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We consider the problem of estimating the discrete clustering structures under the Sub-Gaussian Mixture
Model. Our main results establish a hidden integrality property of a semidefinite programming (SDP) relax-
ation for this problem: while the optimal solution to the SDP is not integer-valued in general, its estimation
error can be upper bounded by that of an idealized integer program. The error of the integer program, and
hence that of the SDP, are further shown to decay exponentially in the signal-to-noise ratio. In addition, we
show that the SDP relaxation is robust under the semi-random setting in which an adversary can modify
the data generated from the mixture model. In particular, we generalize the hidden integrality property
to the semi-random model and thereby show that SDP achieves the optimal error bound in this setting.
These results together highlight the “global-to-local” mechanism that drives the performance of the SDP
relaxation.

To the best of our knowledge, our result is the first exponentially decaying error bound for convex relax-
ations of mixture models. A corollary of our results shows that in certain regimes the SDP solutions are in
fact integral and exact. More generally, our results establish sufficient conditions for the SDP to correctly
recover the cluster memberships of (1− δ) fraction of the points for any δ ∈ (0,1). As a special case, we show
that under the d-dimensional Stochastic Ball Model, SDP achieves non-trivial (sometimes exact) recovery
when the center separation is as small as

√
1/d, which improves upon previous exact recovery results that

require constant separation.
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1. Introduction We consider the Sub-Gaussian Mixture Model (SGMM), in which
one is given n random points drawn from a mixture of k sub-Gaussian distributions with
different means/centers. SGMM, particularly its special case the Gaussian Mixture Model
(GMM), is widely used in a broad range of applications including speaker identification,
background modeling and online recommendation. In these applications, one is typically
interested in two types of statistical inference problems under SGMM:
• Clustering: (approximately) identify the cluster membership of each point, that is,

which of the k mixture components generates a given point;
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• Parameter estimation: estimate the parameters (e.g., means/centers) of the k com-
ponents, or the density of the entire mixture.

Standard approaches to these problems, such as k-means clustering, typically lead to
integer programming formulations that are non-convex and NP-hard to optimize [5, 30,
43]. Consequently, much work has been devoted to developing computationally tractable
algorithms for SGMM; examples include expectation maximization [19], Lloyd’s algorithm
[41], spectral methods [58], the method of moments [53], and many more. Among them,
the convex relaxation methods, including those based on linear programming (LP) and
semidefinite programming (SDP), have emerged as a promising approach for SGMM. This
approach has several attractive properties: (a) it is solvable in polynomial time, and does
not require a good initial solution to be provided; (b) it has the flexibility to incorporate
different quality metrics and additional constraints; (c) it is not restricted to specific forms
of SGMM (such as Gaussian distribution), and is robust against model misspecification
[55, 54, 52]; (d) it can provide a certificate for optimality [29].

Theoretical performance guarantees for convex relaxation methods have been investi-
gated in a body of both old and recent work. As will be discussed in greater details in the
related work section (Section 2), these existing results often come in one of two forms:
1. How well the (rounded) solution of a relaxation optimizes a particular objective func-

tion (e.g., the k-means or k-medians objective) compared to the original integer pro-
gram, as studied in classical work on approximation factors [13, 33, 54, 38];

2. When the solution of a relaxation exactly recovers the ground-truth clustering, a
phenomenon known as exact recovery and studied in a more recent line of work
[52, 8, 47, 29, 40].

In many applications, optimizing a particular objective function, and designing approxi-
mation algorithms for doing so, are often only a means to an end, whereas the ultimate
goal is to solve the two statistical inference problems above, both of which involve learning
the true underlying model that generates the observed data. Results on exact recovery are
more directly relevant to this goal. However, such results often require very stringent con-
ditions on the separation or signal-to-noise ratio (SNR) of the model. In practice, convex
relaxation solutions are rarely exact, even when the data are generated from the assumed
model. On the other hand, researchers have observed that the solutions, while not exact
or integer-valued, are often a good approximation to the desired solution that represents
the true model [47]. Such a phenomenon is not captured by the results on exact recovery.

In this paper, we aim to strengthen our understanding of the convex relaxation ap-
proach for clustering SGMM. In particular, we study the regime where solutions of convex
relaxations are not exact, and directly characterize the estimation errors of the solu-
tions—namely, their distance to desired (integer) solution corresponding to the true un-
derlying model.

1.1. Our Contributions For a class of SDP relaxations for SGMM, our results
reveal a perhaps surprising property thereof: while the SDP solutions are not integral in
general, their estimation errors can be controlled by that of the solutions of an idealized
integer program (IP), in which one tries to estimate cluster memberships when an oracle
reveals the true centers of the SGMM. We refer to the latter program as the Oracle
Integer Program. In particular, we show that, in a precise sense to be formalized later,
the estimation errors of the SDP and Oracle IP satisfy the relationship (Theorem 1)

error(SDP). error(IP) (1)

under certain conditions. We refer to this property as hidden integrality of the SDP re-
laxation; its proof in fact involves showing that certain intermediate linear optimization
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problems are integral. We then further upper bound the error of the Oracle IP and show
that it decays exponentially in terms of the SNR (Theorem 2):

error(IP). exp
[
−Ω

(
SNR2

)]
, (2)

where the SNR is defined as the ratio of the center separation and the standard deviation
of the mixture components. Combining these two results immediately leads to explicit
bounds on the error of the SDP solutions (Corollary 1).

1.1.1. Robustness under Semi-random Model Our results can be generalized
to a so-called semi-random version of SGMM. In this setting, an adversary is allowed to
modify the data points generated from SGMM in an arbitrary and potentially adversarial
way (subject to certain monotonicity constraints). This semi-random setting captures
unpredictable deviations from the nominal SGMM—which is common in real data—and
it is well recognized to be much more challenging than the original, purely random model.
In fact, many existing algorithms provably fail in the semi-random setting [36, 10].

We show that SDP relaxation has an inherent robustness property under the semi-
random model. In particular, we establish the following error bounds:

error(SDP). error(IP) + ε and error(IP). exp
[
−Ω

(
SNR2

)]
, (3)

where ε denotes the additional error induced by the adversary; see Theorems 4 and 5 for
the precise statement of this result and the expression for ε. In certain regimes, the error
ε is dominated by exp[−Ω(SNR2)], the error of the Oracle IP, hence the error of the SDP
is (order-wise) unaffected under the semi-random model. In other regimes, the additional
error ε can be shown to be fundamentally unavoidable. Note that the adversary only
affects the error of the SDP relative to the Oracle IP, but not the error of the Oracle IP
itself.

1.1.2. Consequences When the SNR is sufficiently large, the above results imply
that the SDP solutions are integral and exact up to numerical errors, hence recovering
existing results on exact recovery as a special case. If the SNR is low and the SDP solutions
are fractional, one may obtain an explicit clustering from the SDP solutions via a simple,
optimization-free rounding procedure. We show that the error of this explicit clustering
(in terms of the fraction of points misclassified) is also bounded by the error of the Oracle
IP and hence also decays exponentially in the SNR (Theorem 3). As a consequence, we
obtain sufficient conditions for misclassifying at most δ fraction of the points for any given
δ ∈ [0,1].

Significantly, our results often match and sometimes improve upon state-of-the-art per-
formance guarantees in settings for which known results exist, and lead to new guarantees
in other less studied settings of SGMM. For instance, a corollary of our results shows
that under the Stochastic Ball Model, SDP achieves non-trivial (sometimes exact) cluster
recovery even when the center separation ∆ is as small as O(

√
1/d), where d is the dimen-

sion (Section 4.4). For high dimensional settings, this bound goes beyond existing results
that only consider exact recovery and require ∆ = Ω(1). We discuss the implications of
our results in details and compare with existing ones after we state the main theorems.

1.1.3. The “Global-to-Local” Phenomenon Our results above are obtained in
two steps: (a) relating the SDP to the Oracle IP, and (b) bounding the Oracle IP errors.
This two-step approach allows us to decouple the two types of mechanisms that determine
the performance of the SDP relaxation:
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• On the one hand, step (a) is done by leveraging the structures of the entire dataset
with n points. In particular, certain global spectral properties of the data ensure that
the error of the SDP is non-trivially bounded (in terms of the Oracle IP error). This
step is relatively insensitive to the specific structure of the SGMM.

• On the other hand, as shall become clear in the sequel, the Oracle IP essentially
reduces to n independent clustering problems, one for each data point. Knowing the
true cluster centers, the Oracle IP is optimal in terms of the clustering errors. No other
algorithms (including SDP relaxations) can achieve a strictly better error, due to the
inherent randomness of individual data points. Step (b) above hence captures the local
mechanism that determines fine-grained error rates as a function of the SNR.

Our analysis establishes the hidden integrality property as the bridge between these two
mechanisms. Our result hence highlights the power of the SDP approach: it is able to
capture the global and local structures of the data simultaneously, without requiring a
good initial solution or sophisticated pre-processing/post-processing steps.

In the context of the semi-random model, the error bound (3) shows that the effect of the
adversary is restricted to the global regime in step (a) and does not play a role in the local
step (b). We emphasize that clustering under semi-random models is a highly challenging
problem by its own, and an entire line of work is devoted to this problem [16, 25, 36, 10, 44].
Our two-step, hidden integrality-based approach allows for a streamlined analysis of this
setting, as it isolates precisely how the adversary can impact the clustering error of the
SDP.

1.2. Paper Organization The remainder of the paper is organized as follows. In
Section 2, we discuss related work on SGMM and its special cases. In Section 3, we describe
the problem setup for SGMM and the SDP relaxation approach. In Section 4, we present
our main theoretical results, discuss their consequences and compare with existing results.
We prove our main theorems in Sections 5 and 6. The paper is concluded with a discussion
of future directions in Section 7. The proofs of some technical results are deferred to the
Appendix.

2. Related Work The study of SGMM has a long history and is still an active
area of research. Here we review the most relevant work on algorithms for SGMM with
theoretical performance guarantees.

The work [17] is among the first to obtain performance guarantees for GMM. Sub-
sequent work has developed a variety of algorithms including spectral methods, which
achieved improved guarantees. These results establish sufficient conditions, in terms of
the separation between the cluster centers (or equivalently the SNR), for achieving (near)-
exact recovery of the cluster memberships. One of the best results is obtained in [58]

and requires SNR & (k lnn)
1/4

, which is later extended in a long line of work including
[4, 37, 9]. We compare these results with ours in Section 4.

Expectation-Maximization (EM) and the closely related Lloyd’s algorithm are two of
the most popular methods for GMM. Despite their empirical effectiveness, non-asymptotic
statistical guarantees are established only recently; see the work in [11, 34, 61, 42]. All
these results assume that one has access to a sufficiently good initial solution, typically
obtained by spectral methods. Although some recent work shows that EM converges
from random initialization under certain restricted settings of GMM [18, 60], for general
settings EM is known to suffer from the existence of bad local minima [31]. Robustness
of the Lloyd’s algorithm under a semi-random GMM is studied in the work [10].

Most relevant to us is work on convex relaxation methods for GMM and k-
means/median problems. A class of SDP relaxations, often called the Peng-Wei relax-
ations, are developed in the seminal work in [55, 54]. Thanks to convexity, these methods



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 5

do not suffer from the issues of bad local minima faced by EM/Lloyd’s, though it is far
from trivial how to round their (typically fractional) solutions into a valid clustering so-
lution with provable quality guarantees. In this direction, the work in [8, 29, 40] establish
sufficient conditions for LP/SDP relaxations to achieve exact recovery, and the work in
[47] proves approximate recovery error bounds for SDP. These results are directly com-
parable to ours. We discuss them in more details in Section 4 after presenting our main
theorems.

In the last decade, the related Stochastic Block Model (SBM) has also witnessed signifi-
cant progress on understanding convex relaxation methods; see [1, 39] for a comprehensive
survey. In particular, much work has been done on exact recovery guarantees for SDP
relaxations of SBM [36, 6, 15, 7]. A more recent line of work establishes approximate recov-
ery guarantees of the SDPs [27, 50] in the low-SNR regime. Particularly relevant to us is
the work in [24, 22, 23], who also establish exponentially decaying error bounds. Interest-
ingly, these results also highlight a so-called “local-to-global amplification” phenomenon
[1, 3, 2], which is related to what we discussed in Section 1.1.3. Despite the apparent sim-
ilarity, however, our results on SGMM require very different analytical techniques, due to
the fundamental difference between the geometric and probabilistic structures of SGMM
and SBM. Moreover, our results establish a general hidden integrality property of SDP
relaxations, which we believe holds more broadly beyond specific models like SBM and
SGMM.

3. Models and Algorithms In this section, we formally set up the clustering prob-
lem under SGMM and describe our SDP relaxation approach.

3.1. Notations Vectors and matrices are denoted by bold letters such as u and M.
For a vector u, we denote by ui its i-th entry. For a matrix M, we use Tr(M) to denote its
trace, Mij its (i, j)-th entry, diag (M) the vector of its diagonal entries, ‖M‖1 :=

∑
i,jMij

its entry-wise `1 norm, ‖M‖op its spectral norm (maximum singular value), Mi• its i-th
row and M•j its j-th column. We write M � 0 if M is symmetric positive semidefinite
(psd). The trace inner product between two matrices M and Q of the same dimension
is denoted by 〈M,Q〉 := Tr(M>Q). For a number a, M ≥ a means that Mij ≥ a for all
entries (i, j). We denote by 1m the all-one column vector of dimension m. For a positive
integer i, let [i] := {1,2, . . . , i}. For two non-negative sequences {ai} and {bi}, we write
ai . bi if there exists a universal constant C > 0 such that ai ≤ Cbi for all i, and write
ai � bi if ai . bi and bi . ai.

We recall that the sub-Gaussian norm of a random variable X is defined as

‖X‖ψ2
:= inf

{
t > 0 :E exp

(
X2/t2

)
≤ 2
}
,

and X is called sub-Gaussian if ‖X‖ψ2
<∞. Note that Gaussian and bounded random

variables are sub-Gaussian. Denote by Sm−1 the m-dimensional unit `2 sphere. A random
vector x∈Rm is sub-Gaussian if for all fixed vectors u∈Rm, the one dimensional marginal
〈x,u〉 is a sub-Gaussian random variable. The sub-Gaussian norm of x is defined as
‖x‖ψ2

:= supu∈Sm−1 ‖ 〈x,u〉 ‖ψ2
. With this notation, a random vector x∼N (0,Σ) from the

multivariate Gaussian distribution is sub-Gaussian with ‖x‖ψ2
= ‖Σ‖op.

3.2. Sub-Gaussian Mixture Model We focus on the Sub-Gaussian Mixture
Model (SGMM) with balanced clusters.
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Model 1 (Sub-Gaussian Mixture Model). Let µ1, . . . ,µk ∈ Rd be k unknown
cluster centers. We observe n random points in Rd of the form

hi :=µσ∗(i) + gi, i∈ [n]

where σ∗(i) ∈ [k] is the unknown cluster label of the i-th point, and {gi} are zero-mean
independent sub-Gaussian random vectors with sub-Gaussian norms ‖gi‖ψ2

≤ τ .1 We as-
sume that the ground-truth clusters have equal sizes, that is, |{i∈ [n] : σ∗(i) = a}|= n

k
for

each a∈ [k].

Let σ∗ ∈ [k]n be the vector of the true cluster labels; that is, its i-th coordinate is
σ∗i ≡ σ∗(i) (we use these two notations interchangeably in the paper.) The task is to
estimate the underlying clustering σ∗ given the observed data {hi : i∈ [n]}.

Note that in Model 1 we do not require {gi} to be isotropic or identically distributed.
This model includes several important mixture models as special cases:
• Spherical GMM, where {gi} are Gaussian with the covariance matrix τ 2I.
• More general GMM where the k clusters have non-identical and non-diagonal covari-

ance matrices {Σa}a∈[k].
• The Stochastic Ball Model [52], where {gi} are bounded and rotationally invariant

random variables; we discuss this model in details in Section 4.4
Throughout the paper we assume n≥ 4 and k≥ 2 to avoid degeneracy. Denote by ∆ab :=
‖µa−µb‖2 the separation of the centers of clusters a and b, and ∆ := mina6=b∈[k] ‖µa−µb‖2
the minimum separation of the centers. Playing a crucial role in our results is the quantity

s :=
∆

τ
, (4)

which is a measure of the signal-to-noise ratio of the SGMM.

3.3. Semidefinite Programming Relaxation We now describe our SDP relax-
ation for clustering SGMM. To begin, note that each candidate clustering of n points into
k clusters can be represented by an assignment matrix F∈ {0,1}n×k with

Fia =

{
1 if point i is assigned to cluster a,

0 otherwise.

Let F :=
{
F∈ {0,1}n×k : F1k = 1n

}
be the set of all possible assignment matrices. To

cluster the points {hi}, a natural approach is to find an assignment F that minimizes
the total within-cluster pairwise distance. Arranging the pairwise squared distance as a
matrix A∈Rn×n with

Aij = ‖hi−hj‖22, for each (i, j)∈ [n]× [n],

we can express the above objective as∑
i,j

Aij I{points i and j are assigned to the same cluster}=
∑
i,j

Aij(FF>)ij =
〈
FF>,A

〉
.

Therefore, the approach described above can be formulated as the integer program (5)
below:

1 More explicitly, the sub-Gaussian assumption is equivalent to E exp
(
〈gi,v〉

)
≤ exp

(
τ2‖v‖22/2

)
,∀v ∈Rd.
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min
F

〈
FF>,A

〉
s.t. F∈F ,

1>nF =
n

k
1>k .

(5)

min
Y
〈Y,A〉

s.t. Y1n =
n

k
1n,

diag (Y) = 1n,
Y� 0,

Y ∈ {0,1}n×n , rank(Y) = k.

(6)

In program (5) the additional constraint 1>nF = n
k
1>k enforces that all k clusters have

the same size n
k
, as we are working with SGMM whose true clusters are balanced. Under

this balanced model, it is not hard to see that the program (5) is equivalent to the classical
k-means formulation. With a change of variable Y = FF>, we may lift the program (5)
to the space of n×n matrices and obtain the equivalent formulation (6).

Both programs (5) and (6) involve non-convex combinatorial constraints and are com-
putationally hard to solve. To obtain a tractable formulation, we drop the non-convex rank
constraint in (6) and replace the integer constraint with the box constraint 0≤Y≤ 1 (the
constraint Y≤ 1 is in fact redundant). Doing so leads to the following SDP relaxation:

Ŷ ∈ arg min
Y∈Rn×n

〈Y,A〉

s.t. Y1n =
n

k
1n,

diag (Y) = 1n,
Y� 0,
Y≥ 0.

(7)

Let F∗ ∈F be the assignment matrix associated with the true underlying clustering of
the SGMM; that is, F ∗ja = I{σ∗(j) = a} for each j ∈ [n] and a ∈ [k]. The performance of
the SDP is measured against the true cluster matrix Y∗ := F∗(F∗)> ∈ {0,1}n×n, which
has the explicit form

Y ∗ij =

{
1 if σ∗(i) = σ∗(j), i.e., points i and j are in the same cluster,

0 if σ∗(i) 6= σ∗(j), i.e., points i and j are in different clusters,

with the convention that Y ∗ii = 1,∀i∈ [n]. The matrix Y∗ hence encodes the ground-truth
clustering labels σ∗. If we order the rows and columns of Y∗ according to σ∗, then Y∗

takes the block-diagonal form

Y∗ =

Jn/k
. . .

Jn/k

 , (8)

where Jn/k denotes the n
k
-by-n

k
all-one matrix. From Equation (8) it is clear that Y∗ is

feasible to the SDP (7). We view an optimal solution Ŷ to (7) as an estimate of the true
clustering Y∗. Our goal is to characterize the estimation error ‖Ŷ −Y∗‖1 in terms of
the number of points n, the number of clusters k, the data dimension d and the SNR s
defined in (4). Note that here we measure the error of Ŷ in the `1 metric. As we shall see
later, this metric is directly related to the clustering error, i.e., the fraction of misclassified
points.

We remark that the SDP (7) is somewhat different from the more classical SDP relax-
ation of k-means proposed in [54], as the latter involves normalizing the variable by the
cluster sizes. The SDP (7) has been studied under SGMM in [40], and is closely related
to the SDP formulation considered in [7] for the Stochastic Block Model.
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3.4. Explicit Clustering In general the SDP solution Ŷ is not in the block-
diagonal form of (8) and hence does not directly correspond to an explicit clustering.
Nevertheless, we may easily extract cluster memberships from Ŷ using a simple greedy
procedure that runs in time linear in the size of Ŷ.

The procedure consists of two steps. In the first step, as given in Algorithm 1, we treat
the rows of Ŷ as points in Rn, and consider the `1 balls centered at each row with a certain
radius. The ball that contains the most rows is identified, and the indices of the rows in
this ball are output as a set. The process continues iteratively with the remaining rows
of Ŷ. This procedure outputs a collection of index sets whose sizes are no larger than n

k

but may not equal to each other.

Algorithm 1 Initial Grouping

Input: data matrix Ŷ ∈Rn×n, number of points n, target number of clusters k.
1. Initialize B0←∅, t← 0, V ← [n].
2. While V \

⋃t

i=0Bi 6= ∅:
(a) Set t← t+ 1 and Vt← V \

⋃t−1

i=0Bi.

(b) For each u∈ Vt, set B(u)←
{
w ∈ Vt : ‖Ŷu•− Ŷw•‖1 ≤ n

4k

}
.

(c) Set Bt← arg maxB(u):u∈Vt |B(u)|.
(d) If |Bt|> n

k
, then remove arbitrary elements in Bt so that |Bt|= n

k

Output: sets {Bt}t≥1.

In the second step, we convert the sets output above into k equal-size clusters. This
is done by identifying the k largest sets among them, and distributing points in the
remaining sets across the chosen k sets so that each of these sets contains exactly n

k
points.

Combining these two steps gives our final algorithm, cluster, for extracting an explicit
clustering from the SDP solution Ŷ. This procedure is given as Algorithm 2.

Algorithm 2 cluster

Input: data matrix Ŷ ∈Rn×n, number of points n, target number of clusters k.
1. Run Algorithm 1 with Ŷ, n and k as input and obtain the sets {Bt}t≥1.
2. Choose the k largest sets among {Bt}t≥1; call the chosen sets {Ut}t∈[k].
3. Arbitrarily distribute elements of {Bt}t≥1 \{Ut}t∈[k] among {Ut}t∈[k] so that each Ut

has exactly n
k

elements.
4. For each i∈ [n]: set σ̂i← t, where t is the unique index in [k] such that Ut 3 i.
Output: clustering assignment σ̂ ∈ [k]n.

The output of the above procedure

σ̂ := cluster(Ŷ, n, k)

is a vector in [k]n such that point i is assigned to the σ̂i-th cluster. We are interested in
controlling the clustering error of σ̂ relative to the ground-truth clustering σ∗. Let Sk
denote the symmetric group consisting of all permutations of [k]. The clustering error is
defined by

err(σ̂,σ∗) := min
π∈Sk

1

n
|{i∈ [n] : σ̂i 6= π(σ∗i )}| , (9)
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which is the proportion of points that are misclassified, modulo permutation of the cluster
labels.

Variants of the above cluster procedure have been considered before in [45, 47]. Our
results in the next section establish that the clustering error err(σ̂,σ∗) is always upper
bounded by the `1 error ‖Ŷ−Y∗‖1 of the SDP solution.

4. Main Results In this section, we establish the connection between the estimation
error of the SDP relaxation (7) and that of what we call the Oracle Integer Program.
Using this connection, we derive explicit bounds on the error of the SDP, and explore the
implications of these results under different settings.

4.1. Oracle Integer Program Consider an idealized setting where an oracle reveals
the true cluster centers {µa}a∈[k]. Moreover, we are given the data points

{
h̄i
}
i∈[n]

, where

h̄i := µσ∗(i) + (2κ)−1gi with κ := 1/8 and {gi} are the same realizations of the random
variables in the original SGMM. In other words,

{
h̄i
}

are the same as the original data
points

{
hi
}

, except that the sub-Gaussian norm of the noise {gi} is scaled by (2κ)−1 = 4.
To cluster the points

{
h̄i
}

in this setting, a natural approach is to simply assign each
point to the closest cluster center, so that the total distance of the points to their as-
signed centers is minimized. Representing each candidate clustering assignment using an
assignment matrix F∈F as before, we see that the quantity

η(F) :=
∑
j∈[n]

∑
a∈[k]

‖h̄j −µa‖22Fja (10)

is exactly the sum of the distances of each point to its assigned center. The idealized
clustering procedure above thus amounts to solving the following Oracle Integer Program
(IP):

min
F
η(F), s.t. F∈F . (11)

Note that this program is separable across the rows of F and can be reduced to n inde-
pendent optimization problems, one for each data point h̄i.

A priori, there is no obvious connection between the estimation error of a solution to
the Oracle IP and that of a solution to the SDP. In particular, the SDP is oblivious to
the true centers and in general has fractional optimal solutions. Nevertheless, we are able
to establish a formal relationship between these two programs, as is done below.

4.2. Errors of SDP Relaxation and Oracle IP We begin by making the following
observations. Recall that F∗ ∈F is the true assignment matrix as defined in Section 3.3.
For each assignment matrix F∈F , it is easy to see that the quantity 1

2
‖F−F∗‖1 equals

the number of points that are assigned differently in F and F∗. Therefore, this quantity
measures the clustering error of F. On the other hand, for a solution F∈F to potentially
be an optimal solution of the Oracle IP (11), it must satisfy η(F) ≤ η(F∗) since F∗ is
feasible to (11). Consequently, the quantity

max

{
1

2
‖F−F∗‖1 : F∈F , η(F)≤ η(F∗)

}
(12)

represents the worst-case error of a potentially optimal solution to the Oracle IP.
The quantity in (12) in fact gives an upper bound of the error of the optimal solution

Ŷ to the SDP relaxation, as is shown in the theorem below.
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Theorem 1 (IP bounds SDP). Under Model 1, there exist some universal con-
stants Cs > 0,C ≥ 1 for which the following holds. If the SNR satisfies

s2 ≥Cs

(√
kd

n
logn+

kd

n
+ k

)
, (13)

then we have

‖Ŷ−Y∗‖1
‖Y∗‖1

≤ 2 ·max

{
‖F−F∗‖1
‖F∗‖1

: η(F)≤ η(F∗),F∈F
}

with probability at least 1−n−C − 2e−n.

We prove this theorem in Section 5. The proof has two main steps: (i) showing that with
high probability the SDP error is upper bounded by the objective value of a linear pro-
gram (LP), and (ii) showing that the LP admits an integral optimal solution and relating
this solution to the Oracle IP error in (12). We note that the key step (ii), which estab-
lishes a hidden integrality property, is completely deterministic. The SNR condition (13)
is required only in the probabilistic step (i). As we elaborate in Sections 4.2.1–4.4, our
SNR condition holds even in the regime where exact recovery is impossible, and is often
milder than existing results on convex relaxations.

To obtain an explicit bound on the SDP error, it suffices to upper bound the error (12) of
the Oracle IP. This turns out to be a relatively easy task compared to directly controlling
the error of the SDP: the Oracle IP has only finitely many feasible solutions, allowing one
to use a union-bound-like argument. Our analysis establishes that the error of the Oracle
IP decays exponentially in the SNR, as summarized in the theorem below.

Theorem 2 (Exponential rate of IP). Under Model 1, there exist universal con-
stants Cs,Cg,Ce > 0 for which the following holds. If s2 ≥Csk, then we have

max

{
‖F−F∗‖1
‖F∗‖1

: η(F)≤ η(F∗),F∈F
}
≤Cg exp

[
− s

2

Ce

]
with probability at least 1− 3

2
n−1.

The proof is given in Section 6. Combining Theorems 1 and 2, we immediately deduce
that the SDP (7) also achieves an exponentially decaying error rate.

Corollary 1 (Exponential rate of SDP). Under Model 1 and the SNR condi-
tion (13), there exist universal constants Cm,Ce > 0 such that

‖Ŷ−Y∗‖1
‖Y∗‖1

≤Cm exp

[
− s

2

Ce

]
with probability at least 1− 2n−1.

Our last theorem concerns the explicit clustering σ̂ extracted from Ŷ using the cluster

procedure described in Section 3.4. In particular, we show that the clustering error of σ̂ is
upper bounded by the `1 error of Ŷ; consequently, σ̂ inherits the exponential error bound
of Ŷ.
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Theorem 3 (Clustering error). The clustering σ̂ extracted from Ŷ satisfies the
deterministic inequality

err(σ̂,σ∗).
‖Ŷ−Y∗‖1
‖Y∗‖1

.

Consequently, under Model 1 and the SNR condition (13), there exist universal constants
Cm,Ce > 0 such that

err (σ̂,σ∗)≤Cm exp

[
− s

2

Ce

]
with probability at least 1− 2n−1.

The proof is given in Appendix A. Note that the above clustering error bound is
information-theoretically optimal (up to a constant in the exponent) in view of the mini-
max results in [42].

We would like to mention that the SNR condition (13) for Theorems 1–3 and Corollary 1
can be improved to

s2 ≥Cs

(√
kd

n
logn+ k

√
d

n
+ k

)
,

by adopting the proof strategies in the conference version of this paper [21]. We adopt
the current proof as it allows us to streamline the analysis for both SGMM (Model 1) and
the semi-random SGMM (Model 2 to be introduced below).

4.2.1. Consequences We explore the consequences of our error bounds in Corol-
lary 1 and Theorem 3.

Exact recovery: If the SNR s satisfies the condition (13) and moreover s2 & logn,
then Theorem 3 guarantees that err (σ̂,σ∗)< 1

n
, which means that err (σ̂,σ∗) = 0 and

hence the true underlying clusters are recovered exactly. In fact, in this case Corollary 1
guarantees the SDP solution satisfies the bound ‖Ŷ −Y∗‖1 < 1

4
, so simply rounding Ŷ

element-wise produces the ground-truth cluster matrix Y∗. Note that the SNR conditions
above can be simplified to s2 & k+ logn when n& d.

Recovery with δ-error: Our results are applicable even in the regime with a lower
SNR, for which exact recovery of the clusters is impossible due to the overlap between
clusters. In this regime, Theorem 3 implies the following approximate recovery guarantees:
for any number δ ∈ (0,1), if s satisfies the condition (13) and s2 & log 1

δ
, then err (σ̂,σ∗)≤

δ and hence SDP correctly recovers the cluster memberships of at least (1− δ) fraction of
the points.

In Section 4.5 to follow we compare the above results with existing ones. As a passing
note, the above results on clustering error further imply error bounds on estimating the
cluster centers. We do not delve into the details and refer the readers to our conference
paper [21] for such a result.

4.3. Robustness under Semi-random Model In this section we extend the above
results to the so called semi-random setting, in which an omniscient adversary is allowed
to modify, in a coordinated way, the data generated from a probabilistic model. In the
literature [25, 44, 36, 48, 10], semi-random models have been recognized as a more flex-
ible model for non-ideal, real-world data, and are used as a benchmark for evaluating
algorithmic robustness. Algorithms that over-exploit the idealized structures in a purely
random model (e.g., independence, homogeneity or Gaussianity), often fail completely in
the semi-random version of the model [25, 36, 48].

In the context of SGMM, we consider the following semi-random model proposed in [10].
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Model 2 (Semi-random Sub-Gaussian Mixture Model). Let {hi} be points
generated from Model 1. An adversary can arbitrarily move each point hi towards its
cluster center µσ∗(i) to produce a new point h̃i; that is

h̃i =µσ∗(i) + g̃i, where g̃i = αigi for some αi∈ [0,1].

Here, {αi} are chosen arbitrarily from [0,1] and may be correlated with {gi} and with each
other.

Our goal is to estimate the true clustering σ∗ using the SDP (7) with the modified
data {h̃i} as the input. Before proceeding, we make two remarks on the above model.
(i) Although the adversary shrinks the noise {gi}, it does not necessarily make the clus-
tering problem easier, as the adversary can calibrate its output to create spurious local
structures in the data. (ii) The adversary must move the original point hi in the direction
of gi = hi − µσ∗(i). If the adversary were allowed to move in other directions (without
increasing the distance ‖hi −µσ∗(i)‖2), then the clustering structure may be completely

lost, since most points h̃i may become closer to a different cluster center than to its own
center µσ∗(i). See [10, Section 1] for a detailed discussion of these two points.

Under Model 2, we consider the same Oracle IP (11) but with {µσ∗(j) + 8g̃j} (that is,

{h̃i} with variance augmented by 8) as the input. That is, the objective function η therein
is replaced by

η̃(F) :=
∑
j∈[n]

∑
a∈[k]

‖
(
µσ∗(j) + 8g̃j

)
−µa‖22Fja.

The following theorem is an analogue of Theorem 1 and bounds the SDP error in terms
of the Oracle IP error.

Theorem 4 (IP bounds SDP, semi-random). Under Model 2, there exist some
universal constants Cs,C > 0 for which the following holds. If the SNR satisfies

s2 ≥Csk, (14)

and n& k(d+ logn), then with probability at least 1− 4n−1− 2−d, we have

‖Ŷ−Y∗‖1
‖Y∗‖1

≤ 2 ·max

{
‖F−F∗‖1
‖F∗‖1

: η̃(F)≤ η̃(F∗),F∈F
}

+ ε(n,k, d, s) (15)

where

ε(n,k, d, s) := Õ

(
kd

ns4
+ e−s

4/C

)
and Õ(·) hides a multiplicative factor of log(d+ logn).

The proof is given in Appendix B and closely follows that of Theorem 1. We see that
the bound is similar to non-semi-random setting except for the additional, polynomial
error term ε(n,k, d, s). This term captures the “global” effect (cf. Section 1.1.3) of the
adversary, who can make some points from two different clusters closer to each other and
thus increase the clustering error.

The next theorem shows that the Oracle IP obeys the same error bound as in Theorem 2.
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Theorem 5 (Exponential rate of IP, semi-random). Under Model 2, there exist
universal constants Cs,Cg,Ce > 0 for which the following holds. If s2 ≥Csk, then we have

max

{
‖F−F∗‖1
‖F∗‖1

: η̃(F)≤ η̃(F∗),F∈F
}
≤Cg exp

[
− s

2

Ce

]
with probability at least 1− 3

2
n−1.

The proof is provided in Section 6. Theorem 5 shows that the adversary has essentially
no “local effect” (cf. Section 1.1.3) and does not change the error of the Oracle IP. This
is intuitive: since the Oracle IP knows the true cluster centers and the adversary can only
move points towards their centers, the error of the Oracle IP can only improve or stay
the same.

Combining Theorems 4 and 5 gives the following explicit error bound for the SDP
relaxation.

Corollary 2 (Exponential rate of SDP, semi-random). Under Model 2, the
SNR condition (14) and the sample complexity condition n & k(d + logn), there exists
some universal constant Ce > 0 such that

err(σ̂,σ∗)
(i)

.
‖Ŷ−Y∗‖1
‖Y∗‖1

(ii)

. Õ

(
kd

ns4
+ e−s

2/Ce

)
(iii)

.

{
Õ
(
kd
ns4

)
, if s2 & log( n

kd
),

Õ
(
e−s

2/Ce

)
, otherwise,

with probability at least 1− 6n−1− 2−d.

Proof. The inequality (i) follows from part 1 of Theorem 3. The inequality (ii) holds
by combining Theorems 4 and 5 and noting that e−s

4/C ≤ e−s2/C as s≥ 1 by assumption.
The inequality (iii) holds since kd

ns4
≥ e−s2/Ce ⇐⇒ s2 ≥ c0 log( n

kd
) for a sufficiently large

constant c0 > 0. �
The result in Corollary 2 demonstrates a phase transition phenomenon for the semi-

random model. In the low-SNR regime, the error bound decays exponentially in the
SNR s and is the same as in the non-semi-random setting. As mentioned, such an error
is unavoidable even in standard SGMM [42]. In the high-SNR regime, the effect of the
adversary becomes dominant, in which case the error decays at a slower, polynomial rate.
Interestingly, a lower bound result is established in [10, Theorem 4.1], which shows that
any k-means based algorithm must incur this polynomial error. Therefore, we believe that
the bound in Corollary 2 is unimprovable. To the best of our knowledge, this is the first
phase transition result for semi-random SGMM for any algorithm.

4.3.1. Comparison The best result for Semi-random SGMM is given in [10]. They
analyze the Lloyd’s k-means algorithm and show that its output σ̂lloyd satisfies [10, The-
orem 3.1]:

err(σ̂lloyd,σ
∗) = Õ

(
kd

ns4

)
, if s2 &min{k, d} · logn.

Assuming k ≤ d, one sees that our result in Corollary 2 strictly generalizes theirs under
the setting of equal-sized clusters. In particular, in the high-SNR regime with s2 & logn,
both results provide the same polynomial error bound Õ

(
kd/(ns4)

)
. Our result further

applies to the low-SNR regime with s2 . logn, while theirs does not. In fact, it is not
clear whether the Lloyd’s algorithm can achieve the same robust error bound as the SDP
relaxation in this more challenging regime.

When k ≥ d, our result requires the SNR condition s2 & k whereas their result require
s2 & d logn, which are incomparable. We suspect that both conditions can be improved,
though we do not have a formal proof.
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4.4. Stochastic Ball Model In this section, we illustrate the power of our main
theorems by deriving several new results for the Stochastic Ball Model, formally described
below. This model was introduced in [52] and has recently attracted attention in the
computer science and mathematical programming communities [8, 29, 40].

Model 3 (Stochastic Ball Model). Under Model 1, we assume in addition that
each gi is sampled from a rotationally invariant distribution supported on the unit `2 ball
in Rd.

Under the above model, each data point hi = µσ∗(i) + gi is sampled from the unit ball
around its cluster center µσ∗(i). It is not hard to see that this model is a special case of
SGMM, with its sub-Gaussian norm given below:

Fact 1. Under Model 3, each gi has sub-Gaussian norm ‖gi‖ψ2
≤ τ =C

√
1
d

for some

universal constant C > 0.

For completeness we prove this standard fact in Appendix C.2. Specializing Corollary 1
and Theorem 3 to the Stochastic Ball Model, we obtain the following sufficient conditions
on the minimum center separation ∆ for exact and approximate recovery:

∆2 &

√
k

nd
logn+

k

n
+
k

d
+

{
logn
d
, for exact recovery,

log δ−1

d
, for recovery of (1− δ) fraction of the points.

The state-of-the-art results for Stochastic Ball Models are given in [8, 29, 40], which
establish that SDP achieves exact recovery when n is sufficiently large and ∆2 ≥ 4+θ(k, d)
for some non-negative function θ(·). Regardless of the values of k and d, these results all
require the separation to be at least a constant and thus the balls to be disjoint. In contrast,
our results above are applicable to a small-separation regime that is not covered by these
existing results. In particular, when n is large and k =O(1), our results guarantee that
SDP achieves approximate recovery when ∆2 & 1

d
, which can be arbitrarily smaller than a

constant when the dimension d grows. Moreover, the recovery is exact if ∆2 & logn
d

, which
can again be arbitrarily small as long as n does not grow exponentially fast (i.e., n= eo(d)).
Therefore, in the high dimensional setting, our results guarantee strong performance of
the SDP even when the centers are very close and the balls overlap with each other.

It may appear a bit counter-intuitive that exact/approximate recovery is achievable
when the separation is so small. Such a result is a manifestation of the geometry in high
dimensions: the relative volume of the intersection of two balls vanishes as the dimension
grows. As a passing note, the result in [40, Corollary 4.3] establishes a necessary condition

∆≥ 1 +
√

1 + 2
d+2

for exact recovery. Our result above does not contradict this condition,

as the latter allows n to grow arbitrarily fast, in which case with high probability some
points will land in the intersection.

4.5. Comparison with Existing Results In this section we compare our results
above with the ones in the literature on clustering SGMM. Our focus is on results that
provide explicit clustering error bounds in the regime where exact cluster recovery is
impossible.

4.5.1. Clustering Error Bounds The work of [47] considers the Peng-Wei SDP
relaxation introduced in [54]. An intermediate result of theirs, after appropriate rescaling,

establishes the polynomial error bound ‖Ŷ −Y∗‖2F . n2

s2
under the setting of balanced

clusters and s2 & k. In comparison, our exponential error bound ‖Ŷ−Y∗‖2F ≤ ‖Ŷ−Y∗‖1 .
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n2

k
e−s

2
is strictly better. The work in [42] proves an exponentially decaying error rate

similar to ours, but for a different algorithm (Lloyd’s algorithm). Their results require the
SNR condition s2� k2 + k3 d

n
and k3� n

logn
as n→∞. Our SNR condition in (13) has

milder dependency on k, though dependency on n and d are a bit more subtle. We do
note that under their more restricted SNR condition, their results provide tight constants
in the exponent of the error rate.

Several papers [26, 14, 51] appeared around or after the conference version [21] of this
manuscript was published. All these papers establish an exponential error bound of the
form err (σ̂,σ∗). exp[−s2/C] that is similar to ours, though the details differ. Restricting
to the spherical Gaussian mixture model with k= 2 component, the work [51] provides a
refinement of the above exponent error bound with a precise coefficient C. In particular,
they establish a sharp bound err (σ̂,σ∗)≤Φc[(1±o(1))r], where Φc is the complementary
cdf of the standard Gaussian distribution and r := s2/

√
s2 + d/n is a form of SNR. This

bound is achieved using an iterative algorithm that is different from our SDP approach.
The work [14] generalizes the Peng-Wei SDP relaxation to the non-Euclidean setting.
When specialized to the (Euclidean) SGMM, their error bound is essentially identical to
ours. The work [26] also considers the Peng-Wei SDP relaxation and allows for imbalanced
clusters. Their bound involves an alternative definition for the SNR s2

0 := min(s2, `s4R−1),
where R represents the effective rank of the mixture model.2 Since s0 ≤ s, their exponential
error bound decays no faster than ours in Corollary 1. On the other hand, their bound
holds under the SNR condition s2 & (1 +

√
R/n)k, which is weaker than ours when the

effective rank is low. In terms of the algorithm, they propose to extract explicit clustering
from SDP solutions using an approximate k-medoids algorithm. This algorithm itself
involves solving a linear program and is more complicated than our greedy extraction
procedure in Algorithm 2.

We note that none of the above work provides results for the semi-random model and
the Stochastic Ball Model, unlike what we do in Sections 4.3 and 4.4.

4.5.2. Conditions for Exact Recovery As discussed in Section 4.2.1, a corollary
of our results provides sufficient condition, in terms of the SNR s2, for exact recovery of
the cluster. While exact recovery is not our focus, we nevertheless summarize and compare
with several most representative results in Table 1. It can be seen that our result is com-
parable with, and sometimes better than, the other results in the table. Only the paper
[58] proves a strictly better SNR condition, which remains the best to date. Their result
is, however, only established for the special case of mixture of spherical Gaussians; in
fact, their analysis makes substantial use of the structure of this special case. In compar-
ison, our result is more general and applies to non-spherical and sub-Gaussian mixtures.
Their result also requires a higher sample complexity n = Ω(k2d3) as compared to ours
n= Ω(kd).

To conclude this section, we mention that there is a large body of work on estimating
the cluster centers of Gaussian mixture model, or estimating the density of the entire
mixture distribution. See, for example, the work in [20, 28, 32, 35, 49, 56]. Our work instead
focuses on the problem of clustering the data points. Results for these two problems are
not directly comparable in general. There exist settings in which center estimation can be
done while clustering is impossible; for example, when the cluster centers are identical.

2 Explicitly, R :=
maxa∈[k] ‖Σa‖2F
maxa∈[k] ‖Σa‖2op

, where Σa is the covariance matrix of the a-th cluster.
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Paper SNR Condition on s2 Algorithm

[58]
Ω
(√
k logn

)
for spherical Gaussian mixture

Spectral

[4] Ω(k logn+ k2) Spectral
[37] Ω(k2 ·polylog (n)) Spectral
[9] Ω(k ·polylog (n)) Spectral
[42] Ω(k2 + logn) Spectral + Lloyd’s

[40, 57, 14, 26] Ω(k+ logn) SDP
This paper Ω(k+ logn) SDP

Table 1. Summary of existing results on exact cluster recovery for GMM.

5. Proof of Theorem 1 In this section, we prove Theorem 1, which relates the
errors of SDP (7) and Oracle IP formulation (11). Some additional notations are used in
the proof and the rest of this paper. We define the shorthand γ := ‖Ŷ−Y∗‖1 for the `1
error of the SDP solution. For a matrix M, we write ‖M‖∞ := maxi,j |Mij| as its entry-wise
`∞ norm. We let I and J be the n× n identity matrix and all-one matrix, respectively.
For a real number x, dxe denotes its ceiling. We denote by C∗a := {i∈ [n] : σ∗(i) = a} the
set of indices of points in cluster a, and we define ` := |C∗a | = n

k
to be the cluster size.

Throughout the proof, we use i, j ∈ [n] to index the data points, and a, b ∈ [k] to index
the clusters. We sometimes omit the ranges of these variables, i.e., [n] and [k], to avoid
cluttered notation.

Our proof consists of three main steps:
• Step 1: Use optimality of Ŷ to derive a basic inequality satisfied by the error matrix

Ŷ−Y∗;
• Step 2: Relate the basic inequality to a linear program (LP) parameterized by the

SDP error γ := ‖Ŷ−Y∗‖1;
• Step 3: Show that the LP is integral and thereby bound γ by the error of the Oracle

IP.
Without loss of generality, assume that the SDP error γ > 0. For ease of understanding
the proof, it is convenient to think of the n data points as appropriately ordered and
hence Y∗ takes the block diagonal form as in (8), though the proof does not actually rely
on this ordering.

Step 1: basic inequality To streamline the proof, we first record several basic
structural properties of the error matrix Ŷ−Y∗ in the following proposition, whose proof
is given in Section 5.1.

Fact 2. Define the shorthand B := Ŷ−Y∗. We have
(a) (zero diagonal) ∀i∈ [n] :Bii = 0;

(b) (signs of diagonal and off-diagonal blocks) Bij ∈

{
[−1,0], if σ∗i = σ∗j ,

[0,1], otherwise;
(c) (zero row sum) ∀i∈ [n] :

∑
j:σ∗(j)6=σ∗(i)Bij =−

∑
j:σ∗(j)=σ∗(i)Bij;

(d) (zero block row sum) ∀a∈ [k] :
∑

i:σ∗(i)=a

∑
j:σ∗(j)6=aBij =−

∑
i:σ∗(i)=a

∑
j:σ∗(j)=aBij;

(e) (blockwise decomposition of SDP error) γ =
∑

i,j:σ∗(i) 6=σ∗(j)Bij −
∑

i,j:σ∗(i)=σ∗(j)Bij ;
(f) (diagonal and off-diagonal blocks equally divide SDP error) γ

2
=
∑

i,j:σ∗(i) 6=σ∗(j)Bij =
−
∑

i,j:σ∗(i)=σ∗(j)Bij.

We next decompose the input matrix of pairwise squared distances as

A = C + C>− 2HH>,
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where H ∈ Rn×d is the matrix whose i-th row is the data point hi, and C ∈ Rn×n is the
matrix where the entries in the i-th row are identical and equal to ‖hi‖22. By Fact 2(c),
we have 〈Ŷ−Y∗,C〉= 〈Ŷ−Y∗,C>〉= 0, which implies 〈Ŷ−Y∗,C + C>〉= 0.

Let G := H−EH be the centered version of H. We can compute

HH> = (G +EH) (G +EH)> = GG>+ G (EH)>+ (EH)G>+ (EH) (EH)>

and

EHH> =EGG>+ (EH) (EH)>.

Therefore, we have the expression

HH>−EHH> =
(
GG>−EGG>

)
+ G (EH)>+ (EH)G>.

Let U := 1√
`
F∗ so that it takes the form

Uia =
1√
`
F ∗ia =

1√
`
· I{σ∗(i) = a} .

Note that the columns of U are the left singular vectors of Y∗. For each matrix M∈Rn×n,
define the projection PT (M) := UU>M + MUU> −UU>MUU> and its orthogonal
complement PT⊥(M) := M−PT (M).

Now, recall that Ŷ is optimal and Y∗ is feasible to the SDP (7). Combining with the
above decomposition of A and H, we obtain the following basic inequality:

0≤−1

2

〈
Ŷ−Y∗,A

〉
=
〈
Ŷ−Y∗,HH>−EHH>

〉
+
〈
Ŷ−Y∗,EHH>

〉
=
〈
Ŷ−Y∗,GG>−EGG>+ G (EH)>+ (EH)G>

〉
+
〈
Ŷ−Y∗,EHH>

〉
(i)
=
〈
Ŷ−Y∗,GG>

〉
+
〈
Ŷ−Y∗,G (EH)>+ (EH)G>

〉
+
〈
Ŷ−Y∗, (EH) (EH)>

〉
=
〈
Ŷ−Y∗,PT

(
GG>

)〉
︸ ︷︷ ︸

S1

+
〈
Ŷ−Y∗,PT⊥

(
GG>

)〉
︸ ︷︷ ︸

S2

+2 ·
〈
Ŷ−Y∗,G (EH)>

〉
︸ ︷︷ ︸

S3

+
〈
Ŷ−Y∗, (EH) (EH)>

〉
︸ ︷︷ ︸

S4

, (16)

where in step (i) we use the identities
〈
Ŷ−Y∗,EGG>

〉
= 0 and

〈
Ŷ−Y∗,EHH>

〉
=〈

Ŷ−Y∗, (EH) (EH)>
〉

, which follow from Fact 2(a) and the fact that EGG> is a di-

agonal matrix. Here, Ŷ −Y∗ takes the role of the error matrix, and S1 and S2 are the
products of GG> with the error matrix projected to the column space of Y∗ and its or-
thogonal complement, respectively. The quantities S3 and S4 can be equivalently written
as S3 =

∑
i,j(Ŷ−Y∗)ij〈gi,µσ∗(j)〉 and S4 =

∑
i,j(Ŷ−Y∗)ij〈µσ∗(i),µσ∗(j)〉.

Step 2: from SDP to LP The following propositions provide high probability
bounds on the terms S1, S2 and S4 that appear on the RHS of the basic inequality (16).

Proposition 1. If s2 ≥ C
(√

kd
n

logn+
√

k
n

logn+ kd
n

)
for some universal constant

C > 0, then S1 ≤ 1
100

∆2γ with probability at least 1−n−8.
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Proposition 2. We have S2 ≤ γ
`
‖G‖2op. Moreover, if s2 ≥ Ck

(
d
n

+ 1
)

for some uni-
versal constant C > 0, then γ

`
‖G‖2op ≤ 1

100
∆2γ with probability at least 1− e−n/2.

Proposition 3. We have S4 = − 1
2

∑
a,b∈[k]:a6=b∆2

ab[
∑

i∈C∗a ,j∈C∗b
(Ŷ −Y∗)ij]. Further-

more, S4 ≤− 1
4
∆2γ.

We prove the above propositions in Sections 5.2, 5.3 and 5.4, respectively, using ap-
propriate concentration inequalities. The above bounds on S1, S2 and S4 together imply

that S1 +S2 ≤− 1
2
S4 with probability at least 1− (2n)

−C′ − 2e−n for some universal con-
stant C ′ > 0. Combining with the basic inequality (16), we obtain that with the same
probability, there holds

0≤ S3 +
1

4
S4. (17)

The rest of the proof is completely deterministic, in which we exploit the above inequal-
ity (17) and the structures of S3 and S4 while treating {gj} therein as fixed quantities.
For each j ∈ [n] and a∈ [k], define the variable

βja :=
〈
µa−µσ∗(j),gj

〉
−κ∆2

σ∗(j),a, (18)

where we recall that κ := 1/8. It is not hard to show that the quantity S3 + 1
4
S4 can be

expressed a sum of {βja} weighted by entries of the error matrix Ŷ −Y∗. This is the
content of the next lemma, whose proof is given in Section 5.5.

Lemma 1. We have that

1

`

(
S3 +

1

4
S4

)
=
∑
j

∑
a6=σ∗(j)

βja

1

`

∑
i∈C∗a

(
Ŷ−Y∗

)
ji

 . (19)

Note that the RHS of Equation (19) is linear in the quantities X̂ja := 1
`

∑
i∈C∗a

(
Ŷ −

Y∗
)
ji
, (j, a) ∈ [n] × [k]. With this observation in mind, we proceed to control the RHS

of (19) with a linear program (LP). In particular, consider the following LP parameterized
by a number R ∈ [0, n]:

V (R) :=



max
X

∑
j

∑
a 6=σ∗(j)

βjaXja

s.t. 0≤Xja ≤ 1, ∀j ∈ [n] , a 6= σ∗(j)∑
a6=σ∗(j)

Xja ≤ 1, ∀j ∈ [n]∑
j

∑
a6=σ∗(j)

Xja =R,


. (20)

Note that this LP is always feasible. Now, Facts 2(b) and 2(f) imply that

γ

2
=−

∑
i,j:σ∗(i)=σ∗(j)

(
Ŷ−Y∗

)
ij
∈ (0, n`]

and thus

∑
j∈[n]

∑
a6=σ∗(j)

1

`

∑
i∈C∗a

(
Ŷ−Y∗

)
ji

=
1

`

∑
i,j:σ∗(i)6=σ∗(j)

(
Ŷ−Y∗

)
ij

=
γ

2`
∈ (0, n].
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Together with Facts 2(b) and 2(c), we conclude that the variables X̂ja := 1
`

∑
i∈C∗a

(
Ŷ−

Y∗
)
ji
, (j, a) ∈ [n]× [k] are feasible to the LP (20) with R= γ

2`
, hence the RHS of (19) is

upper bounded by V
(
γ
2`

)
. Combining with Equation (17), we obtain the inequality

0≤ 1

`

(
S3 +

1

4
S4

)
≤ V

( γ
2`

)
, (21)

Step 3: from LP to Oracle IP The inequality (21) immediately implies a bound on
the SDP error: γ

2`
≤max{R ∈ (0, n] : V (R)≥ 0}. It is not hard to see that the last RHS is it-

self an LP. In fact, up to a factor of 2, we can restrict to integer values for the variableR. In-
deed, inspecting the LP (20) we see that it satisfies V

(
γ
2`

)
≤max

{
V
(⌈

γ
2`

⌉)
, V
(⌈

γ
2`

⌉
− 1
)}
.

Combining with Equation (21), we obtain the bound

γ

2`
≤
⌈ γ

2`

⌉
≤max{R ∈ {1,2, . . . , n} : V (R)∨V (R− 1)≥ 0}
≤ 1 + max{R ∈ {1,2, . . . , n} : V (R)≥ 0}
≤ 2max{R ∈ {1,2, . . . , n} : V (R)≥ 0}
= 2max{R ∈ {0,1, . . . , n} : V (R)≥ 0} . (22)

As the next and crucial step, we observe that for each integer R ∈ {0,1, . . . , n}, the
LP (20) defining V (R) is in fact integral, that is, it has an optimal solution {Xja} satisfying
Xja ∈ {0,1},∀(j, a)∈ [n]× [k]. Therefore, the value of V (R) is unchanged if we replace the
constraint 0≤Xja ≤ 1 in the LP (20) with the integer constraint Xja ∈ {0,1}. With this
replacement, we can expand the RHS of the bound (22) into a single IP:

max{R ∈ {0,1, . . . , n} : V (R)≥ 0}

=



max
R,X

R

s.t.R ∈ {0,1, . . . , n}∑
j

∑
a 6=σ∗(j)

βjaXja ≥ 0

Xja ∈ {0,1}, ∀j, a 6= σ∗(j)∑
a6=σ∗(j)

Xja ≤ 1, ∀j∑
j

∑
a 6=σ∗(j)

Xja =R,


=



max
X

∑
j

∑
a 6=σ∗(j)

Xja

s.t.
∑
j

∑
a 6=σ∗(j)

βjaXja ≥ 0

Xja ∈ {0,1}, ∀j, a 6= σ∗(j)∑
a 6=σ∗(j)

Xja ≤ 1, ∀j


=: IP1.

(23)

Note that the above argument is what underlies the hidden integrality property of the
SDP (7): even though the solution of the SDP is not integral, the error of the solution
can be bounded by an LP that is integral.

As the last step, we show that the IP1 in (23) above is in fact equivalent to the Oracle
IP error as defined in Equation (12). In particular, recalling that η(F) and F are the
objective function and feasible set of the Oracle IP, we have the following identity:

Lemma 2. We have that

IP1 = max

{
1

2
‖F−F∗‖1 : η(F)≤ η(F∗),F∈F

}
.

We prove this lemma in Section 5.6 by a careful change-of-variable argument. Combining
Equations (22), (23) and Lemma 2, we obtain that

γ ≤ 4` · IP1 = 2` ·max{‖F−F∗‖1 : η(F)≤ η(F∗),F∈F} .

Dividing both sides by ‖Y∗‖1 = n`= ‖F∗‖1` proves Theorem 1.
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5.1. Proof of Fact 2 Fact 2(a) follows from the fact that Ŷ obeys the diagonal
constraint in the SDP (7).

Fact 2(b) follows from the fact that Ŷ is feasible to the SDP (7) and hence satisfies
Ŷij ∈ [−1,1].

Fact 2(c) follows from the fact that both Ŷ and Y∗ obey the row-sum constraint of the
SDP (7).

Fact 2(d) follows from summing over {i : σ∗(i) = a} for both sides of the equation in
Fact 2(c).

Fact 2(e) follows from Fact 2(b) and the definition of γ.
Fact 2(f) follows from Facts 2(d) and 2(e).

5.2. Proof of Proposition 1 To bound S1, we begin with the decomposition

S1 =
〈
Ŷ−Y∗,UU>

(
GG>

)〉
+
〈
Ŷ−Y∗,

(
GG>

)
UU>

〉
−
〈
Ŷ−Y∗,UU>

(
GG>

)
UU>

〉
≤ 2 ·

∣∣∣〈Ŷ−Y∗,UU>
(
GG>

)〉∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣〈Ŷ−Y∗,UU>

(
GG>

)
UU>

〉∣∣∣︸ ︷︷ ︸
T2

.

By the generalized Holder’s inequality, we have the bounds

T1 ≤ γ · ‖UU>
(
GG>

)
‖∞

and

T2 =
∣∣∣〈Ŷ−Y∗,UU>

(
GG>

)
UU>

〉∣∣∣
=
∣∣∣〈(Ŷ−Y∗

)
UU>,UU>

(
GG>

)〉∣∣∣
≤ γ · ‖UU>

(
GG>

)
‖∞,

where the last inequality holds since the definition U = 1√
`
F∗ implies that UU> =

1
`
Y∗, which further leads to ‖

(
Ŷ−Y∗

)
UU>‖1 ≤ ‖Ŷ−Y∗‖1 = γ. Combining the above

bounds, we obtain that

S1 ≤ 3γ · ‖UU>
(
GG>

)
‖∞.

Note that there are m = nk distinct random variables in UU>
(
GG>

)
and let

us call them X1, . . . ,Xm. For each i ∈ [m], one can see that Xi takes the form〈
gu(i),

1
|Mi|

∑
j∈Mi

gj

〉
for some index u(i) ∈ [n] and some set Mi ⊂ [n] with cardinality

|Mi|= `. Applying the concentration inequality in Lemma 12 with M=Mi, we obtain
that for a fixed i∈ [m], with probability at least 1−n−10 there holds

Xi ≤Cτ 2

(√
d logn

`
+

logn√
`

+
d

`

)

for some universal constant C > 0. Applying a union bound gives that

S1 ≤ 3Cγτ 2

(√
kd logn

n
+

√
k

n
logn+

kd

n

)

with probability at least 1−n−8. The result follows from the condition of the proposition.
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5.3. Proof of Proposition 2 In this section we control the term S2. Since the
matrix PT⊥(Ŷ−Y∗) =PT⊥(Ŷ) = (I−UU>)Ŷ(I−UU>) is positive semidefinite, we can
apply the generalized Holder’s inequality to obtain

S2 =
〈
PT⊥

(
Ŷ−Y∗

)
,GG>

〉
≤Tr

[
PT⊥

(
Ŷ−Y∗

)]
· ‖GG>‖op.

For the second RHS term above, we have the equality ‖GG>‖op = ‖G‖2op, which can be
established by taking the Singular Value Decomposition (SVD) of G. For the first RHS
term, we have the identity

Tr
[
PT⊥

(
Ŷ−Y∗

)]
= Tr

[(
I−UU>

)(
Ŷ−Y∗

)(
I−UU>

)]
(i)
= Tr

[(
I−UU>

)(
Ŷ−Y∗

)]
(ii)
= Tr

[
−UU>

(
Ŷ−Y∗

)]
=

〈
−1

`
Y∗, Ŷ−Y∗

〉
(iii)
=

γ

2`
,

where step (i) holds since the trace is invariant under cyclic permutation and the matrix
I −UU> is idempotent, step (ii) holds by Fact 2(a), and step (iii) follows from Fact
2(f). Combining the above results proves that S2 ≤ γ

`
‖G‖2op, the first inequality in the

proposition.
We further note the identity ‖G‖2op = ‖G>G‖op, which again follows from the SVD

of G. The spectral norm of G>G =
∑

i∈[n] gig
>
i can be controlled using the following

standard result.

Lemma 3 (Lemma A.2 in [42]). We have ‖
∑n

i=1 gig
>
i ‖op ≤ 6τ 2 (n+ d) with proba-

bility at least 1− e−n/2.

Applying Lemma 3, we obtain that with probability at least 1− e−n/2, there holds the
inequality

S2 ≤
γ

`
· 6τ 2 (n+ d) = 6γτ 2k

(
1 +

d

n

)
.

The second part of the proposition then follows from the assumption that s2 ≥Ck
(
d
n

+ 1
)
.

5.4. Proof of Proposition 3 It can be seen that

(
(EH) (EH)>

)
ij

=

{
‖µσ∗(i)‖22 if σ∗(i) = σ∗(j),〈
µσ∗(i),µσ∗(j)

〉
otherwise.

In view of Equation (8), we may partition the matrix Ŷ−Y∗ into k2 blocks of size `× `.
Define Tab :=

∑
i∈C∗a ,j∈C∗b

(
Ŷ−Y∗

)
ij

to be the sum of entries within the (a, b)-th block.

We have

S4 =
∑
a∈[k]

Taa‖µa‖22 + 2
∑

a,b∈[k]:a<b

Tab 〈µa,µb〉

(i)
=−

∑
a,b∈[k]:a<b

Tab∆
2
ab

(ii)
= −1

2

∑
a,b∈[k]:a 6=b

Tab∆
2
ab,
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where step (i) follows from Fact 2(d), and step (ii) holds since Tab = Tba as implied by
the symmetry of Ŷ−Y∗. This proves the first part of the proposition. The second part
of the proposition, S4 ≤− 1

4
∆2γ, follows from combining Fact 2(f), the fact that ∆ab ≥∆

for a 6= b by definition, and the fact that Tab ≥ 0 for a 6= b as implied by Fact 2(b).

5.5. Proof of Lemma 1 Let B := Ŷ−Y∗. Recall the definitions of S3 and S4 from
Equation (16). We have

S3 =
∑
j

∑
a

∑
i∈Ca

Bji 〈µa,gj〉

= `
∑
j

∑
a

〈µa,gj〉

1

`

∑
i∈C∗a

Bji


= `
∑
j

∑
a6=σ∗(j)

〈
µa−µσ∗(j),gj

〉1

`

∑
i∈C∗a

Bji

 ,

where the last step holds by Fact 2(c). On the other hand, by Proposition 3 we have

S4 =−`
∑
j

∑
a 6=σ∗(j)

1

2
∆2
σ∗(j),a

1

`

∑
i∈C∗a

Bji

 .

Summing up the last two equations gives

1

`

(
S3 +

1

4
S4

)
=
∑
j

∑
a6=σ∗(j)

(〈
µa−µσ∗(j),gj

〉
− 1

8
∆2
σ∗(j),a

)1

`

∑
i∈C∗a

Bji

 .

Note that the quantity inside the first parenthesis above is exactly βja by definition in
Equation (18). This completes the proof of the lemma.

5.6. Proof of Lemma 2 Recall that η(F) defined in Equation (10) is the objec-
tive of the Oracle IP, the set F :=

{
F ∈ {0,1}n×k : F1k = 1n

}
contains all assignment

matrices feasible to the Oracle IP, and F∗ ∈ F is the true assignment matrix, that is,
F ∗ja = I{a= σ∗(j)} for all j ∈ [n], a∈ [k].

Let us reparameterize the integer program IP1 in (23) by a change of variable. Con-
sider any feasible solution X ∈ {0,1}n×k of IP1. For each j ∈ [n], we may fix Xj,σ∗(j) =
−
∑

a6=σ∗(j)Xja. Doing so does not affect the feasibility and objective value of X with re-
spect to IP1. Define the new variable F := F∗+X. The objective function and constraints
of the original variable X can be mapped to those of F. In particular, for the objective
we have the identity∑

j

∑
a 6=σ∗(j)

Xja =
∑
j

∑
a 6=σ∗(j)

(Fja−F ∗ja) =
1

2
‖F−F∗‖1.

For the constraints we have the equivalency

Xja ∈ {0,1}, ∀j ∈ [n] , a 6= σ∗(j)∑
a6=σ∗(j)Xja ≤ 1, ∀j ∈ [n]

Xj,σ∗(j) =−
∑

a 6=σ∗(j)Xja, ∀j ∈ [n]

⇐⇒F∈F ;
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and∑
j

∑
a 6=σ∗(j)

βjaXja
(i)
=
∑
j

∑
a

βjaXja =
∑
j

∑
a

βjaFja−
∑
j

∑
a

βjaF
∗
ja

(ii)
=
∑
j

∑
a

βjaFja,

where steps (i) and (ii) both follow from the fact that βj,σ∗(j) = 0,∀j. It follows that IP1

has the same optimal value as another integer program with the variable F:

IP1 = max

{
1

2
‖F−F∗‖1 :

∑
j

∑
a

βjaFja ≥ 0,F∈F
}

:= IP2. (24)

We simplify the first constraint in IP2. Recall that ∆2
σ∗(j),a = ‖µσ∗(j) − µa‖22 is the

separation between clusters σ∗(j) and a, and h̄j :=µσ∗(j) +(2κ)−1gj, j ∈ [n] are data points
generated from SGMM with augmented variance. By definition of βja, we have

βja =
〈
µa−µσ∗(j),gj

〉
−κ∆2

σ∗(j),a

= κ
(
−‖h̄j −µa‖22 + ‖(2κ)−1gj‖22

)
,

where the last step can be verified by plugging the expressions for ∆2
σ∗(j),a and h̄j. It

follows that for each F∈F , we have∑
j

∑
a

βjaFja = κ
∑
j

∑
a

(
−‖h̄j −µa‖22 + ‖(2κ)−1gj‖22

)
Fja

(i)
= κ

(
−
∑
j

∑
a

‖h̄j −µa‖22Fja +
∑
j

‖(2κ)−1gj‖22
∑
a

F ∗ja

)

= κ

(
−
∑
j

∑
a

‖h̄j −µa‖22Fja +
∑
j

∑
a

‖h̄j −µσ∗(j)‖22F ∗ja

)
(ii)
= κ

(
−
∑
j

∑
a

‖h̄j −µa‖22Fja +
∑
j

∑
a

‖h̄j −µa‖22F ∗ja

)
,

where step (i) holds because
∑

aFja = 1 =
∑

aF
∗
ja,∀j, and step (ii) holds because F ∗ja 6= 0

only if a = σ∗(j). Recalling the definition η(F) :=
∑

j

∑
a ‖h̄j − µa‖22Fja given in Sec-

tion 4.1, we have the compact expression∑
j

∑
a

βjaFja = κ (η(F∗)− η(F)) , ∀F∈F . (25)

Therefore, the first constraint in IP2 is satisfied if and only if η(F)≤ η(F∗). Substituting
into Equation (24), we complete the proof of the lemma.

6. Proof of Theorems 2 and 5 We first prove Theorem 2. The proof of Theorem
5 follows from a simple extension.

We define the following shorthand for the error of the Oracle IP:

δ̂ := max

{
1

2
‖F−F∗‖1 : η(F)≤ η(F∗),F∈F

}
.

Note that δ̂ takes integer values in [0, n]. If δ̂ = 0 then the theorem follows trivially. We
therefore assume that δ̂ ∈ {1,2, . . . , n}. Let F̂ ∈ {0,1}n×k be an optimal solution to the
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above maximization problem. Define the matrix M̂ ∈ {0,1}n×k via M̂ja := F̂ja(1− F ∗ja).
We have

0≤ κ
(
η(F∗)− η(F̂)

)
(i)
=
∑
j∈[n]

∑
a∈[k]

βjaF̂ja
(ii)
=
∑
j∈[n]

∑
a∈[k]

βjaM̂ja, (26)

where step (i) holds due to the expression (25) of η(·), and step (ii) holds since F̂ja = M̂ja

if a 6= σ∗(j) and βja = 0 if a= σ∗(j). Note that the random variable βja defined in (18)
has mean −κ∆2

σ∗(j),a and sub-Gaussian norm ‖βja‖ψ2
≤ τ∆σ∗(j),a, and that {βja} are

independent across j. To control the RHS of (26), we make use of the following uniform
concentration result, which is proved in Section 6.1.

Lemma 4. Let Z∈Rn×k be a matrix with independent rows, such that for each (j, a)∈
[n]× [k], Zja is a zero-mean sub-Gaussian random variable with sub-Gaussian norm no
larger than ρja. Then for some universal constant C > 0, we have with probability at least
1− 1.5

n
,

∑
j

∑
a

|Zja|Mja ≤C

√√√√t

(∑
j

∑
a

ρ2
jaMja

)
log (3nk/t),

∀t∈ {1,2, . . . , n};∀M∈ {0,1}n×k : M1k ≤ 1n,‖M‖1 = t.

(27)

It is easy to verify that M̂1k ≤ 1n and ‖M̂‖1 = 1
2
‖F̂−F∗‖1 = δ̂. Therefore, we can apply

Lemma 4 with Zja = βja +κ∆2
σ∗(j),a and ρja = τ∆σ∗(j),a to bound the RHS of (26). Doing

so gives that with probability at least 1− 1.5
n

, we have

0≤C

√√√√δ̂τ 2

(∑
j

∑
a

∆2
σ∗(j),aM̂ja

)
log
(

3nk/δ̂
)
−κ

∑
j

∑
a

∆2
σ∗(j),aM̂ja.

Now, for the the sake of deriving a contradiction, assume that δ̂ > 3nke−s
2/C2

0 for a fixed
constant C0 >C/κ. Continuing from the RHS of the last display equation, we obtain that

0≤C

√√√√δ̂τ 2

(∑
j

∑
a

∆2
σ∗(j),aM̂ja

)
s2

C2
0

−κ
∑
j

∑
a

∆2
σ∗(j),aM̂ja

≤
(
C

C0

−κ
)
·
∑
j

∑
a

∆2
σ∗(j),aM̂ja,

where the last step holds since τ 2s2 = ∆2 and ∆2δ̂ = ∆2
∑

j,a M̂ja ≤
∑

j,a∆2
σ∗(j),aM̂ja by

definition. Since C0 >C/κ and
∑

j

∑
a∆2

σ∗(j),aM̂ja > 0, the RHS above is negative, which
is a contradiction. Therefore, the previous assumption is false and we must have

δ̂≤ 3nke−s
2/C2

0

(i)

≤ 3nk · 1

3k
· e−s

2/(2C2
0) = ne−s

2/(2C2
0),

where step (i) holds under the SNR condition s2 & k assumed in Theorem 2. The theorem
then follows from the fact that ‖F∗‖1 = n.



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 25

Now that we have proved Theorem 2, the proof of Theorem 5 follows exactly the same
argument, except that all instances of gj, βja, η above are replaced by their semi-random

versions g̃j, β̃ja, η̃ (here β̃ja is equal to βja defined in (18) but with gj replaced by g̃j), and

accordingly each Zja is replaced by Z̃ja = β̃ja + κ∆2
σ∗(j),a = 〈µa−µσ∗(j), g̃j〉. In the proof

we use the distribution of the data only when invoking Lemma 4, whose conclusion (27)
remains valid for {Z̃ja}. To see this, recall that g̃j = αjgj for some αj ∈ [0,1]. It follows

that
∣∣∣Z̃ja∣∣∣= αj |Zja| ≤ |Zja|, so the LHS of (27) does not increase.

6.1. Proof of Lemma 4 We define the quantities

L(M,b) :=
∑
j,a

bjZjaMja, for each M∈ {0,1}n×k,b∈ {±1,0}n,

R(M, t) :=C

√√√√t

(∑
j,a

ρ2
jaMja

)
log (3nk/t), for each M∈ {0,1}n×k, t∈ [n]

and the sets

M(t) :=
{

M∈ {0,1}n×k : M1k ≤ 1n,‖M‖1 = t
}
, for each t∈ [n],

B(M, t) := {b∈ {±1,0}n : bj = 0 if Mja = 0, ∀a∈ [k]}, for each M∈M(t), t∈ [n].

We begin by bounding the probability

αt := P
{
∃M∈M(t) :

∑
j,a

|Zja|Mja >R(M, t)

}
for each integer t∈ [n]. To this end, note that

∣∣Zja∣∣= maxbj∈{±1}
{
bjZja

}
, hence

αt ≤ P
{
∃M∈M(t),∃b∈B(M, t) :L(M,b)>R(M, t)

}
≤

∑
M∈M(t)

∑
b∈B(M,t)

P
{
L(M,b)>R(M, t)

}
. (28)

By assumption, the Zja’s are independent zero-mean sub-Gaussian random variables, so
the squared sub-Gaussian norm of the sum L(M,b) is at most Cψ2

∑
j,a ρ

2
jaMja where

Cψ2
> 0 is a universal constant. We can therefore apply Hoeffding’s inequality (Lemma

11) to bound each summand on the RHS of (28):

P{L(M,b)>R(M, t)} ≤ exp

−c0C
2t
(∑

j,a ρ
2
jaMja

)
log(3nk/t)

Cψ2

∑
j,a ρ

2
jaMja


≤ exp{−4t log(3nk/t)} ,

where c0 > 0 is a universal constant. Plugging this back to (28), we have for each t∈ [n]:

αt ≤
∑

M∈M(t)

∑
b∈B(M,t)

exp{−4t log(3nk/t)}

=

(
n

t

)
kt · 2t · exp{−4t log(3nk/t)}

≤
(ne
t

)t
kt · 2t · exp{−4t log(3nk/t)}

(i)

≤ exp{2t log(3nk/t)− 4t log(3nk/t)}

≤
(

t

3nk

)t
,
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where step (i) follows from t≤ t log(3nk/t) for t∈ [n] and k≥ 2.
With the above bound on αt and a union bound over t ∈ [n], we can control the prob-

ability that the conclusion of the lemma fails to hold:

P
{
∃t∈ [n],∃M∈M(t) :

∑
j,a

|Zja|Mja >R(M, t)

}
≤

n∑
t=1

αt ≤
n∑
t=1

(
t

3nk

)t
.

The proof is complete if we can show that the last RHS is at most 1.5
n

. Note that

n∑
t=1

(
t

3nk

)t
≤ 1

3n
+

n∑
t=2

(
t

3n

)t
≤ 1

3n
+n · max

t∈[2,n]

(
t

3n

)t
.

Hence it suffices to show that for all t ∈ [2, n], there holds
(
t

3n

)t ≤ 1
n2

or equivalently
f(t) := t(log 3n− log t)≥ 2 logn. For t∈ [2, n], the function f has derivative

f ′(t) = log 3n− log t− 1≥ log 3n− log (n)− 1 = log 3− 1≥ 0.

Therefore, f(t) is non-decreasing for t ∈ [2, n] and thus f(t) ≥ f(2) = 2 log 3n− 2 log 2 ≥
2 logn as desired. We conclude that

∑n

t=1

(
t

3nk

)t ≤ 1.5
n

, thereby completing the proof of
Lemma 4.

7. Conclusion In this paper, we study the performance of SDP relaxation for clus-
tering SGMM and its semi-random version. Our analysis proceeds in two steps: (a) bound
the clustering error of the SDP by that of the idealized Oracle IP; (b) show that the error
of the Oracle IP decays exponentially in the SNR. As mentioned, this two-step framework
allows for a decoupling of the computational and statistical mechanisms that drive the
performance of the SDP approach. The oracle bound in step (a) represents a fundamental
performance limit of the SDP relaxation. We expect that further progress in understand-
ing SDP relaxations is likely to come from improvements in this step. On the other hand,
step (b) is problem-specific and makes use of the probabilistic structures of the model.
By modifying and sharpening this step, one may generalize our results to other variants
of SGMM.

Our work points to several interesting future directions. An immediate problem is to
obtain tighter, less pessimistic bounds for mixtures with inhomogeneous components,
which may have different pairwise separation and variance along different directions. It is
also of interest to study other forms of robustness of SDP relaxations, e.g., in the presence
of arbitrary outliers and model misspecification. Other directions worth exploring include
obtaining better constants in error bounds, identifying sharp thresholds for different types
of recovery, and developing scalable computational procedures for solving the SDP.

Last but not least, another interesting future direction is to better understand the
relation between the clustering problem—which we have focused on—and the related
parameter estimation problem (see Section 1). Note that a guarantee for one problem
can be converted to a guarantee for the other. While this conversion may not be tight in
general, it is nevertheless interesting to compare our SNR condition with those in existing
work on both clustering and parameter estimation. The work of [56] shows that the SNR
condition s2 & logk is sufficient and necessary to achieve a constant error in parameter
estimation with polynomial sample complexity. Note that the algorithm in [56] requires
an initialization procedure that runs in time exponential in k, the number of clusters. In
the special case of Gaussian Mixture Model, the work [58] proves that spectral methods
achieve exact cluster recovery under the SNR condition s2 &

√
k logn; see Section 4.5.2 for
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further discussion of the work [58]. These results seem to suggest that our SNR condition
s2 & k + logn may have a suboptimal dependence on k. It is of interest to investigate
whether this potential suboptimality is intrinsic to the SDP relaxation approach or can
be avoided by a tighter analysis.

Appendix A: Proof of Theorem 3 We only need to prove the first part of the
theorem. The second part follows immediately from the first part and Theorem 1.

The proof follows a similar strategy as those of [45, Theorem 17 and Lemma 18] and is
divided into two lemmas. Recall that Algorithm 1 outputs a collection of sets {Bt}t≥1 that
are not necessarily equal-sized. The first lemma characterizes the quality of these sets.
Define the shorthands k′ :=

∣∣{Bt}t≥1

∣∣ (which satisfies k′ ≥ k) and ε := ‖Ŷ−Y∗‖1/‖Y∗‖1.

Lemma 5. There exists a partial matching π′ (i.e., an injection from [k] to [k′]) and
a universal constant C > 0 such that∣∣∣∣∣∣

⋃
a∈[k]

C∗a ∩Bπ′(a)

∣∣∣∣∣∣≥ (1−Cε)n.

The proof is given in Section A.1. Building on the above lemma, the next lemma further
characterizes the (equal-sized) clusters {Ut}t∈[k] obtained in Algorithm 2.

Lemma 6. There exists a permutation π on [k] and a universal constant C > 0 such
that ∣∣∣∣∣∣

⋃
a∈[k]

C∗a ∩Uπ(a)

∣∣∣∣∣∣≥ (1−Cε)n.

The proof is given in Section A.2. In light of the last lemma and the fact that

err(σ̂,σ∗) = 1− 1

n
max
π∈Sk

∣∣∣∣∣∣
⋃
a∈[k]

C∗a ∩Uπ(a)

∣∣∣∣∣∣ ,
we obtain the bound err(σ̂,σ∗)≤Cε as stated in the first part of Theorem 3.

A.1. Proof of Lemma 5 Let ya ∈ Rn be one of the ` identical rows of Y∗ whose
row indices are in C∗a . Define the sets

Ga :=

{
i∈C∗a : ‖Ŷi•−ya‖1 ≤

`

8

}
, ∀a∈ [k]

and let G :=
⋃
a∈[k]Ga and H := V \G, where V := [n].

A partial matching between the sets {C∗a}a∈[k] and {Bt}t∈[k′] is given by an injective
function π′ from [k] to [k′]. We construct such a partial matching by matching each cluster
C∗a with the first Bt that intersects Ga; i.e., we set π′(a) = min{t∈ [k′] :Bt∩Ga 6= ∅}. Since
each i ∈ [n] belongs to some Bt, every C∗a is matched with some Bt. Moreover, we show
below that π′ is indeed injective as it cannot match two distinct clusters C∗a and C∗b with
the same Bt.

Claim 1. For each a ∈ [k] and t ∈ [k′] such that t= π′(a), we have that Bt ∩Gb = ∅
for any b∈ [k] \ {a} and that Bt ⊂Ga ∪H.
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Proof. Suppose that there exist Bt and b ∈ [k] \ {a} such that Bt ∩Gb 6= ∅. Let u ∈
Bt ∩Ga and v ∈Bt ∩Gb. Since Ga and Gb are disjoint, we know that u 6= v. Let w ∈Bt.
Then we have

‖Ŷu•− Ŷw•‖1 ≤
`

4
and ‖Ŷv•− Ŷw•‖1 ≤

`

4
,

whence

‖Ŷu•− Ŷv•‖1 ≤ ‖Ŷu•− Ŷw•‖1 + ‖Ŷv•− Ŷw•‖1 ≤
`

2
.

This implies that

‖ya−yb‖1 ≤ ‖ya− Ŷu•‖1 + ‖Ŷu•− Ŷv•‖1 + ‖yb− Ŷv•‖1
≤ `

8
+
`

2
+
`

8
< `,

which is a contradiction to the fact that ‖ya−yb‖1 = 2`. To complete the proof, we note
that for any i∈Bt we have either i∈Ga or i∈H, hence Bt ⊂Ga ∪H. �

The rest of the proof proceeds by establishing the following three claims.

Claim 2. For each a∈ [k] and t∈ [k′] such that t= π′(a), we have

|Bt ∩C∗a | ≥ |Ga| − |Bt ∩H| . (29)

Proof. Fix i∈Ga for some a∈ [k]. For any j ∈Ga we have j ∈B(i) since

‖Ŷi•− Ŷj•‖1 ≤ ‖ya− Ŷi•‖1 + ‖ya− Ŷj•‖1 ≤
`

4
.

Therefore, by definition we have |Bt| ≥ |B(i)| ≥ |Ga| . It follows that

|Bt ∩C∗a |
(i)

≥ |Bt ∩Ga|
= |Bt| − |Bt\Ga|
(ii)
= |Bt| − |Bt ∩H|
≥ |Ga| − |Bt ∩H| ,

where step (i) holds since Ga ⊂C∗a and step (ii) holds since Bt ⊂Ga ∪H by the previous
claim. �

Claim 3. We have ∑
(t,a):t=π′(a)

|Bt ∩C∗a | ≥ |V | − 2 |H| .

Proof. Summing both sides of Equation (29) over {(t, a) : t= π′(a)}, we obtain∑
(t,a):t=π′(a)

|Bt ∩C∗a |=
∑
a∈[k]

|Ga| −
∑

(t,a):t=π′(a)

|Bt ∩H|

≥
∑
a∈[k]

|Ga| −
∑
t≥1

|Bt ∩H|

(i)
= |G| − |V ∩H|
= |V | − 2 |H| ,

where step (i) holds since the sets {Bt ∩H} are disjoint and
⋃
t≥1Bt = V . �

Claim 4. There exists a universal constant C > 0 such that |H| ≤Cεn.

Proof. We have

|H| · `
8
≤
∑
i∈H

‖Ŷi•−yσ∗(i)‖1 ≤ ‖Ŷ−Y∗‖1 ≤ ε‖Y∗‖1 = ε ·n`

where the last step follows from the fact that ‖Y∗‖1 = n`. �
Combining the last two claims proves Lemma 5.
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A.2. Proof of Lemma 6 Without loss of generality, assume that the output of
Algorithm 1 is ordered as |B1| ≥ |B2| ≥ · · · ≥ |Bk′ |. Consequently, the sets {Ut}t∈[k] main-
tained in Algorithm 2 are such that each Ut consists of Bt and some elements from the
sets Bu with u> k.

Let π′ be the partial matching between {C∗a}a∈[k] and {Bt}t∈[k′] given by Lemma 5.
Define π(a) = π′(a) for each a∈ [k] with π′(a)≤ k, and extend π to a full permutation on
[k] in an arbitrary way. We have∣∣∣∣∣∣

⋃
(t,a):t=π(a)

C∗a ∩Ut

∣∣∣∣∣∣≥
∣∣∣∣∣∣

⋃
(t,a):t=π′(a)≤k

C∗a ∩Bt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

(t,a):t=π′(a)

C∗a ∩Bt

∣∣∣∣∣∣−
∣∣∣∣∣∣

⋃
(t,a):t=π′(a)>k

C∗a ∩Bt

∣∣∣∣∣∣
≥ (1−C ′ε)n−

∣∣∣∣∣∣
⋃

(t,a):t=π′(a)>k

C∗a ∩Bt

∣∣∣∣∣∣ ,
where the last step follows from Lemma 5 and C ′ > 0 is a universal constant. Define the
sets

T1 := {t > k : t= π′(a) for some a∈ [k]} ,
T2 := {t∈ [k] : t 6= π′(a) for all a∈ [k]} .

It is easy to verify that |T1|= |T2| and that |Bt1 | ≤ |Bt2 | for each t1 ∈ T1 and t2 ∈ T2. It
follows that ∣∣∣∣∣∣

⋃
(t,a):t=π′(a)>k

C∗a ∩Bt

∣∣∣∣∣∣≤
∣∣∣∣∣ ⋃
t∈T1

Bt

∣∣∣∣∣≤
∣∣∣∣∣ ⋃
t∈T2

Bt

∣∣∣∣∣
≤ |V | −

∣∣∣∣∣∣
⋃

(t,a):t=π′(a)

C∗a ∩Bt

∣∣∣∣∣∣
≤C ′εn,

where the last step follows again from Lemma 5. Combining pieces and setting C := 2C ′,
we obtain the desired bound∣∣∣∣∣∣

⋃
(t,a):t=π(a)

C∗a ∩Ut

∣∣∣∣∣∣≥ (1−C ′ε)n−C ′εn= (1−Cε)n.

Appendix B: Proof of Theorem 4 Let G̃∈Rn×d be the matrix whose j-th row
is g̃j, and recall that the j-th row of EH is µσ∗(j). Then using the same notations as in
Section 5, we have the following analogue of Equation (16):

0≤
〈
Ŷ−Y∗,PT

(
G̃G̃>

)〉
︸ ︷︷ ︸

S1

+
〈
Ŷ−Y∗,PT⊥

(
G̃G̃>

)〉
︸ ︷︷ ︸

S2

+ 2
〈
Ŷ−Y∗, G̃ (EH)>

〉
︸ ︷︷ ︸

S3

+
〈
Ŷ−Y∗, (EH) (EH)>

〉
︸ ︷︷ ︸

S4

. (30)
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As will become clear shortly, the impact of the semi-random adversary is essentially limited
to the term S1. With this effect accounted for, the proof of Theorem 4 is basically the
same as that of Theorem 1 for the non-semi-random setting.

We begin by controlling S1. This is done in the following proposition, whose proof is
given in Section B.1. Recall that Õ(·) hides a multiplicative factor of log(d+ logn).

Proposition 4. If n& k(d+ logn), then there exists some universal constant C > 0
such that

S1 ≤
1

100
γ∆2 + τ 2 · Õ

(
nd

s2
+n2s2e−s

4/C

)
.

with probability at least 1− 2n−1− 2−d.

In comparison with its non-semi-random counterpart in Proposition 1, the bound in
Proposition 4 has an additional error term that is due to the effect of the adversary.

Controlling the term S2 is straightforward. In particular, the following proposition es-
tablishes a bound that is exactly the same as in the non-semi-random setting (cf. Propo-
sition 2), since the adversary cannot make the bound worse.

Proposition 5. If s2 ≥ Ck
(
d
n

+ 1
)

for some universal constant C > 0, then S2 ≤
1

100
∆2γ with probability at least 1− e−n/2.

Proof. By the first part of Proposition 2, we have S2 ≤ γ
`
‖G̃‖2op. Since each row of G̃

is a shrunk version of the corresponding row of G, we have

‖G̃‖op = max
v∈Rd:‖v‖2=1

‖G̃v‖2 ≤ max
v∈Rd:‖v‖2=1

‖Gv‖2 = ‖G‖op,

whence S2 ≤ γ
`
‖G‖2op. Applying the second part of Proposition 2 proves the desired bound.

�
Note that the SNR condition in Proposition 5 is satisfied by our assumption n & kd

and s2 & k.
The term S4 is unaffected by the adversary and thus can be bounded as before using

Proposition 3, which is re-stated below for readers’ convenience.

Proposition 3. We have S4 = − 1
2

∑
a,b∈[k]:a6=b∆2

ab[
∑

i∈C∗a ,j∈C∗b
(Ŷ −Y∗)ij]. Further-

more, S4 ≤− 1
4
∆2γ.

We are now ready to prove Theorem 4. Propositions 5 and 3 imply that S2 ≤ −1
2
S4

with probability at least 1− e−n/2 ≥ 1− 2n−1. Plugging into the basic inequality (30),
we obtain that 0 ≤ S1 + 2S3 + 1

2
S4, hence we must have either (a) 0 ≤ 2S3 + 1

4
S4 or (b)

0≤ S1 + 1
4
S4. Let us analyze each of these two cases.

Case (a): 0≤ 2S3 + 1
4
S4. In this case, we continue the proof in exactly the same way

as in Section 5 following Equation (17), but replace {gj} and η therein with {g̃j} and η̃.
Doing so establishes the desired inequality (15) (without the second RHS term).

Case (b): 0≤ S1 + 1
4
S4. Applying Proposition 4 to bound S1 and Proposition 3 to

bound S4, we obtain that with probability at least 1− 2n−1− 2−d,

γ∆2 ≤ τ 2 · Õ
(
nd

s2
+n2s2e−s

4/C

)
.

Dividing both sides of the above equation by ∆2‖Y∗‖1 = ∆2 n2

k
and recalling that s := ∆

τ
,

we get
‖Ŷ−Y∗‖1
‖Y∗‖1

≤ Õ
(
kd

ns4
+ ke−s

4/C

)
≤ Õ

(
kd

ns4
+ e−s

4/C0

)
,
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where the last step holds since our assumption s2 & k implies that ke−s
4/C ≤ e−s4/C0 for

some universal constant C0 ≥C. We have therefore established the desired inequality (15)
(without the first RHS term).

Combining the above two cases completes the proof of Theorem 4.

B.1. Proof of Proposition 4 We first state several technical lemmas concerning
the vectors {g̃i} produced by the semi-random adversary. Introduce the shorthand

d0 := d+ logn, (31)

which can be interpreted as the effective dimension and is motivated by the following two
lemmas.

Lemma 7. With probability at least 1−n−1, for some universal constant c≥ 1 we have

‖g̃i‖2 ≤ cτ
√
d0 uniformly for all i∈ [n].

Proof. By definition of g̃i we have ‖g̃i‖2 ≤ ‖gi‖2. Standard results on the norms of sub-
Gaussian vectors (e.g., [59, Theorem 3.1.1]) ensure that ‖gi‖2 ≤ 1

2
cτ(
√
d+
√

logn)≤ cτ
√
d0

with probability at least 1−n−2. Taking a union bound over all i∈ [n] proves the lemma.
�

Lemma 8. If `≥ 4d0, then with probability at least 1−n−1, we have

‖1

`

∑
i∈C∗a

g̃i‖2 ≤ 3τ uniformly for all a∈ [k].

Proof. Fix a ∈ [k]. We have the expression 1
`

∑
i∈C∗a

g̃i = 1
`
BaD1, where Ba ∈ Rd×` is

the matrix with columns {gi, i∈C∗a}, D∈R`×` is a diagonal matrix with diagonal entries{
‖g̃i‖2/‖gi‖2, i ∈ C∗a

}
, and 1 ∈ R` is the all-one vector. It follows that ‖ 1

`

∑
i∈C∗a

g̃i‖2 ≤
1
`
‖Ba‖op ·‖D‖op ·‖1‖2. But ‖D‖op ≤ 1, ‖1‖2 =

√
`, and Lemma 3 guarantees that ‖Ba‖op =√

‖BaB>a ‖op ≤
√

6τ 2(`+ d) with probability at least 1− e−`/2 ≥ 1−n−2 (since `≥ 4 logn

by assumption). Combining pieces, we have ‖ 1
`

∑
i∈C∗a

g̃i‖2 ≤ 1
`
·
√

6τ 2(`+ d) ·
√
` ≤ 3τ ,

where the last step holds since `≥ 4d by assumption. Taking a union bound over all a∈ [k]
proves the lemma. �

To state the next lemma, we define the set Bλ(v) := {i∈ [n] : |〈g̃i,v〉|>λτ} for each unit
vector v in Rd and each positive real number λ. Also recall that Õ(·) hides a multiplicative
factor of log(d+ logn). The following key lemma is proved at the end of this section.

Lemma 9. Suppose that n≥ d. There exists a universal constant C > 0 such that with
probability at least 1− 2−d − n−1, uniformly for all numbers λ ≥ 1 and all unit vectors
v ∈Rd, we have

|Bλ(v)|= Õ

(
d

λ2
+n exp

(
−λ

2

C

))
. (32)

A similar result to Lemma 9 has appeared in [10, Lemma 2.11]. The main difference
between Lemma 9 and the existing result is that we have the exponential term ne−λ

2/C

in Equation (32). As it will turn out later, the quantity λ plays the role of the SNR s.
Therefore, in the low-SNR regime, this exponential term dominates (32) and leads to the
final exponential rate in Corollary 2.

We are now ready to prove Proposition 4. Note that the conditions in Lemma 8 and 9 are
satisfied under the assumption of Proposition 4. Assume that the conclusions of Lemmas
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7–9 hold simultaneously; this event has probability at least 1− 2n−1− 2−d, which is the
probability claimed in Proposition 4.

We begin by using the definition of PT to obtain the decomposition∣∣∣∣(PT (G̃G̃>
))

ij

∣∣∣∣≤
∣∣∣∣∣∣
〈

g̃i,
1

`

∑
u∈C∗

σ∗(j)

g̃u

〉∣∣∣∣∣∣︸ ︷︷ ︸
Tij

+

∣∣∣∣∣∣
〈

g̃j,
1

`

∑
u∈C∗

σ∗(i)

g̃u

〉∣∣∣∣∣∣︸ ︷︷ ︸
Tji

+

∣∣∣∣∣∣
〈

1

`

∑
w∈C∗

σ∗(i)

g̃w,
1

`

∑
u∈C∗

σ∗(j)

g̃u

〉∣∣∣∣∣∣︸ ︷︷ ︸
Sij

for each i, j ∈ [n]. It is easy to see that Sij ≤ 1
`

∑
w∈C∗

σ∗(i)
Twj by triangle inequality. With

these inequalities and introducing the shorthand Dij :=
∣∣∣(Ŷ−Y∗)ij

∣∣∣, we can bound the

quantity of interest S1 :=
〈
Ŷ−Y∗,PT (G̃G̃>)

〉
as follows:

S1 ≤
∑
i,j

Dij · (Tij +Tji +Sij)≤ 2
∑
j

∑
i

DijTij +
1

`

∑
j

∑
i

∑
w∈C∗

σ∗(i)

DwjTij, (33)

where the last step follows from the symmetry of the matrix Ŷ −Y∗ and a change of
indexing.

To proceed, we fix an arbitrary j ∈ [n]. Let vj := 1
`

∑
u∈C∗

σ∗(j)
g̃u/‖ 1

`

∑
u∈C∗

σ∗(j)
g̃u‖2 and

note that vj is a unit vector. Set λ0 := ∆2

C0τ2
= s2

C0
for some sufficiently large constant

C0 > 0, and note that λ0 ≥ k ≥ 1 by our assumption on s. Recalling the definition of the
set Bλ(·), we consider two cases:
• For each i∈ [n]\Bλ0(vj), we have

Tij = |〈g̃i,vj〉| · ‖
1

`

∑
u∈C∗

σ∗(j)

g̃u‖2 ≤ λ0τ · 4τ,

where in the last step we use the defining property of the set [n]\Bj to bound the first
term, and use Lemma 8 to bound the second term.

• For i∈Bλ0(vj), we have∑
i∈Bλ0 (vj)

Tij ≤
∑

i∈Bλ0 (vj)

|〈g̃i,vj〉| · 4τ

=
∑

i∈Bλ0 (vj)

∫ ∞
0

I{λτ < |〈g̃i,vj〉|}d(λτ) · 4τ

= 4τ 2

∫ ∞
0

∑
i∈Bλ0 (vj)

I{λτ < |〈g̃i,vj〉|}dλ

= 4τ 2

∫ ∞
0

|Bλ(vj)∩Bλ0(vj)|dλ.

Applying Lemma 9 to bound the sizes of Bλ(vj) and Bλ0(vj), we obtain∑
i∈Bλ0 (vj)

Tij = Õ

(
τ 2

∫ ∞
0

min

{
d

λ2
+ne−λ

2/C ,
d

λ2
0

+ne−λ
2
0/C

}
dλ

)
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= τ 2Õ

(∫ ∞
λ0

(
d

λ2
+ne−λ

2/C

)
dλ+λ0 ·

(
d

λ2
0

+ne−λ
2
0/C

))
= τ 2Õ

(
d

λ0

+nλ0e
−λ20/C

)
,

where C is the universal constant C given in Lemma 9.
With the above two bounds and the fact that Dij ≤ 1,∀i, j (implied by Fact 2(b)), we can
bound the first RHS term in Equation (33) as∑

j

∑
i

DijTij ≤
∑
j

∑
i∈[n]\Bλ0 (vj)

DijTij +
∑
j

∑
i∈Bλ0 (vj)

DijTij

≤

∑
j

∑
i∈[n]\Bλ0 (vj)

Dij

 · 4λ0τ
2 +
∑
j

 ∑
i∈Bλ0 (vj)

Tij


. γ ·λ0τ

2 +n · τ 2Õ

(
d

λ0

+nλ0e
−λ20/C

)
.

The second RHS term in Equation (33) can be controlled in a similar fashion and obey

the same bound. Combining these bounds and recalling that λ0 := ∆2

C0τ2
= s2

C0
, we obtain

S1 . γλ0τ
2 +nτ 2Õ

(
d

λ0

+nλ0e
−λ20/C

)
≤ 1

100
γ∆2 + τ 2 · Õ

(
nd

s2
+n2s2e−s

4/C1

)
for some universal constant C1 > 0, thereby proving Proposition 4.

B.1.1. Proof of Lemma 9 Our strategy involves two steps: (i) prove the desired
inequality for fixed λ and v, and (ii) establish a uniform bound using an ε-net argument.

Step (i): Controlling |Bλ(v)| for fixed λ and v. Set ε := 1/(2c
√
d0), where c is

as defined in Lemma 7 and d0 is defined in Equation (31). We assume without loss of
generality that c

√
d0 is an integer; otherwise, we replace c in the definition of ε with a larger

constant so as to fulfill this assumption. Let us first show that the inequality (32) holds
for a fixed number λ≥ 1 and a unit vector v with probability at least 1− (cd0)−1(3/ε)−2d.
Define the indicator random variable Xi := I{|〈gi,v〉|>λτ} for i∈ [n]. Since each g̃i is a
shrunk version of gi, the quantity of interest satisfies the bound |Bλ(v)| ≤

∑
i∈[n]Xi. The

last RHS is the sum of independent Bernoulli RVs, where

µ :=E

∑
i∈[n]

Xi

=
∑
i∈[n]

P{|〈gi,v〉|>λτ} ≤ ne−λ
2/8

as 〈gi, v̄〉 has sub-Gaussian norm at most τ . To bound the sum
∑

iXi, we record the
standard Chernoff bound:

Lemma 10 (Chernoff bound; Theorem 4.4 in [46]). Under the above setting, for
each δ > 0 we have P{

∑
iXi ≥ (1 + δ)µ} ≤ e−µ(1+δ) log(1+δ)+µδ ≤ e−µmin{δ2,δ}/3

We proceed by considering two cases:

Case 1: If d< ne−λ
2/16, then we set δ=

(√
9d
µ

+ 9d
µ

)
log( 3

ε
). Applying the second inequal-

ity in the Chernoff bound, we obtain that with probability at least 1− exp
(
−3d log( 3

ε
)
)
≥

1− (c
√
d0)−1(3/ε)−2d, there holds∑

i

Xi . (µ+ d) log(
3

ε
) = Õ

(
ne−λ

2/8 +ne−λ
2/16
)

= Õ
(
ne−λ

2/16
)
,
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where we recall that note Õ(·) hides multiplicative factors of log( 3
ε
)� log(d+ logn).

Case 2: If d≥ ne−λ2/16, then we set δ=
(

3 + 18d
µ
/ log( 18d

µ
)
)

log( 3
ε
). In this case, we have

the inequalities

δ≥ 3 =⇒ (1 + δ) log(1 + δ)≥ 3

2
δ =⇒ (1 + δ) log(1 + δ)− δ≥ 1

3
δ log δ

and

µ≤ ne−λ
2/8 ≤ d2

n
=⇒ 18d

µ
≥ 18n

d
≥ 18 =⇒ log(

18d

µ
)− log log(

18d

µ
)≥ 1

2
log(

18d

µ
)≥ 0,

whence

µ(1 + δ) log(1 + δ)−µδ≥ 1

3
µδ · log δ≥

6d log( 3
ε
)

log( 18d
µ

)
·
(

log(
18d

µ
)− log log(

18d

µ
)

)
≥ 3d log(

3

ε
).

Applying the first inequality in the Chernoff bound, we obtain that with probability at
least 1− exp

(
−3d log( 3

ε
)
)
≥ 1− (c

√
d0)−1(3/ε)−2d, there holds

∑
i

Xi . µ+
d log( 3

ε
)

log(18d/µ)
= Õ

(
µ+

d

log(18) +λ2/8− log(n/d)

)
= Õ

(
ne−λ

2/8 +
d

λ2/16

)
,

where the last step holds because d≥ ne−λ2/16 =⇒ log(n/d)≤ λ2

16
.

Step (ii): Applying union bound on ε-net and for all λ. In both cases above,
the inequality (32) holds with probability ≥ 1− (c

√
d0)−1(3/ε)−2d, for each fixed number

λ≥ 1 and unit vector v. Now, let N be an ε-net of the set of d-dimensional unit vectors,
where |N | ≤ (3/ε)d. Applying a union bound, we find that the inequality (32) holds simul-
taneously for all integers λ̄ = 1,2, . . . , c

√
d0 and vectors v̄ ∈ N with probability at least

1− (3/ε)−d ≥ 1− 6−d (since ε := 1/(2c
√
d0) ≤ 1/2). Also note that

∣∣∣B
c
√
d0

(v)
∣∣∣ = 0 with

probability at least 1−n−1 (cf. Lemma 7).
On the above event, for all real numbers λ∈ [1, c

√
d0] and all vectors v̄ ∈N , we have

|Bλ(v̄)| ≤
∣∣Bbλc(v̄)

∣∣= Õ

(
d

bλc2
+n exp

(
−bλc

2

C

))
≤ Õ

(
4d

λ
+n exp

(
− λ

2

4C

))
,

where the last two steps hold since bλc is an integer and satisfy bλc ≥ λ/2. Moreover, for

all λ > c
√
d0 we have |Bλ(v̄)| ≤

∣∣∣B
c
√
d0

(v̄)
∣∣∣ = 0 . We hence see that the inequality (32)

holds (with a change of absolute constants) for all λ≥ 1 and v̄ ∈N . Finally, for each unit
vector v in Rd, let v̄ be the nearest vector in the ε-net N . If i∈Bλ(v), then

|〈g̃i, v̄〉| ≥ |〈g̃i,v〉| − |〈g̃i, v̄−v〉|
(i)

≥ λτ − cτ
√
d0 · ε

(ii)

≥ 1

2
λτ,

where step (i) follows from Lemma 7 and step (ii) follows from our choice ε := 1/(2c
√
d0)

and λ≥ 1. This means that Bλ(v)⊆Bλ/2(v̄), and thus inequality (32) holds (with a change
of absolute constants) for all unit vectors v in Rd as well. We have completed the proof
of Lemma 9.

Appendix C: Standard Results for Sub-Gaussian Random Variables We
collect several standard tail bounds that are used in the proofs of our main theorems.
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C.1. Sub-Gaussian Tail Bounds The first lemma is the standard Hoeffding’s in-
equality as given in [59, Theorem 2.6.2].

Lemma 11 (Hoeffding’s inequality for Sub-Gaussians). Let X1, . . . ,XN be in-
dependent, mean zero, sub-Gaussian random variables. Then, for every t≥ 0 we have

P

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣≥ t
]
≤ 2exp

[
− ct2∑N

i=1 ‖Xi‖2ψ2

]
,

where c > 0 is a universal constant.

The next lemma controls the inner product between sub-Gaussian random vectors.

Lemma 12. Let {xi}i∈[n] be independent sub-Gaussian random vectors such that
‖xi‖ψ2

≤ ρ for each i ∈ [n]. For any fixed i ∈ [n], M⊂ [n], t > 0 and δ > 0, there exists a
universal constant C > 0 such that〈

xi,
1

|M|
∑
j∈M

xj

〉
≤

3ρ2
(

5C
√
|M|

(√
d logn+ logn

)
+ d
)

|M|

with probability at least 1−n−10.

Proof. We record the following lemma, which is Lemma A.3 in [42].

Lemma 13. Let {xi}i∈[n] be independent sub-Gaussian random vectors such that
‖xi‖ψ2

≤ ρ for each i∈ [n]. For any fixed i∈ [n], M⊂ [n], t > 0 and δ > 0, we have

P

〈xi,
1

|M|
∑
j∈M

xj

〉
≥

3ρ2
(
t
√
|M|+ d+ log (1/δ)

)
|M|

≤ exp

(
−min

{
t2

4d
,
t

4

})
+ δ.

Taking t= 4C
(√
d logn+ logn

)
and δ= n−20 (where C > 0 is a sufficiently large universal

constant), we prove the bound in Lemma 12. �

C.2. Random Vectors on the Unit Ball In this section we prove Fact 1 con-
cerning the sub-Gaussian norm of a rotationally invariant random vector on the unit `2
ball.

Proof of Fact 1. Let g = (g1, . . . , gd)
> be a random vector drawn from a rotationally

invariant distribution supported on the unit `2 ball in Rd. Also let C,C ′ > 0 be universal
constants whose values may change line by line. By [12, Proposition 4.10], g can be

represented as g
d
= ru, where

d
= means equality in distribution, r

d
= ‖g‖2, u is uniformly

distributed on the unit sphere in Rd, and r and u are independent. The random vector

u is sub-Gaussian with norm ‖u‖ψ2
≤ C

√
1
d

[59, Theorem 3.4.5], so its one-dimensional

margin satisfies P{|u1|> t} ≤ 2exp
(
− t2

C′/d

)
. On the other hand, we have r

d
= ‖g‖2 ∈ [0,1]

since g is supported on the unit ball. Putting together the above facts gives

P{|g1|> t}= P{r |u1|> t} ≤ P{|u1|> t} ≤ 2exp

(
− t2

C ′/d

)
,

whence ‖g1‖ψ2
≤C

√
1
d
. By rotation invariance, we know that 〈a,g〉 d

= g1 for all unit vector

a [12, Proposition 4.8]. Therefore, all one-dimensional margins 〈a,g〉 of g is sub-Gaussian

with norm at most C
√

1
d
. This completes the proof. �
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