2 − λ2
1)
. (28)

Accordingly, combining the derived weights in Eqs. (25), (26), (27),
and (28), the fifth-degree full symmetric interpolatory rule is

Q(2,d)(f) = a
(2,d)
0 f(0) + a

(2,d)
1

d∑
i=1

[f (λ1ei) + f (−λ1ei)]

+ a
(2,d)
2

d(d−1)/2∑
i=1

[
f
(
λ1s

+
i

)
+f

(
−λ1s

+
i

)
+f

(
λ1s
−
i

)
+f

(
−λ1s

−
i

)]
+ a

(2,d)
3

d∑
i=1

[f (λ2ei) + f (−λ2ei)]

:= a
(2,d)
0 f(0) +

2d∑
j=1

(
a

(2,d)
1 f(Pj,1) + a

(2,d)
3 f(Pj,3)

)

+ a
(2,d)
2

2d(d−1)∑
j=1

f(Pj,2) ,

where

Pj,1 =

 λ1ei; ai =
1

2d
; 1 ≤ i ≤ d

− λ1ei−d; d+ 1 ≤ i ≤ 2d

Pj,3 =

{
λ2ei; 1 ≤ i ≤ d
− λ2ei−d; d+ 1 ≤ i ≤ 2d

Pj,2 =

λ1 (ei + et) i, t = 1, . . . , d; i < t
λ1 (ei − et) i, t = 1, . . . , d; i < t
λ1 (−ei + et) i, t = 1, . . . , d; i < t
λ1 (−ei − et) i, t = 1, . . . , d; i < t

Similar to the third-degree rule, we also choose λi by successive
extensions of the one-dimensional 3-point Gauss–Hermite rule.

APPENDIX B
STATISTICAL GUARANTEES OF STOCHASTIC INTER-
POLATORY RULES

This section includes three parts:
• in Section B.1, we prove Theorem 1, that is, our third-degree

S-FS R̄1(f) is an unbiased third degree rule for Id(f).

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

• in Section B.2, we prove Theorem 2 that gives the vari-
ance of our third-degree stochastic interpolatory rule, i.e.,
V[R̄1(f,ω)].

B.1 Proof of Theorem 1
Proof. We compute Id(ã

(1,d)
p (ω)) as follows. For ã(1,d)

0

Id(ã
(1,d)
0) =

∫
Rd

(
1−

∑d
i=1 ω

2
i

λ2
1

)
µ(dω) = a

(1,d)
0 .

For ã(1,d)
1 , we have

Id(ã
(1,d)
1) =

1

2dλ2
1

∫
Rd

(
d∑
i=1

ω2
i

)
µ(dω) = a

(1,d)
1 .

So we have a
(1,d)
p = Id[ã

(1,d)
p (ω)], and thus Q(1,d)(f) =

Id[M
(1,d)(f,ω)]. Due to I(f) = Eω∼µ[f(ω)], we have

Q(1,d)(f) = Eω∼µ[M (1,d)(f,ω)]. Based on this, the expectation
of R1(f,ω) is

Eω[R1(f,ω)]=E[f(ω)]−E[M (1,d)(f,ω)]+E{Id[M (1,d)(f)]}
= Id[f(ω)]−Q(1,d)(f) +Q(1,d)(f)

= Id(f) .

Accordingly, due to {ωi}Di=1 ∼ µ, the average R̄1(f) is unbiased
for Id(f).

Besides, if we choose f(ω) = ω2u with ‖u‖1 ≤ 1, then we
have R1(f,ω) = Q(1,d)(f) = Id[M

(1,d)(f,ω)]. If we choose
f(ω) = ωu in which at least one element of u is odd, we have
R1(f,ω) = 0. So it means that R1(f,ω) is a third-degree rule
for Id(f). Hence, R̄1(f,ω) is an unbiased third-degree stochastic
rule for Id(f), which concludes the proof.

B.2 Proof of Theorem 2
This section aims to prove Theorem 2 including two parts. In
Section B.2.1, we present Lemma 1 that is used to prove Theorem 2.
The proof of Theorem 2 can be found in Section B.2.2.

B.2.1 Proof of Lemma 1
To aid the proof of Theorem 2, we need the following lemma.

Lemma 1. Denote ω = [ω1, ω2, · · · , ωd]> ∼ N (0, Id), z :=
x− y/σ = [z1, z2, · · · , zd]>, and f(ω) = cos(ω>z), we have

Eω

f(ω)
d∑
j=1

ω2
j

 = e−
‖z‖22

2 (d− ‖z‖22) .

Proof. We expand Eω
(
f(ω)

∑d
j=1 ω

2
j

)
as

Eω

f(ω)
d∑
j=1

ω2
j

 =
d∑
j=1

Eω
[
ω2
j cos(ω>z)

]
.

The j-th term ω2
j cos(ω>z) can be reformulated as

ω2
j cos(ω>z) = ω2

j cos

ωjzj +
d∑

t=1,6=j
ωtzt

=ω2

j

cos(ωjzj) cos

(d∑
t=1,6=j

ωtzt

)
−sin(ωjzj)sin

(d∑
t=1,6=j

ωtzt

).
(29)

Now we compute Eωj
[ω2
j cos(ωjzj)] as follows.

E[ω2
j cos(ωjzj)] =

1√
2π

∫ ∞
−∞

ω2
j cos(ωjzj)e

−
ω>j ωj

2 dωj

= Re

(∫ ∞
−∞

1√
2π
ω2
j e
−

z2j
2 e−

(ωj−izj)
2

2 dωj

)
= e−

z2j
2 Eωj

(
ω2
j

)
with ωj ∼ N (izj , 1)

= e−
z2j
2
[
1 + (izj)

2
]

= e−
z2j
2 (1− z2

j) ,
(30)

where i denotes the imaginary unit. Similarly, E[ω2
j sin(ωjzj)] can

be computed as

E[ω2
j sin(ωjzj)]=Im

∫ ∞
−∞

ω2
j e
−

z2j
2

√
2π

e−
(ωj−izj)

2

2 dωj

=0 .

(31)
Besides, by virtue of the above derivation, or directly using Bochner
theorem [17] for the Gaussian kernel Eω[cos(ω>z)] = e−‖z‖

2
2/2,

we have

E{ω1,··· ,ωd}\ωj

cos

 d∑
t=1,6=j

ωtzt

 = e−
‖z‖22−z2j

2 . (32)

Combine the above equations in Eqs. (29), (30), (31), and (32),
we have

Eω
[
ω2
j cos(ω

>z)
]

= Eωj

[
ω2
j cos(ωjzj)

]
× E{ω1,··· ,ωd}\ωj

cos

 d∑
t=1,6=j

ωtzt

= e−

z2j
2 (1− z2

j)e−
‖z‖22−z2j

2

= (1− z2
j)e−

‖z‖22
2 .

(33)

Accordingly, we can conclude

Eω

f(ω)
d∑
j=1

ω2
j

 =
d∑
j=1

Eω
[
ω2
j cos(ω>z)

]

= e−
‖z‖22

2

d∑
i=1

(1− z2
j) ,

which yields the final result.

B.2.2 Proof of Theorem 2
In the next, we are ready to prove Theorem 2.

Proof. For ease of description, we use some short notations
including

∑d
i=1[f] :=

∑d
i=1 [f(λ1ei) + f(−λ1ei)], Q :=

Q(1,d)(f), and z := ‖z‖2.
Recall RFF, its kernel approximation form is obtained via the

Monte Carlo sampling

1

D

D∑
i=1

cos(ω>i z), ωi ∼ N (0, Id) .

By virtue of E[cos(ω>z)] = e−z
2/2 and V[cos(ω>z)] =

(1− e−z2)2/2 [24], we have

E[RFF] = e−z
2/2 ,V[RFF] =

(1− e−z2)2

2D
.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Due to V[R̄1(f,ω)] = 1/D(V[R1(f,ω)]) with ω ∼
N (0, Id), in the next we focus on V[R1(f)]. The variance of
R1(f) can be formulated as

V[R1(f)] = E
[
f(ω)−M (1,d)(f) +Q(1,d)(f)

]2
−
{
E
[
f(ω)−M (1,d)(f) +Q(1,d)(f)

]}2

= E
[
f(ω)−M (1,d)(f) +Q(1,d)(f)

]2
−
{
E[f(ω)]

}2

= E
[
f(ω)−M (1,d)(f) +Q(1,d)(f)

]2
− e−z

2

,

where the used Gaussian kernel admits f(ω) = cos(ω>z).
Further, the above equation can be rewritten as

V[R1(f)] = E[f2(ω)] + E[(M (1,d)(f))2] + [Q(1,d)(f)]2

+ 2E[f(ω)Q(1,d)(f)]− 2E[f(ω)M (1,d)(f)]

− 2E[M (1,d)(f)Q(1,d)(f)]− e−z
2

= DV[RFF]−[Q(1,d)(f)]2+2e−z
2/2Q(1,d)(f)

+ E[(M (1,d)(f))2]− 2E[f(ω)M (1,d)(f)] .
(34)

Hence, we need to bound E[(M (1,d)(f))2] and
E[f(ω)M (1,d)(f)] in Eq. (34). First, byy expanding [M (1,d)(f)]2

in Eq. (12), we have

[M (1,d)(f)]2 =

(
1−

∑d
i=1 ω

2
i

λ2
1

)2

+
(
∑d
i=1 ω

2
i)2

4λ4
1d

2

{
d∑
i=1

[f]

}2

+

(
1−

∑d
i=1 ω

2
i

λ2
1

) ∑d
i=1 ω

2
i

λ2
1d

d∑
i=1

[f]

= 1− 2
∑d
i=1 ω

2
i

λ2
1

+
(
∑d
i=1 ω

2
i)2

λ4
1

+
(
∑d
i=1 ω

2
i)2

4λ4
1d

2

{
d∑
i=1

[f]

}2

+

∑d
i=1 ω

2
i

λ2
1d

d∑
i=1

[f]− (
∑d
i=1 ω

2
i)2

λ4
1d

d∑
i=1

[f] ,

where we use f(0) = 1 for the Gaussian kernel. Accordingly, we
have

E[M (1,d)(f)]2 = 1− 2d

λ2
1

+
d2 + 2d

λ4
1

+
d+ 2

4λ4
1d

{
d∑
i=1

[f]

}2

+
1

λ2
1

d∑
i=1

[f]− d+ 2

λ4
1

d∑
i=1

[f]

(35)

where
∑d
i=1 ω

2
i ∼ χ(d), E(

∑d
i=1 ω

2
i) = d, V(

∑d
i=1 ω

2
i) = 2d

and E([
∑d
i=1 ω

2
i]2) = d2 + 2d.

Second, we estimate E[f(ω)M (1,d)(f)] in Eq. (34). The
notation f(ω)M (1,d)(f) is formulated as

f(ω)M (1,d)(f)=

(
1−
∑d
i=1 ω

2
i

λ2
1

)
f(ω)+

∑d
i=1 ω

2
i

2λ2
1d

f(ω)
d∑
i=1

[f] .

Accordingly, we have

E[f(ω)M (1,d)(f)]=e−z
2/2+

(∑d
i=1[f]

2λ2
1d
− 1

λ2
1

)
E

[
f(ω)

d∑
i=1

ω2
i

]

= e−z
2/2 +

1

λ2
1

(
−1 +

∑d
i=1[f]

2d

)
e−

z2

2 (d− z2) ,

(36)

where we use f(0) = 1 and E[f(ω)] = e−z
2/2 and Lemma 1.

In our third-degree rule with m = 1, Eq. (7) implies
∑d
i=1[f] =

2λ2
1Q− 2λ2

1 + 2d, and thus we have

E[M (1,d)(f)]2 = 1 +
d+ 2

d
(Q− 1)2 + 2(Q− 1) ,

and

−2E[f(ω)M (1,d)(f)] = −2e−z
2/2 − 2(Q− 1)

d
e−

z2

2 (d− z2) .

Hence, combining the above equations into Eq. (34), we have

V[R̄1(f)]− V[RFF]=
2

Dd

(
(1−Q)2−(1−Q)z2e−

z2

2

)
=

2

Dd

([
(1−Q)− 1

2
z2e−

z2

2

]2

− 1

4
z4e−z

2

)
.

(37)

Since Q is the approximation of Id(f) = k(x,y) ∈ [0, 1] for the
Gaussian kernel, we can also consider Q(1,d)(f) ∈ [0, 1]. Note
that, even if the estimation Q(1,d)(f) is out of [0, 1], we can still
set it to [0, 1] by a threshold operator and thus 1−Q ≥ 0. Finally,
Eq. (37) can be formulated as

V[R̄1(f)]− V[RFF] < 0 when 1−Q < z2e−
z2

2 ,

which concludes the proof.

APPENDIX C
PROOF OF THEOREM 3
To prove Theorem 3, we need the following lemma.

Lemma 2. (Theorem 4.1 in [50]) Denote xM and sM as
polynomials with total degree M , then the following integral
satisfies

I ′
(
ωd
)

=

∫
Rn

ωα1
1 ωα2

2 · · ·ω
αd

d exp
(
−ω>ω

)
dx

=

∫ ∞
0

rd−1+M exp
(
−r2

)
dr

∫
Ud

sMdτ(s) ,

can be exactly calculated by the quadrature rules I ′(ω) =∑Ng

j=1 ājf(γ̄) with f ′(ω) = ωM . Then the spherical integral

can be expressed as
∫
Ud
sMdτ(s) =

∑Np

j=1 as,j (sj)
M with the

nodes sj =
γ̄j

‖γ̄j‖2 and and the weights as,j of the spherical rule
are

as,j =
āj (sj)

M∫∞
0 rd−1+M exp (−r2) dr

=
āj (sj)

M

Γ(d/2 +M/2)/2
,

where Np is the number of projected quadrature non-zero nodes.
Note that Np ≤ Ng .

Formally, we are ready to prove Theorem 3.

Proof. The integral in Eq. (1) can be reformulated as

Id (fxy) =

∫
Rd

fxy(ω)N (ω; 0, Id)dω

= π−
d
2

∫
Rd

e−ω
>ωf(

√
2ω)dω .

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Hence, the integral I ′(ω) =
∫
Rd f(ω) exp(−ω>ω)dω can be

approximated by our third-degree D-FS in Eq. (7), that is

I ′(ω) = π
d
2

∫
Rd

f(
ω√
2

)N (ω; 0, Id)dω ≈
2d+1∑
i=1

āif(γ̄i)

= (1− d

λ2
1

)π
d
2 f(0) +

π
d
2

2λ2
1

d∑
i=1

(
f(
λ1√

2
ei) + f(− λ1√

2
ei)
)
,

with

γ̄i = 0; āi = (1− d

λ2
1

)π
d
2 ; i = 0

γ̄i =
λ1√

2
ei; āi =

π
d
2

2λ2
1

; 1 ≤ i ≤ d

γ̄i = − λ1√
2
ei−d; āi =

π
d
2

2λ2
1

; d+ 1 ≤ i ≤ 2d .

By projecting γ̄i on the surface of the unit Ud sphere with an
uniform random orthogonal matrix Q, we have

si =
Qγ̄i
‖Qγ̄i‖22

=

{
Qei; 1 ≤ i ≤ d,
−Qei−d; d+ 1 ≤ i ≤ 2d ,

(38)

with ‖Qγ̄i‖2 = ‖γ̄i‖2. Note that the point at the origin has been
omitted. By Lemma 2, for the third-degree, the polynomial degree
M is set to 2. Accordingly, the weight as,j of the spherical rule
can be obtained by

as,j =
āj (sj)

M

Γ(d/2 +M/2)/2
=

π
d
2

2λ2
1

λ2
1

2
/

(
d
2 Γ(d2)

2

)
=
|Ud|
2d

.

(39)
Hence, using Eq. (38) and Eq. (39) yields the spherical rule

IQ,Ud
(s) =

|Ud|
2d

d∑
j=1

[s (Qej) + s (−Qej)] ,

which is identical to the third-degree stochastic spherical integration
rule in Eq. (22).

REFERENCES

[1] Bernhard Schölkopf and Alexander J. Smola, Learning with kernels:
support vector machines, regularization, optimization, and beyond, MIT
Press, 2003.

[2] Johan A.K. Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor,
and Joos Vandewalle, Least Squares Support Vector Machines, World
Scientific, 2002.

[3] Mehran Kafai and Kave Eshghi, “CROification: accurate kernel
classification with the efficiency of sparse linear SVM,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 34–48,
2019.

[4] Fanghui Liu, Lei Shi, Xiaolin Huang, Jie Yang, and Johan A.K. Suykens,
“Generalization properties of hyper-rkhs and its applications,” Journal of
Machine Learning Research, vol. 22, no. 140, pp. 1–38, 2021.

[5] Zhiyuan Dang, Xiang Li, Bin Gu, Cheng Deng, and Heng Huang, “Large-
scale nonlinear AUC Maximization via triply stochastic gradients,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–14,
2020.

[6] Ali Rahimi and Benjamin Recht, “Random features for large-scale kernel
machines,” in Advances in Neural Information Processing Systems, 2007,
pp. 1177–1184.

[7] David Lopez-Paz, Suvrit Sra, Alex J. Smola, Zoubin Ghahramani, and
Bernhard Schölkopf, “Randomized nonlinear component analysis,” in
International Conference on Machine Learning, 2014, pp. 1359–1367.

[8] Yitong Sun, Anna Gilbert, and Ambuj Tewari, “But how does it work
in theory? Linear SVM with random features,” in Advances in Neural
Information Processing Systems, 2018, pp. 3383–3392.

[9] Arthur Jacot, Franck Gabriel, and Clément Hongler, “Neural tangent
kernel: Convergence and generalization in neural networks,” in Advances
in Neural Information Processing Systems, 2018, pp. 8571–8580.

[10] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Russ R. Salakhutdinov,
and Ruosong Wang, “On exact computation with an infinitely wide neural
net,” in Advances in Neural Information Processing Systems, 2019, pp.
8139–8148.

[11] Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and
Jinwoo Shin, “Scaling neural tangent kernels via sketching and random
features,” arXiv preprint arXiv:2106.07880, 2021.

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz
Mohiuddin, Lukasz Kaiser, and Weller Adrian, “Rethinking attention with
performers,” in International Conference on Learning Representations,
2021.

[13] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith,
and Lingpeng Kong, “Random feature attention,” in International
Conference on Learning Representations, 2021, pp. 1–19.

[14] Yueming Lyu, “Spherical structured feature maps for kernel
approximation,” in 34th International Conference on Machine Learning.
JMLR.org, 2017, pp. 2256–2264.

[15] Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan
Oseledets, “Quadrature-based features for kernel approximation,” in
Advances in Neural Information Processing Systems, 2018, pp. 9147–
9156.

[16] Youngmin Cho and Lawrence K Saul, “Kernel methods for deep learning,”
in Advances in Neural Information Processing Systems, 2009, pp. 342–
350.

[17] Salomon Bochner, Harmonic Analysis and the Theory of Probability,
Courier Corporation, 2005.

[18] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration,
Courier Corporation, 2007.

[19] Florian Heiss and Viktor Winschel, “Likelihood approximation by
numerical integration on sparse grids,” Journal of Econometrics, vol.
144, no. 1, pp. 62–80, 2008.

[20] Alan Genz and Bradley D Keister, “Fully symmetric interpolatory rules
for multiple integrals over infinite regions with gaussian weight,” Journal
of Computational and Applied Mathematics, vol. 71, no. 2, pp. 299–309,
1996.

[21] Erich Novak and Klaus Ritter, “Simple cubature formulas with high
polynomial exactness,” Constructive approximation, vol. 15, no. 4, pp.
499–522, 1999.

[22] Tri Dao, Christopher M. De Sa, and Christopher Ré, “Gaussian quadrature
for kernel features,” in Advances in neural information processing systems,
2017, pp. 6107–6117.

[23] Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan A.K. Suykens,
“Random features for kernel approximation: A survey on algorithms,
theory, and beyond,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–20, 2021.

[24] Felix Xinnan Yu, Ananda Theertha Suresh, Krzysztof Choromanski,
Daniel Holtmannrice, and Sanjiv Kumar, “Orthogonal random features,”
in Advances in Neural Information Processing Systems, 2016, pp. 1975–
1983.

[25] Krzysztof M. Choromanski, Mark Rowland, and Adrian Weller, “The
unreasonable effectiveness of structured random orthogonal embeddings,”
in Advances in Neural Information Processing Systems, 2017, pp. 219–
228.

[26] Harald Niederreiter, Random number generation and quasi-Monte Carlo
methods, vol. 63, SIAM, 1992.

[27] Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney,
“Quasi-Monte Carlo feature maps for shift-invariant kernels,” Journal of
Machine Learning Research, vol. 17, no. 1, pp. 4096–4133, 2016.

[28] Russel E Caflisch et al., “Monte carlo and quasi-monte carlo methods,”
Acta numerica, vol. 1998, pp. 1–49, 1998.

[29] Gunther Leobacher and Friedrich Pillichshammer, Introduction to quasi-
Monte Carlo integration and applications, Springer, 2014.

[30] Josef Dick et al., “Higher order scrambled digital nets achieve the optimal
rate of the root mean square error for smooth integrands,” Annals of
Statistics, vol. 39, no. 3, pp. 1372–1398, 2011.

[31] Krzysztof Choromanski, Mark Rowland, Wenyu Chen, and Adrian Weller,
“Unifying orthogonal Monte Carlo methods,” in International Conference
on Machine Learning, 2019, pp. 1203–1212.

[32] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco,
Ameya Velingker, and Amir Zandieh, “Random Fourier features for kernel
ridge regression: Approximation bounds and statistical guarantees,” in
International Conference on Machine Learning, 2017, pp. 253–262.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[33] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo
Rosasco, “On fast leverage score sampling and optimal learning,” in
Advances in Neural Information Processing Systems, 2018, pp. 5672–
5682.

[34] Fanghui Liu, Xiaolin Huang, Yudong Chen, Jie Yang, and Johan A.K.
Suykens, “Random Fourier features via fast surrogate leverage weighted
sampling,” in Thirty-Fourth AAAI Conference on Artificial Intelligence,
2020, pp. 4844–4851.

[35] Edouard Pauwels, Francis Bach, and Jean-Philippe Vert, “Relating
leverage scores and density using regularized christoffel functions,” in
Advances in Neural Information Processing Systems, 2018, pp. 1663–
1672.

[36] Tamás Erdélyi, Cameron Musco, and Christopher Musco, “Fourier sparse
leverage scores and approximate kernel learning,” in Advances in Neural
Information Processing Systems, 2020.

[37] Gwynne Evans, Practical numerical integration, Wiley New York, 1993.
[38] Alan Genz and John Monahan, “Stochastic integration rules for infinite

regions,” SIAM Journal on Scientific Computing, vol. 19, no. 2, pp.
426–439, 1998.

[39] Toni Karvonen and Simo Sarkka, “Fully symmetric kernel quadrature,”
SIAM Journal on Scientific Computing, vol. 40, no. 2, pp. A697–A720,
2018.

[40] Bertrand Gauthier and Johan A.K. Suykens, “Optimal quadrature-
sparsification for integral operator approximation,” SIAM Journal on
Scientific Computing, vol. 40, no. 5, pp. A3636–A3674, 2018.

[41] Ronald Cools, “Constructing cubature formulae: the science behind the
art,” Acta Numerica, vol. 6, pp. 1–54, 1997.

[42] Ienkaran Arasaratnam and Simon Haykin, “Cubature kalman filters,”
IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269,
2009.

[43] Reuven Y Rubinstein and Ruth Marcus, “Efficiency of multivariate control
variates in monte carlo simulation,” Operations Research, vol. 33, no. 3,
pp. 661–677, 1985.

[44] Noureddine El Karoui, “The spectrum of kernel random matrices,” Annals
of Statistics, vol. 38, no. 1, pp. 1–50, 2010.

[45] Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clément Hongler, and
Franck Gabriel, “Kernel alignment risk estimator: Risk prediction from
training data,” in Advances in Neural Information Processing Systems,
2020, pp. 15568–15578.

[46] Tengyuan Liang and Alexander Rakhlin, “Just interpolate: Kernel
“ridgeless” regression can generalize,” Annals of Statistics, vol. 48, no. 3,
pp. 1329–1347, 2020.

[47] Chih-chung Chang and Chih-Jen Lin, “Ijcnn 2001 challenge:
Generalization ability and text decoding,” in International Joint
Conference on Neural Networks. IEEE, 2001, vol. 2, pp. 1031–1036.

[48] Alan Genz, “Methods for generating random orthogonal matrices,” in
Monte-Carlo and Quasi-Monte Carlo Methods 1998, pp. 199–213. 1998.

[49] Jian Zhang, Avner May, Tri Dao, and Christopher Re, “Low-precision
random Fourier features for memory-constrained kernel approximation,”
in 22nd International Conference on Artificial Intelligence and Statistics,
2019, pp. 1264–1274.

[50] Bin Jia, Ming Xin, and Yang Cheng, “Relations between sparse-grid
quadrature rule and spherical-radial cubature rule in nonlinear Gaussian
estimation,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp.
199–204, 2015.

Fanghui Liu (M’19-) received the B.E. degree
in Automation from Harbin Institute of Technol-
ogy, China, and the Ph.D. degree from Institute
of Image Processing and Pattern Recognition,
Shanghai Jiao Tong University, China, in 2014
and 2019, respectively. He worked as a postdoc-
toral researcher in ESAT-STADIUS, KU Leuven,
Belgium from 2019 to 2021, and is currently
a post-doctoral researcher with the Laboratory
for Information and Inference Systems at École
Polytechnique Fédérale de Lausanne (EPFL). He

has a broad research interest in statistical machine learning on kernel
methods and learning theory.

Xiaolin Huang (S’10-M’12-SM’18) received the
B.S. degree in control science and engineering,
and the B.S. degree in applied mathematics
from Xi’an Jiaotong University, Xi’an, China in
2006. In 2012, he received the Ph.D. degree in
control science and engineering from Tsinghua
University, Beijing, China. From 2012 to 2015,
he worked as a postdoctoral researcher in ESAT-
STADIUS, KU Leuven, Leuven, Belgium. After
that he was selected as an Alexander von Hum-
boldt Fellow and working in Pattern Recognition

Lab, the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany, where he was appointed as a group head. From 2016, he
has been an Associate Professor at Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
In 2017, he has been awarded as “1000-Talent”(Young Program). His
current research areas include machine learning, optimization, and their
applications.

Yudong Chen is an Associate Professor with the
School of Operations Research and Information
Engineering at Cornell University. He obtained
his Ph.D. degree in Electrical and Computer
Engineering in 2013 from The University of
Texas at Austin, and M.S. and B.S. degrees in
Control Science and Engineering from Tsinghua
University. He was a postdoctoral scholar in the
Electrical Engineering and Computer Sciences
department at the University of California, Berke-
ley from 2013 to 2015. He has served as area

chairs for AAAI, AISTATS and NeurIPS. His research work lies in
machine learning, reinforcement learning, high-dimensional statistics,
and optimization, with applications in network scheduling, wireless
communication, and financial systems. He received a National Science
Foundation CAREER award.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

Johan A. K. Suykens (SM’05-F’15) was born
in Willebroek Belgium, May 18 1966. He re-
ceived the master degree in Electro-Mechanical
Engineering and the PhD degree in Applied
Sciences from the Katholieke Universiteit Leuven,
in 1989 and 1995, respectively. In 1996 he
has been a Visiting Postdoctoral Researcher at
the University of California, Berkeley. He has
been a Postdoctoral Researcher with the Fund
for Scientific Research FWO Flanders and is
currently a full Professor with KU Leuven.

He is author of the books “Artificial Neural Networks for Modelling and
Control of Non-linear Systems” (Kluwer Academic Publishers) and “Least
Squares Support Vector Machines” (World Scientific), co-author of the
book “Cellular Neural Networks, Multi-Scroll Chaos and Synchronization”
(World Scientific) and editor of the books “Nonlinear Modeling: Advanced
Black-Box Techniques” (Kluwer Academic Publishers), “Advances in
Learning Theory: Methods, Models and Applications” (IOS Press) and
”Regularization, Optimization, Kernels, and Support Vector Machines”
(Chapman & Hall/CRC). In 1998 he organized an International Workshop
on Nonlinear Modelling with Time-series Prediction Competition. He has
served as associate editor for the IEEE Transactions on Circuits and
Systems (1997-1999 and 2004-2007), the IEEE Transactions on Neural
Networks (1998-2009), the IEEE Transactions on Neural Networks and
Learning Systems (from 2017) and the IEEE Transactions on Artificial
Intelligence (from April 2020). He received an IEEE Signal Processing
Society 1999 Best Paper Award, a 2019 Entropy Best Paper Award
and several Best Paper Awards at International Conferences. He is
a recipient of the International Neural Networks Society INNS 2000
Young Investigator Award for significant contributions in the field of neural
networks. He has served as a Director and Organizer of the NATO
Advanced Study Institute on Learning Theory and Practice (Leuven 2002),
as a program co-chair for the International Joint Conference on Neural
Networks 2004 and the International Symposium on Nonlinear Theory
and its Applications 2005, as an organizer of the International Symposium
on Synchronization in Complex Networks 2007, a co-organizer of the
NIPS 2010 workshop on Tensors, Kernels and Machine Learning, and
chair of ROKS 2013. He has been awarded an ERC Advanced Grant
2011 and 2017, has been elevated IEEE Fellow 2015 for developing least
squares support vector machines, and is ELLIS Fellow. He is currently
serving as program director of Master AI at KU Leuven.

	Introduction
	Related Works and Preliminaries
	Related Works
	Preliminaries: Fully Symmetric Properties and Rules

	Deterministic Rules for Kernel Approximation
	Stochastic Rules and its properties
	Formulation of Stochastic Rules
	Statistical Properties
	Discussion on the Condition (18) in Theorem 2
	Existence
	Numerical validation

	Unifying Framework for Quadrature Methods
	Relations to SGQ
	Relations to SSR
	Unifying Framework

	Empirical Results
	Experimental Settings
	Evaluation for Deterministic Rules
	Evaluation for Stochastic Rules

	Conclusion
	Appendix A: Fifth-degree Rule
	Appendix B: Statistical Guarantees of Stochastic Interpolatory Rules
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Theorem 2

	Appendix C: Proof of Theorem 3
	References
	Biographies
	Fanghui Liu
	Xiaolin Huang
	Yudong Chen
	Johan A. K. Suykens

