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Abstract

We study anomalous dissipation in hydrodynamic turbulence in the context of
passive scalars. Our main result produces an incompressible C∞([0, T ) × T

d) ∩
L1([0, T ];C1−(Td)) velocity field which explicitly exhibits anomalous dissipa-
tion. As a consequence, this example also shows the non-uniqueness of solutions to
the transport equation with an incompressible L1([0, T ];C1−(Td)) drift, which is
smooth except at one point in time.We also give a sufficient condition for anomalous
dissipation based on solutions to the inviscid equation becoming singular in a con-
trolled way. Finally, we discuss connections to the Obukhov-Corrsin monofractal
theory of scalar turbulence along with other potential applications.

1. Introduction

We study the advection-diffusion equation

∂tθ
κ + u · ∇θκ = κ�θκ (1.1)

on thed-dimensional torus,Td . Here θκ is a passive scalar, representing temperature
or concentration, κ > 0 is the molecular diffusivity, and u is a prescribed, time
dependent divergence free vector field representing the velocity of an ambient
fluid.
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Since u is divergence free, one immediately sees that the L2 energy decay of
solutions is governed by

1

2
|θκ(t)|2L2 = 1

2
|θ(0)|2L2 − κ

∫ t

0
|∇θκ(s)|2L2 ds , (1.2)

and thus the L2 energy dissipation can be measured using κ
∫ t
0 |∇θκ |2

L2 ds. Even
though the advecting velocity field doesn’t feature in (1.2), it influences the en-
ergy decay indirectly. Indeed, advection typically generates small scales, which
are rapidly damped by the diffusion. What is expected in certain turbulent regimes
[32,60,61] is that these effects strike a balance and the energy dissipation rate
κ
∫ t
0 |∇θκ |2

L2 ds becomes independent of κ . That is, we expect that

κ

∫ t

0
|∇θκ(s)|2L2 ds � χ |θ0|2L2 > 0 (1.3)

for some constant χ > 0 independent of κ . This is behavior known as anomalous
dissipation. Themain result in this paper provides an explicit, deterministic example
of this.

1.1. Main results

We first produce a divergence free velocity field which exhibits anomalous dis-
sipation for all initial data that is sufficiently close to a non-constant eigenfunction
of the Laplacian.

Theorem 1. (Universal rate near Harmonics) Fix T > 0, d � 2, and α ∈ [0, 1),
and let

�
def= {sin(Mx) sin(Ly), sin(Mx) cos(Ly), sin(Ly) cos(Mx), cos(Mx)

cos(Ly)}M�0,L�0 − {0, 1} .

There exists absolute constants εα, χα > 0, and a divergence-free velocity field

u ∈ C∞([0, T ) × T
d) ∩ L1([0, T ];Cα(Td)) ∩ L∞([0, T ] × T

d) , (1.4)

such that the following holds: If θ0 ∈ H2(Td) is mean zero, and there exists λ > 0
and ψ ∈ � such that

|θ0 − λψ |L2 � εα|θ0|L2 ,

then

κ

∫ T

0
|∇θκ |2L2 dt � χα|θ0|2L2 . (1.5)

Remark. It is not difficult to modify the velocity field so that anomalous dissipation
occurs for any initial data whose “width” of the spectrum is bounded by some finite
constant.
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For arbitrary H2 initial data, a small modification of the velocity field used
above will also exhibit anomalous dissipation. However the velocity field and the
dissipation rate will depend on the data.

Theorem 2. (Data dependent rate and velocity field) Fix T > 0, d � 2, α ∈ [0, 1),
and a mean-zero θ0 ∈ H2(Td). There exists a divergence-free velocity field

u ∈ C∞([0, T ) × T
d) ∩ L1([0, T ];Cα(Td)) ∩ L∞([0, T ] × T

d)

and χα(θ0) > 0 so that we have

κ

∫ T

0
|∇θκ |2L2 dt � χα(θ0)|θ0|2L2 . (1.6)

Our constructions are sharp in the sense that if α = 1, then the dissipation must
vanish (i.e. χ1 = 0). In fact, if u ∈ L1([0, T ];W 1,1(Td)) then all weak solutions
of the inviscid transport equation are renormalized and hence conservative [28].
Moreover, since θκ → θ weakly in L2 and the norms converge (by lower semi-
continuity of L2 underweak limits), the convergence is in fact strong and sowemust
have χ1 = 0. In our construction, the scalar θκ does not retain anyHölder regularity
uniformly in κ on the whole time interval [0, T ]. As such, our result establishes
the sharpness of the Obukhov-Corrsin theory (discussed at the end in § 5) for fields
which lose regularity at a single instance in time in the endpoint case of u ∈ Cα

with α < 1 and θ ∈ Cβ with β = 0. In light of this connection, Theorem 1 can
be understood also as a proof of the analogue of Onsager’s conjecture for passive
scalar turbulence in our specific setting.

We prove Theorem 1 by constructing a velocity field which develops smaller
and smaller scales with time, mimicking the time development of a turbulence
cascade. As a result, the velocity field has non-trivial energy at “infinite frequency”
at the final time, T . At this point in time, the velocity can be made to be Hölder Cα

for any α < 1 but not better. Due to the precise nature of the construction, we track
explicitly the resulting cascade of scalar energy to high-frequency. The scalar field
θκ is bounded, but as mentioned above, is not uniformly Hölder for any β > 0.

The velocity field we construct alternates horizontal and vertical shears, moti-
vated by the work of Pierrehumbert [53]. The velocity fields used in [53] involves
sinusoidal shears of a single frequency, with a random phase shift. Our velocity
fields, on the other hand, require the use of higher frequencies as time progresses
and possess multiple scales.

We now briefly digress and present an application of Theorem 2 showing non-
uniqueness of solutions to the transport equation with an irregular drift. Recall
that solutions to the transport equation with an L1([0, T ];W 1,∞(Td)) drift are
easily seen to be unique. Seminal work of DiPerna and Lions [28] shows that for
L1(0, T ];W 1,1(Td) incompressible velocity fields, all weak solutions are renor-
malized andhenceunique.Ambrosio [7] extended this further to L1([0, T ];BV(Td))

incompressible vector fields. More generally, uniqueness of weak solutions to the
transport equation is closely connected to energy conservation of solutions. In
the DiPerna Lions framework, conservation of energy follows from the so-called
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re-normalization property. For lower regularity velocity fields several counterex-
amples to uniqueness, and consequently to conservation of energy for solutions
of the transport equation, are known [2,5,18,20,27,50]. In particular, Alberti et
al. [1,2] abstractly show the existence of a Hölder continuous, time independent,
divergence free vector field for which the transport equation does not have a unique
solution. In this direction, we use Theorem 2 to produce an explicit, divergence
free drift for which the transport equation does not have a unique solution. In our
example the drift is smooth, except at one point in time, and can be chosen to be
L1
t C

α
x , for any α < 1.

Theorem 3. (Non-uniqueness of the transport equation) Fix T > 0, d � 2, α ∈
[0, 1) and a mean-zero θ0 ∈ H2. Let u∗ be the divergence-free velocity field from
Theorem 2. Let u, defined on [0, 2T ], be

u(t) =
{

u∗(t) t ∈ [0, T ),

−u∗(2T − t) t ∈ [T, 2T ].
Then there are at least two weak solutions θ, θ̄ ∈ C([0, 2T ];w − L2(Td)) of the
transport equation

∂tθ + u · ∇θ = 0 (1.7)

with initial data θ0.

Weprove Theorem 3 by constructing one solution as a vanishing viscosity limit,
and the other using time reversibility. The vanishing viscosity solution is dissipative
and loses a non-zero fraction of its initial L2-energy. The time reversible solution,
on the other hand, ends with exactly the same L2-energy as it started with. The full
is presented in Sect. 4. We conclude this subsection with two remarks concerning
anomalous dissipation in the random setting, and magnetic dynamos.

Remark 1.1. (Anomalous Dissipation in the Randomized Setting) Examples of
anomalous in a statistical setting can be found in studies of the Kraichnan model
[37,39]. This model advects the scalar by a Gaussian, white-in-time velocity field
which is only Hölder continuous in space and anomalous dissipation for passive
scalars can be proved upon taking expectation of (1.3) over the random velocity
field. For precise rigorous statements, see the works [46,47]. The mechanism for
anomalous dissipation discovered in the Kraichnan model and which holds in far
greater generality is the breakdown of uniqueness of Lagrangian particle trajecto-
ries or spontaneous stochasticity [11,25,33]. While this phenomenon is expected
to be robust in a turbulent setting, the proof of anomalous dissipation and spon-
taneous stochasticity in the Kraichnan model rely heavily on the Gaussian nature
of the advecting velocity and, more importantly, on the white-in-time correlation.
Moreover, since the velocity field is only distributional in time (formally the tem-
poral regularity is like a derivative of Brownian motion), it is not clear how to
generate examples of (1.3) for distributional solutions to the advection diffusion
equation in a fixed deterministic velocity field. We remark also that [9] studies a
related problem of anomalous dissipation of the scalar in the statistically steady
state and establishes a constant flux of scalar energy through all small length-scales
in a permanent regime where scalar energy is input in a (statistically) constant rate.
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Remark 1.2. (Magnetic Dynamo Example) Our construction has implications for
the existence of a (finite time) magnetic dynamo in two dimensions. In particular,
consider the 2D resistive passive vector equation

∂t B
κ + u · ∇Bκ − Bκ · ∇u = κ�Bκ ,

∇ · Bκ = 0, ∇ · u = 0,

Bκ |t=0 = B0,

modeling the evolution of a magnetic field B in a prescribed velocity field u. The
unique solution of the above equation can be constructed with a stream function
Bκ = ∇⊥ψκ solving

∂tψ
κ + u · ∇ψκ = κ�ψκ, (1.8)

provided with any initial data ψ0 with the property that ∇⊥ψ0 = B0. Thus, our
results for anomalous dissipation apply to ψκ which implies that, if u is chosen as
in Theorem 1, then

∫ T

0
|B|2L2 dt � χ

κ
. (1.9)

This behavior shows unbounded growth of the magnetic field as κ → 0 in finite
time, seemingly in violation of the 2d anti-dynamo theorems (see chapter 4 of [6]).
However, these results assume advecting velocities are smooth for infinite time at
fixed κ .

1.2. General Criterion for Anomalous Dissipation

The proof of Theorem 1 involves comparing θκ , the solution of the advection
diffusion equation (1.1), to solutions of the transport equation (1.7). As a result, we
obtain some criteria that guarantee some form of anomalous dissipation.

For each of the results belowwefix T > 0, assumeu ∈ L∞
loc([0, T );W 1,∞(Td))

is divergence free, and let θκ and θ be solutions to (1.1) and (1.7) respectively with
the same, κ independent, mean zero initial data θ0 ∈ H2(Td). The first gives a
criterion for anomalous dissipation in terms of loss of compactness.

Proposition 1.3. If for some c ∈ (0, 1) and T > 0, the inviscid problem satisfies

∫ T

0
|∇θ(t)|2L2 dt = ∞, and |P>N (t)θ(t)|L2 � c|θ0|L2 where N (t)

= c

2

|θ(t)|Ḣ1

|θ(t)|L2
, (1.10)

then there is anomalous dissipation (1.3) where χ = (c/2)4. Here, P>N is the
projection onto Fourier modes greater than N.

Two sufficient conditions for the lower bound in (1.10) is now provided in the
following proposition:
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Lemma 1.4. For some C > 1, assume that fn is a sequence of H2(Td) functions
and

| fn|L2 | fn|Ḣ2 � C | fn|2Ḣ1, (1.11)

or that fn is a sequence of H1(Td) functions and

| fn|H−1 | fn|Ḣ1 � C | fn|2L2 . (1.12)

Then, taking N (n) = 1√
2C

| fn |Ḣ1

| fn |L2 we have

|P>N (n) fn|L2 � | fn|L2

2C
. (1.13)

If, moreover, one has

| fn|Ḣ1

| fn|L2
→ ∞ as n → ∞, (1.14)

then sequence { fn}n�0 has no strongly convergent subsequence in L2(Td).

Remark 1.5. A corollary of Proposition 1.3 and Lemma 1.4 is that if an inviscid
solution satisfies

∫ T

0
|∇θ(t)|2L2 dt = ∞, and |θ(t)|L2 |θ(t)|Ḣ2 � C |θ(t)|2

Ḣ1, (1.15)

then the viscous problem experiences anomalous dissipation (1.3) with where χ =
(1/4C)4.

The first result is the criterion that will be used in the proof of Theorem 1.
The second criterion (2.8) is mainly stated here as it establishes a concrete link
between mixing and anomalous dissipation. Recall |θ(t)|H−1 is a measure of the
scale to which θ(t) is mixed, a notion that will be revisited in the next section
(see also [62] for a review). Note that interpolation and the fact that |θ(t)|L2 is
conserved guarantees that |θ(t)|H−1 � |θ0|2L2/|θ(t)|Ḣ1 . Thus the assumption (2.8)
essentially requires θ(t) to become mixed at a comparable rate. It is, however, hard
to produce examples of mixing, especially at nearly optimal rates. In fact, as we
will see in the proof, particles advected by velocity field used in Theorems 1 and
2 only travel a finite distance in time T . Thus, these velocity fields are not even
mixing, let alone mixing at the nearly optimal rate required by the second condition
of Proposition 1.4.
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1.3. Connections with Enhanced Dissipation and Mixing

Enhanced dissipation, anomalous dissipation, and mixing are intrinsically re-
lated. Enhanced dissipation is the notion that solutions to (1.1) dissipate energy
faster than e−κt , the rate at which solutions to the heat equation (with no advection)
dissipate energy. This occurswhen the advection sends some fraction of the total en-
ergy to high frequencies. Using certain assumptions on this rate (specifically (1.11)
and (2.8)), we showed anomalous dissipation in Lemma 1.3 and Proposition 1.4.

Mixing, on the other hand, requires all energy (in the diffusion free case) to be
sent to high frequencies. When κ is small, one still expects energy to be sent to
high frequencies, and so mixing implies enhanced dissipation, at least when u is
regular (see for instance [19,24,38,63]). The converse, of course, need not be true:
cellular flows enhance dissipation, but are certainly not mixing [42].

In the context of mixing, Bressan [12,13] raised an interesting open problem:
is there a lower bound on the mixing rate of a rough velocity field, in the absence
of diffusion? More precisely, we have

Conjecture 1.6. (Bressan [12]) If θ is a solution to (1.7) on the torus, then

|θ(t)|mix � C1(θ0) exp
(
−C2(θ0)

∫ t

0
|∇u(·, s)|L1 ds

)
, (1.16)

for some constants C1, C2 that depend on the initial data.

Here |θ |mix is some quantification of themixing scale of θ . One common choice
is to use multi-scale norms, and set |θ |mix = |θ − θ̄ |H−1 (see [62] for a compre-
hensive review). However, geometric scales, such as those used in [12,13] or [48]
may also be used.

A quick application of Gronwall’s lemma shows that Conjecture 1.6 holds if
|∇u|L1 is replaced by |∇u|L∞ . When u is only L1

t W
1,p
x , solutions to (1.7) need to

be interpreted in the renormalized sense [28], unless θ has some integrability in
space. Regularity of associated flows were studied by Crippa and DeLellis [15,16],
and their results can be used to prove that (1.16) holds if |∇u|L1 is replaced by
|∇u|L p for any p > 1 (see [15,40,57]). In this case recent results [3,8,36,64]
construct explicit examples showing that the lower bound (1.16) is indeed attained.
When the velocity field is allowed to be less regular than L1

t W
1,1
x , (for instance

if u ∈ L1−
t BVx , or even if u ∈ L1

t C
α
x with α < 1), one can have perfect mixing

in finite time. Indeed, the examples in [13,48] exhibit situations where |θ(t)|mix

decreases linearly and hits 0 in finite time [3]. However, when u ∈ L1
t W

1,1
x , as

stated in Conjecture 1.6, the optimal lower bound on the mixing rate is not known.

In the presence of diffusion, we formulate a version of the above using dissi-
pation enhancement. First, using Gronwall’s lemma and energy methods (see for
instance [49,55]) one can obtain the following double exponential lower bound on
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the L2 energy1:

|θκ |L2 � |θ0|L2 exp

(
−κ|∇θ0|2L2

|θ0|2L2

∫ t

0
exp

(
C

∫ s

0
|∇u(·, s′)|L∞ ds′) ds

)
.

Here C is an explicit dimensional constant C . If u is less regular, does θκ dissipate
at the same rate? Can it be faster? Thus, in the presence of diffusion, we formulate
a version of Bressan’s conjecture as:

Conjecture 1.7. If θκ is a solution to (1.1) with u ∈ L1([0,∞),W 1,1(Td)) and
smooth initial data, then there exists a universal rate function r := r(κ) → 0 as
κ → 0 independent of u such that for all 0 � κ � 1

|θκ |L2 � |θ0|L2 exp

(
− r(κ)C1(θ0)

∫ t

0
exp

(
C2

∫ s

0
|∇u(·, s′)|L1 ds′) ds

)
.

Here C1 > 0 is a constant that depends on θ0, but not κ , and C2 > 0 is a universal
constant. In particular,

κ

∫ t

0
|∇θκ |2L2 ds

� |θ0|2L2

(
1 − exp

(
−2r(κ)C1(θ0)

∫ t

0
exp

(
C2

∫ s

0
|∇u(·, s′)|L1 ds′) ds)

)
.

Thus, for κ � 1, we have

κ

∫ t

0
|∇θκ |2L2 ds � r(κ). (1.17)

In an earlier version of our paper, we stated Conjecture 1.7 with r(κ) = κ . This
version of the conjecture was false, as privately communicated to us by Brué and
Nguyen (cf. [43, Theorem 1]). In a recent preprint [14], it is conjectured that (1.7)
hold with r(κ) = ln(κ)−1 and provide some partial results towards this. Improved
results can be found in [58].

We remark that it is also not known whether this conjecture holds with |∇u|L p

for any p ∈ (1,∞). Since (morally) enhanced dissipation only requires growth
of the |θκ |H1 and not actual mixing, this problem appears harder than Bressan’s
conjecture [12]. The difficulty is that the H1 norm of the inviscid solution may
become infinite immediately [4] even when u ∈ L∞

t W 1,p when p < ∞.
Note that the main theorem says that one cannot hope to have any such lower

bound if we just assume that u ∈ L1
loc([0,∞);Cα(T2)) if α < 1. We further

remark that, while the natural place to look for velocity fields breaking this lower

1 We remark that it is also unknown whether this double exponential lower bound above
is attained for any flow. In discrete time [38] produce an example where is in fact attained. In
continuous time, however, there are no examples exhibiting the double exponential decay.
Moreover, Miles and Doering [49] provide numerical evidence and a heuristic argument that
the Batchelor scale limits the effectiveness of mixing, suggesting that the L2 energy can
only decay exponentially.
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bound would be to use rough velocity fields that mix in finite time, it is not easy to
rigorously show that mixing implies enhanced dissipation in low regularity settings
(see, for example, Theorem 4.4 from [24]).

1.4. Notation Convention and Plan of this Paper

For simplicity of presentation, we present the proofs of the main theorem in
two spatial dimensions, as the generalizing to higher dimension is straightforward.
Without loss of generality, we will also set T = 1 and subsequently assume that
the initial data θ0 is always mean zero:

∫
Td

θ0(x) dx = 0.

We use the convention

|θ |L2
def=

(∫
T2

|θ |2 dx
)1/2

, |θ |2
Ḣ1

def=
2∑

i=1

|∂iθ |2L2 ,

and |θ |2
Ḣ2

def=
2∑

i, j=1

|∂i∂ jθ |2L2 ,

for any function θ : T2 → R. We will also use |θ |Ẇ 1,∞
def= max{|∂1θ |L∞, |∂2θ |L∞}.

With these conventions,

|θ |2
Ḣ1 � |θ |L2 |θ |Ḣ2 ,

and

|θ |2H2 = |θ |2
Ḣ2 + |θ |2

Ḣ1 + |θ |2L2 , |θ |2H1 = |θ |2
Ḣ1 + |θ |2L2 , |θ |W 1,∞

= max{|θ |L∞, |θ |Ẇ 1,∞} .

To compare quantities that depend on time, we will use A(t) ≈ B(t) to mean that
A(t)/B(t) is bounded above and below by absolute positive constants. We will also
use A � B to mean that limt→1 A/B = 0.

The plan of the paper is as follows. In Sect. 2 we prove the criterion for anoma-
lous dissipation (Lemma 1.3 and Proposition 1.4). In Sect. 3, we construct the
velocity field used in Theorem 1, and prove Theorems 1–2. In Sect. 4, we use
Theorem 2 to prove non-uniqueness of weak solutions to the transport equation.
Finally, in Sect. 5, we discuss the connection of our construction to the sharpness
of the Obukhov-Corrsin scaling theory of passive scalar turbulence and conclude
with an open question.

2. Proofs of Criteria for Anomalous Dissipation

In this section we prove Proposition 1.3 and Proposition 1.4.
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2.1. Proof of Proposition 1.3

For simplicity, and without loss of generality, we assume |θ0|L2 = 1. Since

1

2
∂t |θ − θκ |2L2 = κ

∫
�θκ(θκ − θ) dx = −κ|θκ |2

Ḣ1 + κ

∫
∇θκ · ∇θ dx .

Thus, upon integration and using the Cauchy-Schwarz inequality we have

|θ − θκ |2L2(t) � ([)
]
2κ

∫ 1

0
|θκ |2

Ḣ1 ds
1/2

([)
]
2κ

∫ t

0
|θ |2

Ḣ1 ds
1/2

,

for all t < 1. Assume toward a contradiction that there exists a sequence κk → 0
so that

δk
def= 2κk

∫ 1

0
|θκk |2

Ḣ1 dt < χ as k → ∞ (2.1)

where χ
def= ( c2 )

4. By the assumption (1.10), we may choose Tk < 1 such that

2κk

∫ Tk

0
|θ |2

Ḣ1 dt = 1. (2.2)

Note that Tk → 1 as k → ∞. We have that

sup
t�Tk

|θ − θκk |L2 � δk
1/4 � χ1/4.

Now, by the assumption (1.10), we have for some c ∈ (0, 1) that

|P>N θ(t)| � c where N = c
2 |θ |Ḣ1 . (2.3)

It follows from triangle inequality that

|P>N θκ(t)| � c − χ1/4 � c

2
. (2.4)

This implies that

sup
t�Tk

|θκk |2
Ḣ1 � c2N 2

4
= ( c2 )

4|θ |2
Ḣ1 . (2.5)

Whence we have

2κk

∫ Tk

0
|θκ |2

Ḣ1 dt � χ, (2.6)

which contradicts (2.1) and concludes the proof.
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2.2. Proof of Lemma 1.4

We here establish the sufficiency of both the balanced growth condition and the
inviscid mixing condition.
Balanced Growth Criterion
We first work under the hypothesis (1.11). Given N ∈ N, recall that P>N be the
projection onto Fourier frequencies higher than N . Observe that

| fn|2Ḣ1 =
∑
k∈Zd

|k|2| fn|2 =
∑

|k|�N

|k|2| fn,k |2 +
∑

|k|>N

|k|2| fn,k |2

� N 2| fn|2L2 + C | fn|2Ḣ1

| fn|L2
|P>N fn|L2

� 1
2 | fn|2Ḣ1 + C | fn|2Ḣ1

| fn|L2
|P>N fn|L2 (2.7)

where we used Cauchy-Schwartz, the assumed bound (1.11) and the definition

N (n) = 1√
2C

| fn |Ḣ1

| fn |L2 . Consequently we obtain the claimed bound (1.13).

Inviscid Mixing Criterion
We now work under the following assumption:

| fn|H−1 | fn|Ḣ1 � C | fn|2L2 . (2.8)

Using N (n) = 1√
2C

| fn |Ḣ1

| fn |L2 , observe that

|P>N fn|2L2 � | fn|2L2 − N 2| fn|2H−1 � | fn|2L2

(
1 − CN 2| fn|2L2

| fn|2Ḣ1

)
�

| fn|2L2

2
,(2.9)

whence we obtain the claimed bound (1.13).
Loss of compactness
Here we assume that fn j weakly converges to f∞ in L2 while | fn j |L2 → C0 < ∞.
Since f∞ ∈ L2, we have

| f∞|2L2 = lim
j→∞

∫
f∞ fn j = lim

j→∞

∫
f∞P>N (n j ) fn j + lim

j→∞

∫
f∞P�N (n j ) fn j

= lim
j→∞

∫
P>N (n j )( f∞) fn j + lim

j→∞

∫
f∞P�N (n j ) fn j

� C0 lim sup
j→∞

|P>N (n j ) f∞|L2 + | f∞|L2

(
| fn|2L2 − |P>N (n) fn|2L2

)1/2

� C0| f∞|L2

(
1 − 1

(2C)2

)1/2

< C0| f∞|L2 . (2.10)

The claimed result follows.
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3. Construction of the Example

In this section, we establish Theorems 1 and 2 by providing an example of
velocity field which results in an inviscid scalar field satisfying the criterion (1.11)
of Proposition 1.4. As mentioned earlier, we will assume for simplicity that T = 1
and d = 2 in the statements of the theorems. Moreover, contrary to the regularity
stated in (1.4), we construct a velocity in the class

u ∈ L∞
loc([0, 1);W 2,∞(T2)) ∩ L1([0, 1];Cα(T2)) ∩ L∞([0, 1] × T

2).

Our construction is based on the following smoothed-out ‘sawtooth’ function
(Fig. 1). Given π

2 > ε > 0, we define Sε : T = (R/2πZ) → R to be odd with
respect to 0, even with respect to π

2 , and

Sε(x) =
{
x 0 � x � π

2 − ε

x − 1
2ε

(
x − π

2 + ε
)2 π

2 − ε < x � π
2

Observe that Sε ∈ W 2,∞(T) and

|S′
ε |L∞ � 1 |S′′

ε |L∞ � 1

ε
.

Let us first fix a sequence to time steps {t j } j∈N, a sequence of regularizations ε j ,
and a sequence of frequencies {N j } j∈N. In practice, t j and ε j are going to be chosen
to be decreasing and summable while N j will be chosen to be rapidly increasing.
Next, define measure preserving transformations {T j } j∈N by

T j (x, y) =
{

(x + t j Sε j (N j y), y) j odd

(x, y + t j Sε j (N j x)) j even
.

Now define

U j
def= T1 ◦ T2 ◦ T3 ◦ . . . T j .

Set Tj = ∑ j
i=0 ti with t0 = 0. Note that θ0 ◦ U−1

j = θ(Tj ) where θ(t) is the
solution of

∂tθ + u · ∇θ = 0, θ(t = 0) = θ0,

with u(t) for t ∈ [Ti , Ti+1) given by

u(t, x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Sεi (Ni y)

0

)
i even,

(
0

Sεi (Ni x)

)
i odd.

(3.1)

In the following sections, we proceed to check the conditions in Lemma 1.4. To
treat the case of α > 0 small, we modify u(t) to be trivial for t � Tj with j < 1

α
for a technical reason; see Lemma 3.2.
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Remark 3.1. In the above, we have constructed u ∈ L∞
loc([0, T );W 1,∞(T2)) rather

than u ∈ C∞([0, 1) × T
2). The modification required to obtain smooth velocities

is straightforward; it is accomplish by modifying the shear profile, Sε to be C∞,
instead of C2, and adding amplitude functions which smoothly turn on and off
the shears over each time interval in the construction. The window over which
the shears are turned on and off are taken small to start with, and can be taken to
decrease as time progresses and N increases in the construction.

3.1. Inviscid Bounds

In this section, we prove the following

Lemma 3.2. For any α > 0, let

t j = 2− j , N j = 1 + �2(1+α) j�, ε j

= exp

(
−30

(
1 + 1

2α − 1

))
· 2−2 j .

(3.2)

Assume that θ0 is given by one of the following trigonometric functions:

sin(Mx) sin(Ly), sin(Mx) cos(Ly), cos(Lx) sin(My), cos(Lx) cos(My)

for some integers M � 1 and L � 0. Define θ j (x, y) = θ0 ◦ U−1
j where

U j
def= Id, j � 1

α

and

U j
def= TJ (α) ◦ · · · ◦ T j , j � J (α)

def=
⌊
1

α

⌋
+ 1.

Here
⌊ 1

α

⌋
denotes the largest integer not exceeding 1

α
. Then, θ j satisfy:

|θ j |H1 � cα2
α j ( j+1)

2 |θ0|H1, |θ j |W 1,∞ � Cα|θ j |H1 , |θ j |H2 � Cα|θ j |2H1,

for some constants Cα, cα > 0 independent of j .

Proof. We shall assume for simplicity that θ0 = sin(Mx) sin(Ly) with M � L .
The proof for other trigonometric functions are almost identical, as long as M � L .
We shall sketch necessary modifications to the proof in the case L > M at the end.
We now observe that

|θ0|Ẇ 1,∞ � 4|θ0|Ḣ1, |θ0|Ḣ2 � 4|θ0|2Ḣ1 .

Fix j ∈ N ∪ {0} and let i j = j − 1 mod 2 and i j+1 = j mod 2. Assuming for a
moment that j is odd, we compute:

∂2θ j+1(x, y) = ∂2θ j (x + t j Sε j (N j y), y) + t j N j S
′
ε j

(N j y)∂1θ j (x + t j Sε j (N j y), y),

∂1θ j+1(x, y) = ∂1θ j (x + t j Sε j (N j y), y).
(3.3)
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Moreover,

∂11θ j+1(x, y) = ∂11θ j (x + t j Sε j (N j y), y),

∂12θ j+1(x, y) = ∂12θ j (x + t j Sε j (N j y), y)

+ t j N j S
′
ε j

(N j y)∂11θ j (x + t j Sε j (N j y), y),

∂22θ j+1(x, y) = ∂22θ j (x + t j Sε j (N j y), y)

+ t j N
2
j S

′′
ε j

(N j y)∂1θ j (x + t j Sε j (N j y), y)

+ (t j N j )S
′
ε j

(N j y)∂21θ j (x + t j Sε j (N j y), y)

+ (t j N j )
2(S′

ε j
(N j y))

2∂11θ j (x + t j Sε j (N j y), y).

(3.4)

We have similar formulas when j is odd, exchanging the roles of x and y. Now the
upper bounds on θ j+1 in Ẇ 1,∞ and Ḣ1 are easy to get, using (3.3).
Upper Bounds: From the Lipschitz property of the profile Sε , it is easy to see that

|θ j+1|Ẇ 1,∞ � t j N j |θ j |Ẇ 1,∞ + |θ j |Ẇ 1,∞

� t j N j |θ j |Ẇ 1,∞
(
1 + 1

t j N j

)
.

Similarly, we have

|θ j+1|Ḣ1 � t j N j |θ j |Ḣ1

(
1 + 1

t j N j

)
.

Recalling that t j = 2− j and N j � 2(1+α) j , notice that

∞∏
j=1

(
1 + 1

t j N j

)
�

∞∏
j=1

(
1 + 2−α j

)
� exp

(
1

2α − 1

)
,

by taking the log of the infinite product and using the fact that log(1 + x) � x for
x � 0. Then we have

|θ j+1|Ẇ 1,∞ � exp

(
1

2α − 1

)
· 2 α j ( j+1)

2 |θ0|Ẇ 1,∞ .

The same upper bound holds for |θ j+1|Ḣ1 :

|θ j+1|Ḣ1 � exp

(
1

2α − 1

)
· 2 α j ( j+1)

2 |θ0|Ḣ1 .

Lower Bounds: Note that |S′
ε j

(z)| = 1 except for the region |z − π
2 | < ε j . We

bound the contribution from this region using the Ẇ 1,∞ norm:

|∂i j+1θ j+1|L2 � t j N j |∂i j θ j |L2 − √
ε j t j N j |θ j |Ẇ 1,∞ − |∂i j+1θ j |L2

= t j N j |∂i j θ j |L2

(
1 − √

ε j
|θ j |Ẇ 1,∞
|∂i j θ j |L2

− 1

t j N j

|∂i j−1θ j |L2

|∂i j θ j |L2

)
.



1166 T. D. Drivas, T. M. Elgindi, G. Iyer & I.-J. Jeong

Observe also that

|∂i j θ j+1|L2 = |∂i j θ j |L2 .

Thus,

|∂i j+1θ j+1|L2 � t j N j |∂i j θ j |L2

(
1 − √

ε j
|θ j |Ẇ 1,∞
|∂i j θ j |L2

− 1

t j N j

|∂i j−1θ j−1|L2

|∂i j θ j |L2

)
,

where θ−1 ≡ 0. Define

A j
def= |∂i j θ j |L2

|∂i j+1θ j+1|L2
, R j+1

def= |θ j+1|Ẇ 1,∞
|∂i j+1θ j+1|L2

.

Then, we have

A j � 2−α j
(
1 − √

ε j R j − 2−α j A j−1

)−1
(3.5)

and

R j+1 � R j

(
1 + 2−α j

)(
1 − √

ε j R j − 2−α j A j−1)
−1. (3.6)

Recall that ε j = exp(−30(1 + 1
2α−1 ))2

−2 j and let us prove the following bounds
with an induction in j :

A j � 2 · 2−α j , R j � exp

(
10

(
1 + 1

2α − 1

))
. (3.7)

We first treat the induction base case j = 0. To compute A0, recalling that θ0 =
sin(Mx) sin(Ly) and α = 1, we have

θ1(x, y) = sin(M(x + t1Sε1(N1y))) cos(Ly)

and

∂yθ1 = t1N1S
′
ε1

(N1y)M cos(M(x + t1Sε1(N1y))) cos(Ly)

−L sin(M(x + t1Sε1(N1y))) sin(Ly).

Observe that two terms in the above expression are orthogonal in L2(T2). Therefore,
in this case, we have

A0 � 2−1 (
1 − √

ε0R0
)−1

<
3

5
.

Here, we have simply used the fact that R0 is bounded by 1 from its definition
and our assumption M � L . In the general case α > 0, one obtains similarly
A0 = AJ (α)−1 < 3

5 .We omit the proof for the remaining cases of θ0, which requires
only minor modifications. This gives the induction base case. Now, assume that we
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have (3.7) for A j−1 and R j , and let us prove (3.7) for A j and R j+1. Using the
bounds for A j−1 and R j , and the definition of ε j , we obtain

A j � 2−α j
(
1 − exp

(
−5

(
1 + 1

2α − 1

))
2− j − 2−α j A j−1

)−1

. (3.8)

Then we see that for j � J (α) + 1 we must have A j < 2 · 2−α j . Next, let us prove
that R j+1 < exp(10(1 + 1

2α−1 )). We know that

R j+1 � R j (1 + 2−α j )

(
1 − 1

100
2− j − 2−α j A j−1

)−1

.

Now,

∞∏
j=J (α)

(1 + 2−α j ) < exp

(
1

2α − 1

)

and since we have that 1
1−x < 1+3x for x < 2

3 ,

∞∏
j=J (α)

(
1 − 1

100
2− j − 2−α j A j−1

)−1

�
∞∏

j=J (α)

(
1 + 3

100
2− j + 3 · 2−α j A j−1

)

using 1
1002

− j + 2−α j A j−1 � 2
3 for all j � J (α). Now,

∞∏
j=J (α)

(
1 + 3

100
2− j + 3 · 2−α j A j−1

)

�
∞∏

j=J (α)

(
1 + 3

100
2− j + 6 · 2−2α j

)
< exp

(
10

(
1 + 1

2α − 1

))
.

This now concludes the proof that R j+1 � exp(10(1 + 1
2α−1 )) and A j � 2 · 2−α j .

The above also shows that

|∂i j θ j |L2 � cα2
α j ( j+1)

2 |∂xθ0|L2 .

Ḣ2 Bound: Finally, we have the bound

|θ j+1|Ḣ2 � t2j N
2
j |θ j |Ḣ2(1 + 2(t j N j )

−1 + (t j N j )
−2) + |θ j |Ḣ1

t j
ε j

N 2
j ,

� 22α j |θ j |Ḣ2

(
1 + 2 · 2−α j + 2−2α j + Cα

|θ j |Ḣ1

|θ j |Ḣ2
23 j

)
.

But we know that |θ j |Ḣ2 � |θ j |2Ḣ1 and we have a lower bound on |θ j |Ḣ1 . Thus,

|θ j+1|Ḣ2 � 22α j |θ j |Ḣ2

(
1 + 2 · 2−α j + 2−2α j+Cα2

− α j ( j+1)
2 23 j

)
.
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Since

∞∑
j=0

(2 · 2−α j + 2−2α j+Cα2
− α j ( j+1)

2 23 j ) = cα < ∞,

we have that

|θ j+1|Ḣ2 � 2α j ( j+1)ecα |θ0|Ḣ2 .

Let us now comment on the case where L > M . To adapt the proof, we just need
to observe that (assuming α = 1 for simplicity) at j = 1, we have from explicit
computations that |θ1|Ḣ1 ≈ |∂yθ1|L2 and

|θ1|Ẇ 1,∞ � 10|θ1|Ḣ1, |θ0|Ḣ2 � 10|θ0|2Ḣ1 .

Therefore one can just repeat the arguments above starting with j = 1 instead of
j = 0. This concludes the proof. ��
Remark 3.3. (Viscous bounds) Although it is not necessary for our proof of anoma-
lous dissipation, we include the following lemma which pertains to the viscous
solution as this control is not implied directly by the inviscid bounds.

Lemma 3.4. Assume that t j , N j , ε j , and θ0 are given as in Lemma 3.2. With u(t)
defined as in (3.1), the solution θκ to the system (1.1) with initial data θ0 satisfies

|θκ(t)|H2 � C |θ(t)|2H1

for some universal constant C independent of κ of t , where θ(t) is the inviscid
solution.

The proof of this result follows by the same arguments done for the inviscid H2

bounds.

3.2. Proof of Theorem 1

The previous lemmas establish anomalous dissipation for initial data given by
a pure harmonic. To conclude the proof of Theorem 1, we need to treat the case of
small L2 perturbation, and show that the velocity field u(t)we have defined in (3.1)
can belong to L1([0, 1];Cα′

) for any α′ < 1. For the latter, we simply compute
that

|u|L1([0,1];Cα′
)
�

∑
j�J (α)

t j N
α′
j �

∑
j�J (α)

2(1+α)α′ j− j < +∞

once we take 0 < α < 1
α′ − 1.

Now we assume that, for some εα > 0 to be determined, θ0 satisfies

|θ0 − λψ |L2 � εα|θ0|L2 ,
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where we may assume without loss of generality that ψ = sin(Mx), λ = 1 (since
we can replace θ by λ−1θ ), and ψ is orthogonal with θ0 −ψ in L2. We then simply
decompose

θ0(x, y) = sin(Mx) + (θ0 − sin(Mx))
def= θ L

0 + θH
0

so that

|θ0|2L2 = |θ L
0 |2L2 + |θH

0 |2L2 .

From the smallness assumption, we have

√
1 − ε2α|θH

0 |L2 � εα|θ L
0 |L2

which gives

|θ0|L2 � |θ L
0 |L2 − |θH

0 |L2 �
(
1 − εα√

1 − ε2α

)
|θ L
0 |L2 .

From previous lemmas, we have that for any 0 < κ � 1,

1

2
(|θ L

0 |2L2 − |θ L ,κ (1)|2L2) = κ

∫ 1

0
|∇θ L ,κ |2L2dt � χα|θ L

0 |2L2

where θ L ,κ is the solution to

∂tθ
L ,κ + u · ∇θ L ,κ = κ�θ L ,κ

with initial data θ L
0 . Similarly, we define θH,κ to be the solution with initial data

θH
0 . Since the equation is linear, we have that θκ = θ L ,κ + θH,κ . We now estimate
that at time 1,

|θκ(1)|L2 � |θ L ,κ (1)|L2 + |θH,κ (1)|L2 � (1 − 2χα)|θ L
0 |L2 + |θH

0 |L2

�

⎛
⎝(1 − 2χα)

(
1 − εα√

1 − ε2α

)−1

+ εα√
1 − ε2α

⎞
⎠ |θ0|L2

<

(
1 − 1

10
χα

)
|θ0|L2

once we take εα = χα/100, say. The proof is complete. ��
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3.3. Proof of Theorem 2

WenowproveTheorem2,which establishes anomalous dissipation for arbitrary
mean-zero initial data θ0 ∈ H2(T2). As in the above, we achieve it via condition
(1.11) of Lemma 1.4, but with velocity vector field depending on θ0. This time,
given α > 0, we take

t j = 2− j , N j = 2(1+α) j , ε j = a0 exp

(
−30

(
1 + 1

2α − 1

))
· 2−2 j ,

and define the velocity field u(t) for t ∈ [Tj , Tj+1) by

u(t, x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(−1)s j Sε j (N j y)

0

)
j odd,

(
0

(−1)s j Sε j (N j x)

)
j even,

(3.9)

where Tj = ∑ j
i=0 ti with t0 = 0. The constant 1 � a0 > 0 and the signs s j ∈ {0, 1}

will be chosen depending on the initial data, as we shall see below. Apart from these
additional parameters, the velocity field is exactly the same with (3.1).

We need to prove the assumptions (1.11) of Lemma 1.4, and to do so we follow
exactly the same steps from the previous section. Inspecting the proof, we see that
the only place which needs to be modified is the part where we obtain an H1 lower
bound on the solution. In this process s j and a0 will be determined. To this end we
define, assuming that θ j is given with j odd,

θ±
j+1 = θ j (x ± t j Sε j (N j y), y)

and compute:

∂i j+1θ
±
j+1(x, y) = ∂i j+1θ j (x ± t j Sε j (N j y), y)

±t j N j S′
ε j

(N j y)∂i j θ j (x + t j Sε j (N j y), y).

A direct computation gives∑
±

|∂i j+1θ
±
j+1|2L2 = 2|∂i j+1θ j |2L2 + 2(t j N j )

2|S′
ε j

(N j y)∂i j θ j |2L2 ,

since the cross terms cancel each other. Then, there exists s j ∈ {0, 1} such that

|∂i j+1θ
(−1)s j
j+1 |L2 � t j N j |S′

ε j
(N j y)∂i j θ j |L2 � t j N j |∂i j θ j |L2

(
1 − √

ε j
|θ j |Ẇ 1,∞
|∂i j θ j |L2

)
.

Therefore, in the bootstrapping schemewith A j and R j , we have instead (assuming
α = 1 for simplicity)

A j � 2− j (1 − √
ε j R j )

−1,

while we still have the same inequality for R j+1. We may now choose a0 > 0
sufficiently small (depending only on θ0) to guarantee that A1 < 1. Now the same
bootstrap argument gives the desired lower bound. ��
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4. Non-Uniqueness of Weak Solutions

Thegoal of this section is to proveTheorem3.Recall thatwe say θ ∈ C([0, T ];w−
L2(Td)) is weak solution of the transport equation (1.7) on T

d × [0, T ] if
∫ T

0

∫
Td

θ([)]∂tϕ + u · ∇ϕ dx dt = −
∫
Td

θ0(x)ϕ(x, 0) dx (4.1)

holds, for all test functions ϕ ∈ C∞
0 ([0, T ) × T

d).

Proof of Theorem 3. In what follows, we construct two distinct weak solutions;
one time irreversible solution arising from a vanishing viscosity limit and one time
reversible solution.

Time irreversible weak solution: Let θ be a vanishing viscosity solution on
[0, 2T ] × T

d constructed as the limit of the approximating sequence θκk , κk → 0
of solutions of the advection diffusion equationwith velocity u∗. Indeed, since θκk is
uniformly bounded in L∞([0, 2T ]×T

d), by an application of Aubin-Lions lemma
we have that θκk → θ in C([0, 2T );w − L2(Td)) where w − L2 is L2 endowed
with the weak topology. Since the equation is linear and u ∈ L∞(0, 2T ; L∞(Td))

and θ ∈ L∞([0, 2T ] × T
d) ∩ C([0, 2T );w − L2(Td)), it is simply to verify that

the weak limit θ is a weak solution of the transport equation on [0, 2T ]×T
d in the

sense of (4.1). Furthermore, since the L2 norm is weakly lower semi-continuous,
for all t ∈ [T, 2T ]

|θ(t)|2L2 � lim inf
κ→0

|θκ(t)|2L2 � |θ0|2L2

− lim sup
κ→0

κ

∫ T

0
|∇θκ |2L2 dt � (1 − χα)|θ0|2L2 < |θ0|2L2 (4.2)

upon applying Theorem 2. Thus,

sup
t∈[T,2T ]

|θ(t)|2L2 � (1 − χα)|θ0|2L2 < |θ0|2L2 , (4.3)

and the inviscid solution has lost a non-zero fraction of its initial energy after time
T .

Time reversible weak solution:We now construct another weak solution θ̄ dis-
tinct from θ on the interval [T, 2T ]. This solution is defined by the formula

θ̄ (t) =
{

θ(t) t ∈ [0, T ),

θ(2T − t) t ∈ [T, 2T ]. (4.4)

Notefirst that, since θ ∈ C([0, T ];w−L2(Td)), by construction θ̄ ∈ C([0, 2T );w−
L2(Td)). We now check that it is a weak solution on the entire time interval with
the velocity u. That is, we aim to show that for any ϕ ∈ C∞

0 ([0, 2T )×T
d)we have

that ∫ 2T

0

∫
Td

θ̄ (x, t)∂tϕ(x, t) dx dt +
∫ 2T

0

∫
Td

θ̄ (x, t)u(x, t) · ∇ϕ(x, t) dx dt

= −
∫
Td

θ0(x)ϕ(x, 0) dx . (4.5)
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To proceed, divide ϕ into even and odd parts about t = T :

ϕ = ϕe + ϕo, ϕe/o
def= ϕ(T + (t − T )) ± ϕ(T − (t − T ))

2
. (4.6)

Note that since θ(x, t) is even and u(x, t) is odd about t = T , the left-hand-side of
the above expression vanishes identically for the even part of ϕ, namely it reduces
to

∫ 2T

0

∫
Td

θ̄ (x, t)∂tϕo(x, t) dx dt +
∫ 2T

0

∫
Td

θ̄ (x, t)u(x, t) · ∇ϕo(x, t) dx dt

= −
∫
Td

θ0(x)ϕ(x, 0) dx . (4.7)

Splitting up different regions, we have

∫ T

0

∫
Td

θ(x, t)∂tϕo(x, t) dx dt +
∫ T

0

∫
Td

θ(x, t)u∗(x, t) · ∇ϕo(x, t) dx dt

= −
∫
Td

θ0(x)ϕ(x, 0) dx

−
∫ 2T

T

∫
Td

θ(x, 2T − t)∂tϕo(x, t) dx dt

+
∫ 2T

T

∫
Td

θ(x, 2T − t)u∗(x, 2T − t) · ∇ϕo(x, t) dx dt.

Changing variables and introducingψ(x, τ ) = ϕo(x, 2T −τ) ∈ C∞
0 ([0, 2T ]×T

d)

and additionally ψ(x, T ) = 0 since ϕo vanishes at t = T owing to the fact that it
is odd, we have

∫ T

0

∫
Td

θ(x, t)∂tϕo(x, t) dx dt +
∫ T

0

∫
Td

θ(x, t)u∗(x, t) · ∇ϕo(x, t) dx dt

= −
∫
Td

θ0(x)ϕ(x, 0) dx

+
∫ T

0

∫
Td

θ(x, τ )∂τψ(x, τ ) dx dτ

+
∫ T

0

∫
Td

θ(x, τ )u∗(x, τ ) · ∇ψ(x, τ ) dx dτ.

Since θ is a weak solution in the class C([0, T ];w− L2(Td)) on the interval [0, T ]
and ψ(x, T ) = 0 while ψ(x, 0) = φ0(x, 2T ),

∫ T

0

∫
Td

[θ(x, τ )∂τψ(x, τ ) + θ(x, τ )u∗(x, τ ) · ∇ψ(x, τ )] dx dt

= −
∫
Td

θ0(x)ϕo(x, 2T ) dx .
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We also have
∫ T

0

∫
Td

[θ(x, t)∂tϕo(x, t) + θ(x, t)u∗(x, t) · ∇ϕo(x, t)] dx dt

= −
∫
Td

θ0(x)ϕo(x, 0) dx .

Since

ϕo(x, 0) = −ϕo(x, 2T ) = 1

2
ϕ(x, 0), (4.8)

we find that θ̄ ∈ C([0, 2T ];w− L2(Td)) is a weak solution on the interval [0, 2T ].
Finally, we note that

|θ̄ (2T )|2L2 = |θ0|2L2 . (4.9)

In light of (4.3), the solutions θ and θ̄ are distinct. ��

5. Discussion: Obukhov-Corrsin Theory

In the context of passive scalar turbulence, Obukhov [51] and Corrsin [21]

studied the ‘inertial-range’ scaling behavior of scalar structure functions Sθ
p(�)

def=
〈|δ�θ |p〉 ∼ �ζp(θ) in a fully developed homogenous isotropic velocity field exhibit-
ing Kolmogorov 1941 (K41) ‘monofractal’ scaling [45]

Sup(�)
def= 〈|δ�u|p〉 ∼ (ε�)p/3, �ν � � � Lu (5.1)

for all p � 1where Lu is the integral scale of the velocity field and �ν is the dissipa-

tion scale (theK41predictionbeing �ν = (ν3/ε)1/4 where ε
def= limν→0 ν〈|∇uν |2〉 >

0 is the anomalous energy dissipation rate). Said another way, in the idealized limit
ν → 0, the velocity field is assumed to be 1/3–Hölder and not better. Based on
dimensional grounds, Obukhov and Corrsin independently predicted that the scalar
field would also exhibit the same scaling

Sθ
p(�)

def= 〈|δ�θ |p〉 ∼ (χ/ε1/3)p/2�p/3, �ν � �κ � � � Lθ � Lu (5.2)

where χ
def= limκ,ν→0 κ〈|∇θκ |2〉 > 0 is the (presumed) anomalous dissipation of

the passive scalar, Lθ is the typical length-scale of the scalar input initially or by
a force, and �κ is the dissipative length for the scalar field (�κ = (κ3/ε)1/4 in the
Corrsin-Obukhov theory). Their scaling theory can be generalized as

Sup(�) ∼ �αp, α ∈ (0, 1) implies Sθ
p(�) ∼ �

(
1−α
2

)
p
. (5.3)

In the idealized limit of ν, κ → 0, this says that if the velocity u ∈ Cα is Hölder
with exponent α ∈ (0, 1) and not better, then the scalar should be Hölder θ ∈ Cβ

with exponent β = (1 − α)/2 and not better. These constraints can be understood
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as a consequence of the fractal geometry of scalar level sets in rough velocities
[22,23]. Moreover, the entire picture has been generalized to accommodate (the
more realistic setting) of multifractal velocity fields with the property that Sup(�) ∼
�ζp(u) where ζp(u) may depend non-linearly on p resulting in constraints on the
multifractal spectrum of the scalar ζp(θ) [35].

In analogy to the Onsager conjecture for the dissipation anomaly of kinetic
energy in incompressible fluids [52], one can regard the above theory as setting a
threshold condition for the anomalous dissipation of scalar energy [35]. Namely, if
u ∈ Cα and θκ ∈ Cβ uniformly then

χ
def= κ

∫ T

0

∫
Td

|∇θκ |2 dx dt → 0 unless β >
1 − α

2
. (5.4)

Along these lines, we first establish an upper bound on the dissipation for vanishing
diffusion limits in rough velocity fields. A similar estimate was provided for vis-
cous energy dissipation in the context of Onsager’s conjecture for hydrodynamic
turbulence [26]. We also study what happens when the velocity field is smooth up
until a single point in time where it may lose regularity. The latter is relevant to the
problem in which an inertial range for the velocity field evolves dynamically by
some cascade process to the point where the field becomes non-smooth in a way
consistent with the observed long-time inertial range scaling in real turbulence. In
fact, one has the following result.

Theorem 4. Let u ∈ L1([0, T ];Cα(Td)) for α ∈ (0, 1] be a given divergence free
vector field. Suppose that the family {θκ}κ>0 is bounded in L∞([0, T ];Cβ(Td))

for β ∈ (0, 1] uniformly in κ , then

κ

∫ T

0

∫
Td

|∇θκ |2 dx dt � Cκ
α+2β−1

α+1 (5.5)

for an absolute constant C depending only on T and the Hölder norms of the
solutions. In particular, if β > (1 − α)/2 then there can be no anomalous scalar
dissipation. If furthermore

u ∈ L1
loc([0, T );W 1,∞(Td)) ∩ L1([0, T ];Cα(Td)) for α < 1 ,

and if β = (1 − α)/2, then

lim
κ→0

κ

∫ T

0

∫
Td

|∇θκ |2 dx dt = 0. (5.6)

Proof. Let f � = ϕ� ∗ f for any � > 0. Mollifying the equations, one finds

∂t (θκ)� + u� · ∇(θκ)� = κ�(θκ)� − ∇ · τ�(u, θκ) (5.7)
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where τ�( f, g) = ( f g)� − f �g�. A straightforward calculation for any 0 � t � T
shows that

κ

∫ T

t

∫
Td

|∇θκ |2 dx dt ′ = −
∫ T

t

∫
Td

∇(θκ)� · τ�(u, θκ) dx dt ′

+ κ

∫ T

t

∫
Td

|∇(θκ)�|2 dx dt ′

+ 1

2

∫
Td

τ�(θ
κ(t), θκ(t)) dx − 1

2

∫
Td

τ�(θ
κ(T ), θκ(T )) dx .

(5.8)

Using standard estimates for mollified gradients and the Constantin-E-Titi [17]
commutator estimate

|∇ f �|L∞ � |θ |Cα �α−1, |τ�( f, g)|L∞

� |θ |Cα |g|Cβ �α+β, f ∈ Cα, g ∈ Cβ (5.9)

together with the fact that τ�( f, f ) � 0 we arrive at an upper bound for the scalar
dissipation

κ

∫ T

t

∫
Td

|∇θκ |2 dx dt ′ � �α+2β−1|θκ |2
L∞
t Cβ

x
|u|L1(t,T ;Cα

x ) +
(
κ(T − t)�2(β−1)

+�2β
)

|θκ |2
L∞
t Cβ

x
. (5.10)

Setting t = 0 and optimizing � as a function of κ we find � = κ1/(α+1) and (5.5)
follows. The second statement of the theorem follows by dividing the time interval
into [0, T −ε]×[T −ε, T ] and using the assumedC1 regularity of u on the interval
[0, T − ε] together with the uniform Hölder on the entire interval [0, T ] and the
fact that ε is allowed arbitrarily small (and can vanish as κ → 0). ��

In light of Theorems 1 and 4 , we conclude with an open question.

Question 5.1. Fix α ∈ (0, 1). Does there exist divergence-free vector field

u ∈ L1([0, 1];Cα(Td))

such that {θκ}κ>0 is bounded in L∞([0, T ];Cβ(Td)) for every β < (1−α)/2,and

lim inf
κ→0

κ

∫ T

0

∫
Td

|∇θκ |2 dx dt > 0 ?

Finally, we comment briefly on the nonlinear problem: establishing anomalous
dissipation for solutions of Navier-Stokes equations

∂t u
ν + uν · ∇uν = −∇ pν + ν�uν,

∇ · uν = 0.

As for passive scalars, experimental and numerical observations of hydrodynamic
turbulence suggest that kinetic energy dissipation is non-vanishing in the limit of
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zero viscosity [44,54,56,59], i.e. there exists ε > 0 independent of ν such that, in
turbulent regimes, a family of Leray-Hopf solutions {uν}ν>0 satisfies

ν

∫ T

0

∫
|∇uν(x, t)|2 dx dt � ε > 0. (5.11)

This phenomenon of anomalous dissipation is so fundamental to our modern un-
derstanding of turbulence that it is often termed the “zeroth law”. In 1949 [52],
Lars Onsager offered significant insight into this phenomena in asserting that it
requires that, at high Reynolds number, flow develop structures approximating sin-
gular ones with Hölder exponents not exceeding 1/3. This assertion has since been
proved [17,34] and dissipative weak solutions of the Euler equations with lower
regularity have been constructed in a series of works using convex integration
[10,29–31,41] and culminating in a construction of non-conservative solutions in
the class CtC

1/3−
x by P. Isett. However, to this day, none of these constructions

are achieved as zero viscosity limits of Navier-Stokes solutions obeying a physical
energy balance (e.g. Leray-Hopf weak solutions). In the present paper, we solved
an analogous problem for passive scalars in a setting which models the effect of
a finite-time singularity in an inviscid problem on anomalous dissipation in the
corresponding viscous problem. Our result follows from a sufficient condition for
anomalous dissipation assuming that the inviscid solution becomes singular in a
controlled way. It is possible that one could deduce anomalous dissipation in the
vanishing viscosity limit of Navier Stokes solutions under some conditions on a
(hypothetical) blowup in the Euler equation.
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