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The study of Alzheimer’s disease (AD), the most
common cause of dementia, faces challenges in terms of
understanding the cause, monitoring the pathogenesis, and
developing early diagnoses and effective treatments. Rapid and
accurate identification of AD biomarkers in the brain is critical
to providing key insights into AD and facilitating the
development of early diagnosis methods. In this work, we
developed a platform that enables a rapid screening of AD
biomarkers by employing graphene-assisted Raman spectrosco-
py and machine learning interpretation in AD transgenic animal
brains. Specifically, we collected Raman spectra on slices of
mouse brains with and without AD and used machine learning
to classify AD and non-AD spectra. By contacting monolayer
graphene with the brain slices, the accuracy was increased from 77% to 98% in machine learning classification. Further, using a
linear support vector machine (SVM), we identified a spectral feature importance map that reveals the importance of each
Raman wavenumber in classifying AD and non-AD spectra. Based on this spectral feature importance map, we identified AD
biomarkers including Af and tau proteins and other potential biomarkers, such as triolein, phosphatidylcholine, and actin,
which have been confirmed by other biochemical studies. Our Raman—machine learning integrated method with
interpretability will facilitate the study of AD and can be extended to other tissues and biofluids and for various other diseases.
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consuming while they still lack specific molecular informa-

. 6,7 . .
Alzheimer’s disease (AD), a progressive disorder of the brain tion.”" Other biosensing methods such as surface plasmon

that causes memory losses, damages other brain functions, and
is the most common cause of dementia." By 2020, about 44
million people worldwide had been diagnosed with AD.”
Despite the prevalence, the causes of AD are still not fully
understood. Studying biomarkers related to AD greatly
accelerates the understanding of the disease and can lead to
new treatments against dementia.”* Three biomarkers, T-tau,
P-tau, and Af,,, have been identified and confirmed in the

resonance biosensors and field-effect transistors offer specific
information on the optical or electronic properties of the
analy’ceg_10 and, thus, are insufficient to gain comprehensive
insights into the biomarkers of AD. Recently, spectroscopy
based detection of AD biomarkers via immunoassay and
fluorescence on blood and cerebrospinal fluid (CSF) has been
intensively investigated in preclinical stages,''~'* but they are

cerebrospinal fluid that are strongly associated with AD and January 17, 2022
could be used as progression markers in developing drugs.” To March 21, 2022
detect the AD-associated biomarkers in the brain, various March 25, 2022

imaging techniques have been developed, such as magnetic
resonance imaging (MRI) and positron emission tomography
(PET).°® However, MRI and PET are costly and time-
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not label-free, which prevents the discovery of novel
biomarkers. New methods to rapidly screen and identify
potential AD biomarkers from a huge number of candidate
molecules are still urgently needed.

Raman spectroscopy is a nondestructive and label-free
molecular sensing method. By exciting the samples with a
monochromatic laser and collecting the inelastically scattered
signal from the analyte, the obtained Raman spectrum provides
the fingerprints of the analyte. Additionally, it offers high
multiplexity and high specificity due to the multiple and
extremely narrow Raman peaks. Since Raman spectroscopy
provides a desirable approach with rapid diagnosis, it has been
utilized to investigate AD in terms of diagnosing AD with Lewy
bodies in blood plasma,'* classifying early pathological states of
AD with brain higpocampus regions,” imaging amyloid plaques
in brain tissues,'® etc. Despite the specificity, multiplexity, and
rapid diagnosis, the interpretation of the Raman signals in
complex biosamples is challenging. Although spectral compar-
ison and principal component analysis (PCA) have been
employed in Raman spectral analysis, molecule identification is
unreliable when the intraclass spectral variation is too
high.l7_21

In recent years, machine learning has been frequently
employed in Raman spectral analyses for disease diagnosis such
as AD, cancer, infectious disease, ete 2 High accuracy in
diagnosis is enabled by machine learning models including
support vector machine (SVM),”® random forest,”” and neural
networks.”® Besides achieving outstanding performance in
classification, machine learning can also interpret the
correlation between Raman modes and diseases by providing
a spectral feature importance map.””*° Such interpretability of
machine learning can lead to key insights into the potential
disease biomarkers by correlating the spectral feature
importance map with the signature molecular Raman spectra.
However, so far, machine learning interpretation lacks
quantitative correlation to the molecular composition in the
Raman analysis for biomedical systems.”*”>°

In this work, we employed machine learning classification
and interpretation on Raman spectra of mouse brain slices and
screened AD biomarkers. Our workflow is primarily composed
of three steps: first, we collected Raman spectra on mice brain
slices with and without AD; then, we used machine learning to
classify the collected Raman spectra on AD and non-AD brain
slices; finally, we used linear SVM to interpret the spectral
feature importance map which differentiates AD and non-AD
spectra and discovered potential AD biomarkers (Figure 1). In
our Raman measurements, we used a special noise reduction
technique: contacting monolayer graphene with the brain
slices. Compared to intrinsic Raman spectroscopy, our
graphene-assisted Raman spectroscopy enhanced the Raman
signal-to-noise ratios (from 53.9 to 121.0) and improved the
machine learning classification performance (accuracy from
77% to 98%). By comparing the machine learning prediction
accuracy on Raman spectra from different brain regions, our
experiment revealed that certain brain regions, such as the
cortex, are more informative in AD identification. In our
machine learning interpretation, the spectral feature impor-
tance map is found to register well with the Raman signatures
of known AD biomarkers, including Af and tau proteins. We
also located several other molecules that have high Raman
spectral correlation with the spectral feature importance map,
which have been verified in previous biochemical studies,
indicating their potential as biomarkers for AD diagnosis.
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Figure 1. Overall workflow. Workflow of graphene-assisted Raman
signals’ data collection, preprocessing, and machine learning
classification and interpretation. The machine learning classifier
demonstrated is the linear SVM model to differentiate AD/non-
AD Raman spectra.

Combining Raman sensing and machine learning analysis to
enable biomarker identification on brain slices, our interpret-
able machine learning based framework provides a route for
fundamental study of AD pathology and will facilitate AD
diagnosis and drug development. Our Raman—machine
learning integrated method has the potential to be extended
to study other diseases and can be applied to various tissues,
biofluids, and human samples.

RESULTS AND DISCUSSION

Improving the Signal-to-Noise Ratio Using Gra-
phene-Assisted Raman Spectroscopy. We collected
Raman spectra of brain slices harvested from AD transgenic
mice and healthy mice. There are in total 351 spectra with AD
and 376 spectra without AD in our data set measured on three
brain regions: cortex, hippocampus, and thalamus. During the
Raman measurement, the brain slices were immersed in a
neuroprotectant solution sealed between the silicon substrate
and a fused quartz cover slide. For part of the measurements,
we placed brain slices in direct contact with monolayer
graphene which had been transferred onto the quartz cover
slide (Figure S1).

Before feeding the Raman spectra into machine learning
classifiers, we implemented the Savitzky-Golay filter’" for
spectral smoothing and asymmetric least-squares smoothing™”
for baseline correction. Comparisons of raw Raman spectra
before and after preprocessing are shown in Figures S2 and S3.
Parts a and b of Figure 2 show examples of the preprocessed
Raman spectra for AD and non-AD samples measured with
and without graphene contact. As can be seen, there are major
Raman peaks at 1038 cm™}, 1088 cm ™!, 1283 em ™Y, 1312 em ™},
1439 cm ™!, and 1458 cm™' (Figure 2a and b). The graphene G
band is at 1589 cm™!, noted as G (Figure 2a and Figure S4).
The other Raman peaks are contributed by Af and tau
proteins and major molecular components in the brain (Table
1). For example, the 1283 cm™' mode is contributed by the
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Figure 2. Raman spectra on brain slices. (a) Preprocessed Raman
spectra in the cortex region with and without AD, with graphene.
The graphene G-band at 1589 cm™' is notated as “G’”. (b)
Preprocessed Raman spectra in the cortex region with and without
AD, without graphene. (c) S/N of every brain region, measured
with and without graphene.

CH, bending mode of oligomeric tau, actin, myelin basic
protein, phosphatidylcholine, and triolein molecules. The
Raman mode at 1458 cm™' is contributed by the C—C
stretching mode and CH, bending mode of oligomeric Af,
oligomeric tau, actin, glycogen, lactate, phosphatidylcholine,
and triolein molecules.

We calculated the signal-to-noise ratios (S/N) for spectra
with and without graphene in three brain regions. The S/N are
shown in Figure 2c, where red bars correspond to graphene-
assisted spectra and blue bars represent the no-graphene
results. It is clear that the graphene-assisted spectra exhibit
much higher S/N than the no-graphene spectra for all the
three brain regions (S/N average of 121.0 for graphene-
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Table 1. Assignments of Most Important Raman Bands”

Peak
position
(em™)

1038

Band
assignment

(C_O)b

Tentative contribution

Oligomeric Ap, Fibril Af; Actin, Glycogen, Myelin
basic protein
(c-0)

1063 Oligomeric tau; Actin, Myelin basic protein,

Phosphatidylcholine, Triolein
1088 (C-0-
C)b
Amide III

(CH,)*

Aspartate aminotransferase, Ubiquitin

1270

1283 Oligomeric tau; Actin, Myelin basic protein,

Phosphatidylcholine, Triolein

Oligomeric Af; Actin

Monomeric tau, Fibril tau; Actin, Glycogen, Myelin
basic protein, Phosphatidylcholine, Triolein

1297
1312

(CH,)"
(CH,)?
1439

(CH,)* Monomeric Af, Oligomeric tau, Fibril tau;

Aspartate aminotransferase, Lactate, Cholesterol,
Myelin basic protein
(c=0),,
(CH,)"
“Raman vibration modes, Af and tau proteins, and 17 major
composite molecules of the brain assigned to major Raman
peaks.** ™%, bStretching. “Bending. “Twisting

1458 Oligomeric Af}, Oligomeric tau; Actin, Glycogen,

Lactate, Phosphatidylcholine, Triolein

assisted spectra compared to 53.9 for no-graphene spectra).
Overall, we observed that when brain slices were placed in
contact with graphene, the Raman spectra exhibited less noise
when compared to the measurements without graphene. Our
prior work, along with others, has shown that graphene can
reduce the noise of Raman spectra, enhance Raman siginals,
and quench fluorescence for organic and biomolecules.” 7760
Here, the reduced noise can be attributed to the above factors,
as well as the high thermal conductivity of graphene, which can
reduce the laser heating effect during Raman measurements of
brain slices.”** Therefore, we used graphene-assisted Raman
spectra for further investigations described in the following
sections.

Machine Learning Classification. In order to classify AD
and non-AD spectra, we used the graphene-assisted spectra
and applied different algorithms including linear SVM,*°
random forest,”” XGBoost,®> and CatBoost.”* The common
metrics for machine learning, including classification accuracy,
area under the receiver operating characteristic curve (AUC),
sensitivity, and specificity for graphene-assisted Raman spectra,
are shown in Figure 3. Although the Raman spectra for AD and
non-AD brain slices are visually similar (Figure 2a), machine
learning classification can capture minor differences and
distinguish the two classes with high accuracy. It can be seen
from Figure 3 that the cortex region rendered the accuracy
over 93% for every classifier. Compared to the hippocampus
and thalamus, the cortex region exhibited better accuracy,
AUC, sensitivity, and specificity for all classifiers. Thus, we can
infer that the Raman fingerprints of AD-relevant biomarkers
are better captured in the cortex region with graphene
assistance.”® It should be noted that our results do not
indicate that the roles of hippocampus and thalamus in AD
should be ignored since our observations only indicate that the
graphene-assisted Raman signal is more sensitive to AD-
relevant molecular components in the cortex region compared
to the other two regions. We also performed the same machine
learning classification for Raman spectra measured without
graphene, and the results are shown in Figure SS and Table S1.

As the graphene-assisted Raman signals from the cortex
region yield better results in the machine learning classification,
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Figure 3. Machine learning classification summary on graphene-
assisted Raman spectra. Accuracy, AUC, sensitivity, and specificity
of graphene-assisted Raman spectra from the cortex, hippocampus,
and thalamus regions.

we visualized the data distribution using t-distributed
stochastic neighbor embedding (t-SNE) plots, a nonlinear
dimensionality reduction technique, for selecting appropriate
interpretable machine learning classifiers.”® As shown in Figure
4a, in the cortex region, the graphene-assisted Raman data can
be well separated by a linear decision boundary while the
Raman data measured without graphene are apparently not
linearly separable (Figure 4b). Meanwhile, the machine
learning classification accuracy using graphene-assisted
Raman data reaches as high as 98% using linear SVM;
however, the accuracy is at most 77% among the four classifiers
using the no-graphene data (Figure 4c). This, again, shows the
high quality of our graphene-assisted Raman data, which are
more suitable for feature importance matching and inter-
pretation (t-SNE plots from other brain regions are in Figure
S6). A linear classifier with high accuracy is preferable to
perform this interpretation task, since it is simple yet sufficient
to fit the linearly separated data without introducing much
model complexity, making its spectral feature map more
straightforward for interpretation. Thus, we chose linear SVM
from the series of tested machine learning models for further
investigation to determine candidate biomarkers in association
with AD.

Machine Learning Interpretation. We further inter-
preted the machine learning classification results and studied
the features learned, which can provide important information
on AD biomarker molecules. Validated by high accuracy, AUC,
sensitivity, and specificity (Figure 3), the features learned by
SVM from the graphene-assisted data in the cortex region are
considered reliable for interpretation. From the trained linear
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SVM model, we assigned a spectral mapping of Raman
wavenumbers based on their importance in classifying AD/
non-AD spectra. The extracted spectral feature importance
map contains two sets of features: positive features and
negative features (positive features shown in Figure 5 and
complete features shown in Figure S7). Since the spectral
feature importance map shows the importance of each Raman
wavenumber in the AD/non-AD classification, it stresses the
difference between AD and non-AD Raman spectra.

As shown in Figure 5, the most important features from the
machine learning interpretation are 1038, 1283, and 1458
cm™!, whose importance values are 0.087, 0.056, and 0.15,
respectively. All of these wavenumbers have Raman peaks for
both AD and non-AD samples, but there is a slight difference:
the AD samples exhibit about 10.5 + 7.4%, 12.5 + 3.5%, and
12.6 + 1.4% stronger intensity than the non-AD samples,
respectively, as shown in Figure 2a, which matches our analysis
results that these wavenumbers possess important positive
spectral features. The Raman mode at 1038 cm™' may
correspond to the C—O stretching mode in oligomeric Af
and fibril Af proteins. It may also be contributed by actin,
glycogen, and myelin basic protein molecules. The 1283 cm™
peak may correspond to the CH, bending mode in oligomeric
tau protein. It may also be contributed by actin, myelin basic
protein, phosphatidylcholine, and triolein molecules. The 1458
cm™ may correspond to the C—C stretching mode and CH,
bending mode in oligomeric Af and oligomeric tau proteins. It
may also be contributed by actin, phosphatidylcholine, and
triolein molecules. The high spectral feature importance in
those wavenumbers suggests that the biological molecules
mentioned here are potentially related to the diagnosis of AD.
On the other hand, if the Raman peaks identified in both AD
and non-AD samples do not exhibit a significant spectral
difference, the spectral feature importance does not necessarily
show peaks in that wavenumber. For example, the graphene G
band at 1589 cm™ in both AD and non-AD spectra does not
appear as an important wavenumber in Figure S since graphene
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solid lines below the spectral feature importance map are the Raman signature peak ranges of six biomarkers with plus/minus 5 cm™". The

wavenumber ranges from 1000 to 1600 cm™L,

is deployed in the same way in both AD and non-AD samples.
Also, the Raman peak around 1088 cm™! for both AD and non-
AD samples (Figure 2a), which is potentially related to the C—
O—C stretching mode for aspartate aminotransferase and
ubiquitin molecules, is not important according to our spectral
feature importance, since the aspartate aminotransferase and
ubiquitin molecules are not closely associated with AD. The
interpretability of machine learning we demonstrated here
presents an advantage of machine learning interpretation and
enables the discovery of biomarkers that have very small
quantities in the diseased samples, potentially allowing for early
stage diagnosis and understanding of disease pathology.

To better understand our spectral feature importance map
and its relationship with molecular components, we developed
two metrics for two application scenarios: the Pearson cross-
correlation coefficient based algorithm (if Raman spectra of
biomarkers, including peak frequencies and intensities, are
available) and the matching score based on spectral overlap
between important feature ranges and biomarker Raman peaks
(if only the peak frequencies of biomarkers are known and
peak intensities are unavailable). Note that the former metric is
relatively informative since it considers all spectral features
including frequencies and intensities. On the other hand, the
latter metric based only on peak frequency is relatively robust
since peak frequency is stable compared with other spectral
features such as intensity, which depends on the measurement
conditions, such as the laser wavelength, laser power, and
substrate. For validation, here we used both metrics to cross-
check our interpretation results. We first examined several
major AD biomarker proteins using both metrics. From the
results shown in Figure S, it is obvious that the known AD
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biomarkers such as oligomeric tau (with Raman peaks at 1063,
1283, 1439, and 1458 cm™!, etc.) and oligomeric Af (with
Raman peaks at 1038, 1297, and 1458 cm™!, efc.) have
considerable cross-correlation coefficients (Metric #1) and
matching scores (Metric #2). To be more specific, oligomeric
tau has a cross-correlation coefficient of 67% and a matching
score of 49%, and oligomeric Af has a cross-correlation
coefficient of 35% and a matching score of 62%, while other
uncorrelated molecules such as tropomyosin and hemoglobin
beta only have cross-correlation coefficients and matching
scores no greater than 13%. Both of our metrics correctly
identified the significance of Af and, meanwhile, recognized
the role of tau in AD brain slices. This demonstrates the
validity of the Pearson cross-correlation coeflicient and
matching score metrics that we developed.

Using the above two metrics, we can further screen more
molecules that are potentially correlated to AD. We applied the
cross-correlation coefficient and matching score to 17 major
composite molecules of the brain (Table S2). The spectra of
the component molecules with cross-correlation coefficients
above 65% are shown in Figure 6. Triolein, phosphatidylcho-
line, and actin have the highest cross-correlation coeflicients to
the spectral feature importance map of 72%, 71%, and 69%,
respectively. Consistent with the cross-correlation coefficient
metric, the matching scores of these three molecules are also
the highest among the 17 composite molecules. As clearly seen
in Figure 6, the signature Raman peaks of the triolein molecule,
phosphatidylcholine molecule, and actin molecule, including
1283 cm™! (CH, bending mode), 1312 cm™' (CH, twisting
mode), and 1458 cm™ (C—C stretching mode and CH,
bending mode), match well with both our spectral feature
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Figure 6. Other potential AD biomarkers identified. Biomolecular
component spectra with the top three cross-correlation coefficients
to the spectral feature importance map: triolein, phosphatidylcho-
line, and actin.>>*"*° M refers to the matching score, and C refers
to the cross-correlation coefficient.

importance map (Figure 6) and Raman peak analysis (Figure
2a and Table 1). This suggests that triolein, phosphatidylcho-
line, and actin may be associated with AD, which have been
suggested by prior reports of biochemical and physiological
studies.”” "%’ For example, Bamburg et al. found an increase of
actin in the AD brain compared to the normal brain.’” Johnson
et al. suggested that triglycerides, including triolein, can also
lead to cognitive impairments, where they reported concen-
tration levels of 46.49 mg/dl for AD animals and 35.01 mg/dl
for healthy animals.”” Banks et al. also showed that the
decrease of triglycerides improves both learning and memory
capabilities.”® Additionally, phosphatidylcholine is found to be
significantly lower in AD patients,71 where high levels of
phosphatidylcholine usually reduce the progression of
dementia.””> However, it is worth noting that the AD
pathogenesis is different in mice and human brains in terms
of the phosphatidylcholine level. According to Chan et al,
phosphatidylcholine levels are lower in the AD human brain
but higher in the mouse forebrain (18 mol% for AD animals
and 16 mol% for healthy animals).®”

In addition to the positive features shown in Figures 5 and 6,
the SVM classifier also found negative features in the range
1100—1250 cm ™!, i.e., the representative Raman spectral range
for non-AD brain slices (Figure S7). This means that
biomolecules with Raman peaks in this wavenumber range
tend to be negatively correlated with AD (i.e. they likely reduce
in amount or disappear with AD). These negative features
correspond to cytochrome (with Raman peak at 1139 cm™)
and glycogen (with Raman peak at 1237 cm™') in both
matching metrics, suggesting that cytochrome and glycogen are
negatively correlated to AD, again consistent with prior
biochemical experi111ents..73_76 In earlier studies, glycogen has
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been purposed to have beneficial effects for cognition,”* whose
negative correlation has been confirmed by Bass et al.”*
Furthermore, a decreased level of cytochrome has also been
found in AD brain slices. For example, cytochrome ¢ oxidase is
found to decrease in AD as reported by Parker et al. and
Cardoso et al.”>”

We note that our approach is able to screen potential
biomarkers, rather than to accurately pinpoint all the
biomarkers, which requires further biochemical verification.
The accuracy of our matching score and cross-correlation
coefficient metrics depends on the quality and range of
molecular Raman data available in the literature. For instance,
the matching score and cross-correlation coefficient values in
Figures 5 and 6 are not directly comparable, because the
Raman signal range used was 1000—1600 cm™" for the results
shown in Figure 5, and the Raman range used was 1000—1670
cm™! for the results shown in Figure 6. The smaller Raman
range for biomarker analysis (Figure 5) was due to the limited
Raman spectral range reported for A and tau proteins in the
literature.” Although not reported before, Af and tau proteins
might have many important Raman modes between 1600—
1670 cm™}, such as the amide I mode at 1665 cm™ for the
oligomer A protein and the amide I mode at 1654 cm™" for
the fibril AB protein,”*” which could affect the matching
scores and cross-correlation coeflicients of A# and tau in our
analysis. We further note that our biomarker screening
method, in principle, is not limited by the number of
biomarkers. To identify more potential biomarkers, we simply
input the Raman spectra of other biomolecules within the same
spectral range (eg. from a Raman spectra database) in our
component matching with spectral feature importance map.

CONCLUSION

In summary, we measured and analyzed Raman spectra on
mice brain slices with and without AD and used machine
learning to classify AD/non-AD spectra in order to screen
biomarkers through the interpretation of spectral feature
importance. Raman spectra, with their multiple and narrow
Raman peaks, contain rich molecular information and
potentially provide an ideal data set for machine learning
analysis. Our graphene-assisted Raman measurements demon-
strated further enhanced S/N and, thus, effectively improved
the performance of the machine learning classification to
achieve a high accuracy of 98%. To further interpret the
molecular information in the Raman spectra, we obtained a
spectral feature importance map based on our machine
learning classifier and developed two metrics, including the
cross-correlation coefficient and matching score, to identify
molecules that are relevant to AD. Our interpretable machine
learning based framework recognized a series of known AD
biomarkers such as oligomeric tau and oligomeric A that have
a considerable correlation to AD. Our model also identified
three molecules (triolein, phosphatidylcholine, and actin) that
are positively correlated to AD and two molecules
(cytochrome and glycogen) that are negatively correlated to
AD. Our work offers a rapid approach to detect AD and to
screen AD biomarker molecules; thus, it will facilitate the study
of AD in terms of diagnosis and treatment. Our approach
integrating graphene-assisted Raman spectroscopy and inter-
pretable machine learning can also be widely applied to study
various other diseases and to a wide range of biological samples
including tissues and biofluids.
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METHODS

Animals and Brain Slice Preparation. Animal investigation
procedures were conducted in accordance with institutional and NTH
guidelines. The animals were housed with ad libitum access to food
and water in a room with a 12-h light and dark cycle in the animal
facility. We utilized the previously reported SXFAD mouse model
expressing APPSwedish/Florida/London and PSEN1M146L/L286V muta-
tions,””””® which recapitulates the features of Alzheimer’s -amyloid
pathology in animal brains. SXFAD mice of different ages and
nontransgenic (non-AD) control mice were investigated. All animal
study procedures were approved by MGH IACUC (Protocol #:
2011N000022).

Brain slices were prepared following previously reported
methods.””® Particularly, animals were anesthetized with isoflurane
and then decapitated. Isolated brains were longitudinally bisected, and
hemispheres were separated and incubated in 4% paraformaldehyde-
containing 0.1 M phosphate-buffered saline (PBS) at 4 °C for 48 h,
followed by incubation in 30% sucrose solution in 0.1 M PBS. Next,
brains were snap frozen from a dry ice-cooled block on a sliding
microtome (Leica SM 2010R) and sectioned in 40 ym thickness. The
free-floating brain sections were stored at —20 °C in a cryoprotective
buffer containing 28% ethylene glycol, 23% glycol, and 0.05 M PBS,
until subsequent analysis by Raman testing.

Raman Measurement. Raman measurement was performed on
the Horiba LabRam system with a 50X objective. The laser power on
the sample was controlled below 0.4 mW to avoid potential laser
bleaching. The excitation laser wavelength was 532.5 nm. All the
measurements were performed on mice brain slices in the
neuroprotectant solution that was sealed between a quartz cover
slide and the silicon substrate. In the case with graphene in contact,
the quartz slide has monolayer graphene transferred on the surface. In
each Raman measurement, we carried out three accumulations; thus,
each spectrum is, in effect, averaged three times.

Graphene Synthesis and Transfer. The graphene layers were
synthesized by the chemical vapor deposition method. For the
graphene growth, Cu foil was first placed in a quartz tube furnace and
annealed at 1065 °C for 1 h under 60 sccm H, and 940 sccm Ar at
atmospheric pressure. For the growth, the furnace was brought down
to 1000 °C, and the gas flow rates were updated to 36 sccm H, and
2204 sccm Ar. Then, 0.6 sccm CH, was introduced for 1 h. After 1 h,
the CH, was turned off and the Cu foil was rapidly cooled by
removing it from the furnace area.

For the transfer, a supporting PMMA layer was spin-coated on top
of the graphene/Cu stack. Then the Cu was etched away using a
commercial Cu etchant. After the Cu has etched, the PMMA/
graphene was put into three separate water baths for several hours,
before being transferred to the desired final substrate. After the
sample had dried, it was placed into acetone overnight in order to
remove the PMMA and then rinsed with isopropyl alcohol and blow
dried.

Data Preprocessing and Calculation of Signal-to-Noise
Ratio. After obtaining the raw data, it is essential to apply
preprocessing methods to reduce the effect of noise and background
on classifiers. For each spectrum, we applied a Savitzky-Golay filter to
reduce the spectral noise.”’ We removed the background using
baseline correction with asymmetric least-squares smoothing.** To
calculate S/N, we selected peaks of interest at 1038, 1088, 1283, 1458,
and 1649 cm™". Then, we divided the average intensity of each peak
by the standard deviation of the peak intensity across different AD
spectra from the same brain region to calculate the S/N for a single
peak. Finally, we averaged the S/N of all peaks of interest to get the
S/N of spectra of the area. Notice that since we used the same
preprocessing for all (both graphene and no-graphene) spectra,
comparison between S/N of graphene and no-graphene spectra is not
affected.

Classifiers’ Architecture and Feature Importance. As shown
in Figure 3, multiple classifiers were used in the experiment, including
linear SVM, random forest, XGBoost, and CatBoost. Classification
experiments were implemented using stratified 5-fold cross-validation
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to preserve the same percentage of samples for each class to improve
robustness. For experiments with a relatively small sample set, SVM is
usually an efficient and reliable option, for it is designed to find the
optimal decision boundary represented by a hyperplane that
maximizes the margin of separation between different classes.”* In
our binary classification, we used linear SVM to find the optimal linear
decision boundary between the two classes. The sign of a feature
weight obtained from the linear SVM classifier represents that
feature’s direction to predict class.*”®> Hence, the feature weights can
be intuitively interpreted as the spectral feature importance map
shown in Figure S (positive only), while the positive (negative)
features correspond to the Raman signals more represented in AD
(non-AD) samples. We used the scikit-learn package to imglement
linear SVM and extract the spectral feature importance map.**

Component Cross-Correlation Coefficient for Raman. The
Pearson correlation coeflicient measures the linear correlation
between two variables.** The method is a standard measure of
similarity between two Raman spectra.*> Here, we used the cross-
correlation coeflicient to measure the levels of correlation between the
machine-learning-derived feature map and the Raman spectra of 17
commonly known components in the brain from the literature (Table
$2).37* We modified the Pearson cross-correlation coefficient
method and excluded negatively correlated trends as shown as
follows:

_ Z?:o maX(O, (xi - E)Qﬁ - 7))
\/21;0 (% — 5)2 \/2?:0(2 _7)2 (1)

Considering the range difference of each spectrum, we normalized
the components’ spectra and the spectral feature importance map so
that they were within the same interval (1000—1600 cm™") and have
the same dimensions. Then we used eq 1 to calculate the cross-
correlation coefficient. This results in a coefficient that ranges from [0,
1] where r = 0 means no correlation and r = 1 means perfect
correlation.

Matching Score between the Machine-Learning-Derived
Feature Map and Biomolecule Raman Spectra. Raman peak
intensities vary with a number of factors, including excitation
wavelength and substrate. To avoid the influence of Raman peak
intensity variation, we developed another metric, the matching score,
for measuring the correlation between biomarkers and distinguishable
patterns learned from machine learning models to some extent. The
metric is designed as a ratio, with the numerator as the sum of
important feature ranges of the extracted feature map of a particular
class (i.e. either AD or no AD) that overlap with Raman spectral peak
ranges of a certain biomarker and the sum of the aforementioned
biomarker peak ranges as the denominator. Significant Raman peak
ranges of six biomarkers (Fibril tau, Fibril Af, oligomeric tau,
oligomeric Af, monomeric tau, and ,onomeric Af) that are
commonly known to be present in brain slides are gathered from
the literature.”' >* As demonstrated in Figure 5, Raman peak ranges
are constructed by granting a shift of five wavenumbers for each
biomarker representing important feature regions, the sum of which is
utilized as the denominator for further calculations. Similarly,
pinpointing the important feature ranges for the feature map as the
numerator is also desired. Rather than extracting peaks from the
feature map, we applied a 40% percentile threshold as the cutoff;
regions above this we considered as significant, and we used the sum
of their intersection with the denominator as the numerator.
Matching scores of all six biomarkers and the positive feature map
extracted from linear SVM training are presented in Figure S,
indicating that results from our matching score approach are
consistent with biomedical findings using other methods.
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Additional figures and tables, including illustration of
graphene-assisted Raman spectroscopy measurement,
Raman spectra on brain slices before and after
preprocessing, Raman spectra on brain slices after
preprocessing, comparison between Raman spectra in
the cortex region and graphene peaks, machine learning
classification summary on no-graphene Raman spectra, t-
SNE plots for thalamus and hippocampus regions,
feature importance maps by linear SVM, random forest
and XGBoost, numeric machine learning classification
summary on both graphene-assisted and no-graphene
Raman spectra, and 17 major composite molecules of
the brain and their corresponding literature.
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