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We study two-dimensional Rayleigh–Bénard
convection with Navier-slip, fixed temperature
boundary conditions and establish bounds on the
Nusselt number. As the slip-length varies with
Rayleigh number Ra, this estimate interpolates

between the Whitehead–Doering bound by Ra
5

12 for
free-slip conditions (Whitehead & Doering. 2011
Ultimate state of two-dimensional Rayleigh–Bénard
convection between free-slip fixed-temperature
boundaries. Phys. Rev. Lett. 106, 244501) and the

classical Doering–Constantin Ra
1
2 bound (Doering &

Constantin. 1996 Variational bounds on energy
dissipation in incompressible flows. III. Convection.
Phys. Rev. E 53, 5957–5981).

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 1)’.

1. Introduction
The standard Rayleigh–Bénard convection model
describes the dynamics of a fluid layer confined
between two rigid plates held at different uniform
temperatures: the lower plate is hot and the upper
plate is cool. This temperature difference triggers density
variations of the fluid layers and instability ensues,

2022 The Author(s) Published by the Royal Society. All rights reserved.
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leading to a convective fluid motion and, as the control parameter Rayleigh number Ra increases,
eventually becomes turbulent. Rayleigh–Bénard convection is a paradigm of nonlinear dynamics,
including pattern formation and fully developed turbulence, and has important applications in
meteorology, oceanography and industry. A principal quantity of interest due to its relevance in
geophysical and industrial applications is the vertical heat transport across the domain. This is
usually expressed through the non-dimensional Nusselt number Nu, which is the ratio between
the total heat flux and the flux due to thermal conduction. Famously, experiment and numerical
simulation suggest a power-law scaling for the Nusselt number Nu

Nu∼ PrαRaβ for some α,β ∈ R,

where Ra and Pr are the non-dimensional Rayleigh and Prandtl number, respectively. In [1]
a systematic theory for the scaling of the Nusselt number Nu is proposed, based on the
decomposition of the global thermal and kinetic energy dissipation rates into their boundary layer
and bulk contributions. As such, it is of interest to provide mathematical constraints on allowed
exponents from the equations of motion.

In physical theories, scaling laws are based, in part, on the structure of (thermal and viscous)
boundary layers. It is therefore interesting to understand how the heat transport properties
change with respect to different choice of boundary conditions for the velocity. Most research has
focused on the cases where the velocity field satisfies the no-slip [2–5] and free-slip boundary
conditions [6–9]. In this paper we consider the non-dimensional Rayleigh–Bénard convection
model subject to Navier-slip boundary conditions. We note that, in contrast to the free-slip
boundary conditions studied by Whitehead–Doering, the Navier-slip boundary conditions allow
for vorticity to be produced at the boundary. In a sense, these conditions interpolate between the
no-slip and free-slip conditions as the slip length is increased from 0 to ∞. As such, our bounds
degenerate to those available for no-slip in the small slip length regime. As we show later in this
paper, the bound Nu� Ra1/2 holds uniformly in Prandtl number in any dimension and for any
boundary conditions such that the vertical component of the velocity is zero at the (upper and
lower) boundaries. At fixed Pr, this bound corresponds to the classical Spiegel–Kraichnan scaling
and has since been termed the ‘ultimate regime’. To this day, there is active debate regarding the
validity of the ultimate regime insofar as it can be inferred from data [10–12]. We remark that the
bound holds in any dimension and for any of the three types of boundary conditions mentioned
above and its estimation uses only non-penetration of the velocity at the walls.

We now describe our setup precisely. Let Ω = [0,Γ ] × [0, 1] be the channel with boundaries at
{x2 = 0} and {x2 = 1} and periodic in x1. We consider the Rayleigh–Bénard system [13]

1
Pr

(∂tu + u · ∇u) + ∇p −�u = RaTe2, in Ω , (1.1)

∇ · u = 0, in Ω , (1.2)

∂tT + u · ∇T =�T, in Ω , (1.3)

∂2u1 = 1
Ls

u1, on {x2 = 0}, (1.4)

− ∂2u1 = 1
Ls

u1, on {x2 = 1}, (1.5)

u2 = 0, on {x2 = 0} ∪ {x2 = 1}, (1.6)

T = 1, on {x2 = 0}, (1.7)

T = 0, on {x2 = 1}. (1.8)

In the horizontal direction x1, all the unknowns are Γ -periodic. See figure 1 for a depiction
of the setup in two dimensions. For higher dimensions, e2 in equation (1.1) becomes ed and
the boundary conditions are (1.5) and (1.6) in all tangential components. There are two non-
dimensional parameters appearing in the system: the Rayleigh number Ra which expresses the
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T = 0 u2 = 0

T = 0 u2 = 0

2u1 = 1
Ls

u1–

2u1 = 1
Ls

u1

Figure 1. Visualization (with data from no-slip convection [14]) of temperature field. (Online version in colour.)

strength of the thermal forcing and the Prandtl number Pr which represents the ratio of kinematic
viscosity to thermal diffusivity.

As (1.1)–(1.8) is already non-dimensional, the Nusselt number is defined simply by

Nu := 〈u2T − ∂2T〉, (1.9)

where we have introduced notation for the long-time, global-in-space average

〈ϕ〉 = lim sup
T→∞

1
T

∫T

0

1
Γ

∫Γ
0

∫ 1

0
ϕ(x1, x2, t) dx2 dx1 dt. (1.10)

We shall also write 〈ϕ〉xj for the long-time and xj average. Our main result is the following:

Theorem 1.1. Let Ls > 0. Then

— For any d ≥ 2, we have

Nu� Ra1/2. (1.11)

— For d = 2, if Pr satisfies Ls2Pr2 ≥ Ra3/2, then for all Ra> 1 it holds

Nu� Ra
5

12 + Ls−2Ra1/2. (1.12)

The implicit constants depend only on Γ , ||T0||L∞ and ||u0||W1,r for any fixed r ∈ (2, ∞).

Note that when Ls = csRaα with cs > 0 then for Pr≥ cs−1Ra(3/4)−α the bound (1.12) reads

Nu� Rap(α), p(α) :=

⎧⎪⎨
⎪⎩

5
12

if α ≥ 1
24

1
2

− 2α if 0 ≤ α ≤ 1
24

. (1.13)
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Theorem 1.1 recovers the Whitehead–Doering bound of [8] in two dimensions with Ls = ∞ and of
[9] in three dimensions with Ls = Pr= ∞. For smaller slip-lengths, the bound (1.13) approaches
the classical result of Doering–Constantin [4]. Our result improves upon available bounds at
fixed Prandtl numbers when the system is equipped with no-slip boundary conditions instead
of (1.4)–(1.5) provided that the slip-length is sufficiently large Ls ≥ csRa3/4, suggesting that the
Navier-slip conditions may slightly inhibit turbulent heat transport. We remark that the work
of Choffrut–Nobili–Otto [2] for no-slip boundaries (in arbitrary dimensions) gives Nu� Ra1/3 for
Pr � Ra1/3, which improves the bound over Doering–Constantin in that regime. Similar arguments
may improve our estimates in that case. Moreover we observe that for the three-dimensional
model with free-slip boundary conditions, Wang and Whitehead in [15] proved the estimate

Nu� Ra
5
12 + Gr2Ra1/4 where the Grashof number Gr = Ra/Pr is small.

Remark 1.2 (Infinite Prandtl number). For d ≥ 2, Pr= ∞, J. Whitehead (unpublished) proved

Nu� Ra
5
12 for all Ls > 0. In remark 3.6, we show how this follows from our argument.

Inspired by [8], we employ the background field method with the simple ansatz of a
background profile τ (x2) being constant in the bulk and linear in the boundary layers of size δ.
Since the Navier-slip conditions allow vorticity production at the walls, our argument is delicate
in a number of places compared to that for free-slip conditions. A consequence of the vorticity
production at the walls is the lack of conservation of the mean of u1. As a result, our uniform-
in-time bound for the kinetic energy grows linearly with the slip-length Ls (see lemma 2.3 and
remark 2.4). Another consequence is that the uniform-in-time bound for the enstrophy does not
follow directly from an energy estimate for the vorticity equation. Here, following an idea in [16],
we establish the uniform Lp bounds

||ω(t)||Lp ≤ C
(

||ω0||Lp + 1
Ls

||u0||L2 + Ra
)

∀t> 0, p ∈ [1, ∞). (1.14)

Firstly, (1.14) yields the long-time average enstrophy balance (2.22). Secondly, (1.14) is carefully
combined with an appropriate pressure estimate (see (2.10)) to handle the bad boundary term in
(3.16) in such a way that our Nusselt bound (1.12) recovers the result in [8] when Ls → ∞.

Following [8], we use the long-time average energy/enstrophy balances and reduce the proof
of (1.12) to establishing the positivity of certain quadratic functional Q (see proposition 3.3) when
parameters are suitably chosen. By obtaining a new estimate for the term 〈τ ′u2θ〉 generated by
the background field, we bypass a Fourier argument in [8] and base the proof entirely in physical
space.

2. Energy identities and uniform bounds
In what follows, we always consider smooth initial data so that the system (1.1)–(1.8) has
a unique global smooth solution. See e.g. [17,18]. We will repeatedly use that ||T(t)||L∞(Ω) ≤
max{1, ||T0||L∞(Ω)} for all t ≥ 0 by the maximum principle. Without loss of generality, we consider
initial data ||T0||L∞(Ω) ≤ 1 so that

||T||L∞(Ω) ≤ 1. (2.1)

Now we recall the well-known (e.g. [4]) identification of the Nusselt number with the heating rate

Proposition 2.1. The Nusselt number satisfies Nu= 〈|∇T|2〉.
Proof. Multiplying the temperature equation (1.3) by T, integrating by part in space, and using

the incompressibility condition (1.2) and the boundary conditions for u2 and T, we get

1
2

d
dt

||T||2L2(Ω) = −||∇T||2L2(Ω) −
∫Γ

0
∂2T

∣∣
x2=0 dx1.

Since ||T(t)||L2(Ω) is uniformly bounded in t, averaging in time yields

〈|∇T|2〉 = −〈∂2T
∣∣
x2=0〉x1 ,
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where 〈·〉x1 denotes the long time and x1 average. On the other hand, if we integrate (1.3) in x1
and time average, we find ∂2〈u2T − ∂2T〉x1 = 0. Integrating in x2 gives

〈u2T − ∂2T〉x1 = 〈(u2T − ∂2T)
∣∣
x2=0〉x1 = 〈−∂2T

∣∣
x2=0〉x1 .

In view of the definition (1.9), we deduce that Nu= −〈∂2T|x2=0〉x1 = 〈|∇T|2〉. �

Proposition 2.2 (Energy Balance). Strong solutions of (1.1)–(1.8) satisfy the balance

1
2Pr

d
dt

||u||2L2 + ||∇u||2L2 + 1
Ls

(||u1||2L2({x2=1}) + ||u1||2L2({x2=0})) = Ra
∫
Ω

u2T dx. (2.2)

Proof. Dotting equation (1.1) with u, integrating over Ω and using (1.2) and (1.6), we find

1
2Pr

d
dt

||u||2L2 =
∫
Ω

u ·�u + Ra
∫
Ω

u2T dx.

Using the periodicity and (1.4), (1.5) and (1.6) gives

∫
Ω

u ·�u dx = −||∇u||2L2 +
∫Γ

0

(
u · ∂2u

∣∣∣
x2=1

− u · ∂2u
∣∣∣
x2=0

)
dx1

= −||∇u||2L2 +
∫Γ

0

(
∂2u1u1

∣∣∣
x2=1

− ∂2u1u1

∣∣∣
x2=0

)
dx1

= −||∇u||2L2 − 1
Ls

(
||u1||2L2({x2=1}) + ||u1||2L2({x2=0})

)
.

�

From the energy balance, we find that the kinetic energy is bounded for all times.

Lemma 2.3. The energy of u satisfies the following bound:

||u(t)||L2 ≤ ||u0||L2 e−t 2
3 Prmin{1, 1

Ls
} + 3Γ max{1, Ls}Ra, ∀t> 0. (2.3)

Proof. From the fundamental theorem of calculus, we have

|u1(x1, x2)|2 ≤ 2|u1(x1, 0)|2 + 2
(∫ x2

0
|∂2u1(x1, y)| dy

)2

≤ 2|u1(x1, 0)|2 + 2x2

∫ 1

0
|∂2u1(x1, y)|2 dy

and thus upon integrating over Ω , we obtain

||u1||2L2(Ω) ≤ 2||u1(·, 0)||2L2(0,Γ ) + 2||∂2u1||2L2(Ω).

Combining this with the Poincaré inequality ||u2||L2(Ω) ≤ ||∂2u2||L2(Ω), we obtain

||u||2L2(Ω) ≤ 2||u1(·, 0)||2L2(0,Γ ) + 3||∇u||2L2(Ω).
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In addition, the temperature T obeys the maximum principle (2.1); hence ||T(t)||L2 ≤
|Ω|||T(t)||L∞ ≤ Γ . Then, proposition 2.2 gives

1
Pr

d
dt

||u||L2 ≤ 2RaΓ − 2
3

min{1, 1
Ls
}||u||L2 . (2.4)

�

Remark 2.4. Consider the free-slip boundary conditions u2 = 0 and ∂2u1 = 0 on x2 = 0, 1, which
can be formally obtained by setting Ls = ∞ in (1.6)–(1.7). The (spatial) mean of u1 is conserved
upon integrating the first component of (1.1). Appealing to the Galilean symmetry of the system,
one can assume without loss of generality that the mean of u1 is zero for all time. Consequently,
the Poincaré inequality ||u||L2 ≤ C||∇u||L2 holds. Then, the energy balance

1
2Pr

d
dt

||u||2L2 = −||∇u||2L2 + Ra
∫
Ω

u2T dx,

yields the uniform bound ||u(t)||L2 ≤ e−(t/C)||u0||L2 + C||T0||L∞Ra. This bound is better than (2.3) by
the factor Ls in front of Ra. On the other hand, for the Navier-slip boundary condition, the mean of
u1 is not conserved due to the generation of vorticity at the walls.

Corollary 2.5 (Average energy balance). The following balance holds

〈|∇u|2〉 + 1
Ls

(
〈u2

1
∣∣
x2=1〉 + 〈u2

1
∣∣
x2=0〉

)
= Ra(Nu − 1). (2.5)

Proof. Using the boundary conditions for the temperature (1.7) and (1.8), one finds

Nu= 1 + 〈u2T〉, (2.6)

from definition (1.9). Then the claim follows upon integrating (2.2) in time and taking the long
time limit using the uniform bound for ||u(t)||L2 given by lemma 2.3. �

Proposition 2.6 (Pressure-Poisson equation). The pressure in (1.1) satisfies

�p = − 1
Pr

∇uT : ∇u + Ra∂2T in Ω , (2.7)

−∂2p = 1
Ls
∂1u1 − Ra on {x2 = 0}, (2.8)

and ∂2p = 1
Ls
∂1u1 on {x2 = 1}. (2.9)

Proof. Equation (2.7) follows from taking the divergence of the momentum equation. The
boundary conditions come from tracing the second component of the momentum equation along
the boundaries. Specifically, one has

∂2p = ∂2
2 u2 + RaT = −∂1∂2u1 + RaT,

where ∂2u1 is given by (1.4) and (1.5). �

Proposition 2.7. For any r ∈ (2, ∞), there exists C = C(r,Γ ) such that

||p||H1(Ω) ≤ C
( 1
Ls

||∂1ω||L2(Ω) + Ra||T||L2(Ω) + 1
Pr

||ω||L2(Ω)||ω||Lr(Ω)

)
. (2.10)
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Proof. On one hand, using the boundary conditions (2.8) and (2.9) gives

∫
Ω

p�p dx = −||p||2
Ḣ1 +

∫Γ
0

p∂2p|x2=1
x2=0 dx1

= −||∇p||2L2 + 1
Ls

∫Γ
0

(p∂1u1|x2=1 + p∂1u1|x2=0)dx1 − Ra
∫Γ

0
p|x2=0 dx1.

On the other hand, using (2.7), (1.7) and (1.8), we find

∫
Ω

p�p dx = − 1
Pr

∫
Ω

p∇uT : ∇u dx − Ra
∫
Ω

∂2pT dx − Ra
∫Γ

0
p|x2=0 dx1.

Consequently,

||∇p||2L2 = 1
Ls

∫Γ
0

(p∂1u1|x2=1 + p∂1u1|x2=0) dx1 + 1
Pr

∫
Ω

p∇uT : ∇u dx + Ra
∫
Ω

∂2pT dx.

By virtue of the Sobolev trace inequality and Hölder’s inequality, it follows that

||∇p||2L2 � 1
Ls

||p||H1 ||∂1u1||H1 + Ra||p||H1 ||T||L2 + 1
Pr

||p∇uT : ∇u||L1 .

For any r ∈ (2, ∞), letting 1/q = 1/2 − 1/r, we have q ∈ (2, ∞) and

||p∇uT : ∇u||L1 ≤ ||p||Lq ||∇u||L2 ||∇u||Lr ≤ C||p||H1 ||ω||L2 ||ω||Lr ,

where we use the Sobolev embedding and (A 4).
Since p has mean zero, we have ||p||H1 ≤ C||∇p||L2 , so that upon using ∂1u1 = −∂2u2 we get

||p||H1 � 1
Ls

||∂2u2||H1 + Ra||T||L2 + C
Pr

||ω||L2 ||ω||Lr .

From lemma A.1 and (A 4), ||∇u||L2 = ||ω||L2 and ||∂2u2||H1 ≤ C||∂1ω||L2 , whence (2.10) follows. �

Proposition 2.8 (Vorticity formulation). The vorticity ω= ∇⊥ · u where ∇⊥ = (−∂2, ∂1) satisfies

1
Pr

(∂tω + u · ∇ω) −�ω= Ra∂1T in Ω , (2.11)

− ω= 1
Ls

u1 on {x2 = 0} (2.12)

and ω= 1
Ls

u1 on {x2 = 1}. (2.13)

Proof. Equation (2.11) follows from taking the curl of the momentum equation (1.1). The
boundary conditions (2.12) and (2.13) follow from the conditions (1.4) and (1.5) since the vorticity
on the boundary is simply ω= −∂2u1 upon recalling (1.6). �

Lemma 2.9. The normal derivative of vorticity satisfies

− ∂2ω= 1
Pr

(
∂tu1 + u1∂1u1

)+ ∂1p, on {x2 = 0} and {x2 = 1}. (2.14)

Proof. Using incompressibility of u, we find

∂2ω= −∂2
2 u1 + ∂1∂2u2 = −�u1. (2.15)

From the first component of (1.1) traced on the boundary (using u2 = 0 there), we have

�u1 = 1
Pr

(
∂tu1 + u1∂1u1

)+ ∂1p. (2.16)

�
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Proposition 2.10 (Enstrophy balance). The following identity holds

1
2Pr

d
dt

||ω||2L2 + 1
2LsPr

d
dt

(
||u1||2L2({x2=1}) + ||u1||2L2({x2=0})

)
+ ||∇ω||2L2

= 1
Ls

(∫Γ
0

p∂1u1

∣∣∣
x2=1

dx1 +
∫Γ

0
p∂1u1

∣∣∣
x2=0

dx1

)
+ Ra

∫
Ω

ω∂1T dx. (2.17)

Proof. Multiplying (2.11) by ω and integrating over the domain, we obtain

1
2Pr

d
dt

||ω||2L2 =
∫
Ω

ω�ω dx + Ra
∫
Ω

ω∂1T dx, (2.18)

where we have use the non-penetration boundary conditions for the velocity (1.6). Now note that
∫
Ω

ω�ω dx = −||∇ω||2L2 +
∫Γ

0
ω∂2ω

∣∣∣
x2=1

dx1 −
∫Γ

0
ω∂2ω

∣∣∣
x2=0

dx1

= −||∇ω||2L2 + 1
Ls

∫Γ
0

u1∂2ω
∣∣∣
x2=1

dx1 + 1
Ls

∫Γ
0

u1∂2ω
∣∣∣
x2=0

dx1

= −||∇ω||2L2 − 1
2LsPr

d
dt

(∫Γ
0

u2
1

∣∣∣
x2=1

dx1 +
∫Γ

0
u2

1

∣∣∣
x2=0

dx1

)

+ 1
Ls

(∫Γ
0
∂1u1p

∣∣∣
x2=1

dx1 +
∫Γ

0
∂1u1p

∣∣∣
x2=0

dx1

)
,

where we have used lemma 2.9 together with periodicity of the function u1 in x1. �

Next we provide uniform in time bounds for the vorticity

Lemma 2.11 (Lp vorticity bounds). Let Ls ≥ 1, p ∈ [1, ∞). There is C = C(p,Γ )<∞ so that

||ω(t)||Lp ≤ C
(
||ω0||Lp + 1

Ls
||u0||L2 + Ra

)
∀t> 0. (2.19)

Proof. Since Ω is bounded it suffices to prove (2.19) for p ∈ (2, ∞). To this end, we follow a
strategy used in [16]. For arbitrary T> 0 set

Λ := 1
Ls

||u1||L∞({x2=0,1}×(0,T)),

and consider the problems

1
Pr

(∂tω̃±+u · ∇ω̃±) −�ω̃±=Ra∂1T in Ω ,

ω̃±|t=0 = ±|ω0| in Ω

and ω̃± = ±Λ on {x2 = 0} ∪ {x2 = 1}.
Now let ω′± :=ω − ω̃±. This quantity satisfies

1
Pr

(∂tω
′
±+u · ∇ω′

±) −�ω′
± = 0 in Ω ,

ω′
±|t=0 =ω0 ∓ |ω0| in Ω

− ω′
±= 1

Ls
u1 ±Λ on {x2 = 0}

and ω′
±= 1

Ls
u1 ∓Λ on {x2 = 1}.

By the maximum principle, we have ω′+ ≤ 0 and ω′− ≥ 0 a.e. Ω × [0, T). Thus we obtain ω̃− ≤ω≤
ω̃+ and hence

|ω| ≤ max{|ω̃+|, |ω̃−|} a.e. Ω × [0, T). (2.20)
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We now bound ω̃± in Lp. We focus on ω̃= ω̃+, the other is similar. Let ω̂ := ω̃ −Λ. This solves

1
Pr

(∂tω̂ + u · ∇ω̂) −�ω̂= Ra∂1T in Ω ,

ω̂|t=0 = |ω0| −Λ in Ω ,

ω= 0 on {x2 = 0} ∪ {x2 = 1}.
We now perform Lp estimates; multiplying by ω̂|ω̂|p−2 where p> 2 we find

1
p

d
dt

||ω̂||pLp + (p − 1)
∫
Ω

|∇ω̂|2|ω̂|p−2 dx = −Ra
∫
Ω

∂1(ω̂|ω̂|p−2)T dx.

We bound using Cauchy–Schwarz and Young’s inequality

Ra
∣∣∣∣
∫
Ω

∂1(ω̂|ω̂|p−2)T dx
∣∣∣∣≤ (p − 1)

(∫
Ω

|∇ω̂|2|ω̂|p−2 dx
)1/2 (

Ra2
∫
Ω

|ω̂|p−2T2 dx
)1/2

≤ p − 1
2

∫
Ω

|∇ω̂|2|ω̂|p−2 dx + p − 1
2

|Ω|2/pRa2||ω̂||p−2
Lp ,

where we used that ||T||L∞ = 1. Thus we obtain

1
p

d
dt

||ω̂||pLp + p − 1
2

∫
Ω

|∇ω̂|2|ω̂|p−2 dx ≤ p − 1
2

|Ω|2/pRa2||ω̂||p−2
Lp .

Finally, since ω̂ vanishes on the boundary, we have the Poincaré inequality
∫
Ω

|∇ω̂|2|ω̂|p−2 dx = 4
p2 ||∇|ω|p/2||2L2 ≥ 4

p2C2
p
|||ω|p/2||2L2 = 4

p2C2
p
||ω||pLp

Thus we obtain (dividing through by ||ω̂||p−2
Lp ) the inequality

d
dt

||ω̂||2Lp ≤ −p − 1
2

4

p2C2
p
||ω̂||2Lp + p − 1

2
|Ω|2/pRa2.

It follows that for all t ≥ 0

||ω̂(t)||Lp ≤ ||ω̂0||Lp e−t((p−1)/p2C2
p) + pCp

2
|Ω|1/pRa≤ C

(
||ω0||Lp e−t/C +Λ+ Ra

)
, C = C(p,Γ ).

(2.21)

Given this bound, we estimate Λ using interpolation as follows:

Λ≤ 1
Ls

||u||L∞(Ω×(0,T))

≤ C
Ls

||u||θL∞([0,T];L2
x)||∇u||1−θ

L∞([0,T];Lp
x)

+ C
Ls

||u||L∞([0,T];L2
x)

≤ C
Ls

||u||θL∞([0,T];L2
x)||ω||1−θ

L∞([0,T];Lp
x)

+ C
Ls

||u||L∞([0,T];L2
x)

≤ Cε

(
1

Ls1/θ
+ 1

Ls

)
||u||L∞([0,T];L2

x) + ε||ω||L∞([0,T];Lp
x),

where θ = (p − 2)/(2p − 2) ∈ (0, 1), ε > 0 is arbitrary and, appealing to lemma A.2, we used
||∇u||Lp � ||ω||Lp . By virtue of lemma 2.3, for Ls ≥ 1 we obtain

Λ≤ Cε

(
1
Ls

||u0||L2 + Ra
)

+ ε||ω||L∞([0,T];Lp
x).

In view of this, (2.20) and (2.21), choosing ε small enough gives

||ω||L∞([0,T];Lp) ≤ C
(
||ω0||Lp + 1

Ls
||u0||L2 + Ra

)
,

where C is independent of T. Since T> 0 is arbitrary, this completes the proof. �
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An immediate consequence of the enstrophy balance (2.17) and the uniform vorticity bound
(2.19) is the following global balance

Corollary 2.12 (Average enstrophy balance). We have the balance for long-time averages

〈|∇ω|2〉 = 1
Ls

(
〈p∂1u1

∣∣
x2=1〉 + 〈p∂1u1

∣∣
x2=0〉

)
+ Ra〈ω∂1T〉. (2.22)

3. Proof of theorem 1.1
The theorem follows by an application of the background field method [4]. This method is based
on adopting the ansatz

T(x1, x2, t) =: τ (x2) + θ (x1, x2, t). (3.1)

We choose the ‘background’ profile τ : [0, 1] → [0, 1] to be the continuous function given by

τ (z) := 1 − 1
2δ

⎧⎪⎪⎨
⎪⎪⎩

z z ∈ [0, δ]

δ z ∈ (δ, 1 − δ)

z + 2δ − 1 z ∈ [1 − δ, 1]

, (3.2)

for some δ > 0 to be chosen later in the proof. Note that

τ ′(z) = − 1
2δ

⎧⎪⎪⎨
⎪⎪⎩

1 z ∈ [0, δ)

0 z ∈ (δ, 1 − δ)

1 z ∈ (1 − δ, 1]

. (3.3)

Note that ||τ ′||2L2([0,1]) = 1/2δ. Note that θ vanishes at the boundaries x2 = {0, 1}.

Proposition 3.1. With θ and τ defined by (3.1) and (3.2), the following identity holds

Nu − 1
2δ

= −〈|∇θ |2〉 − 2〈τ ′u2θ〉. (3.4)

Proof. According to proposition 2.1, the decomposition (3.1) and the profile (3.3), we have

Nu= 〈|∇θ |2〉 + ||τ ′||2L2([0,1]) + 2〈τ ′∂2θ〉. (3.5)

Inserting now the ansatz (3.1) into (1.3), we find the fluctuation θ satisfies

∂tθ + u2τ
′ + u · ∇θ −�θ − τ ′′ = 0 in Ω , (3.6)

θ = 0 on {x2 = 0} ∪ {x2 = 1}. (3.7)

Integrating (3.6) against θ and taking the long-time average (using the fact that θ , like T, is
uniformly bounded in time), we obtain

〈τ ′∂2θ〉 = −〈|∇θ |2〉 − 〈τ ′u2θ〉. (3.8)

This argument can be made rigorous by smooth approximation of the profile τ . Inserting this
equality above yields the claimed identity. �

Similarly to the bound of Doering–Constantin for the no-slip boundary condition [4], we have

Lemma 3.2. For any Ls > 0, we have Nu� Ra1/2.
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Proof. Equation (3.4) implies Nu≤ 1/2δ − 2〈τ ′u2θ〉. Since τ ′ = 1/2δ on its support (0, δ) ∪ (1, 1 − δ)
and θ and u2 vanish on x2 = 0, 1, we have

|θ (x1, x2)| ≤
√
δ||∂2θ (x1, ·)||L2(0,1) ∀x2 ∈ (0, δ) ∪ (1, 1 − δ)

and similarly for u2. Consequently,

1
Γ

∫Γ
0

∫ 1

0
2|τ ′u2θ | dx2 dx1 ≤ δ 1

Γ
||∂2u2||L2(Ω)||∂2θ ||L2(Ω).

Integrating in time and applying the Cauchy–Schwarz inequality gives

|〈−2τ ′u2θ〉| ≤ 2δ〈|∂2u2|2〉1/2〈|∂2θ |2〉1/2. (3.9)

Appealing to proposition 2.1 and corollary 2.5 we deduce

Nu≤ 1
2δ

+ 2δ(Nu)1/2((Nu − 1)Ra)1/2 � 1
2δ

+ 2δNuRa1/2. (3.10)

Choosing δ ∼ Nu−1/2Ra−1/4 by balancing the contributions of each term yields Nu� Ra1/2. �

To improve the bound, we follow [8] by using the energy and enstrophy balances

(a) := 〈|∇ω|2〉 − 1
Ls

(
〈p∂1u1

∣∣
x2=1〉 + 〈p∂1u1

∣∣
x2=0〉

)
− Ra〈ω∂1T〉,

(b) := 〈|∇u|2〉 + 1
Ls

(
〈u2

1
∣∣
x2=1〉 + 〈u2

1
∣∣
x2=0〉

)
− Ra(Nu − 1).

Note that (a) = (b) = 0 by corollary 2.5 and 2.12. Thus in view of (3.4) we have

Nu= 1
2δ

− 〈|∇θ |2〉 − 2〈τ ′u2θ〉 − b
Ra

(b) − a(a), (3.11)

for all b ∈ [0, 1) and a ∈ R.

Proposition 3.3. Let δ > 0, b ∈ [0, 1), a> 0 and M> 0. Then the following identity holds

(1 − b)Nu + b = 1
2δ

+ MRa2 − Q[θ , u, τ ], (3.12)

where Q[θ , u, τ ] is defined by

Q[θ , u, τ ] := MRa2 + 〈|∂1θ |2〉 + 〈|∂2θ |2〉 + 2〈τ ′u2θ〉 + b
Ra

〈|ω|2〉 + b
RaLs

(
〈u2

1
∣∣
x2=1〉 + 〈u2

1
∣∣
x2=0〉

)

+ a〈|∇ω|2〉 − a
Ls

(
〈p∂1u1

∣∣
x2=1〉 + 〈p∂1u1

∣∣
x2=0〉

)
− aRa〈ω∂1θ〉. (3.13)

The strategy is to show that Q is non-negative for an appropriate choice of δ := δ(Ra). Then
(3.12) will yield the desired bound on the Nusselt number. This requires bounds for the pressure
and for 2〈τ ′u2θ〉, where the former is handled by virtue of (2.10) and the latter requires a bound
different from (3.9). The main result is

Proposition 3.4. There exists a universal constant L0 > 0 such that for all Ls ≥ L0 and Pr such that
Ls2Pr2 ≥ Ra3/2, we have

Nu� Ra
5

12 + Ls−2Ra1/2, ∀ Ra> 1. (3.14)

Here, the implicit constant depends only on Γ , ||T0||L∞ and ||u0||W1,r for any fixed r ∈ (2, ∞).
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Proof. First we use Cauchy–Schwarz and Young’s inequality to get

|aRa〈ω∂1θ〉| ≤ a2Ra2

2
〈|ω|2〉 + 1

2
〈|∂1θ |2〉, (3.15)

so that Q of proposition 3.3 enjoys the lower bound

Q[θ , u, τ ] ≥ MRa2 + 1
2
〈|∂1θ |2〉 + 〈|∂2θ |2〉 + 2〈τ ′u2θ〉 +

(
b
Ra

− a2Ra2

2

)
〈|ω|2〉 + a〈|∇ω|2〉

+ b
RaLs

(
〈u2

1
∣∣
x2=1〉 + 〈u2

1
∣∣
x2=0〉

)
− a

Ls

(
〈p∂1u1

∣∣
x2=1〉 + 〈p∂1u1

∣∣
x2=0〉

)
. (3.16)

Note that from the Sobolev trace inequality and the incompressibility, we have

a
Ls

∣∣∣〈p∂1u1
∣∣
x2=1〉 + 〈p∂1u1

∣∣
x2=0〉

∣∣∣≤ C1a
Ls

〈||p||H1 ||∂2u2||H1 〉 ≤ C1a
Ls

〈||∇p||L2 ||∂1ω||L2〉,

where we used (A 4) and C1 = C1(Γ ). To bound the pressure, we recall from (2.10) that for any
r ∈ (2, ∞),

||p||H1(Ω) ≤ C
( 1
Ls

||∂1ω||L2(Ω) + Ra||T||L2(Ω) + 1
Pr

||ω||L2(Ω)||ω||Lr(Ω)

)
.

Recall also from lemma 2.11 that ||ω||Lr ≤ C(||u0||W1,r + Ra) and hence

C1||p||H1(Ω) ≤ C2

( 1
Ls

||∂1ω||L2(Ω) + Ra + ||u0||W1,r + Ra
Pr

||ω||L2(Ω)

)
.

Using Young’s inequality yields

aC1

Ls
||∇p||L2 ||∂1ω||L2 ≤ aC2

Ls2
||∂1ω||2L2 + aC2

Ls
||∂1ω||L2

(
Ra + ||u0||W1,r + Ra

Pr
||ω||L2

)

≤ aC2

Ls2
||∂1ω||2L2 + a

2
||∂1ω||2L2 + aC2

2

2Ls2

(
Ra2 + ||u0||2W1,r

Pr2 ||ω||2L2 + Ra2

Pr2 ||ω||2L2

)
.

Choosing M = aC2
2/2Ls

2 in the definition on Q, we find

Q[θ , u, τ ] ≥ 1
2
〈|∂1θ |2〉 + 〈|∂2θ |2〉 + 2〈τ ′u2θ〉

+
(

b
Ra

− a2Ra2

2
− aC2

2||u0||2W1,r

2Ls2 Pr2 − aC2
2Ra

2

2Ls2 Pr2

)
〈|ω|2〉 + a

(1
2

− C2

Ls2

)
〈|∇ω|2〉. (3.17)

Lemma 3.5. For some C0 > 0 and any ε > 0, we have

(a)

|2〈τ ′u2θ〉| ≤ 1
2
〈|∂2θ |2〉 + C0δ

6ε−1〈|ω|2〉 + ε

4
〈|∂1ω|2〉, (3.18)

(b)

|2〈τ ′u2θ〉| ≤ 1
2
〈|∂2θ |2〉 + C0δ

4ε−
2
3 〈|ω|2〉 + ε2

4
〈|∂2

1ω|2〉. (3.19)

Proof of lemma 3.5. Note that

2
∫ 1

0
τ ′u2θ dx2 = 1

δ

(∫ δ
0

u2θ dx2 +
∫ 1

1−δ
u2θ dx2

)
.

We shall consider the first integral; the second one is treated similarly. Since θ and u2 vanish on
x2 = 0, we have

|θ (x1, x2)| ≤ √
x2||∂2θ (x1, ·)||L2(0,x2), |u2(x1, x2)| ≤ x2||∂2u2(x1, ·)||L∞(0,1) ∀x2 ∈ (0, 1),

where, for the second bound, we used the fundamental theorem of calculus to have
u2(x1, x2) = ∫x2

0 ∂2u2(x1, z) dz ≤ x2 sup0≤z≤x2
|∂2u2(x1, ·)|. Noting that

∫1
0 ∂2u2(x1, x2) dx2 = 0, we
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deduce ∂2u2(x1, z0) = 0 for some z0 = z0(x1) ∈ (0, 1). Then by the fundamental theorem of calculus
and Hölder’s inequality, we obtain

|∂2u2(x1, x2)|2 = 2
∣∣∣∣
∫ x2

z0

∂2u2(x1, z)∂2
2 u2(x1, z)dz

∣∣∣∣� ||∂2u2(x1, ·)||L2(0,1)||∂2
2 u2(x1, ·)||L2(0,1). (3.20)

Applying Hölder’s inequality for x1 yields

I := 1
δ

1
Γ

∣∣∣∣
∫Γ

0

∫ δ
0

u2θ dx2 dx1

∣∣∣∣
� δ3/2 1

Γ
||∂2θ ||L2(Ω)||∂2u2||1/2L2(Ω)||∂2

2 u2||1/2L2(Ω)

≤ C
Γ
δ3/2||∂2θ ||L2(Ω)||ω||1/2L2(Ω)||∂1ω||1/2L2(Ω),

where we have used lemma A.1 and (A 4).
Proof of (a): From the above we have

I ≤ C
Γ

||∂2θ ||L2(Ω){δ3/2ε−1/4||ω||1/2L2(Ω)}{ε1/4||∂1ω||1/2L2(Ω)}.

Taking the time average and using the Hölder and Young inequalities, we deduce

〈I〉 ≤ 1
4
〈|∂2θ |2〉 + Cδ6ε−1〈|ω|2〉 + ε

8
〈|∂1ω|2〉.

Proof of (b): As in (3.20), we have the interpolation inequality ||∂1ω||2L2(Ω) ≤ ||ω||L2(Ω)||∂2
1ω||L2(Ω).

Thus we obtain the bound

I ≤ C
Γ

||∂2θ ||L2(Ω){δ3/2ε−1/4||ω||3/4L2(Ω)}{ε1/4||∂2
1ω||1/4L2(Ω)}

≤ 1
4
||∂2θ ||2L2(Ω) + C0{δ3/2ε−1/4||ω||3/4L2(Ω)}8/3 + 1

8
{ε1/4||∂2

1ω||1/4L2(Ω)}8.

The proof is complete. �

Applying lemma 3.5 (a) with ε= a to (3.17), we find

Q[θ , u, τ ] ≥ 1
2
〈|∂1θ |2〉 + 1

2
〈|∂2θ |2〉

+
(

b
Ra

− a2Ra2

2
− aC2

2||u0||2W1,r

2Ls2 Pr2 − aC2
2Ra

2

2Ls2 Pr2 − C0δ
6a−1

)
〈|ω|2〉 + a

(1
4

− C2

Ls2

)
〈|∇ω|2〉.

(3.21)

Clearly, the coefficient of 〈|∇ω|2〉 in (3.21) is positive for sufficiently large Ls. Fixing an arbitrary
b ∈ (0, 1) and imposing Ls2 Pr2 ≥ Ra3/2 and a = a0Ra−

3
2 gives

A := b
Ra

− a2Ra2

2
− aC2

2||u0||2W1,r

2Ls2 Pr2 − aC2
2Ra

2

2Ls2 Pr2 ≥ b
Ra

− a2
0

2Ra
− a0C2

2||u0||2W1,r

Ra3
− a0C2

2
2Ra

.

We choose

a0 = b

100C2
2

min

{
1,

Ra2

||u0||2W1,r

}

so that A ≥ b
2Ra . Letting δ solve b/2Ra= 2C0δ

6a−1
0 Ra3/2, the coefficient of 〈|ω|2〉 in (3.21) is positive

and hence Q is positive. This gives

δ =
(

a0b
4C0

)1/6
Ra−

5
12 .

In view of (3.12) with M = aC2
2/2Ls

2, we obtain Nu≤ 1/2(4C0/a0b)1/6Ra
5

12 + (a0C2
2/2)Ls−2Ra1/2.

Inserting a0 we finally arrive at (3.14).
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For Ls ∈ (0, L0), we have Nu� Ra1/2 according to lemma 3.2, and hence the bound (3.14) is still
valid. If Ls = ∞, the entire argument follows the same way in view of remark 2.4.

Remark 3.6 (A proof of the Pr = ∞ result of Whitehead). If Pr = ∞, the inertial term in the
momentum equation vanishes. We work in 2d for the sake of simplicity. The key observation of
Whitehead is that from (2.11) with Pr = ∞ we have

〈|∂1θ |2〉 = 1

Ra2
〈|�ω|2〉 ≥ 1

C
〈|∂2

1ω|2〉, (3.22)

since ∂1θ = ∂1T and according to lemma A.3, we have 〈|∂2
1ω|2〉 ≤ C〈|�ω|2〉 for some C> 0 for any

Ls > 0. Applying lemma 3.5 (b) to (3.17) with M = a = 0, we find

Q[θ , u, τ ] ≥
(

b
Ra

− C0δ
4ε−2/3

)
〈|ω|2〉 +

( 1

2CRa2
− ε2

8

)
〈|∂2

1ω|2〉.

The bound Q[θ , u, τ ] ≥ 0 follows by choosing ε= C−1/2Ra−1 and δ ∼ Ra−5/12.

�
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Appendix A. Some elliptic estimates
Here we record some useful identities/inequalities involving the vorticity.

Lemma A.1. With ω= ∇⊥ · u, the following identities hold

— ||∇u||L2 = ||ω||L2 ,
— ||�u||L2 = ||∇ω||L2 .

Proof. The second identity is a consequence of �u = ∇⊥ω. Next we prove the first identity. By
the periodicity in x1 and the boundary condition u2 = 0 on {x2 = 0} ∪ {x2 = 1}, we have

∑
i,j=1,2

∫
Ω

∂jui∂jui dx = −
∫
Ω

u ·�u dx +
∫Γ

0
u1∂2u1

∣∣∣x2=1

x2=0
dx1

= −
∫
Ω

u · ∇⊥ω dx +
∫Γ

0
u1∂2u1

∣∣∣x2=1

x2=0
dx1

=
∫
Ω

|ω|2 dx +
∫Γ

0
u1(∂2u1 + ω)

∣∣∣x2=1

x2=0
dx1 =

∫
Ω

|ω|2 dx,

where we have used that ∂2u1 + ω= ∂1u2 = 0 on ∂Ω . �

Lemma A.2. For any m ≥ 1 and p ∈ (1, ∞), there exists C such that ||∇u||Wm,p ≤ C||ω||Wm,p .
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Proof. Let ψ be the streamfunction for u, i.e. u = ∇⊥ψ such that

�ψ =ω in Ω ,

ψ = 0 on{x2 = 0},
and ψ = c(t) on{x2 = 1},

for some possibly time dependent but spatially constant c(t). Consequently, ∂1ψ satisfies

�∂1ψ = ∂1ω in Ω (A 1)

and

∂1ψ = 0 on {x2 = 0} ∪ {x2 = 1}. (A 2)

Fix k ≥ 1 and p ∈ (1, ∞). By elliptic regularity, we have

||∇u2||Lp = ||∇∂1ψ ||Lp ≤ C||ω||Lp (A 3)

and

||u2||W1+k,p = ||∂1ψ ||W1+k,p ≤ C||∂1ω||Wk−1,p . (A 4)

Now note that by divergence-free and the definition of the vorticity we have ∂1u1 = −∂2u2 and
∂2u1 = ∂1u2 − ω. Therefore, for any m ≥ 0, we have the bound

||∇u1||Wm,p ≤ C(||∇u2||Wm,p + ||ω||Wm,p ) ≤ C||ω||Wm,p .

�

Lemma A.3. With ω= ∇⊥ · u, we have ||∂1ω||L2 ≤ C||�ω||L2 for some C> 0.

Proof. From (A 1)–(A 2) we have�∂1u2 = ∂2
1ω inΩ and ∂1u2 = 0 on {x2 = 0} ∪ {x2 = 1} since ∂1 is

a tangential derivative. It follows
∫
Ω

�2∂1u2∂1u2 dx1 dx2 =
∫
Ω

�∂2
1ω∂1u2 dx1 dx2.

First note∫
Ω

�2∂1u2∂1u2 dx1 dx2 = −
∫
Ω

∇�∂1u2 · ∇∂1u2 dx1 dx2

= ||�∂1u2||2L2(Ω) −
∫Γ

0
∂2

2∂1u2∂2∂1u2 dx1 dx2

∣∣∣1
x2=0

= ||�∂1u2||2L2(Ω) −
∫Γ

0
∂2

1∂2u1∂
2
1 u1 dx1 dx2

∣∣∣1
x2=0

= ||�∂1u2||2L2(Ω) + 1
Ls

∫Γ
0

(∂2
1 u1)2 dx1 dx2

∣∣∣
x2=1

+ 1
Ls

∫Γ
0

(∂2
1 u1)2 dx1 dx2

∣∣∣
x2=0

≥ ||�∂1u2||2L2(Ω),

where we used incompressibility, the fact that ∂3
1 u2 is zero on the boundary and the boundary

conditions (1.4) and (1.5). On the other hand,
∫
Ω

�∂2
1ω∂1u2 dx1 dx2 =

∫
Ω

�ω∂3
1 u2 dx1 dx2

≤ ||�ω||L2(Ω)||∂3
1 u2||L2(Ω) ≤ C||�ω||L2(Ω)||�∂1u2||L2(Ω),

where we used that, since ∂1u2 = 0 on the boundary, elliptic regularity tells us ||∂3
1 u2||L2(Ω) ≤

||∂1u2||H2(Ω) ≤ C||�∂1u2||L2(Ω). Finally since �∂1u2∂
2
1ω, we are done. �
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