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A defining feature of three-dimensional hydro-
dynamic turbulence is that the rate of energy
dissipation is bounded away from zero as viscosity
is decreased (Reynolds number increased). This
phenomenon—anomalous dissipation—is sometimes
called the ‘zeroth law of turbulence’ as it underpins
many celebrated theoretical predictions. Another
robust feature observed in turbulence is that velocity
structure functions Sp(�) := 〈|δ�u|p〉 exhibit persistent
power-law scaling in the inertial range, namely
Sp(�) ∼ |�|ζp for exponents ζp > 0 over an ever
increasing (with Reynolds) range of scales. This
behaviour indicates that the velocity field retains some
fractional differentiability uniformly in the Reynolds
number. The Kolmogorov 1941 theory of turbulence
predicts that ζp = p/3 for all p and Onsager’s 1949
theory establishes the requirement that ζp ≤ p/3 for
p ≥ 3 for consistency with the zeroth law. Empirically,
ζ2 � 2/3 and ζ3 � 1, suggesting that turbulent Navier–
Stokes solutions approximate dissipative weak
solutions of the Euler equations possessing (nearly)
the minimal degree of singularity required to sustain
anomalous dissipation. In this note, we adopt
an experimentally supported hypothesis on the
anti-alignment of velocity increments with their
separation vectors and demonstrate that the inertial
dissipation provides a regularization mechanism via
the Kolmogorov 4/5-law.
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1. Introduction
We consider spatially periodic, incompressible viscous fluids governed by the Navier–Stokes
equations

∂tuν + ∇ · (uν ⊗ uν ) = −∇pν + ν�uν + f ν (1.1)

and
∇ · uν = 0, (1.2)

with solenoidal initial data uν |t=0 = uν
0 ∈ L2(Td) and body forcing f ν ∈ L2(0, T; L2(Td)). The

parameter ν > 0 is the kinematic viscosity of the fluid. Upon non-dimensionalization, it is
replaced by the inverse Reynolds number Re−1 = ν/UL, where U is a characteristic velocity and
L a characteristic length. If equations (1.1) and (1.2) are understood as holding in the sense of
distributions on [0, T] × T

d, then solutions of class L∞(0, T; L2(Td)) ∩ L2(0, T; H1(Td)) known as
Leray solutions [1], exist for all time T > 0 but are not known to be unique. A fundamental
property of these solutions is that they satisfy a global energy inequality. This means that energy
dissipation due to the viscosity of the fluid cannot exceed the difference in initial and final
kinetic energies plus the energy input by forcing. This inequality can be restated as an equality
by accounting for the dissipation arising from an inertial cascade to small scales caused by
(hypothetical) singularities in the Leray weak solutions [2]:

ˆ T

0

ˆ
Td

εν [uν ] dxdt = 1
2

ˆ
Td

|uν
0|2 dx − 1

2

ˆ
Td

|uν (·, T)|2 dx +
ˆ T

0

ˆ
Td

uν · f ν dxdt, (1.3)

for almost every T ≥ 0, where the total energy dissipation rate is

εν [uν ] := ν|∇uν |2 + D[uν ]. (1.4)

The dissipation due to possible singularities, D[uν ], is a non-negative distribution (Radon
measure). A consequence of (1.3) is that the cumulative energy dissipation ε[uν ] is bounded by
norms of data and forcing.

A striking feature of high-Re turbulence is that energy dissipation does not vanish in the limit
of viscosity going to zero. Namely, that there exists a number ε > 0 independent of viscosity ν

such that ˆ T

0

ˆ
Td

εν [uν ] dxdt ≥ ε > 0. (1.5)

See, e.g. [3–8]. This phenomenon, known as anomalous dissipation, is so fundamental to our
modern understanding of turbulence that it has been termed the ‘zeroth law’ [9]. It should
be emphasized however that, to this day, no single mathematical example of (1.5) is available,
although there has been great progress in understanding similar behaviour in some model
problems such as one-dimensional conservation laws and compressible flows [10–13], shell
models [14–17] and passive scalars [18–21].

Despite its conjectural status from the point of view of mathematics, under the experimentally
corroborated assumption that behaviour (1.5) occurs together with some heuristic assumptions
on statistical properties (homogeneity, isotropy, monofractal scaling), Kolmogorov [22] made a
remarkable prediction about the structure of turbulent velocity fields at high Reynolds number,
namely that

S||
p (�) := 〈(δ�uν · �̂)p〉 ∼ (ε|�|)p/3 for �ν � � � L (1.6)

where δ�uν (x, t) := uν (x + �, t) − uν (x, t), �̂ = �/|�| and where 〈·〉 represents some suitable
combination of space, time and ensemble averages. The length �ν , known as the Kolmogorov
scale, represents a small-scale dissipative cutoff and the integral scale L represents the size of
the largest eddy in the flow. The range �ν � � � L over which the scaling (1.6) holds is known
as the inertial range. The objects S||

p (�) are called pth-order longitudinal structure functions since
they measure the (signed) variation of pth powers of the velocity increments in the direction of
their separation vectors. See figure 1 for evidence of such persistent inertial-range scaling from
numerical simulations of homogenous isotropic Navier–Stokes turbulence [23].
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Figure 1. Second-order longitudinal (a) and absolute (b) structure functions computed from direct numerical simulation of
forced homogenous isotropic turbulence with Taylor scale Reynolds numbers (Rλ := Uλ/ν where U := 〈|u|2〉1/2 and λ :=
〈|u|2〉1/2/〈|∇u|2〉1/2 ) ranging from Rλ = 240 (green), 650 (blue), 1300 (red). They exhibit scaling over an inertial rangewhich
extends as Reynolds increases. A best-fit power-law exponent ζ2 for the power-law |r|ζ2 in this range is included. Data from
[23], figure 3a. (Online version in colour.)

Onsager took a further step by recognizing that the behaviour (1.5) requires the fluid to
develop singularities as ν → 0 in a mathematically precise sense. Specifically, for (1.5) to occur
on sequences of Navier–Stokes solutions, the pth-order absolute structure functions cannot satisfy
a bound of the type

Sp(�) =
ˆ T

0

ˆ
Td

|uν (x + �, t) − uν (x, t)|p dxdt ≤ C|�|ζp , ∀|�| ≤ L, (1.7)

for any ζp > p/3, p ≥ 3 and a constant C independent of viscosity. This assertion, originally stated
by Onsager [24] about weak solutions of the Euler equation and in the slightly more restrictive
setting of Hölder spaces, has since been rigorously proved [25–27]. In fact, energy dissipation
must vanish as viscosity goes to zero for any family of solutions {uν}ν>0 which are uniformly
bounded in the Besov space1 Lp(0, T; B1/3+,∞

p (Td)) for p ≥ 3 [28]. Thus, Kolmogorov’s 1941 theory
corresponds to turbulent solutions possessing the maximal degree of smoothness consistent with
their ability to anomalously dissipate energy.

It is well known that real fluids do not conform exactly to Kolmogorov’s prediction.2

Intermittency, or spottiness/non-uniformity of the velocity’s roughness and the energy
dissipation rate, result in deviations of the scaling exponents ζ

||
p (and ζp) from a linear behaviour

in p [35–40].3 Experiments do however indicate that for p near three, the formula ζp ≈ p/3

1A vector field v belongs to the Besov space Bσ ,∞
p (Td) for p ≥ 1, σ ∈ (0, 1) at time t if and only if

||v(·, t)||p
Lp < C0(t), Sp(�, t) ≤ C1(t)

∣∣∣∣ �L
∣∣∣∣
ζp

, ∀|�| ≤ L (1.8)

with ζp = σp, L > 0 and C0, C1 ∈ L1(0, T). Uniform boundedness of the family {uν }ν>0 in Lp(0, T; Bσ ,∞
p (Td)) is equivalent to the

condition that coefficients C0(t), C1(t) independent of ν > 0 exist so that the bounds (1.8) are satisfied for a.e. t ∈ [0, T].
2However, weak Euler solutions with less regularity u ∈ C1/3−([0, T] × T

d) and which do not conserve energy have been
constructed [29] after a long series of works [30–32] and they can be made strictly (globally) dissipative [33]. See [34] for
a very nice recent review of the subject. In a sense, these solutions exhibit exact K41-type behaviour, although they are not
known to arise as physical limits of Leray solutions of Navier–Stokes as required to make contact with real-world high-Re
flows.
3In fact, there is a rigorous connection between these two irregularities: Isett proved [41] that if ζp ≥ p/3 for some p > 3, then
the dissipation would have to take place on a full measure set. As experiments indicate that the dissipation takes place on
measure zero set of (spatial) fractal dimension ≈ 2.87 [42], this is consistent with velocity intermittency ζp < p/3 for all p > 3.
On the other hand, velocity irregularity is not enough to sustain anomalous dissipation: Shvydkoy [43] proved that ‘ordered
singularities’ with ζp = 1 for p ≥ 1 such as tangential velocity discontinuities across smooth co-dimension one hypersurfaces
(regular vortex sheets) conserve energy.
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Figure 2. The quantity−S||3 (�)/(
4
5�〈ε〉), is plotted for Reynolds numbers Rλ = 1300. The range of scales over which a value

near unity is achieved visibly extends as Reynolds number increases. Data from [23], fig. 1.

approximately holds with ζ2 ∈ 2
3 + [0.03, 0.06] and ζ3 ≈ 1. For example, in flow past a sphere

ζ2 ≈ 0.701 is reported in [36] and ζ2 ≈ 0.71 in [35] (see table 2 therein). Recent high-resolution
numerical simulations report ζ2 ≈ 0.725 (figures 1 and 3). Although there are slight variations, all
these results conform to ζ2 � 2/3 and ζ3 � 1. These observations motivate:

Question 1.1. Why does high-Reynolds number turbulence seems to be as rough as required
to support anomalous dissipation of energy but not much rougher?

In this direction, we note that Kolmogovov’s prediction (1.6) in the case p = 3 has a
privileged status in that it can be derived (under certain technical assumptions, see Prop. 2.2)
from the equations of motion (1.1)–(1.2) rather than being merely a consequence of statistical
hypotheses. Specifically, Kolmogorov established the ‘4/5-law’ (in dimension three) under only
the assumption of anomalous dissipation (1.5):

S||
3 (�) := 〈(δ�u · �̂)3〉 ≈ − 12

d(d + 2)
ε�, (1.9)

which holds in the limit of large Reynolds number ν → 0 and subsequently small scales � → 0. In
practice, (1.9) is observed to hold approximately over the inertial range; see figure 2 for evidence
from [23]. The 4/5-law captures some aspects of the turbulent cascade: energy is transferred
through scale by a cubic nonlinear flux term related to S||

3 (�) until it is removed, ε > 0, from the
system by infinitesimal viscosity.

In fact, the 4/5-law (1.9) fixes the scaling exponent p/3 in (1.6) via the statistical assumption
of monofractal scaling in Kolmogorov’s theory. On its face, this indicates that the turbulent fluid
velocity satisfies δ�u ∼ �1/3 and so is ‘1/3 differentiable’, at least in some averaged sense. More
precisely, the fact that ε is a priori bounded by initial data and forcing via equation (1.3) ensures
that S||

3 (�)/� is controlled uniformly for small �. This suggests that some kind of a priori regularity
information—a ‘turbulent energy estimate’—might be extracted from the 4/5-law. Unfortunately,
aside from justifying the assumptions necessary for a rigorous derivation of (1.9), there are
two obstructions to realizing this hope: (i) the longitudinal structure function does not measure
velocity variations in all directions, only those aligned with the separation vector and (ii) the
integrand is not sign-definite. In particular, although a certain skewness is implied by the 4/5-
law (positive of ε means negativity of δ�u · �̂ in an averaged sense), it is conceivable that there
are large fluctuations which cancel in the integral to yield (1.9) but would disturb this relation if
the increments were replaced by their absolute values. Both of these issues prevent the control on
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Figure 3. Best-fit exponents within the inertial range are plotted for absolute ζ2 and longitudinal ζ
||
2 structure functions. The

K41 value of ζ k41
2 := 2/3 is given for reference. The exponents ζ2, ζ

||
2 appear to saturate at 0.725, which serves as the exponent

which provides the uniform (in Re) bounds (1.7) and (1.12). Data from [23], fig. 3b. (Online version in colour.)

third order longitudinal structure function afforded by (1.9) from being coercive and so it seems
that no direct information about regularity of the velocity can be immediately extracted.

Here we explore possible nonlinear mechanisms to extract regularity from 4/5-law. Our
results will be of a conditional nature, involving hypotheses which are unproved but which
are corroborated by experiment and simulations of turbulence. Roughly, our main assumptions
(hypothesis 2.1) are that

(a) the Kolmogorov 4/5-ths law holds
(b) the Kolmogorov 4/3-rds law holds

as well as (hypothesis 2.3).

(a) there exists an α ∈ [0, 1) and C > 0 independent of ν such that for all scales � > 0

−
ˆ T

0

ˆ
Td

〈
(δ�uν · �̂)3

〉
ang

dxdt ≥ C|�|α
ˆ T

0

ˆ
Td

〈
|δ�uν · �̂|3

〉
ang

dxdt, (1.10)

(b) there exists an β ∈ [0, 1) and C′ > 0 independent of ν such that for all scales � > 0

−
ˆ T

0

ˆ
Td

〈
(δ�uν · �̂)|δ�uν |2

〉
ang

dxdt ≥ C′|�|β
ˆ T

0

ˆ
Td

〈
|δ�uν |3

〉
ang

dxdt. (1.11)

The first hypotheses assert the validity of the Kolmogorov laws for weak solutions. Although
anticipated to be true (the 4/5-ths law is sometimes referred to as the only ‘exact’ law in
turbulence), to this day it has not been unconditionally established (see [44,45] for conditional
validations and figure 2 for empircal evidence). The second hypotheses concern some effective
alignment properties of the velocity increments with their separation vectors. A detailed
discussion is deferred to the subsequent section. As stated above, they are slightly stronger
than hypothesis 2.3 required in the proof, but may be more convenient to verify numerically or in
experiment. In fact, there has already been direct evidence of the behaviour (1.10) with α ≈ 0.03
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from experiment [38–40] (see extended discussion in remark 2.5). In practice, (1.10) and (1.11)
need only be checked over the finite range of scales in the inertial range �ν � � � L. We prove

Theorem 1.2. Let u be a weak solution of the Euler equations of class L3(0, T; L3(Td)). Then

(a) if hypotheses 2.1(a) and 2.3(a) hold, then u ∈ L2(0, T; B(1−α)/3,∞
2 (Td)),

(b) if hypotheses 2.1(b) and 2.3(b) hold, then u ∈ L3(0, T; B(1−β)/3,∞
3 (Td)).

Theorem 1.2(b) is not very surprising since hypothesis 2.3(b) (nearly) assumes control on
the absolute structure function by the longitudinal. We include it because there is experimental
evidence of such control, because L3 seems to be the natural scale for regularization by the energy
cascade. It also applies unconditionally to the entropic solutions of the Burgers equation (see
remark 2.7). On the other hand, theorem 1.2(a) produces regularity in L2 without assuming that
the full velocity increment can be controlled by the longitudinal component. This is due to the
following Lemma which shows that the dynamical law (Euler or Navier–Stokes equations) of the
fluid can be used to deduce information on the full velocity increment from partial information
on the behaviour of the component in the direction of its separation vector.

Lemma 1.3. A weak solution of the incompressible Euler equations is of class L2(0, T; B
ζ

||
2 /2,∞

2 (Td))
with ζ

||
2 ∈ (0, 2] if and only if the longitudinal structure function defined by (3.7) satisfies

ˆ T

0

〈
S||

2 (�)
〉
ang

dt � |�|ζ ||
2 , ∀ |�| > 0. (1.12)

Remark 1.4 (Weak solutions as zero-viscosity limits). Lemma 1.3 has some implications
for the weak inviscid limit. In particular, uniform boundedness of the family {uν}ν>0 in

L2(0, T; B
ζ

||
2 /2,∞

2 (Td)) is equivalent to a bound of the form (1.12) independent of viscosity. In fact, as
in lemma 1 of [46], for Leray solutions uν ∈ L∞(0, T; L2(Td)) ∩ L2(0, T; H1(Td)) the condition (1.12)
is equivalent to

ˆ T

0

〈
S||

2 (�; ν)
〉
ang

dt � |�|ζ ||
2 , η(ν) ≤ |�| ≤ L, (1.13)

where η(ν) = ν1/2(1−s). Thus, a uniform scaling with any positive exponent of the longitudinal
structure function in the ‘inertial range’ suffices to obtain weak Euler solutions in the inviscid limit
(see Thm 1 of [46]). We emphasize that the bound (1.13) is not naively a compactness statement,
although for equations structurally similar to Navier–Stokes, lemma 1.12 transforms it into one.
See figure 3 for empirical verification of lemma 1.3 as it applies to inviscid limits of Navier–Stokes
turbulence, relating the bounds (scalings) of the absolute and longitudinal structure functions.

2. Kolmogorov 4/5-law and alignment hypotheses
We here recall a rigorous formulation of the Kolmogorov 4/5-law for weak solutions of the Euler
equations arising as zero viscosity limits and introduce the precise hypotheses under which our
theorem is established. As discussed above, Onsager conjectured [24] that sufficiently rough,
dissipative weak solutions of the Euler equations are candidate descriptions of high-Reynolds
number flows exhibiting the behaviour (1.5). Onsager’s vision of weak Euler solutions as a
framework to study zero-viscosity limits follows from sufficient compactness. Indeed, if a family
of Leray solutions {uν}ν>0 is precompact in L3(0, T; L3(Td)), then strong space–time L3–limits exist
uν → u ∈ L3(0, T; L3(Td)) and are weak solutions of the Euler equations.4 In fact, this assumption

4Such compactness is implied if the family of Leray solutions {uν }ν>0 is uniformly in ν bounded in L3(0, T; Bs,∞
3 (Td)) for any

s > 0 [28,46]. As discussed above, this is robustly observed in experiments and simulations [36–40].
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also guarantees the existence of a limiting dissipation measure ε[u],

D′- lim
ν→0

εν [uν ] = ε[u] ≥ 0, (2.1)

where the limit is understood in the sense of distributions (it holds upon pairing with any smooth
test function and is denoted byD′- lim). Furthermore, Duchon & Robert [2] showed that any weak
solution of the Euler equations u of class L3(0, T; L3(Td)) satisfies a (weak) energy balance

∂t

(
1
2
|u|2

)
+ ∇ ·

[(
1
2
|u|2 + p

)
u
]

= −D[u], (2.2)

where the ‘inertial dissipation’ D[u] is defined by the distributional limit

D[u] :=D′- lim
�→0

1
4�

ˆ
Td

(∇ϕ)�(r) · δru(x, t)|δru(x, t)|2 dr (2.3)

with ϕ an arbitrary standard mollifier, (∇ϕ)�(r) = �−d∇ϕ(r/�) and δru(x, t) = u(x + r, t) − u(x, t).
The distribution defined by (2.3) represents the flux of energy into or out of the fluid due to a
nonlinear inertial cascade to zero length-scale facilitated, as Onsager envisioned, by sufficiently
irregular velocity fields. As a consequence of (2.2), the inertial dissipation matches onto the
viscous dissipation anomaly

D[u] = ε[u], (2.4)

and the distribution D[u] must be non-negative and independent of the mollifier ϕ. This
independence can be seen directly provided that u has some additional spatial continuity which
is made precise by the following

Hypothesis 2.1. Let u be any weak solution of the Euler equation of class L3(0, T; L3(Td)). Suppose

(a) the following version of the Kolmogorov 4/5-law holds

D′- lim
|�|→0

1
|�|
〈
(δ�u · �̂)3

〉
ang

= D∗
4/5[u], (2.5)

(b) the following version of the Kolmogorov 4/3-law holds

D′- lim
|�|→0

1
|�|
〈
(δ�u · �̂)|δ�u|2

〉
ang

= D∗
4/3[u], (2.6)

where the angle average denotes 〈f (�)〉ang := ´Sd−1 f (�) dω(�̂) and dω is the measure on solid angles.

With hypothesis 2.1 in hand, we see explicitly that D[u] does not depend on the arbitrary
mollifier and the standard versions of the Kolmogorov laws hold:

Proposition 2.2 (Duchon & Robert [2] and Eyink [45]). Under hypothesis 2.1, the following
distributional equalities hold

D∗
4/5[u] = − 12

d(d + 2)
D[u], D∗

4/3[u] = −4
d

D[u]. (2.7)

See also discussion in [47], which gives a Lagrangian interpretation of these distributions.
In combination with (2.4) which holds for strong vanishing viscosity limits, proposition 2.2
constitutes precise versions of the celebrated Kolmogorov 4/5 and 4/3-laws (upon setting d = 3
in (2.7)):

D∗
4/5[u] = − 12

d(d + 2)
ε[u], D∗

4/3[u] = −4
d
ε[u]. (2.8)

Equation (2.8) is a rigorous version of (1.9). It should be noted that the above relationships are
local in that they hold in the sense of space–time distributions. Moreover, they show that the
fluxes D∗

4/5[u] and D∗
4/3[u] are, in fact, non-positive as distributions, implying a form of skewness

of the velocity field.
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Now, for any weak Euler solution of class L3(0, T; L3(Td)), the inertial dissipation D[u] must be
finite upon averaging in space time. However, it need not be signed. One consequence of (2.4) is
that the inertial dissipation inherits an a priori bound in terms of initial data and forcing, and is
non-negative for high-Reynolds number flows exhibiting anomalous dissipation (1.5):

0 <

ˆ T

0

ˆ
Td

D[u] dxdx < ∞. (2.9)

The balance (2.4), which leads to (2.9), is related to the direct energy cascade and can be
interpreted as the statement that a nonlinear transfer of energy can be sustained even to
infinitesimally small scales, where an infinitesimal viscosity can efficiently remove energy from
the system. Our main thesis is that (2.9) can provide a partial explanation for the discussed
smoothness of the weak Euler solutions, provided that the solutions additionally possess certain
structural properties. More precisely, we adopt the assumption that

Hypothesis 2.3. Let u be a weak solution of Euler satisfying hypothesis 2.1. Suppose in addition that

(a) there exists an α ∈ [0, 1) and C := C(d, T, u0, f ) > 0 such that

−
ˆ T

0

ˆ
Td

D∗
4/5[u] dxdt ≥ lim sup

|�|→0

C
|�|1−α

ˆ T

0

ˆ
Td

〈
|δ�u · �̂|3

〉
ang

dxdt. (2.10)

(b) there exists an β ∈ [0, 1) and C′ := C′(d, T, u0, f ) > 0 such that

−
ˆ T

0

ˆ
Td

D∗
4/3[u] dxdt ≥ lim sup

|�|→0

C′

|�|1−β

ˆ T

0

ˆ
Td

〈
|δ�u|3

〉
ang

dxdt. (2.11)

Remark 2.4. Clearly hypothesis 2.3(b) is the stronger assumption since |δ�u · �̂|3 ≤ |δ�u|3. In
turn, we will show that it leads to a stronger form of regularization on the limit Euler solution.
It should be noted that hypothesis 2.3(a) is an assumption on the possible cancellations of the
angle average rather than a brute force control of a piece of the velocity increment by the full
increment as in hypothesis 2.3(b). Such statements are assumptions on the average anti-alignment
of velocity increments with their separation vectors. Additionally, we remark that the choice of
D∗

4/3[u] in hypothesis 2.3(b) was not important. For our purpose (theorem 1.2(b)), it is sufficient
that it holds for either distribution D∗

4/3[u] or D∗
4/5[u]—the important properties are the finiteness

and positivity upon space-time averaging. In any case, if hypothesis 2.1 holds, with both limits
(2.5) and (2.6) existing, then the distributions are interchangeable in the statement of the (2.10)
and (2.11).

Remark 2.5 (Evidence of anti-alignment). There is some experimental evidence [38–40] for the
type of alignment assumed in hypothesis 2.3(a), in particular that absolute differences do differ in
scaling as in (2.10), but very slightly. Specifically, for absolutely third-order longitudinal structure
functions, experiments find [40] that (a slightly strengthened version of) hypothesis 2.3(a) holds
with α ≈ 0.03, i.e. −〈(δ�u)3〉 ∼ �α〈|δ�u|3〉 in the inertial range; see table 1 therein. This behaviour of
α � 1 has also been observed in a number of other experiments [36,37]. It should be noted that the
experimental measurements are inferred from data of the velocity field along a one-dimensional
cut and the longitudinal structure was computed by appealing to Taylor’s hypothesis, ergodicity
and statistical isotropy and homogeneity.

Remark 2.6 (Stochastic setting). Rigorously establishing alignment properties such as those
appearing in hypothesis 2.3 seems to be a very difficult task. Moreover, even if true generically, it is
quite conceivable that it is false pathwise the setting of the deterministic Navier–Stokes solutions
due to non-generic events. Thus, such properties might be easier established in the stochastically
forced or random data setting. For instance, one might be able to prove the existence of statistically
stationary, homogenous isotropic martingale solutions. It is then plausible that (2.10) and (2.11)
hold for such solutions upon ensemble averaging. See [44] for some interesting developments
concerning the validity of hypothesis 2.1.
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The fact that inertial dissipation and the direct energy cascade can provide a regularization
mechanism for the weak solutions is well understood in some model problems, such as
one-dimensional conservation laws [48–50] as well the dyadic (Desnyansky–Novikov) shell
model of turbulence [51]. For three-dimensional Navier–Stokes, no form of uniform fractional
regularity or self-regularization has ever been rigorously established from first principles,
however experiments and simulations ubiquitously indicate that solutions do possess some form
of these phenomena [36–40]. In particular, as discussed above, measurements of multifractal
structure function scaling exponents from over the last 60 years indicate that some turbulent
solutions of Navier–Stokes enjoy some limited uniform fractional regularity in Lp spaces. Under
the hypotheses 2.1 and 2.3, the latter being of a quantitative nature, we capture some of the
smoothing effect of the nonlinearity and obtain a self-regularizing property of dissipative weak
Euler solutions by theorem 1.2. Thus, the 4/5-law together some alignment properties implies
regularization for any such weak Euler solution with a finite positive inertial dissipation (in
particular, vanishing viscosity limits). Of course, our theorem 1.2 is of a conditional nature in
that it relies on two major hypotheses 2.1 and 2.3, both of which seem very difficult to prove
a priori. However, the validity of these hypotheses can be checked in Nature through controlled
experiment and in direct numerical simulation (DNS) of the Navier–Stokes equations at high
Reynolds number. In remark 2.5, we recalled some existing experimental results concerning the
validity hypothesis 2.3(a). We hope that our hypotheses 2.1 and 2.3 will be subject to much further
testing and scrutiny.

Remark 2.7 (Burgers equation). The two hypotheses 2.1 and 2.3 are true for entropy solutions
of the one-dimensional Burgers equation. In particular, the so-called 1/12th law states

lim
|�|→0

1
12

ˆ T

0

ˆ
Td

1
|�|
〈
(δ�u)3

〉
ang

dxdt = −
ˆ T

0

ˆ
Td

ε(x, t) dxdt, (2.12)

where the one-dimensional angle average is defined by 〈(δ�u)3〉ang = 1
2 [(δ�u)3(|�|) + (δ�u)3(−|�|)].

Equation (2.12) is the analogue of the 4/5-law in the setting of Burgers and is rigorously
established for vanishing viscosity limits. If there are countably many shocks, the following can
be explicitly computed

lim
|�|→0

ˆ T

0

ˆ
Td

1
|�|
〈
(δ�u)3

〉
ang

dxdt =
∑

i

(�ui(t))
3,

where �ui(t) is the jump at the ith shock. The Lax entropy condition is that u− > u+ at shocks,
or �ui(t) < 0. This means that �ui(t) = −|�ui(t)| and our hypothesis 2.3 holds with α = β = 0.
This is an example of perfect ‘anti–alignment’. In accord with theorem 1.2(b), we obtain u ∈
L3(0, T; B1/3,∞

3 (T)). In the light of the inclusion (L∞ ∩ BV)(Td) ⊂ B1/p,∞
p (Td), this is consistent with

the well-known BV regularity of entropy solutions of one-dimensional hyperbolic conservation
laws [48–50].

3. Proofs
Proof of lemma 1.3. Let s = ζ

||
2 /2. (1) �⇒ (2). This direction is trivial since〈

S||
2 (�)

〉
ang

≤ sup
|�′|≤|�|

ˆ
Td

|δ�′ u · �̂′|2 dx ≤ sup
|�′|≤|�|

S2(�′) ≤ C|�|2s, (3.1)

where the Besov regularity u ∈ L2(0, T; Bs,∞
2 (Td)) was used in the final inequality.

(2) �⇒ (1). Let u ∈ L2(0, T; L2(Td)) be a weak solution of the incompressible Euler equations:
ˆ T

0

ˆ
Td

u∂tϕ dxdt +
ˆ T

0

ˆ
Td

u ⊗ u : ∇ϕ dxdt = 0. (3.2)

where ϕ := ϕ(x, t) ∈ C∞
0 ([0, T] × T

d) is a compactly supported divergence-free test function.
Defining ϕ� := ϕ(x − �). Introducing the increment field δ�u := u(x + �) − u(x) and choosing the
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test function ϕ� − ϕ in (3.2) shows that

(∂t + u · ∇)δ�u = −∇xδ�p − δ�u · ∇�δ�u + δ�f (3.3)

holds in the sense of distributions. To obtain this we denote u′ = u(x + �) and u = u(x) and derive
a weak form of the ‘doubling variables’ identity

ˆ
Td

(u ⊗ u : ∇ϕ� − u ⊗ u : ∇ϕ) dx =
ˆ

Td
(δ�u ⊗ u′ − u ⊗ δ�u) : ∇ϕ dx

=
ˆ

Td
(δ−�u ⊗ u : ∇ϕ� − u ⊗ δ�u : ∇ϕ) dx

=
ˆ

Td
(δ−�u ⊗ u : ∇�ϕ� − u ⊗ δ�u : ∇ϕ) dx

= ∇� ·
ˆ

Td
δ�u ⊗ u′ · ϕ dx −

ˆ
Td

u ⊗ δ�u : ∇ϕ dx

= ∇� ·
ˆ

Td
δ�u ⊗ δ�u · ϕ dx −

ˆ
Td

u ⊗ δ�u : ∇ϕ dx,

where we used the fact that u is distributionally divergence-free. This establishes that (3.3) holds
in the sense of distributions. Dotting the above equation with �, we find

(∂t + u · ∇)(δ�u · �) = −� · ∇xδ�p − δ�u · ∇�(δ�u · �) + |δ�u|2 + δ�f . (3.4)

Integrating this balance over the torus, we have
ˆ

Td
|δ�u|2 dx = −∇� ·

ˆ
Td

δ�u(δ�u · �) dx, (3.5)

where we used only periodicity of the solution fields. Averaging (in the separation vector �)
equation (3.5) over a ball of radius L centred at zero, we find

ˆ
BL(0)

ˆ
Td

|δ�u|2 dxd� =
ˆ

Sd−1

(ˆ
Td

|δ�u · �̂|2 dx
)∣∣∣∣|�|=L

dω(�̂), (3.6)

where Sd−1 is the unit sphere in d-dimensions and dω is the measure on solid angles (unit Haar
measure on Sd−1) and

´
A := 1

|A|
´

A. For p ≥ 1, we define the absolute and longitudinal structure
functions to be

Sp(�) :=
ˆ

Td
|δ�u|p dx, S||

p (�) :=
ˆ

Td
(δ�u · �̂)p dx. (3.7)

Introducing the angle-averaging operation

〈
f (�)

〉
ang :=

ˆ
Sd−1

f (�) dω(�̂), (3.8)

from (3.6) we have deduced the identity
ˆ

BL(0)
S2(�) d� =

〈
S||

2 (L�̂)
〉
ang

. (3.9)

Remark 3.1. In general, the tensor product with � yields

(∂t + uν · ∇x)(δ�u ⊗ �) + δ�u · ∇�(δ�u ⊗ �) = δ�u ⊗ δ�u − � ⊗ ∇xδ�p.

Thus, integrating over space and separation vectors then yields the tensorial identity〈ˆ
Td

(δ�u · �̂)(δ�u ⊗ �̂) dx
〉

ang
=
ˆ

B�(0)

ˆ
Td

(δ�′ u ⊗ δ�′ u) dxd�′. (3.10)

Taking the trace gives the scalar identity (3.9). We also obtain as a special case in three dimensions〈ˆ
Td

(δ�u · �̂)(δ�u × �̂) dx
〉

ang
= 0. (3.11)
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Using the identity (3.9) together with the assumed bound (1.12), we have
ˆ

BL(0)
S2(�) d� ≤ CL2s. (3.12)

This inequality holds for all L ≥ 0. Let f (�) := ||δ�u||L2 and note that for any �′ ∈ T
d, we have

|f (�) − f (�′)| = |||δ�u||L2 − ||δ�′ u||L2 | ≤ ||δ�u − δ�′ u||L2

=
√ˆ

Td
|u(x + �) − u(x + �′)|2 dx = ||δ�′−�u||L2 .

Thus we have the bound
ˆ

BL(�′)
|f (�) − f (�′)|2 d� ≤

ˆ
BL(�′)

|f (�′ − �)|2 d� =
ˆ

BL(0)
|f (�)|2 d�. (3.13)

We conclude that for any �′ ∈ T
d and L > 0, the following inequality holds

(
ˆ

BL(�′)
|f (�) − f (�′)| d�)2 ≤

ˆ
BL(�′)

|f (�) − f (�′)|2 d� ≤ CL2s, (3.14)

which follows by Jensen’s inequality. We finally appeal to the following basic fact �

Lemma 3.2. Assume that there exists C > 0 and α ∈ (0, 1] such that for every x0 ∈ T
d and r > 0,

1
|Br(x0)|

ˆ
Br(x0)

|f (x) − f (x0)| dx < Crα . (3.15)

Then f is Hölder continuous with exponent α.

Proof. Let x0, y0 ∈ T
d and set r = |x0 − y0|. Then we have B(y0, r) ⊂ B(x0, 2r). Thus,

2Crα ≥ 1
|B2r(x0)|

ˆ
B2r(x0)

|f (x) − f (x0)| dx + 1
|B2r(y0)|

ˆ
B2r(y0)

|f (x) − f (y0)| dx

= (c0(2r)d)−1

{ˆ
B2r(x0)

|f (x) − f (x0)| dx +
ˆ

B2r(y0)
|f (x) − f (y0)| dx

}

≥ (c0(2r)d)−1
ˆ

Br(x0)
|f (x) − f (x0)| + |f (x) − f (y0)| dx

≥ (c0(2r)d)−1
ˆ

Br(x0)
|f (x0) − f (y0)|dx = 2−d|f (x0) − f (y0)|

where c0 denotes the volume of the unit ball. It follows that

|f (x0) − f (y0)| ≤ 2d+1C|x0 − y0|α

for any x0, y0 ∈ T
d. This completes the proof. �

Lemma 3.3. allows us to conclude that S2(�) is Hölder continuous in � with exponent 2s and

||u||L2(0,T;L2(Td)) < C0, ||δ�u||L2(0,T;L2(Td)) ≤ C1|�|s �⇒ ||u||L2(0,T;Bs,∞
2 (Td)) ≤ C2.

Proof of theorem 1.2(a). By Jensen’s inequality, we have

(
1

|�|2(1−α)/3

ˆ T

0

〈
S||

2 (�)
〉
ang

dt

)3/2

≤ 1
|�|1−α

ˆ T

0

〈ˆ
Td

|δ�u · �̂|3 dx
〉

ang
dt. (3.16)
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Now, for any ε > 0, we can choose �ε sufficiently small such that for all � ≤ �ε , we have

(
1

|�|2(1−α)/3

ˆ T

0

〈
S||

2 (�)
〉
ang

dt

)3/2

≤ sup
�≤�ε

1
|�|1−α

ˆ T

0

ˆ
Td

〈
|δ�u · �̂|3

〉
ang

dx dt

≤ lim sup
|�|→0

1
|�|1−α

ˆ T

0

ˆ
Td

〈
|δ�u · �̂|3

〉
ang

dxdt + ε

≤ −
ˆ T

0

ˆ
Td

D∗
4/5[u] dxdt + ε, (3.17)

which results from hypothesis 2.3(a). It follows from hypothesis 2.1 and proposition 2.2 that

(
1

|�|2(1−α)/3

ˆ T

0

〈
S||

2 (�)
〉
ang

dt

)3/2

≤ 12
d(d + 2)

ˆ T

0

ˆ
Td

D[u] dxdt + ε.

Since f (x) = x2/3, x > 0 is monotone increasing, we have for all � sufficiently small that

ˆ T

0

〈
S||

2 (�)
〉
ang

dt ≤ C0|�|2(1−α)/3, (3.18)

where C0 := C0(d, T, u0, f ) depends on magnitude of the inertial energy dissipation
(correspondingly the anomalous viscous dissipation if the Euler solution is obtained as a
vanishing viscosity limit). The claimed regularity follows by applying lemma 1.3. �

Proof of theorem 1.2(b). We employ the following definition of Besov spaces. Fix � > 0 and
consider the ‘truncated ball’ BT := {n : 1/2 < |n| < 1}. The truncated-ball mean is then

(V�f )(x) := 1
|BT|

ˆ
BT

δf (�n; x) dn. (3.19)

The norm for the Besov space Bs,∞
p (Td) can then be defined as

||f ||Bs,∞
p

:= ||f ||p + |f |Bs,∞
p

, |f |Bs,∞
p

:= sup
N≥0

2sN||V2−N f ||p. (3.20)

See appendix C of [52] and §2.5.11–12 of [53]. Our aim is to obtain a non-trivial L3-integrable upper
bound for the Besov norm ||u(t)||Bs,∞

3
under for some s > 0. By assumption u ∈ L3(0, T; L3(Td)),

so we need only to find an integrable upper bound for the Besov semi-norm |u(t)|3
Bs,∞

3
. First,

by Jensen’s inequality, the pth-power of ball-averages is bounded by the ball-average of the pth
power:

||V�f ||pp ≤ 1
|BT|

ˆ
BT

||δf (�n; ·)||pp dn, p ≥ 1. (3.21)

Thus, letting �N := 2−N , we have

|u(t)|3Bs,∞
3

= (sup
N≥0

�−s
N ||V2−N f ||3)3

≤ sup
N≥0

�−3s
N

1
|BT|

ˆ
BT

||δu(�Nn; ·, t)||33 dn

= sup
N≥0

�−3s
N

�−d
N

|BT|
ˆ �N

�N−1

dρρd−1
ˆ

Sd−1
||δu(ρ r̂; ·, t)||33 dω(�̂) (3.22)
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where ρ = |r| and where we have used the upper bound (3.21). Fix any scale �0 and split into small
and large

|u(t)|3Bs,∞
3

≤ sup
|�|≤�0

�−3s
ˆ

Td

〈
|δ�u(x, t)|3

〉
ang

dx + sup
|�|>�0

�−3s
ˆ

Td

〈
|δ�u(x, t)|3

〉
ang

dx

≤ sup
|�|≤�0

�−3s
ˆ

Td

〈
|δ�u(x, t)|3

〉
ang

dx + 2�−3s
0 ||u||3L3 . (3.23)

For β ∈ (0, 1), we have

ˆ T

0
|u(t)|3Bs,∞

3
dt ≤ sup

|�|≤�0

�(1−β)−3s

(
1

|�|1−β

ˆ T

0

ˆ
Td

〈
|δ�u(x, t)|3

〉
ang

dxdt

)
(3.24)

+ 2�−3s
0 ||u||3L3(0,T;L3(Td)). (3.25)

It follows that for any s ≤ (1 − β)/3, we have for any ε > 0 that there exists an �ε such that for all
�0 ≤ �ε ,

ˆ T

0
|u(t)|3Bs,∞

3
dt ≤ �

(1−β)−3s
0 sup

|�|≤�0

1
|�|1−β

ˆ T

0

ˆ
Td

〈
|δ�u(x, t)|3

〉
ang

dxdt + 2�−3s
0 ||u||3L3(0,T;L3(Td))

≤ �−3s
0

(
lim sup

|�|→0

1
|�|1−β

ˆ T

0

ˆ
Td

〈
|δ�u(x, t)|3

〉
ang

dxdt + ε + 2||u||3L3(0,T;L3(Td))

)

≤ �−3s
0

(
−
ˆ T

0

ˆ
Td

D∗
4/3[u] dxdt + ε + 2||u||3L3(0,T;L3(Td))

)

= �−3s
0

(
4
d

ˆ T

0

ˆ
Td

D[u] dxdt + ε + 2||u||3L3(0,T;L3(Td))

)
, (3.26)

where we used the fact that the distributional limit exists by hypothesis 2.1 and employed our
main hypothesis 2.3(b) in passing to the second to last line. We remark that the bound on the
Besov semi-norm depends on magnitude of the inertial (or anomalous) dissipation. �
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