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Abstract—The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems.
Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of
work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the
connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features
from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are
summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data.
Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a
high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation
of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and
prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized
deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between
current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users’ guide for practitioners
interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope
that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions.
Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154.
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1 INTRODUCTION

K ERNEL methods [1], [2], [3] are one of the most powerful
techniques for nonlinear statistical learning problems. Let

x,x′ ∈ X ⊆ Rd be two samples and φ : X → H be
a nonlinear feature map transforming each element in X into
a reproducing kernel Hilbert space (RKHS) H, in which the
inner product between φ(x) and φ(x′) endowed by H can be
computed using a kernel function k(·, ·) : Rd × Rd → R as
〈φ(x), φ(x′)〉H = k(x,x′). In practice, the kernel function k is
directly given to obtain the inner product 〈φ(x), φ(x′)〉H instead
of finding the explicit expression of φ, which is known as the kernel
trick. Benefiting from this scheme, kernel methods are effective for
learning nonlinear structures but often suffer from scalability issues
in large-scale problems due to high space and time complexities.

To overcome the poor scalability of kernel methods, the class
of random Fourier features (RFFs) [4] is a typical data-independent
technique to approximate the kernel function using an explicit
feature mapping. RFF applies in particular to shift-invariant (also
called “stationary”) kernels satisfying k(x,x′) = k(x− x′). By
virtue of the correspondence between a shift-invariant kernel and
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its Fourier spectral density [5], the kernel can be approximated
by k(x,x′) ≈ 〈ϕ(x), ϕ(x′)〉, where the explicit mapping ϕ :
Rd → Rs is obtained by sampling from a distribution defined by
the inverse Fourier transform of k. To scale kernel methods in the
large sample case (e.g., n � d), the number of random features
s is often taken to be larger than the original sample dimension d
but much smaller than the sample size n to achieve computational
efficiency in practice1, e.g., traditional kernel methods [6], [7],
neural tangent kernel [8], [9], [10], graph neural networks [11],
[12], and attention in Transformers [13], [14]. Interestingly, the
random features model can be viewed as a class of two-layer neural
networks with fixed weights in the first layer. This connection
has important theoretical implications for deep neural networks
(DNNs) in the over-parameterized regime. Theoretical results [9],
[15], [16], [17] for random features can be leveraged to understand
DNNs and provide an analysis of two-layer over-parameterized
neural networks. Partly due to its far-reaching repercussions, the
seminal work by Rahimi and Recht on RFF [4] won the Test-of-
Time Award in the Thirty-first Advances in Neural Information
Processing Systems (NeurIPS 2017).

RFF spawns a new direction for kernel approximation, and
the past ten years has witnessed a flurry of research papers
devoted to this topic. On the algorithmic side, subsequent work
has focused on improving the kernel approximation quality [18],
[19] and decreasing the time and space complexities [20], [21].
Implementation of RFF has in fact been taken to the hardware level
[22], [23]. On the theoretical side, a series of works aim to address
the following two key questions:

1. Random features model can be regarded as an over-parameterized model
allowing for s� n, refer to Section 7 for details.

https://arxiv.org/abs/2004.11154
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1) Approximation: how many random features are needed to
ensure high quality of kernel approximation?

2) Generalization: how many random features are needed to
incur no loss in the expected risk of a learned estimator?

Here “no loss” means how large s should be for the (approximated)
kernel estimator with s random features to be almost as good as
the exact one. Much research effort has been devoted to this
direction, including analyzing the kernel approximation error
(the first question above) [4], [24], and studying the risk and
generalization properties (the second question above) [7], [25].
Increasingly refined and general results have been obtained over
the years. In the Thirty-sixth International Conference on Machine
Learning (ICML 2019), Li et al. [25] were recognized by the
Honorable Mentions (best paper finalist) for their unified theoretical
analysis of RFF.

RFF has proved effective in a broad range of machine learning
tasks. Given its remarkable empirical success and the rapid growth
of the related literature, we believe it is desirable to have a
comprehensive overview on this topic summarizing the progress
in algorithm design and applications, and elucidating existing
theoretical results and their underlying assumptions. With this goal
in mind, in this survey we systematically review the work from the
past ten years on the algorithms, theory and applications of random
features methods. The main contributions of this survey include:

1) We provide an overview of a wide range of random
features based algorithms, re-organize the formulation of
representative approaches under a unifying framework for
a direct understanding and comparison.

2) We summarize existing theoretical results on the kernel
approximation error measured in various metrics, as well
as results on generalization risk of kernel estimators. The
underlying assumptions in these results are discussed in detail.
In particular, we (partly) answer an open question in this topic:
why good kernel approximation performance cannot lead to
good generalization performance?

3) We systematically evaluate and compare the empirical per-
formance of representative random features based algorithms
under different experimental settings.

4) We discuss recent research trends on (high dimensional)
random features in over-parameterized settings for understand-
ing generalization properties of over-parameterized neural
networks as well as the gaps in existing theoretical analysis.
We view this topic as a promising research direction.

The remainder of this paper is organized as follows. Section 2
presents the preliminaries and a taxonomy of random features
based algorithms. We review data-independent algorithms in
Section 3 and data-dependent approaches in Section 4, respectively.
In Section 5, we survey existing theoretical results on kernel
approximation and generalization performance. Experimental
comparisons of representative random features based methods
are given in Section 6. In Section 7, we discuss recent results
on random features in over-parameterized regimes. The paper is
concluded in Section 8 with a discussion on future directions.

2 PRELIMINARIES AND TAXONOMIES

In this section, we introduce preliminaries on the problem setting
and theoretical foundation of random features. We then present a
taxonomy of existing random features based algorithms, which sets
the stage for the subsequent discussion. A set of commonly used
parameters is summarized in Table 1.

Table 1
Commonly used parameters and symbols.

Notation Definition Notation Definition

n number of samples d feature dimension
s number of random features λ regularization parameter
k (original) kernel function k̃ (approximated) kernel function
ωi random feature βλ optimization variable
x data point y label vector
ς Gaussian kernel width σ activation function
ei standard basis vector u u := 〈x,x′〉/(‖x‖‖x′‖)
K (original) kernel matrix K̃ (approximated) kernel matrix
τ τ := x− x′ τ τ := ‖τ‖2
Z random feature matrix W transformation matrix
fρ target function ` loss function
fz,λ (original) empirical functional f̃z,λ (approximated) functional
Ez empirical risk E expected risk
lλ(ω) ridge leverage function dλK effective dimension (matrix)
Σ integral operator N (λ) effective dimension (operator)
⊗ tensor product . ≤ with a constant C times
α convergence rate for λ γ rate for effective dimension

2.1 Problem Settings

Let X ⊂ Rd be a compact metric space of samples, and Y =
{−1, 1} (in classification) or Y ⊆ R (in regression) be the label
space. We assume that a sample set {zi = (xi, yi)}ni=1 is drawn
from a non-degenerate unknown Borel probability measure ρ on
X ×Y . Let H be a RKHS endowed with a positive definite kernel
function k(·, ·), and K = [k(xi,xj)]

n
i,j=1 be the kernel matrix

associated with the samples. The target function of ρ is defined as
fρ(x) =

∫
Y ydρ(y|x) for x ∈ X , where ρ(·|x) is the conditional

distribution of y given x. The typical empirical risk minimization
problem is considered as

fz,λ := argmin
f∈H

{
1

n

n∑
i=1

`
(
yi, f(xi)

)
+ λ‖f‖2H

}
, (1)

where ` : Y × Y → R is a loss function and λ ≡ λ(n) > 0 is a
regularization parameter. In learning theory, one typically assumes
that limn→∞ λ(n) = 0 and adopts λ := n−α with α ∈ (0, 1].

The loss function `(y, f(x)) in Eq. (1) measures the quality
of the prediction f(x) at x ∈ X with respect to the observed
response y. Popular choices of ` include the squared loss
`(y, f(x)) = (y − f(x))2 in kernel ridge regression (KRR)
and the hinge loss `(y, f(x)) = max(0, 1 − yf(x)) in support
vector machines (SVMs), etc. For a given `, the empirical
risk functional on the sample set is defined as Ez(f) =
1
n

∑n
i=1 `(yi, f(xi)), and the corresponding expected risk is

defined as E(f) =
∫
X×Y `(y, f(x))dρ. The statistical theory

of supervised learning in an approximation theory view aims to
understand the generalization property of fz,λ as an approximation
of the true target function fρ, which can be quantified by the excess
risk E(fz,λ)− E(fρ), or the estimation error ‖fz,λ − fρ‖2 in an
appropriate norm ‖ · ‖.

Using an explicit randomized feature mapping ϕ : Rd → Rs,
one may approximate the kernel function k(x,x′) by k̃(x,x′) =
〈ϕ(x), ϕ(x′)〉. In this case, the approximate kernel k̃(·, ·) defines
an RKHS H̃ (not necessarily contained in the RKHS H associated
with the original kernel function k). With the above approximation,
one solves the following approximate version of problem (1):

f̃z,λ := argmin
f∈H̃

{
1

n

n∑
i=1

`
(
yi, f(xi)

)
+ λ‖f‖2H̃

}
. (2)
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By the representer theorem [1], the above problem can be rewritten
as a finite-dimensional empirical risk minimization problem

βλ := argmin
β∈Rs

1

n

n∑
i=1

`
(
yi,β

>ϕ(xi)
)

+ λ‖β‖22 . (3)

For example, in least squares regression where ` is the squared
loss, the first term in problem (3) is equivalent to ‖y −Zβ‖22,
where y = [y1, y2, · · · , yn]> is the label vector and Z =
[ϕ(x1), · · · , ϕ(xn)]> ∈ Rn×s is the random feature matrix.
This is a linear ridge regression problem in the space spanned
by the random features, with the optimal prediction given by
f̃z,λ(x′) = β>λϕ(x′) for a new data point x′, where βλ has the
explicit expression βλ = (Z>Z + nλI)−1Z>y.

2.2 Theoretical Foundation of Random Features
The original RFF [4] is used for shift-invariant kernels, which
builds on Bochner’s theorem [5]: Let k : Rd × Rd → R be a
bounded, continuous, positive definite, and shift-invariant kernel, it
can be represented as the Fourier transform of a finite non-negative
Borel measure µ (normalized to be a probability measure p(·) by
setting k(0) = 1 throughout the paper) on Rd, i.e.

k(x− x′) =

∫
Rd

exp
(
iω>(x− x′)

)
µ(dω)

= Eω∼p(·)
[

exp(iω>x) exp(iω>x′)∗
]
,

(4)

where the symbol z∗ denotes the complex conjugate of z. The
kernels used in practice are typically real-valued and thus the
imaginary part in Eq. (4) can be discarded. According to Eq. (4),
RFF makes use of the standard Monte Carlo sampling scheme to
approximate k(x,x′). In particular, one uses the approximation

k(x,x′)=Eω∼p[ϕp(x)>ϕp(x
′)] ≈ k̃p(x,x′) :=ϕp(x)>ϕp(x

′)

with the explicit feature mapping2

ϕp(x) :=
1√
s

[
exp(−iω>1x), · · · , exp(−iω>s x)]> , (5)

where {ωi}si=1 are sampled from p(·) independently of the
training set. Consequently, the original kernel matrix K =
[k(xi,xj)]n×n can be approximated by K ≈ K̃p = ZpZ

>
p

with Zp = [ϕp(x1), · · · , ϕp(xn)]> ∈ Rn×s. It is convenient
to introduce the shorthand zp(ωi,xj) := exp(−iω>i xj) such
that ϕp(x) = 1/

√
s[zp(ω1,x), · · · , zp(ωs,x)]>. With this

notation, the approximate kernel k̃p(x,x′) can be rewritten as
k̃p(x,x

′) = 1
s

∑s
i=1 zp(ωi,x)zp(ωi,x

′).
A similar characterization in Eq. (4) is available for rotation-

invariant kernels, where the Fourier basis functions are spherical
harmonics [26], [27]. Rotation-invariant kernels are dot-product
kernels defined on the unit sphere X = Sd−1 := {x ∈ Rd :
‖x‖2 = 1}. Let k : Sd × Sd → R be a bounded, continuous,
positive definite, and rotation-invariant kernel, it can be represented
as a non-negative expansion with spherical harmonics, i.e.

k(x,x′) ≡ k(〈x,x′〉) =
∞∑
i=0

Λi

N(d,i)∑
j=1

Yi,j(x)Yi,j(x
′) ,

where Λi ≥ 0 are the Fourier coefficients, Yi,j is the spherical

harmonics, and N(d, i) = 2i+d−2
i

(
i+ d− 3
d− 2

)
, refer to the

book [28] for details.

2. The subscript in ϕp, Zp, kp (and other symbols) emphasizes the
dependence on the distribution p(·) but can be omitted for notational simplicity.

Note that, dot product kernels defined in Rd do not belong
to the rotation-invariant class. Nevertheless, by virtue of the
neural network structure under Gaussian initialization, some dot
product kernels defined on Rd are able to benefit from the sampling
framework behind RFF. Given a two-layer network of the form
f(x;θ) =

√
2
s

∑s
j=1 ajσ(ω>j x) with s neurons (notation chosen

to be consistent with the number of random features), for some
activation function σ and x ∈ Rd, when ω ∼ N (0, Id) are fixed
and only the second layer (parameters a) are optimized3, this
actually corresponds to random features approximation

k (x,x′) = Eω∼N (0,Id)[σ(ω>x)σ(ω>x′)] , (6)

where the nonlinear activation function σ(·) depends on the
kernel type such that ϕ(xi) := σ(Wxi) in Eq. (5), by denoting
the transformation matrix W := [ω1,ω2, · · · ,ωs]> ∈ Rs×d.
The formulation in (6) is quite general to cover a series of
kernels by various activation functions. For example, if we
take σ(x) = [cos(x), sin(x)]>, Eq. (6) corresponds to the
Gaussian kernel, which is the standard RFF model [4] for
Gaussian kernel approximation. If we consider the commonly
used ReLU activation σ(x) = max{0, x} in neural networks,
Eq. (6) corresponds to the first order arc-cosine kernel, termed as
k(x,x′) ≡ κ1(u) = 1

π (u(π−arccos(u))+
√

1− u2) by setting
u := 〈x,x′〉/(‖x‖‖x′‖). If the Heaviside step function σ(x) =
1
2 (1 + sign(x)) is used, Eq. (6) corresponds to the zeroth order
arc-cosine kernel, termed as k(x,x′) ≡ κ0(u) = 1− 1

π arccos(u)
by setting u := 〈x,x′〉/(‖x‖‖x′‖), refer to arc-cosine kernels
[30] for details. If we take other activation functions used in neural
networks, e.g., erf activations [31], GELU [32] in Eq. (6), such
two-layer neural network also corresponds to a kernel. In this case,
the standard RFF model is still valid (via Monte Carlo sampling
from a Gaussian distribution) for these non-stationary kernels.

Further, for a fully-connected deep neural network (more than
two layers) and fixed random weights before the output layer,
if the hidden layers are wide enough, one can still approach
a kernel obtained by letting the widths tend to infinity [33],
[34]. If both intermediate layers and the output layer are trained
by (stochastic) gradient descent, for the network f(x;θ) with
large enough s, the model remains close to its linearization
around its random initialization throughout training, known as
lazy training regime [35]. Learning is then equivalent to a kernel
method with another architecture-specific kernel, known as neural
tangent kernel (NTK, [8]). Interestingly, NTK for two-layer ReLU
networks [36] can be constructed by arc-cosine kernels, i.e.,
k (x,x′) = ‖x‖‖x′‖[uκ0(u) + κ1(u)]. In fact, there is an
interesting line of work showing insightful connections between
kernel methods and (over-parameterized) neural networks, but this
is out of scope of this survey on random features. We suggest the
readers refer to some recent literature [9], [37], [38] for details.

2.3 Used Kernels in Random Features

Most random features based algorithms focus on the Gaussian
kernel, which is arguably the most important member of shift-
invariant kernels, given by k(x,x′) = exp

(
−‖x− x′‖22/2ς2

)
with the kernel width ς > 0. Its density associated with the
Gaussian kernel is Gaussian ω ∼ N (0, ς−2Id) as indicated
by Bochner’s theorem or Eq. (6). Besides, quite a number of
random features based approaches focus on another class of kernels

3. Extreme learning machine [29] is another structure in a two-layer
feedforward neural network by randomly hidden nodes.
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admitting Eq. (6) by sampling from the Gaussian distribution
N (0, Id), e.g., arc-cosine kernels [30], that can be connected to a
two-layer neural networks with various activation functions.

Apart from the used Gaussian kernel and arc-cosine kernels,
polynomial kernels k(x,x′) = (1 + 〈x,x′〉)b with the order b
defined in Rd are a widely used family of dot-product kernels.
However, dot-product kernel defined in Rd admit neither spherical
harmonics nor Eq. (6). As a result, random features for polynomial
kernels work in different theoretical foundations and settings,
and have been studied in a smaller number of papers, including
Maclaurin expansion [39], the tensor sketch technique [40], [41],
and oblivious subspace embedding [42], [43]. Interestingly, if the
data are `2 normalized, dot product kernels defined in Rd can be
transformed as stationary but indefinite (real, symmetric, but not
positive definite) on the unit sphere4. The related random features
based algorithms under this setting provide biased estimators [44],
[45], or unbiased estimation [46].

2.4 Taxonomy of random features based algorithms

The key step in algorithm is constructing the mapping

ϕ(x) :=
1√
s

[
a1 exp(−iω>1x), · · · , as exp(−iω>s x)]> (7)

to approximate the integral (4). Existing algorithms differ in how
they select the points ωi and weights ai. Figure 1 presents a
taxonomy of some representative random features based algorithms.
They can be grouped into two categories, data-independent
algorithms and data-dependent algorithms, based on whether or
not the selection of ωi and ai is independent of the training data.
Data-independent random features based algorithms can be further
categorized into three classes according to their sampling strategy:

i) Monte Carlo sampling: The points {ωi}si=1 are sampled
from p(·) in Eq. (4) (see the red box in Figure 1). In particular,
to approximate the Gaussian kernel by RFF [4], these points are
sampled from the Gaussian distribution p = N (0, ς−2Id), with
the weights being equal, i.e., ai ≡ 1 in Eq. (7). To reduce the
storage and time complexity, one may replace the dense Gaussian
matrix in RFF by structural matrices; see, e.g., Fastfood [47]
using Hadamard matrices as well as its general version P-model
[48]. An alternative approach is using circulant matrices; see,
e.g., Signed Circulant Random Features (SCRF) [49]. To improve
the approximation quality, a simple and effective approach is to
use an `2-normalization scheme, which leads to Normalized RFF
(NRFF) [50]. Another powerful technique for variance reduction
is orthogonalization to decrease the randomness in Monte Carlo
sampling. Typical algorithms include Orthogonal Random Features
(ORF) [18] by employing an orthogonality constraint to the random
Gaussian matrix, Structural ORF (SORF) [18], [72], and Random
Orthogonal Embeddings (ROM) [51].

ii) Quasi-Monte Carlo sampling: This is a typical sampling
scheme in sampling theory [73] to reduce the randomness in
Monte Carlo sampling for variance reduction. It can significantly
improve the convergence of Monte Carlo sampling by virtue of
a low-discrepancy sequence t1, t2, · · · , ts ∈ [0, 1]d instead of
a uniform sampling sequence over the unit cube to construct
the sample points; see the integral representation in the green
box in Figure 1. Based on this representation, it can be used
for kernel approximation, as conducted by [19]. Subsequently,

4. This setting cannot ensure the data are i.i.d on the unit sphere, which is
different from the setting of previously discussed rotation invariant kernels.

Lyu [53] proposes Spherical Structural Features (SSF), which
generates asymptotically uniformly distributed points on Sd−1

to achieve better convergence rate and approximation quality.
The Moment Matching (MM) scheme [54] is based on the same
integral representation but uses a d-dimensional refined uniform
sampling sequence {ti}si=1 instead of a low discrepancy sequence.
Strictly speaking, SSF and MM go beyond the QMC framework.
Nevertheless, these methods share the same integration formulation
with QMC over the unit cube and thus we include them here for a
streamlined presentation.

iii) Quadrature based methods: Numerical integration tech-
niques can be also used to approximate the integral representation
in Eq. (4). These techniques may involve deterministic selection of
the points and weights, e.g., by using Gaussian Quadrature (GQ)
[20] or Sparse Grids Quadrature (SGQ) [20] over each dimension
(their integration formulation can be found in the first blue box in
Figure 1). The selection can also be randomized. For example, in the
work [21], the d-dimensional integration in Eq. (4) is transformed
to a double integral, and then approximated by using the Stochastic
Spherical-Radial (SSR) rule (see the second blue box in Figure 1).

Data-dependent algorithms use the training data to guide the
selection of points and weights in the random features for better
approximation quality and/or generalization performance. These
algorithms can be grouped into three classes according to how the
random features are generated.

i) Leverage score sampling: Built upon the importance sampling
framework, this class of algorithm replaces the original distribution
p(ω) by a carefully chosen distribution q(ω) constructed using
leverage scores [74], [75] (see the yellow box in Figure 1). The
representative approach in this class is Leverage Score based RFF
(LS-RFF) [25], and its accelerated version [55], [56].

ii) Re-weighted random feature selection: Here the basic idea
is to re-weight the random features by solving a constrained
optimization problem. Examples of this approach include weighted
RFF [58], [59], weighted QMC [19], and weighted GQ [20]. Note
that these algorithms directly learn the weights of pre-given random
features. Another line of methods re-weight the random features
using a two-step procedure: i) “up-projection”: first generate a
large set of random features {ωi}Ji=1 ; ii) “compression”: then
reduce these features to a small number (e.g., 102 ∼ 103) in a
data-dependent manner, e.g., by using kernel alignment [60], kernel
polarization [61], or compressed low-rank approximation [62].

iii) Kernel learning by random features: This class of methods
aim to learn the spectral distribution of kernel from the data so as
to achieve better similarity representation and prediction. Note that
these methods learn both the weights and the distribution of the
features, and hence differ from the other random features selection
methods mentioned above, which assume that the candidate features
are generated from a pre-given distribution and only learn the
weights of these features. Representative approaches for kernel
learning involve a one-stage [63] or two-stage procedure [64], [65],
[66], [67], [68], [69]. From a more general point of view, the
aforementioned re-weighted random features selection methods
can also be classified into this class. Since these methods belong to
the broad area of kernel learning instead of kernel approximation,
we do not detail them in this survey.

Besides the above three main categories, other data-dependent
approaches include the following. i) Quantization random features
[70], [76]: under a given memory budget. One interesting
observation is that random features achieve better generalization
performance than Nyström approximation [77] under the same
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data-independent



i) Monte Carlo sampling


acceleration

{
structural: Fastfood [47], P-model [48], SORF [18]
circulant: SCRF [49]

variance reduction

{
`2 normalization: NRFF [50]
orthogonal constraint: ORF [18], ROM [51]

ii) Quasi-Monte Carlo sampling


QMC [52]
structural spherical feature: SSF [53]
moment matching: MM [54]

iii) Quadrature rules

{
deterministic quadrature rules: GQ, SGQ [20]
stochastic spherical-radial rule: SSR [21]

data-dependent



leverage score sampling: LSS-RFF [25], fast leverage score approximation [55], [56], [57]

re-weighted random features


weighted random features: [58], [59] for RFF, [19] for QMC, [20] for GQ
kernel alignment: KA-RFF [60] and KP-RFF [61]
compressed low-rank approximation: CLR-RFF [62]

kernel learning by random features


one-stage: [63] via generative models

two-stage

{
joint optimization: [64], [65]
spectral learning in mixture models: [66], [67], [68], [69]

others: quantization [70]; doubly stochastic [71]

k(x− x′) =
∫
Rd p(ω) exp

(
iω>(x− x′)

)
dω

k(x− x′) =
∫
[0,1]dexp

(
i(x−x′)>Φ−1(t)

)
dt

k(x−x′) =
∏d
j=1

(∫∞
−∞ pj

(
ω(j)

)
exp

(
iω(j)(x(j) − x′(j))

)
dω(j)

)
k(x− x′) = (2π)−d/2

∫
Ud

∫∞
0 e−

r2

2 |r|d−1g(ru)drdu

k(x,x′) =
∫
Rd q(ω)p(ω)

q(ω) exp
(

iω>(x− x′)
)

dw

i) Monte Carlo sampling
• variance reduction
• acceleration

ii) Quasi-Monte Carlo sampling
• QMC
• SSF
• MM

iii) Quadrature rules
• GQ, SGQ
• SSR

data-dependent
• random features

selection/learning
• leverage score

Figure 1. A taxonomy of representative random features based algorithms.

memory space. ii) Doubly stochastic random features [71]: This
method uses two sources of stochasticity, one from sampling data
points by stochastic gradient descent (SGD), and the other from
using RFF to approximate the kernel. This scheme has been used
for Kernel PCA approximation [78], and can be further extended
to triply stochastic scheme for multiple kernel approximation [79].

3 DATA-INDEPENDENT ALGORITHMS
In this section, we discuss data-independent algorithms in a
unified framework based on the transformation matrix W , that
plays an important role in constructing the mapping ϕ(·) in
Eq. (7) and determining how well the estimated kernel converges
to the actual kernel. Table 2 reports various random features
based algorithms in terms of the class of kernels they apply
to (in theory) as well as their space and time complexities for
computing the feature mapping Wx for a given x ∈ X . In
Table 2, we also summarize the variance reduction properties of
these algorithms, i.e., whether the variance of the resulting kernel
estimator is smaller than the standard RFF. Before proceeding,
we introduce some notations and definitions. When discussing
a stationary kernel function k(x,x′) = k(x − x′), we use
the convenient shorthands τ := x − x′ and τ := ‖τ‖2.

For a random features algorithm A with frequencies {ωi}si=1

sampled from a distribution p(·), we define its expectation
E(A) := E[k(τ )] = Eω∼p

[
1/s

∑s
i=1 cos(ω>i τ )

]
and variance

V[A] := V[k(τ )] = V
[

1
s

∑s
i=1 cos(ω>τ )

]
.

3.1 Monte Carlo sampling based approaches
We describe several representative data-independent algorithms
based on Monte Carlo sampling, using the Gaussian kernel
k(x,x′) = k(τ ) = exp(−‖τ‖22/2ς2) as an example. Note that
these algorithms often apply to more general classes of kernels, as
summarized in Table 2.

RFF [4]: For Gaussian kernels, RFF directly samples the
random features from a Gaussian distribution (corresponds to
the inverse Fourier transform): {ω}si=1 ∼ p(ω). In particular, the
corresponding transformation matrix is given by

WRFF =
1

ς
G , (8)

where G ∈ Rs×d is a (dense) Gaussian matrix with Gij ∼
N (0, 1). For other stationary kernels, the associated p(·) corre-
sponds to the specific distribution given by the Bochner’s Theorem.
For example, the Laplacian kernel k(τ ) = exp(−‖τ‖1/ς) is
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Table 2
Comparison of different kernel approximation methods on space and time complexities to obtain Wx.

Method Kernels (in theory) Extra Memory Time Lower variance than RFF

Random Fourier Features (RFF) [4] shift-invariant kernels O(sd) O(sd) -

Quasi-Monte Carlo (QMC) [52] shift-invariant kernels O(sd) O(sd) Yes

Normalized RFF (NRFF) [50] Gaussian kernel O(sd) O(sd) Yes

Moment matching (MM) [54] shift-invariant kernels O(sd) O(sd) Yes

Orthogonal Random Feature (ORF) [18] Gaussian kernel O(sd) O(sd) Yes

Fastfood [47] Gaussian kernel O(s) O(s log d) No

Spherical Structured Features (SSF) [53] shift and rotation-invariant kernels O(s) O(s log d) Yes

Structured ORF (SORF) [18], [72] shift and rotation-invariant kernels O(s) O(s log d) Unknown

Signed Circulant (SCRF) [49] shift-invariant kernels O(s) O(s log d) The same

P-model [48] shift and rotation-invariant kernels O(s) O(s log d) No

Random Orthogonal Embeddings (ROM) [51] rotation-invariant kernels O(d) O(d log d) Yes

Gaussian Quadrature (GQ), Sparse Grids Quadrature (SGQ) [20] shift invariant kernels O(d) O(d log d) Yes

Stochastic Spherical-Radial rules (SSR) [21] shift and rotation-invariant kernels O(d) O(d log d) Yes

associated with a Cauchy distribution. RFF is unbiased, i.e.,
E[RFF] = exp(−‖τ‖22/2ς2), and the corresponding variance is
V[RFF] = (1− e−τ2

)2/2s.
Fastfood [47]: By observing the similarity between the dense

Gaussian matrix and Hadamard matrices with diagonal Gaussian
matrices, Le et al. [47] firstly introduce Hadamard and diagonal
matrices to speed up the construction of dense Gaussian matrices in
RFF, especially in high dimensions (e.g., d ≥ 1000). In particular,
W used in Eq. (8) is substituted by

WFastfood =
1

ς
B1HGΓHB2 , (9)

where H is the Walsh-Hadamard matrix admitting fast multiplica-
tion in O(d log d) time, and Γ ∈ {0, 1}d×d is a permutation
matrix that decorrelates the eigen-systems of two Hadamard
matrices. The three diagonal random matrices G, B1 and B2

are specified as follows: G has independent Gaussian entries
drawn from N (0, 1); B1 is a random scaling matrix with
(B1)ii = ‖ωi‖2/‖G‖F, which encodes the spectral properties
of the associated kernel; B2 is a binary decorrelation matrix
with independent random {±1} entries. FastFood is an unbiased
estimator, but may have a larger variance than RFF: V[Fastfood] ≤
V[RFF] + 6τ4

s

(
e−τ

2

+ τ2

3

)
, which converges at an O(1/s) rate.

P-model [48]: A general version of Fastfood, the P-model
constructs the transformation matrix as

WP = [g>P1, g
>P2, · · · , g>Ps]> ∈ Rs×d ,

where g is a Gaussian random vector of length a and P = {Pi}si=1

is a sequence of a-by-d matrices each with unit `2 norm columns.
Fastfood can viewed as a special case of the P-model: the matrix
HG in Eq. (9) can be constructed by using a fixed budget of
randomness in g and letting each Pi be a random diagonal matrix
with diagonal entries of the formHi1, Hi2, . . . ,Hid. The P-model
is unbiased and its variance is close to that of RFF with an O(1/d)
convergence rate.

SCRF [49]: It accelerates the construction of random features
by using circulant matrices. The transformation matrix is

WSCRF = [ν ⊗ C(ω1),ν ⊗ C(ω2), · · · ,ν ⊗ C(ωt)]> ∈ Rtd×d ,

where ⊗ denotes the tensor product, ν = [ν1, ν2, . . . , νd] is a
Rademacher vector with P(νi = ±1) = 1/2, and C(wi) ∈ Rd×d

is a circulant matrix generated by the vector ωi ∼ N (0, ς−2Id).
Thanks to the circulant structure, we only need O(s) space to store
the feature mapping matrix WSCRF with s = td. Note that C(wi)
can be diagonalized using the Discrete Fourier Transform for ωi.
SCRF is unbiased and has the same variance as RFF.

The above three approaches are designed to accelerate the
computation of RFF. We next overview representative methods that
aim for better approximation performance than RFF.

NRFF [50]: It normalizes the input data to have unit `2 norm
before constructing the random Fourier features. With normalized
data, the Gaussian kernel can be computed as

k(x,x′) = exp

(
− 1

ς2

(
1− x>x′

‖x‖2‖x′‖2

))
,

which is related to the normalized linear kernel [44], [50]. Albeit
simple, NRFF is effective in variance reduction and satisfies
V[NRFF] = V[RFF]− 1

4se
−τ2

(3− e−2τ2

).
ORF [18]: It imposes orthogonality on random features for the

Gaussian kernel and has the transformation matrix

WORF =
1

ς
SQ ,

where Q is a uniformly distributed random orthogonal matrix, and
S is a diagonal matrix with diagonal entries sampled i.i.d from
the χ-distribution with d degrees of freedom. This orthogonality
constraint is useful in reducing the approximation error in random
features. It is also considered in [80] for unifying orthogonal Monte
Carlo methods. ORF is unbiased and with the variance reduction
property Var[ORF] < Var[RFF] under some conditions, e.g., when
d is large and τ is small. For a large d, the ratio of the variances of

ORF and RFF can be approximated by V[ORF]
V[RFF] ≈ 1− (s−1)e−τ

2
τ4

d(1−e−τ2)
2 .

Choromanski et al. [81] further improve the variance bound to
V[ORF] < V[RFF], which holds asymptotically in two cases.

SORF [18], [72]: It replaces the random orthogonal matrices
used in ORF by a class of structured matrices akin to those in
Fastfood. The transformation matrix of SORF is given by

WSORF =

√
d

ς
HD1HD2HD3 , (10)

where H is the normalized Walsh-Hadamard matrix and Di ∈
Rd×d, i = 1, 2, 3 are diagonal “sign-flipping” matrices, of
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which each diagonal entry is sampled from the Rademacher
distribution. Bojarski et al. [72] consider more general structures
for the three blocks of matrices HDi in Eq. (10). Note that
each block plays a different role. The first block HD1 satisfies
Pr
[
‖HD1x‖∞ > log d√

d

]
≤ 2de−

log2 d
8 for any x ∈ Rd with

‖x‖2 = 1, termed as (log d, 2de−
log2 d

8 )-balanced, hence no
dimension carries too much of the `2 norm of the vector x. The
second block HD2 ensures that vectors are close to orthogonal.
The third block HD3 controls the capacity of the entire structured
transform by providing a vector of parameters. SORF is not an
unbiased estimator of the Gaussian kernel, but it satisfies an
asymptotic unbiased property with

∣∣∣E [SORF]− e−τ2/2
∣∣∣ ≤ 6τ√

d
.

ROM [51]: It generalizes SORF to the form

WROM =

√
d

ς

t∏
i=1

HDi ,

where H can be the normalized Hadamard matrix or the Walsh
matrix, and Di is the Rademacher matrix as defined in SORF.
Theoretical results in [51] show that the ROM estimator achieves
variance reduction compared to RFF. Interestingly, odd values of t
yield better results than even t. This provides an explanation for
why SORF chooses t = 3.

From the above description, one can find that orthogonalization
is a typical operation for variance reduction, e.g., ORF/SORF/ROM.
Here we take the Gaussian kernel as an example to illustrate
insights of such scheme. By sampling {ωi}si=1 ∼ N (0, ς−2Id),
the used Gaussian distribution is isotropic and only depends on the
norm ‖ω‖2 instead of ω. The used orthogonal operator makes the
direction of ωi orthogonal to each other (that means more uniform)
while retaining its norm unchanged5, which leads to decrease the
randomness in Monte Carlo sampling, and thus achieve variance
reduction effect. If we attempt to directly decrease the randomness
in Monte Carlo sampling, QMC is a powerful way to achieve this
goal and can then be used to kernel approximation. This is another
line of random features with variance reduction illustrated as below.

3.2 Quasi-Monte Carlo Sampling
Here we briefly review methods based on quasi-Monte Carlo
sampling (QMC) [52], spherical structured feature (SSF) [53], and
moment matching (MM) [54]. These three methods achieve a lower
variance or approximation error than RFF.

QMC [52]: It assumes that p(·) factorizes with respect to the
dimensions, i.e., p(x) =

∏d
j=1 pj (xj), where each pj(·) is a

univariate density function. QMC generally transforms an integral
on Rd in Eq. (4) to one on the unit cube [0, 1]d as

k(x− x′) =

∫
[0,1]d

exp
(
i(x− x′)>Φ−1(t)

)
dt , (11)

where Φ−1(t) =
(
Φ−1

1 (t1) , · · · ,Φ−1
d (td)

)
∈ Rd with Φj being

the cumulative distribution function (CDF) of pj . Accordingly, by
generating a low discrepancy sequence t1, t2, · · · , ts ∈ [0, 1]d,
the random frequencies can be constructed by ωi = Φ−1(ti). The
corresponding transformation matrix for QMC is

WQMC = [Φ−1(t1),Φ−1(t2), · · · ,Φ−1(ts)]
> ∈ Rs×d . (12)

QMC achieves an asymptotic error convergence rate of
O((log s)d/s), which is faster than the O(s−1/2) rate of MC.

5. In fact, while orthogonalization only makes the direction of {ωi}si=1
more uniform, one can make the length ‖ωi‖2 uniform by sampling from the
cumulative distribution function of ‖ω‖2.

SSF [53]: It improves the space and time complexities of
QMC for approximating shift- and rotation-invariant kernels. SSF
generates points {vi}si=1 asymptotically uniformly distributed on
the sphere Sd−1, and construct the transformation matrix as

WSSF = [Φ−1(t)v1,Φ
−1(t)v2, · · · ,Φ−1(t)vs]

> ∈ Rs×d ,

where Φ−1(t) uses the one-dimensional QMC point. The structure
matrix V := [v1,v2, · · · ,vs] ∈ S(d−1)×s is a subset of the
discrete Fourier matrix by minimizing the discrete Riesz 0-energy
[82] such that the points spread as evenly as possible on the sphere.

MM [54]: It also uses the transformation matrix in Eq. (12),
but generates a d-dimensional uniform sampling sequence {ti}si=1

by a moment matching scheme instead of using a low discrepancy
sequence as in QMC. In particular, the transformation matrix is

WMM = [Φ̃−1(t1), Φ̃−1(t2), · · · , Φ̃−1(ts)]
> ∈ Rs×d , (13)

where one uses moment matching to construct the vectors
Φ̃−1(ti) = Ã−1(Φ−1(ti) − µ̃) with the sample mean µ̃ =
1
s

∑s
i=1 Φ−1(ti) and the square root of the sample covariance

matrix Ã satisfying ÃÃ> = Cov(Φ−1(ti)− µ̃).
To achieve the target of variance reduction, both orthogonaliza-

tion in Monte Carlo sampling and QMC based algorithms share
the similar principle, namely, generating random features that
are as independent/uniform as possible. To be specific, QMC
and MM are able to generate more uniform data points to avoid
undesirable clustering effect, see Figure 1 in [52]. Likewise, SSF
aims to generate asymptotically uniformly distributed points on
the sphere Sd−1, which attempts to encode more information
with fewer random features, and thus allows for variance
reduction. In sampling theory, QMC can be further improved
by an sub-grouped based rank-one lattice construction [83] for
computational efficiency, which can be used for the subsequent
kernel approximation.
3.3 Quadrature based Methods
Quadrature based methods build on a long line of work on
numerical quadrature for estimating integrals. In quadrature
methods, the weights are often non-uniform, and the points are
usually selected using deterministic rules. Below we briefly review
these methods.

GQ [20]: It also assumes that the kernel function k factorizes
with respect to the dimensions, and thus can be approximated by
a one-dimensional Gaussian quadrature rule [84]. For a third-
point rule with the points {−p̂1, 0, p̂1} and their associated
weights (â1, â0, â1), the transformation matrix WGQ ∈ Rs×d has
entries Wij admitting Pr (Wij = ±p̂1) = â1, Pr (Wij=0) =
â0. However the total number of the needed points s scales
exponentially with the dimension d and thus this method suffers
from the curse of dimensionality. To alleviate this, SGQ [20]
uses the Smolyak rule [87] to decrease the needed number
of points. Here we consider the third-degree SGQ using the
symmetric univariate quadrature points {−p̂1, 0, p̂1} with weights
(â1, â0, â1). The corresponding transformation matrix is

WSGQ =[0d, p̂1e1, · · · , p̂1ed,−p̂1e1, · · · ,−p̂1ed]
>∈R(2d+1)×d,

where ei is the d-dimensional standard basis vector with the i-th
element being 1.

SSR [21]: It transforms Eq. (6) (actually a d-dimensional
integral) to a double integral over a hyper-sphere and the real line.
Let ω = ru with u>u = 1 for r ∈ [0,∞), we have

k(x− x′) =
Cd
2

∫
Sd−1

∫ ∞
−∞

e−
r2

2 |r|d−1g(ru)drdu , (14)
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where the integrand is g(ω) := σ(ω>x)σ(ω>x′) given in
Eq. (6) and Cd := (2π)−d/2. The inner integral in Eq. (14)
can be approximated by stochastic radial rules of degree 2l + 1,
i.e., R(g) =

∑l
i=0 ŵi

g(ρi)+g(−ρi)
2 . The outer integral over

the d-sphere in Eq. (14) can be approximated by stochastic
spherical rules: SQ(g) =

∑q
j=1 w̃jg (Quj), where Q is a

random orthogonal matrix and w̃j are stochastic weights whose
distributions are such that the rule is exact for polynomials of degree
q and gives unbiased estimate for other functions. Combining
the above two rules, we have the SSR rule. Accordingly, the
transformation matrix of SSR is

WSSR = ϑ⊗
[

(QV )>

−(QV )>

]
∈ R2(d+1)×d ,

with ϑ = [ϑ1, ϑ2, · · · , ϑs] and V = [v1,v2, · · · ,vd+1], where
ϑ ∼ χ(d + 2) and {vi}d+1

i=1 are the vertices of a unit regular
d-simplex, which is randomly rotated by Q.

In general, according to Eq. (6), kernel approximation
by random features is actually a d-dimensional integration
approximation problem in mathematics. Sampling methods and
quadrature based rules are two typical classes of approaches for
high-dimensional integration approximation. Efforts on quadrature
based methods focus on developing a high-accuracy, mesh-free,
efficiency rule, e.g., [88], [89].

4 DATA-DEPENDENT ALGORITHMS

Data-dependent approaches aim to design/learn the random features
using the training data so as to achieve better approximation quality
or generalization performance. Based on how the random features
are generated, we can group these algorithms into three classes:
leverage score sampling, random features selection, and kernel
learning by random features. Here we only review leverage score
sampling based algorithms due to the page limit.

Leverage score based approaches [25], [56], [92] are built on
the importance sampling framework. Here one samples {wi}si=1

from a distribution q(w) that needs to be designed, and then uses
the following feature mapping in Eq. (5):

ϕq(x) =
1√
s

(√
p (w1)

q (w1)
e−iw>1x, · · · ,

√
p (ws)

q (ws)
e−iw>sx

)>
.

(15)
Consequently, we have the approximation k(x,x′) =
Ew∼q[ϕq(x)>ϕq(x

′)] ≈
∑s
i=1 zq(wi,x)zq(wi,x

′), where
zq(wi,xj) :=

√
p(wi)/q(wi)zp(wi,xj). Thus, the

kernel matrix K can be approximated by Kq = ZqZ
>
q ,

where Zq := [ϕq(x1), · · · , ϕq(xn)]> ∈ Rn×s.
Denoting by zq,wi(X) the i-th column of Zq , we have
K = Ew∼p[zp,w(X)z>p,w(X)] = Ew∼q[zq,w(X)z>q,w(X)].

To design the distribution q, one makes use of the ridge leverage
function [74], [75] in KRR:

lλ(ωi) = p(ωi)z
>
p,ωi(X)(K + nλI)−1zp,ωi(X) , (16)

where λ is the KRR regularization parameter. Define

dλK :=

∫
Rd
lλ(ω)dω = tr

[
K(K + nλI)−1

]
. (17)

The quantity dλK � n determines the number of independent
parameters in a learning problem and hence is referred to as the
number of effective degrees of freedom [93], [94]. With the above
notation, the distribution q designed in [75] is given by

q(ω) :=
lλ(ω)∫
lλ(ω)dω

=
lλ(ω)

dλK
. (18)
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Figure 2. Taxonomy of theoretical results on random features.

Compared to standard Monte Carlo sampling for RFF, leverage
score sampling requires fewer Fourier features and enjoys nice
theoretical guarantees [25], [75] (see the next section for details).
Note that q(ω) can be also defined by the integral operator [74],
[95] rather than the Gram matrix used above, but we do not
strictly distinguish these two cases. The typical leverage score
based sampling algorithm for RFF is illustrated in [25] as below.

LS-RFF (Leverage Score-RFF) [25]: It uses a subset of data to
approximate the matrix K in Eq. (17) so as to compute dλK . LS-
RFF needs O(ns2 + s3) time to generate refined random features,
which can be used in KRR [25] and SVM [7] for prediction.

Note that leverage scores sampling is a powerful tool used in
sub-sampling algorithms for approximating large kernel matrices
with theoretical guarantees, in particular in Nyström approximation.
Research on this topic mainly focuses on obtaining fast leverage
score approximation due to inversion of an n-by-n kernel matrix,
e.g., two-pass sampling [96] (LS-RFF belongs to this), online
setting [97], path-following algorithm [55], or developing various
surrogate leverage score sampling based algorithms [56], [57], [92].

5 THEORETICAL ANALYSIS

In this section, we review a range of theoretical results that center
around the two questions mentioned in the introduction. Figure 2
provides a taxonomy of representative work on these two questions.

5.1 Approximation error

Table 3 summarizes representative theoretical results on the
convergence rates, the upper bound of the growing diameter, and the
resulting sample complexity under different metrics. Here sample
complexity means the number of random features sufficient for
achieving a maximum approximation error at most ε.

The first result of this kind is given by Rahimi and Recht
[4], who use a covering number argument to derive a uniform
convergence guarantee as follows. For a compact subset S of Rd,
let |S| := supx,x′∈S ‖x− x′‖2 be its diameter and consider the
L∞ error ‖k − k̃‖∞ := supx,x′∈S |k(x,x′)− k̃(x,x′)|.

Theorem 1. [Uniform convergence of RFF [4], [24]] Let S be
a compact subset of Rd with diameter |S|. Then, for a stationary
kernel k and its approximated kernel k̃ obtained by RFF, we have

Pr
[
‖k − k̃‖∞ ≥ ε

]
≤ Cd

(
ςp|S|
ε

) 2d
d+2

exp

(
− sε2

4(d+ 2)

)
,

where ς2p = Ep[ω>ω] = tr∇2k(0) ∈ O(d), and Cd :=

2
6d+2
d+2

((
2
d

) d
d+2 +

(
d
2

) 2
d+2

)
satisfies Cd ≤ 256 in [4] and is
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further improved to Cd ≤ 66 in [24] by optimization balls of
radius in covering number.

According to the above theorem by covering number, with
s := Ω(ε−2d log(1/εδ)) random features, one can ensure an ε
uniform approximation error with probability greater than 1− δ.
This result also applies to dot-product kernels by random Maclaurin
feature maps (see [39, Theorem 8]). The quadrature based algorithm
[21] follows this proof framework, and achieves the same error
bound with a smaller constant than RFF in Theorem 1 by an
extra boundedness assumption. Instead, Fastfood [47] on Gaussian
kernels achieves O(

√
log(d/δ)) times approximation error than

RFF due to estimates for ΓHB2 in Eq. (9), which is based on
concentration inequalities for Lipschitz continuous functions under
the Gaussian distribution.

Different from the above results using Hoeffding’s inequality
for the covering number bound in their proof, Sriperumbudur and
Szabó [98] revisit the above bound by refined technique of McDi-
armid’s inequality, symmetrization and bound the expectation of
Rademacher average by Dudley entropy bound. Then they provide
improved rates (with better constants) from linear dependence on
|S| in Theorem 1 to logarithmic dependence. Apart from the L∞

error bound, the authors of [98] further derive bounds on the Lr

error ‖k − k̃‖Lr :=
(∫
S
∫
S |k(x,x′)− k̃(x,x′)|rdxdx′

)1/r

for 1 ≤ r < ∞; see Table 3 for a summary. We remark that the
L2
ρX error bound is also given in [102], though the rate in [98] is

sometimes better in terms of the diameter.

Avron et al. [75] argue that the above point-wise distances
‖k − k̃‖∞ or ‖k − k̃‖Lr are not sufficient to accurately measure
the approximation quality. Instead, they focus on the following
spectral approximation criterion.

Definition 1. [∆-spectral approximation [75]] For 0 ≤ ∆ < 1,
a symmetric matrix A is a ∆-spectral approximation of another
symmetric matrix B, if (1 − ∆)B � A � (1 + ∆)B, where
A � B indicates that B −A is a semi-positive definite matrix.

According to this definition, ZZ> + nλIn is ∆-spectral
approximation of K + nλIn if (1−∆) (K + nλIn) � ZZ> +
nλIn � (1+∆) (K + nλIn). Avron et al. [75, Theorem 7] state
that Ω(nλ log dλK) random features are sufficient to guarantee
∆-spectral approximation by the matrix Bernstein concentration
inequality and effective degree of freedom, where nλ := n/λ.
Under this framework, Choromanski et al. [81, Theorem 5.4]
present a non-asymptotic comparison result between RFF and
ORF for spectral approximation by virtue of the smallest singular
value of K + nλI . If we consider data-dependent sampling,
i.e., {ωi}si=1 ∼ q(·) in Eq. (18) instead of the standard p(ω),
Ω(dλK log dλK) random features are needed to suffice for spectral
approximation of K, which is less than Ω(nλ log dλK) [103].

The authors of [70] generalize the notion of ∆-spectral
approximation in Definition 1 to (∆1,∆2)-spectral approximation
such that (1−∆1)B � A � (1 + ∆2)B. This refined definition
is motivated by the argument that the quantities ∆1 and ∆2 in
the upper and lower bounds may have different impact on the
generalization performance. Using this definition, Zhang et al. [70]
derive the approximation guarantees when one quantizes each
random Fourier feature ωi to a low-precision b-bit representation,
which allows more features to be stored in the same amount of
space; see Table 3 for a summary.

5.2 Risk and generalization property
The above results on approximation error are a means to an end.
More directly related to the learning performance is understanding
generalization properties of random features based algorithms. To
this end, a series of work study the generalization properties of
algorithms based on p(ω)-sampling and q(ω)-sampling. Under
different assumptions, theoretical results have been obtained for loss
functions with/without Lipschitz continuity and for learning tasks
including KRR [25], [100] and SVM [7], [58], [74]. Apart from
supervised learning with random features, results on randomized
nonlinear component analysis refer to [6], random features with
matrix sketching [104], doubly stochastic gradients scheme [78],
statistical consistency [105], [106].

5.2.1 Assumptions
Before we detail these theoretical results, we summarize the
standard assumptions imposed in existing work. Some assumptions
are technical, and thus familiarity with statistical learning theory
(see Section 2.1) would be helpful. We organize these assumptions
in four categories as shown in Figure 3, including i) the existence
of fρ (Assumption 1) and its stronger version (Assumption 8);
ii) quality of random features (Assumptions 2, 6, 7); iii)
noise conditions (Assumptions 3, 9, 10); iv) eigenvalue decay
(Assumptions 4, 5).

We first state three basic assumptions, which are needed in all
of the (regression) results to be presented.

Assumption 1 (Existence [100], [107]). fρ ∈ H.

Assumption 2 (Random features are bounded and continuous
[100]). For the shift-invariant kernel k, we assume that ϕ(ω>x)
in Eq. (6) is continuous in both variables and bounded, i.e., there
exists κ ≥ 1 such that |ϕ(ω>x)| < κ for all x ∈ X and ω ∈ Rd.

Assumption 3 (Bernstein’s condition [108], [109]). For any x ∈
X , we assume E

[
|y|b | x

]
≤ 1

2b!ς
2Bb−2 when b ≥ 2 .

Assumption 3 is satisfied when y is bounded or sub-Gaussian.
The above three assumptions are needed in all theoretical

results for regression presented in this section, so we omit them
when stating these results. We next introduce several additional
assumptions, which are needed in some of the theoretical results.

Eigenvalue Decay Assumptions: The following assumption,
which characterizes the “size” of the RKHS H of interest, is often
discussed in learning theory.

Assumption 4 (Eigenvalue decays [94]). A kernel matrix K
admit the following three types of eigenvalue decays: 1) Geomet-
ric/exponential decay: λi(K) ∝ n exp(−i1/c), which leads to
dλK . log(R0/λ); 2) Polynomial decay: λi(K) ∝ ni−2a, which
implies dλK . (1/λ)1/2a; 3) Harmonic decay: λi(K) ∝ n/i,
which results in dλK . (1/λ).

Generally, for stationary kernels, a smaller RKHS indicates a
faster eigenvalue decay, of which functions are smooth enough
to achieve a good prediction performance. It can be linked to
the integral operator [107], [108] characterizing the hypothesis
space, defined as Σ : L2

ρX → L2
ρX such that (Σg)(x) =∫

X k(x,x′)g(x′)dρX (x′), ∀g ∈ L2
ρX . It is clear that the operator

Σ is self-adjoint, positive definite, and trace-class when k(·, ·) is
continuous. In particular, the decay rate of the spectrum of Σ
quantifies the capacity of the hypothesis space in which we search
for the solution by the following assumption.
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Table 3
Comparison of convergence rates and required random features for kernel approximation error.

Metric Results Convergence rate Upper bound of |S| Required random features s

‖k − k̃‖∞

Theorem 1 ( [4], [24]) Op
(
|S|
√

log s
s

)
|S| ≤ Ω

(√
s

log s

)
s ≥ Ω

(
dε−2 log

|S|
ε

)
Theorem 1 in [98] Op

(√
log |S|
s

)
|S| ≤ Ω(sc)1 s ≥ Ω

(
dε−2 log |S|

)
Theorem 1 in [99] (Gaussian kernels) Op

(√
log |S|
s

)
|S| ≤ Ω(sc) s ≥ Ω

(
ε−2 log |S|

)
‖k − k̃‖Lr (1 ≤ r <∞) Corollary 2 in [98] Op

(
|S|

2d
r

√
log |S|
s

)
|S| ≤ Ω

(
( s
log s )

r
4d

)
s ≥ Ω

(
dε−2 log |S|

)
‖k − k̃‖Lr (2 ≤ r <∞) Theorem 3 in [98] Op

(
|S|

2d
r

√
1
s

)
|S| ≤ Ω

(
s
r
4d

)
s ≥ Ω

(
dε−2 log |S|

)

∆-spectral approximation

Theorem 7 in [75] Op
(√

nλ
s

)
- s ≥ Ω(nλ log dλK)

Theorem 5.4 in [81] (Gaussian kernels) ORFF/ORF

(
1
sλ2

)
- s ≥ Ω(n2α)

Lemma 6 in [75] Oq

(√
dλ
K
s

)
- s ≥ Ω(dλK log dλK)

(∆1,∆2)-spectral approximation Theorem 2 in [70] OLP

(√
nλ
s

)
2 - s ≥ Ω(nλ log dλK)

1 c is some constant satisfying 0 < c < 1.

2 LP denotes that {ωi}si=1 are obtained by RFF and then are quantized to a Low-Precision b-bit representation; see [70].

i) regression: fρ ∈ H (Ass. 1)⇐ source condition (Ass. 8)

ii) quality of random features

{
bounded and continuous (Ass. 2)
q(ω)-sampling: compatibility condition (Ass. 6)⇐ optimized distribution (Ass. 7)

iii) noise condition

{
regression: boundedness on y (Ass. 3)
classification: Massart’s low noise condition (Ass. 9)⇐ separation condition (Ass. 10)

iv) eigenvalue decays assumption (Ass. 4)

{
exponential decay
polynomial decay and harmonic decay⇔ capacity condition (Ass. 5)

Figure 3. Relationship between the needed assumptions. The notation A⇐ B means that B is a stronger assumption than A.

Assumption 5 (Capacity condition [107], [110]). There exist Q >
0 and γ ∈ [0, 1] such that for any λ > 0, we have

N (λ) := tr
(
(Σ + λI)−1Σ

)
≤ Q2λ−γ . (19)

The effective dimension N (λ) [93] measures the “size” of
the RKHS, and is in fact the operator form of dλK in Eq. (17).
Assumption 5 holds if the eigenvalues λi of Σ decay as i−1/γ ,
which corresponds to the eigenvalue decay of K in Assumption 4
with γ := 1/(2a) [111]. The case γ = 0 is the more benign
situation, whereas γ = 1 is the worst case.

Quality of Random Features: Here we introduce several
technical assumptions on the quality of random features. The
leverage score in Eq. (16) admits the operator form

F∞(λ) := sup
ω

∥∥∥(Σ + λI)−1/2ϕ(x)
∥∥∥2

L2
ρX

, ∀λ > 0 ,

which is also called as the maximum random features dimension
[100]. By defintion we always have N (λ) ≤ F∞(λ). Roughly
speaking, when the random features are “good”, it is easy to control
their leverage scores in terms of the decay of the spectrum of Σ.
Further, fast learning rates using fewer random features can be
achieved if the features are compatible with the data distribution in
the following sense.

Assumption 6 (Compatibility condition [100]). With the above
definition of F∞(λ), assume that there exist % ∈ [0, 1], and F > 0
such that F∞(λ) ≤ Fλ−%,∀λ > 0.

It always holds that F∞(λ) ≤ κ2λ−1 when z is uniformly
bounded by κ. So the worst case is % = 1, which means that the
random features are sampled in a problem independent way. The
favorable case is % = γ, which means that N (λ) ≤ F∞(λ) ≤
O(n−αγ). In [7], the authors consider the following assumption.

Assumption 7 (Optimized distribution [7]). The feature mapping
z(ω,x) is called optimized if there is a small constant λ0 such
that for any λ ≤ λ0, F∞(λ) ≤ N (λ) =

∑∞
i=1

λi(Σ)
λi(Σ)+λ .

Under the previous definitions, Assumption 7 holds only
when F∞(λ) = N (λ). This assumption is stronger than the
compatibility condition in Assumption 6. Note that Assumption 7
is satisfied when sampling from q(ω).

Source condition on fρ: The following assumption states that
fρ has some desirable regularity properties.

Assumption 8 (Source condition [100], [112]). There exist 1/2 ≤
r ≤ 1 and g ∈ L2

ρX such that fρ(x) = (Σrg)(x) almost surely.

Since Σ is a compact positive operator on L2
ρX , its r-th power
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Table 4
Comparison of learning rates and required random features for expected risk with the squared loss function.

sampling scheme Results key assumptions eigenvalue decays λ learning rates required s

{ωi}si=1 ∼ p(ω)

[100, Theorem 1] - - n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

[100, Theorem 2] source condition

i−2t n
− 2t

1+4rt Op
(
n
− 4rt

1+4rt

)
s ≥ Ω( 2t+2r−1

1+4rt logn)

1/i n
− 1

2r+1 Op
(
n
− 2r

2r+1

)
s ≥ Ω(n

2r
2r+1 logn)

[25, Corollary 2] -

e−
1
c
i n−

1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n log logn)

i−2t n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

1/i n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

{ωi}si=1 ∼ q(ω)

[100, Theorem 3]
source condition;
compatibility condition

i−2t n
− 2t

1+4rt Oq
(
n
− 4rt

1+4rt

)
s ≥ Ω(

%+(2r−1)(2t+1−2t%)
1+4rt logn)

1/i n
− 1

2r+1 Oq
(
n
− 2r

2r+1

)
s ≥ Ω(n

2r
2r+1 logn)

[25, Corollary 1] optimized distribution

e−
1
c
i n−

1
2 Oq

(
n−

1
2

)
s ≥ Ω(log2 n)

i−2t n−
1
2 Oq

(
n−

1
2

)
s ≥ Ω(n1/(2t) logn)

1/i n−
1
2 Oq

(
n−

1
2

)
s ≥ Ω(

√
n logn)

Σr is well defined for any r > 0.6 Assumption 8 imposes a form of
regularity/sparsity of fρ, which requires the expansion of fρ on the
basis given by the integral operator Σ. Note that this assumption
is more stringent than the existence of fρ in H. The latter is
equivalent to Assumption 8 with r = 1

2 (the worst case), in which
case fρ ∈ H need not have much regularity/sparsity.

Noise Condition: The following two assumptions on noise are
considered in random features for classification.

Assumption 9 (Massart’s low noise condition [7], [115]). There
exists V ≥ 2 such that

∣∣E(x,y)∼ρ[y|x]
∣∣ ≥ 2/V .

Assumption 10 (Separation condition [7]). The points in X can
be collected into two sets according to their labels as follows

X1 := {x ∈ X : E[y|x] > 0}, X−1 := {x ∈ X : E[y|x] < 0}.

The distance of a point x ∈ X±1 to the set X∓1 is denoted
by ∆(x). We say that the data distribution satisfies a separation
condition if there exists ∆ > 0 such that ρX(∆(x) < c) = 0.

The above two assumptions, both controlling the noise level
in the labels, can be cast as special cases of Tsybakov’s low noise
assumption [115].

5.2.2 Squared loss in KRR

In this section, we review theoretical results on the generalization
properties of KRR with squared loss and random features, for
both the p(ω)-sampling (data-independent) and q(ω)-sampling
(data-dependent) settings. Table 4 summarizes these results for the
excess risk in terms of the key assumptions imposed, the learning
rates, and the required number of random features.

We begin with the remarkable result by Rudi and Rosasco
[100]. They are among the first to show that under some mild
assumptions and appropriately chosen parameters, Ω(

√
n log n)

random features suffice for KRR to achieve minimax optimal rates.

6. A more general condition (r > 0) is often considered in approximation
theory; see [113], [114].

Theorem 2 (Generalization bound; Theorem 3 in [100]). Suppose
that Assumption 8 (source condition) holds with r ∈ [ 1

2 , 1], As-
sumption 6 (compatibility) holds with % ∈ [0, 1], and Assumption 5
(capacity) holds with γ ∈ [0, 1]. Assume that n ≥ n0 and choose
λ := n

1
2r+γ . If the number of random features satisfies

s ≥ c0n
α+(2r−1)(1+γ−α)

2r+γ log
108κ2

λδ
,

then the excess risk of f̃z,λ can be upper bounded as

E
(
f̃z,λ

)
− E (fρ) =

∥∥∥f̃z,λ − fρ∥∥∥2

L2
ρX

≤ c1 log2 18

δ
n−

2r
2r+γ ,

where c0, c1 are constants independent of (n, λ, δ), and n0 does
not depends on n, λ, fρ, or ρ.

Theorem 2 unifies several results in [100] that impose different
assumptions. If the compatibility condition is replaced by the
stronger Assumption 7 (optimized distribution), satisfied by q(ω)-
sampling, the work [25] derives an improved bound that is the
sharpest to date by spectral approximation. Below we state a general
result from [25] that covers both p(ω)- and q(ω)-sampling.

Theorem 3 (Theorem 1 in [25]). Suppose that the regularization
parameter λ satisfies 0 ≤ nλ ≤ λ1. We consider two sampling
schemes.
• {ωi}si=1 ∼ p(ω): if s ≥ (5z2

0/λ) log(16dλK/δ) and
|z(ω,x)| ≤ z0,

• {ωi}si=1 ∼ q(ω): if s ≥ 5dλK log
(
16dλK/δ

)
,

then for 0 < δ < 1, with probability 1− δ, the excess risk of f̃z,λ
can be upper bounded as∥∥∥f̃z,λ − fρ∥∥∥2

L2
ρX

≤ 2λ+O(1/
√
n) + E

(
fz,λ

)
−E (fρ) , (20)

where we recall that E
(
fz,λ

)
−E (fρ) is the excess risk of standard

KRR with an exact kernel (see Section 2).

Further, a sharper convergence rate can be achieved if the local
Rademacher complexity technique [116] is used, see [117] for
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details. Besides, Carratino et al. [118] extend the result of [100]
to the setting where KRR is solved by stochastic gradient descent
(SGD). They show that under the basic Assumptions 1–3 and
some mild conditions for SGD, Ω(

√
n) random features suffice to

achieve the minimax learning rate O(n−1/2). Wang [119] gives
the out-of-sample bound E(f̃z,λ)− E(fz,λ) ≤ O (1/(sλ)) under
the boundedness of the randomized feature map (which is weaker
than Assumption 2). If we choose λ := n−1/2, then Ω(n) random
features are sufficient to ensure an O(n−1/2) rate in the out-of-
sample bound.

5.2.3 Lipschitz continuous loss function
In this section, we consider loss functions ` that are Lipschitz
continuous. Examples include the hinge loss in SVM and the
cross-entropy loss in kernel logistic regression. Table 5 summarizes
several existing results for such loss functions in terms of the
learning rate and the required number of random features. We
briefly discuss these results below and refer the readers to the cited
work for the precise theorem statements.

If {ωi}si=1 ∼ p(ω), i.e., under the standard RFF setting with
data-independent sampling, we have the following results.
• Theorem 1 in [58] shows that the excess risk converges at a

certain O(n−1/2) rate with Ω(n log n) random features.
• Corollary 4 in [25] shows that with λ ∈ O(1/n) and

Ω
(
(1/λ) log dλK

)
random features, the excess risk of f̃z,λ

can be upper bounded by

E(f̃z,λ)− E (fρ) ≤ O
(
1/
√
n
)

+O(
√
λ) .

The above bound scales with
√
λ, which is different from

the bound in Eq. (20) for the squared loss. Therefore, for
Lipschitiz continuous loss functions, we need to choose a
smaller regularization parameter λ ∈ O(1/n) to achieve the
same O(n−1/2) convergence rate. Also note that as before
we can bound dλK under the three types of eigenvalue decay.

If {ωi}si=1 ∼ q(ω), i.e., under the data-dependent sampling
setting, we have the following results.
• For SVM with random features, under the optimized dis-

tribution in Assumption 7 and the low noise condition in
Assumption 9, Theorem 1 in [7] provides bounds on the
learning rates and the required number of random features.
This result is improved in [7, Theorem 2] if we consider the
stronger separation condition in Assumption 10. Details can
be found in Table 5.

• In Section 4.5 in [74] and Corollary 3 in [25], it is shown that
if Assumption 7 holds, then the excess risk of f̃z,λ converges
at an O(n−1/2) rate with Ω(dλK log dλK) random features, if
we choose λ ∈ O(1/n).

There is an abnormal but common experiment phenomenon
on kernel approximation and risk generalization, that is, a higher
kernel approximation quality does not always translate to better
generalization performance, see the discussion in [21], [70], [75].
Understanding this inconsistency between approximation quality
and generalization performance is an important open problem in
this topic. Here we present a preliminary result for KRR: a better
approximation quality cannot guarantee a lower generalization risk,
see Proposition 1 as below, with proof deferred to Appendix.

Proposition 1. Given the target function fρ and the original kernel
matrix K, consider two random features based algorithms A1 and
A2 yielding two approximated kernel matrices K̃1 and K̃2, and
their respective KRR estimators f̃ (A1)

z,λ and f̃ (A2)
z,λ . Then for a new

sample x, even if ‖K − K̃1‖ ≤ ‖K − K̃2‖ holds in some norm
metric, there exists one case for the excess risk such that

E [f̃
(A1)
z,λ (x)]− E [fρ(x)] ≥ E [f̃

(A2)
z,λ (x)]− E [fρ(x)] .

Remark: Our proof is geometric by constructing a counter-
example. It requires that the kernel admits (at least) polynomial
decay, which holds for the common-used Gaussian kernel and
could be further relaxed for the existence of the proof.

6 EXPERIMENTS

In this section, we empirically evaluate the kernel approximation
and classification performance of representative random features
algorithms on several benchmark datasets. All experiments are
implemented in MATLAB and carried out on a PC with Intelr

i7-8700K CPU (3.70 GHz) and 64 GB RAM. The source code of
our implementation can be found in http://www.lfhsgre.org.

6.1 Experimental settings

We choose the popular Gaussian kernel, zero/first-order arc-cosine
kernels, and polynomial kernel evaluated on several medium/large
scale benchmark datasets. Table 6 gives an overview of these
datasets including the number of feature dimension, training
samples, test data, training/test split, and the normalization
scheme. We use ‖K − K̃‖F/‖K‖F as the error metric for kernel
approximation. To compute the approximation error, we randomly
sample 1,000 data points to construct the sub-feature matrix and
the sub-kernel matrix. For the subsequent classification task, the
random feature mappings are used with two classifiers: the ridge
linear regression (abbreviated as lr) with the squared loss, and
the liblinear algorithm [120] (a linear classifier with the hinge
loss). All experiments are repeated 10 times and we report the
average approximation error, average classification accuracy with
their respective standard deviations as well as the time cost for
generating random features. More detailed description of these
datasets and experimental settings can be found in Appendix.

6.2 Results for the Gaussian Kernel
6.2.1 Results on non-image benchmark datasets
Here we test various random features based algorithms, including
RFF [4], ORF [18], SORF [18], ROM [51], Fastfood [47], QMC
[52], SSF [53], GQ [20], LS-RFF [25] for kernel approximation and
then combine these algorithms with lr/liblinear for classification on
eight non-image benchmark datasets. Here we summarize the best
performing algorithm on each dataset in terms of the approximation
quality in Table 7, where we distinguish the small s case (i.e., s =
2d or s = 4d) and the large s case (i.e., s = 16d or s = 32d). The
notation “-” therein means that there is no statistically significant
difference in the performance of most algorithms. Nevertheless,
most of algorithms obtain the similar performance on the test
accuracy.

In terms of approximation error, we find that SSF, ORF, and
QMC achieve promising approximation performance in most
cases. Recall that the goal of using random features is to find
a finite-dimensional (embedding) Hilbert space to approximate the
original infinite-dimensional RKHS so as to preserve the inner
product. To achieve this goal, SSF, QMC, and ORF are based on
a similar principle, namely, generating random features that are
as independent/complete as possible to reduce the randomness in
sampling. Regarding to SSF, we find that SSF performs well under
the small s case, but the significant improvement does not hold

http://www.lfhsgre.org
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Table 5
Comparison of learning rates and required random features for expected risk with a Lipschitz continuous loss function.

sampling scheme Results key assumptions eigenvalue decay λ learning rates required s

{ωi}si=1 ∼ p(ω)

[58, Theorem 1] - - - Op
(
n−

1
2

)
s ≥ Ω(n logn)

[25, Corollary 4] -

e−
1
c
i 1

n Op
(
n−

1
2

)
s ≥ Ω(n log logn)

i−2t 1
n Op

(
n−

1
2

)
s ≥ Ω(n logn)

1/i 1
n Op

(
n−

1
2

)
s ≥ Ω(n logn)

{ωi}si=1 ∼ q(ω)

[7, Theorem 1]
optimized distribution

e−
1
c
i 1

n Oq
(

1
n logc+2 n

)
s ≥ Ω(logc n log logc n)

low noise condition

i−2t n
− t

1+t Oq
(
n
− t

1+t logn

)
s ≥ Ω(n

1
1+t logn)

1/i 1
n Oq

(
n−

1
2

)
s ≥ Ω(n logn)

[7, Theorem 2] separation condition
e−

1
c
i n−2c2 Oq

(
1
n log2c+1 n log logn

)
s ≥ Ω(log2c n log logn)optimized distribution

[74, Section 4.5]
[25, Corollary 3] optimized distribution

e−
1
c
i 1

n Oq
(
n−

1
2

)
s ≥ Ω(log2 n)

i−2t 1
n Oq

(
n−

1
2

)
s ≥ Ω(n1/(2t) logn)

1/i 1
n Oq

(
n−

1
2

)
s ≥ Ω(n logn)

Table 6
Dataset statistics.

datasets d #traing #test random split scaling

ijcnn1 22 49,990 91,701 no -
EEG 14 7,490 7,490 yes mapstd

cod-RNA 8 59,535 157,413 no mapstd
covtype 54 290,506 290,506 yes minmax
magic04 10 9,510 9,510 yes minmax

letter 16 12,000 6,000 no minmax
skin 3 122,529 122,529 yes minmax
a8a 123 22,696 9,865 no -

MNIST 784 60,000 10,000 no minmax
CIFAR-10 3072 50,000 10,000 no -
MNIST-8M 784 8,100,000 10,000 no -

Table 7
Results statistics on several datasets. The best algorithm on each

dataset is given in two cases: low dimensional (i.e., s = 2d, 4d) and high
dimensional (i.e., s = 16d, 32d) according to approximation quality. The
notation “-” means that there is no statistically significant difference in

the performance of most algorithms.

datasets approximation

small s large s

ijcnn1 SSF SORF, QMC, ORF
EEG SSF ORF

cod-RNA SSF -
covtype ORF -
magic04 SSF SSF, ORF, QMC, ROM

letter SSF SSF, ORF
skin SSF, ROM QMC
a8a - -

for the large s case. This might be because, a few points can be
adequate in SSF, additional points (i.e., a larger s) may have a small
marginal benefit in variance reduction under the large s setting.
Consequently, the approximation error of SSF sometimes stays
almost the same with a larger number of random features. QMC and

(a) MNIST (b) CIFAR10

Figure 4. Approximation error, time cost, and test accuracy of various
algorithms with liblinear on two image classification datasets.

ORF seek for variance reduction on random features. Nevertheless,
they often work well in the large s case. As demonstrated by
the expression for variance of ORF [18] and convergence rate in
QMC [52], this theoretical result is consistent with the numerical
performance of ORF and QMC, which may explain the reason
why they work better in a large s setting than a small s case.
Besides, results on arc-cosine kernels and polynomial kernels, and
evaluation on MNIST 8M [121] can be found in Appendix.
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(a) sonar (low-dimensioanl) (b) MNIST (high-dimensional)

Figure 5. Training error, test error, and approximation error of random
features regression with λ = 10−8 on the sonar dataset with n =
208, d = 60 and the sub-set of MNIST (class 1 versus class 2) with
n = 200, d = 784.

6.2.2 Classification results on MNIST and CIFAR10
Here we consider the MNIST and CIFAR10 datasets, on which
we test these random features based algorithms for kernel
approximation and then combine these algorithms with liblinear
for image classification. In our experiment, we use the Gaussian
kernel7, whose kernel width ς is tuned by 5-fold cross validation
over the grid ς = [0.01, 0.1, 1, 10, 100]. For the MNIST database,
we directly use the original 784-dimensional feature as the data.
For better performance on the CIFAR10 dataset, we use VGG16
with batch normalization [123] pre-trained on ImageNet [124] as a
feature extractor. We fine-tune this model on the CIFAR10 dataset
with 240 epochs and a mini-batch size 64. The learning rate is
initialized at 0.1 and then divided by 10 at the 120-th, 160-th, and
200-th epochs. For each color image, a 4096 dimensional feature
vector is obtained from the output of the first fully-connected layer
in this fine-tuned neural network.

Figure 4(a) shows the approximation error, the time cost (sec.),
and the classification accuracy by liblinear across a range of
s = 1000 to s = 10, 000 random features on the MNIST database.
We find that ORF and SSF yield the best approximation quality.
Despite that most algorithms achieve different approximation
errors, there is no significant difference in the test accuracy, which
corresponds to the results on non-image datasets. Similar results are
observed on the CIFAR10 dataset with s = 5000 to s = 12, 000
random features; see Figure 4(b). Note that most algorithms take
the similar time cost on generating random features except for
the data-dependent algorithm LS-RFF. Several structured based
approaches (e.g., Fastfood, SORF, ROM) do not achieve significant
reduction on time cost due to the relatively inefficient Matlab
built-in function to implement the Walsh-Hadamard transform.

7 TRENDS: HIGH-DIMENSIONAL RANDOM FEA-
TURES IN OVER-PARAMETERIZED SETTINGS

In the previous sections, we review random features based
algorithms and their theoretical results, that works under a fixed d
setting with s� n. Random features based approaches are simple
in formulation but enjoy nice empirical validations and theoretical
guarantees in kernel approximation and generalization properties.
Recently, analysis of over-parameterized models [16], [125], [126],
[127], [128] has attracted a lot of attention in learning theory,

7. As indicated by [9], [122], (convolutional) NTK generally performs better
than Gaussian kernel but it is still non-trivial to obtain a efficient random
features mapping for (convolutional) NTK without much loss on prediction.

partly due to the observation of several intriguing phenomena,
including capability of fitting random labels, strong generalization
performance of overfitted classifiers [129] and double descent in
the test error curve [130], [131]. Moreover, Belkin et al. [130],
[132] point out that the above phenomena are not unique to deep
networks but also exist in random features and random forests. In
Figure 5, we report the empirical training error, the test error, and
the kernel approximation error of random features regression as a
function of s/n on the sonar dataset and the MNIST dataset [133].
Even with n, d, s only in the hundreds, we can still observe that as s
increases, the training error reduces to zero and the approximation
error monotonously decreases. However, the test error exhibits
double descent, i.e., a phase transition at the interpolation threshold:
moving away from this threshold on both sides trends to reduce the
generalization error. This is somewhat striking as it goes against the
conventional wisdom on bias-variance trade-off [134]: predictors
that generalize well should trade off the model complexity against
training data fitting.

The above observations have motivated researchers to build on
the elegant theory of random features to provide an analysis of
neural networks in the over-parameterized regime. To be specific,
RFF can be regarded as a two-layer (large-width) neural network,
where the weights in the first layer are chosen randomly/fixed
and only the output layer is optimized. This is a typical over-
parameterized model if we take s� n. As such, two-layer neural
networks in this regime are more amenable to theoretical analysis as
compared to general arbitrary deep networks. This is a potentially
fruitful research direction, and one hand, the optimization and
generalization of such model have been studied in [16], [135] in
deep learning theory. On the other hand, in order to explain the
double descent curve of random features in over-parameterized
regimes, we often work in a high dimensional setting, which is
more subtle than classical results in standard settings, as indicated
by recent random matrix theory (RMT) [136], [137], [138]. An
intuitive example [139] is, ‖K − ZZ>‖F → 0 always hold in
low/high dimensions as s→∞ but ‖K −ZZ>‖2 → 0 does not
hold for n, d, s → ∞. Accordingly, in this section, we provide
an overview on analysis of (high dimensional) random features
in over-parameterized setting, especially on double descent. We
remark upfront that the random features model on double descent is
not the only way for analyzing DNNs. Many other approaches, with
different points of views, have been proposed for deep learning
theory, but they are out of scope of this survey.

7.1 Results on High Dimensional Random Features in
Over-parameterized Setting
Here we briefly introduce the problem setting of high dimensional
random features in over-parameterized regimes, and then discuss
the techniques used in various studies.

In the basic setting, high dimensional random features often
work with least squares regression setting in an asymptotic
viewpoint, i.e., n, d, s → ∞ with d/n → ψ1 ∈ (0,∞) and
s/n→ ψ2 ∈ (0,∞), in which overparameterization corresponds
to ψ2 ≥ 1. The considered data generation model in the basic
setting is quite simple. To be specific, the training data is collected
in a matrixX ∈ Rn×d, the rows of which are assumed to be drawn
i.i.d from N (0, 1) or Sd−1(

√
d). The labels are given by a linear

ground truth corrupted by some independent additive Gaussian
noise: yi = fρ(xi) + εi, where fρ(x) = 〈x, ζ〉 for a fixed but
unknown ζ and εi ∼ N (0, 1). The transformation matrix under
this setting is often taken as the random Gaussian matrix with the
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Table 8
Comparison of problem settings on analysis of high dimensional random features on double descent.

studies metric data generation asymptotic? result
{xi}ni=1 fρ activation function W

[125, Theorem 7] population risk N (0, Id) 〈x, ζ〉 normalized N (0, 1/d) 3 variance↗↘

[140, Theorem 4] population risk N (0, Id) 〈x, ζ〉 bounded N (0, 1/d) 3 variance↗↘

[126, Theorem 2] expected excess risk Sd−1(
√
d) 〈x, ζ〉+ nonlinear 1 bounded Unif(Sd−1(

√
d)) 3 variance, bias↗↘

[141] expected excess risk N (0, Id) 〈x, ζ〉 ReLU N (0, 1) 3 refined 2

[142] generalization error N (0, Id) f(〈x, ζ〉) general general 3 ↗↘

[143, Theorem 1] generalization error N (0, Id) 〈x, ζ〉 normalized N (0, 1) 3 refined 2

[144, Theorem 1] generalization error N (0, Id) 〈x, ζ〉 general general 3 ↗↘

[145, Proposition 1] generalization error N (0, Id) 〈x, ζ〉 odd, bounded sub-Gaussian 3 ↗↘

[146, Theorem 5.1] expected excess risk Gaussian general [cos(·), sin(·)] N (0, 1) 7 ↗↘

[139, Theorem 3] generalization error general - 3 [cos(·), sin(·)] N (0, 1) 3 ↗↘
1 The nonlinear component is a centered isotropic Gaussian process indexed by x ∈ Sd−1(

√
d).

2 A refined decomposition on variance is conducted by sources of randomness: “noise variance”, “initialization variance”, and “sampling variance” to
possess each term [141] or their interpretations [143].

3 It makes no assumptions on fρ but requires that test data “behave” statistically like the training data by concentrated random vectors.

ReLU activitation function (recall Eq. (6)). Current approaches
employ various data generation schemes and assumptions to obtain
a refined analysis beyond double descent under the basic setting.
According to these criteria, we summarize the problem setting of
various representative approaches in Table 8. In the next, we briefly
review the conceptual and technical contributions of underlying
approaches on high dimensional random features.

Belkin et al. [147] begin with an one-dimensional (noise-
free) version of the random features model, and provide an
asymptotic analysis to explain the double descent phenomenon.
The subsequent work focuses on the standard random features
model under different settings and assumptions. It is clear that,
the presence of the nonlinear activation function σ(·) makes the
random features model intractable to study the related (limiting)
spectral distribution. Accordingly, the key issue in this topic mainly
focuses on studying random matrices with nonlinear dependencies,
e.g., how to disentangle the nonlinear function σ(·) by Gaussian
equivalence conjecture. Hastie et al. [125] consider the basic setting
endowed by a bounded activation function with a standardization
condition, i.e., E[σ(t)] = 0 and E[σ(t)2] = 1 for t ∼ N(0, 1).
By establishing asymptotic results on resolvents of random block
matrices from RMT, the limiting of the variance is theoretically
demonstrated to be increasing for ψ2 ∈ (0, 1), decreasing for
ψ2 ∈ (1,∞), and diverging as ψ2 → 1.

In a similar spirit, Mei and Montanari [126] use RMT
to study the spectral distribution of the Gram matrix Z =
σ(XW>/

√
d)/
√
d by considering the Stieltjes transform of a

related random block matrix, and show that, under least squares
regression setting in an asymptotic viewpoint, both the bias and
variance have a peak at the interpolation threshold ψ2 = 1 and
diverge there when λ→ 0. Under this framework, according to the
randomness stemming from label noise, initialization, and training
features, a refined bias-variance decomposition is conducted by
[141], [148] and further improved by [143], [149] using the analysis
of variance. Apart from refined error decomposition schemes, the
authors of [140], [142], [144] consider a general setting on convex
loss functions, transformation matrix, and activation functions for
regression and classification. Here the techniques used for analysis
are not limited to RMT. Instead, replica method [150] (a non-

rigorous heuristic method from statistical physics) used in [141],
[142], [148] and the convex Gaussian min-max (CGMM) theorem
[151] used in [144] are two alternative way to derive the desired
results. Note that, CGMM requires the data to be Gaussian, which
might restrict the application scope of their results but is still
a common-used technical tool for max-margin linear classifier
[152], boosting classifiers [153], and adversarial training for linear
regression [154] in over-parameterized regimes. Admittedly, the
applied replica method in statistical physics is quite different from
[126] for tackling inverse random matrices in RMT. However,
most of the above methods admit the equivalence between the
considered data model and the Gaussian covariate model. That
means, problem (3) with Gaussian data can be asymptotically
equivalent to

min
β∈Rs

1

n

n∑
i=1

`
(
yi,β

> (µ01k + µ1Wxi + µ?ti)
)

+ λ‖β‖22 ,

where {ti}ni=1 ∼ N (0, Id), µ0 = E[σ(t)], µ1 = E[tσ(t)] and
µ? = E[σ(t)2]− µ2

0− µ2
1 for a standard Gaussian variable t. This

equivalence on generalization error in an asymptotic viewpoint is
proved in [145].

Different from the above results in an asymptotic view,
Jacot et al. [146] present a non-asymptotic result by taking finite-
size Stieltjes transform of generalized Wishart matrix, and further
argue that random feature models can be close to KRR with an
additional regularization. The used technical tool is related to the
“calculus of deterministic equivalents” for random matrices [155].
This technique is also used in [139] to derive the exact asymptotic
deterministic equivalent of EW [(ZZ>+nλI)−1], which captures
the asymptotic behavior on double descent. Note that, this work
makes no data assumption to match real-world data, which is
different from previous work relying on specific data distribution.

7.2 Discussion on Random Features and DNNs
As mentioned, random features models have been fruitfully used to
analyze the double descent phenomenon. However, it is non-trivial
to transfer results for these models to practical neural networks,
which are typically deep but not too wide. There is still a substantial
gap between existing theory based on random features and the
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modern practice of DNNs in approximation ability. For example,
under the spherical data setting, Ghorbani et al. [37] (a more general
version in [156] on data distribution) point out that as n → ∞,
a random features regression model can only fit the projection
of the target function onto the space of degree-` polynomials
when s = Ω(d`+1−δ) random features are used for some δ > 0.
More importantly, if s, d are taken as large with s = Ω(d), then the
function space by random features can only capture linear functions.
Even if we consider the NTK model, it can just capture quadratic
functions. That means, both random features and NTK have limited
approximation power in the lazy training scheme [35]. In addition,
Yehudai and Shamir [157] show that the random features model
cannot efficiently approximate a single ReLU neuron as it requires
the number of random features to be exponentially large in the
feature dimension d. This is consistent with the classical result
for kernel approximation in the under-parameterized regime: the
random features model, QMC, and quadrature based methods
require s = Ω(exp(d)) to achieve an ε approximation error [20].

Admittedly, the above results may appear pessimistic due to
the simple architecture. Nevertheless, random features is still an
effective tool, at least the first step, for analyzing and understanding
DNNs in certain regimes, and we believe its potential has yet to
be fully exploited. Note that the random features model is still
a strong and universal approximator [158] in the sense that the
RKHSs induced by a broad class of random features are dense in
the space of continuous functions. While the aforementioned results
show that the number of required features may be exponential in the
worst case, a more refined analysis can still provide useful insights
for DNNs. One potential way forward in deep learning theory is
to use the random features model to analyze DNNs with pruning.
For example, the best paper [159] in the Seventh International
Conference on Learning Representations (ICLR2019) put forward
the following Lottery Ticket Hypothesis: a deep neural network
with random initialization contains a small sub-network which,
when trained in isolation, can compete with the performance of
the original one. Malach et al. [160] provide a stronger claim that
a randomly-initialized and sufficiently over-parameterized neural
network contains a sub-network with nearly the same accuracy as
the original one, without any further training. Their analysis points
to the equivalence between random features and the sub-network
model. As such, the random features model is potentially useful
for network pruning [161] in terms of, e.g., guiding the design of
neurons pruning for accelerating computations, and understanding
network pruning and the full DNNs.

8 CONCLUSION

In this survey, we systematically review random features based
algorithms and their associated theoretical results. We also give an
overview on generalization properties of high dimensional random
features in over-parameterized regimes on double descent, and
discuss the limitations and potential of random features in the theory
development for neural networks. Below we provide additional
remarks and discuss several open problems that are of interest for
future research.
• As a typical data independent method, random features are

simpler to implement, easy to parallelize, and naturally apply
to streaming or dynamic data. Current efforts on Nyström
approximation by a preconditioned gradient solver parallelized
with multiple GPUs [162] and quantum algorithms [95] can
guide us to design powerful implementation for random
features to handling millions/billions data.

• Experimental comparisons show that better kernel approxima-
tion does not directly translate to lower generalization errors.
We partly answer this question in the current survey but it
may be not sufficient to explain this phenomenon. We believe
this issue deserves further in-depth study.

• Kernel learning via the spectral density is a popular direction
[66], [68], which can be naturally combined with Generative
Adversarial Networks (GANs); see [63] for details. In
this setting, one may associate the learned model with an
implicit probability density that is flexible to characterize the
relationships and similarities in the data. This is an interesting
area for further research.

• The double descent phenomenon has been observed and
studied in random features model by various technical tools
under different settings. Current theoretical results, such as
those in [126], [139], may be extended to a more general
setting with less restricted assumptions on data generation,
model formulation, and the target function. Besides, more
refined analysis and delicate phenomena beyond double
descent have been investigated on the linear model, e.g.,
multiple descent phenomena [163] and optimal (negative)
regularization [164], [165]. Understanding these more delicate
phenomena for random features requires further investigation
and refined analysis.

We hope that this survey will stimulate further research on the
above open problems.
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[11] S. Du, K. Hou, B. Póczos, R. Salakhutdinov, R. Wang, and K. Xu,
“Graph neural tangent kernel: Fusing graph neural networks with graph
kernels,” in NeurIPS, 2019, pp. 1–11.

[12] D. Zambon, C. Alippi, and L. Livi, “Graph random neural features
for distance-preserving graph representations,” in ICML, 2020, pp.
10968–10977.

[13] K. Choromanski et al., “Rethinking attention with performers,” in ICLR,
2021.

[14] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. Smith, and L. Kong,
“Random feature attention,” in ICLR, 2021, pp. 1–19.

[15] Y. Cao and Q. Gu, “Generalization bounds of stochastic gradient descent
for wide and deep neural networks,” in NeurIPS, 2019, pp. 10835–10845.

[16] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural
networks,” in ICML, 2019, pp. 322–332.

[17] Z. Ji and M. Telgarsky, “Polylogarithmic width suffices for gradient
descent to achieve arbitrarily small test error with shallow ReLU
networks,” in ICLR, 2020, pp. 1–8.

[18] F. Yu, A.T. Suresh, K. Choromanski, D. Holtmannrice, and S. Kumar,
“Orthogonal random features,” in NeurIPS, 2016, pp. 1975–1983.

[19] H. Avron, V. Sindhwani, J. Yang, and M. Mahoney, “Quasi-Monte
Carlo feature maps for shift-invariant kernels,” JMLR, vol. 17, no. 1, pp.
4096–4133, 2016.
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