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Abstract

In this paper we: (i) provide a model of the endogenous risk intolerance and severe asset
price and aggregate demand contractions following an adverse real (non-financial) shock; and
(ii) demonstrate the e§ectiveness of Large Scale Asset Purchases (LSAPs) in addressing these
contractions. The key mechanism stems from heterogeneous risk tolerance: as a recessionary
shock hits the economy and brings down asset prices, risk-tolerant agents’ wealth share
declines and their leverage rises endogenously. This reduces the market’s risk tolerance and
generates downward pressure on asset prices and aggregate demand. When monetary policy
is unconstrained, it can o§set the decline in risk tolerance with an interest rate cut that
boosts the market’s Sharpe ratio. However, if the interest rate policy is constrained, new
contractionary feedbacks arise: recessionary shocks lead to further asset price and output
drops, which feed the risk-o§ episode and trigger a downward loop. In this context, LSAPs
improve asset prices and aggregate demand by transferring risk to the government’s balance
sheet, which reduces the market’s required Sharpe ratio and reverses the contractionary
feedbacks. Quantitatively, we show that aggregate shocks and LSAPs have large impacts
on asset prices when the model is calibrated to fit the inelastic demand for aggregate assets
uncovered in recent literature. We also show that heterogeneity in risk tolerance explains
part of the demand inelasticity in normal times, and further reduces the elasticity after a
recessionary shock. The Covid-19 shock and the large response by all major central banks
provide a vivid illustration of the environment we seek to capture.
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Figure 1: CBOE Volatility Index (VIX)

The Covid-19 shock is primarily a real (non-financial) shock with supply and demand ele-

ments. However, the shock also generated a large reaction in financial markets that had the

potential to exacerbate the direct drop in economic activity caused by the real shock. Figure

1 illustrates that (implied) stock market volatility spiked to levels comparable to the global fi-

nancial crisis of 2008—2009. Other indicators of financial distress exhibited similar patterns. For

example, investment grade and high yield spreads tripled, and the S&P 500 dropped by 30% in

a matter of weeks (a drop, per unit time, larger than the worst drop during the Great Depres-

sion). The Fed (with the backing of the Treasury) had to pledge close to 20% of US GDP in

funding for a wide range of credit and market supporting facilities to stop the free fall.1 Central

banks in the Group of Seven countries purchased $1.4 trillion of financial assets in March alone.

Beyond the Covid-19 episode, the structurally low safe interest rates suggest that asset market

interventions are likely to become the norm for monetary policy response to large recessionary

1Here is a brief chronology of the Fed’s main policy actions from early March until April 9th, 2020 (when the
first version of this paper was released): On 03/03, implements a 50bps emergency rate cut; on 03/12, adds repos
of up to $500b/week, purchases wider range of securities under current $60b/month program; on 03/15, cuts rates
by 100bps to zero and initiates QE bond buying program of $700b, lowers swap lines with major central banks
by 25bps; on 03/17, establishes a commercial paper funding facility to provide stability to short-term CP market;
on 03/19, launches USD liquidity-swap lines with a broad range of countries, including major Emerging Markets;
on 04/09, implements $2.3t emergency measures, among them a $500b Municipal Liquidity Facility for state and
local governments, a $600b Main Street Lending program, and a Paycheck Protection Program Liquidity Facility
for small businesses; expands the Primary and Secondary Market Corporate Credit Facilities and the term loan
facility to buy ABS securities to $850b and includes asset purchases of HY bonds, HY ETFs, CLOs, and CMBS
securities. All other major central banks around the world have also pursued unprecedented financial markets
interventions.
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shocks rather than the exception.

Motivated by these events and observations, in this paper we: (i) provide a model of the

endogenous risk intolerance and severe asset price and aggregate demand contractions following

a large real shock; and (ii) demonstrate the e§ectiveness of Large Scale Asset Purchases (LSAPs)

in addressing these contractions.

Our model builds on the macroeconomic model in Caballero and Simsek (2020). That model

is a variant of the New Keynesian model, but formulated in terms of a risk-centric decomposition.

Specifically, in that model we decompose the demand block of the equilibrium into two rela-

tions: an output-asset price relation that captures the positive association between asset prices

and aggregate demand; and a risk balance condition that describes asset prices given risks, risk

attitudes, beliefs, and the interest rate. This decomposition facilitates studying the macroeco-

nomic impact of a variety of forces that a§ect risky asset prices.2 In the current model, we

extend that analysis by splitting investors into risk-tolerant and risk-intolerant agents–we dub

the risk tolerant agents “banks” (interpreted broadly to include the shadow financial system and

other agents able/willing to hold substantial risk) and the risk intolerant agents “households”

(also interpreted broadly).3 The key implication of this assumption is that banks are levered in

equilibrium, and therefore are highly exposed to aggregate shocks and the endogenous risk-o§

processes that these shocks may trigger.

To fix ideas, consider a large negative supply shock (e.g., the supply component of the Covid-

19 shock).4 This shock exerts downward pressure on risky asset prices (which include credit,

equity, real estate, as well as other assets). As banks incur losses, their leverage rises. With

higher leverage, banks require a higher Sharpe ratio (risk premium per unit of risk) to hold the

same amount of risky assets. Risk-intolerant households also require a higher Sharpe ratio to

hold the risky assets unloaded by banks wishing to reduce their leverage. Both of these channels

reduce e§ective risk tolerance and increase the market’s required Sharpe ratio.

As a benchmark, suppose that banks’ initial leverage is not too high and the supply shock

is small. In this case, e§ective risk tolerance does not decline by much following the shock. If

the supply shock is also temporary, a small decline in asset prices may be all that is needed

to increase the Sharpe ratio as much as the market demands. Asset prices and supply are

temporarily low but they are expected to recover, which raises the expected return and the

2The decomposition is supported by a growing empirical literature that shows risky asset prices can substan-
tially a§ect aggregate demand. See Mian and Sufi (2014) and Chodorow-Reich et al. (forthcoming) on the e§ect
of house and stock prices, respectively, on consumption and (nontradable) employment; Pflueger et al. (2020)
on the e§ect of financial market risk perceptions on economic activity and interest rates. See also Gilchrist and
Zakrajöek (2012) on the e§ect of credit spreads on investment and consumption (while our main model is not
about credit per se, credit spreads are closely correlated with overall risk perception).

3Note that the function of “banks” we seek to capture is risk absorption, not lending. Moreover, in practice
agents’ willingness to absorb risk can vary across asset classes. For instance, in the housing market homeowners
absorb risk and therefore behave as the “banks” in our model.

4Adding an exogenous demand shock exacerbates our main results (see Remark 3 in Section 1.3). We chose to
focus on the supply component of the Covid-19 shock because it allows us to isolate the endogenous component
of the aggregate demand contraction.
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Sharpe ratio. In fact, this expected recovery e§ect can even induce the central bank to raise the

interest rate to keep asset prices and aggregate demand in line with the reduced supply.

In contrast, we focus on scenarios in which banks’ initial leverage is high, or the supply shock

is su¢ciently large. In these cases, a supply shock substantially reduces e§ective risk tolerance

and increases the required Sharpe ratio. This higher required Sharpe ratio can overwhelm the

expected recovery e§ect (even if the shock is temporary) and induce a disproportionate decline

in asset prices and demand that exceeds the decline in supply.

The first line of defense is conventional monetary policy that cuts the interest rate. Cutting

interest rates provides the market with the greater Sharpe ratio that it requires and relieves the

downward pressure on asset prices. Asset prices and aggregate demand decline in proportion

to the reduction in supply but no more. However, if the interest rate is constrained there is a

more acute decline in asset prices. Lower asset prices provide the market with a greater Sharpe

ratio but they also generate a demand recession: output falls beyond the reduction in potential

output. To make matters worse, the decline in asset prices further reduces banks’ wealth share

(and endogenously raises their leverage), which further increases the required Sharpe ratio and

depresses asset prices, triggering a downward spiral. We show that, when banks’ initial leverage

is su¢ciently high, the feedback between asset prices and risk intolerance becomes so strong

that multiple equilibria are possible. In the worst of these equilibria, banks go bankrupt.

This description of events suggests that policies where the consolidated government (e.g.,

the Fed and the Treasury in the U.S.) absorbs some of the risk that banks are struggling to

hold can be highly e§ective. We loosely refer to these policies as large-scale asset purchases

(LSAPs). We show that, by transferring risk to the government’s balance sheet, LSAPs reduce

the market’s required Sharpe ratio. This improves asset prices and aggregate demand and

mitigates the recession. Moreover, LSAPs are powerful because they reverse the downward

spiral. In particular, when the aggregate demand amplification of the supply shock is severe,

the government might find it optimal to deploy LSAPs even if it is less risk tolerant than the

market. The government also chooses larger LSAPs when it has greater future fiscal capacity.

In the Covid-19 episode, the spike in VIX began to reverse immediately after the major central

banks’ policy actions (Figure 1 and Footnote 1), which suggests the interventions were e§ective

in containing the initial downward spiral.

Although our model is highly stylized, we are able to gauge the quantitative potential of

our mechanisms. For this exercise, we build on the recent literature documenting the low price

elasticity of the demand for aggregate assets (see, e.g., Gabaix and Koijen (2020)). We find

that the asset demand elasticity in our model is lower than its counterpart in a homogeneous-

agent model, and this gap grows as banks become more levered. Therefore, heterogeneity in

risk tolerance helps explain part of the demand inelasticity in normal times, and endogenously

reduces demand elasticity after a recessionary shock. A low asset demand elasticity increases the

quantitative strength of our mechanism because it implies that a given amount of asset outflows

(triggered by a negative shock to levered banks) requires a larger drop in the equilibrium price
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to absorb the flows. For back-of-the-envelope calculations, we calibrate the (pre-shock) asset

demand elasticity to match estimates from the recent literature, and calibrate banks’ leverage to

match the recent stress test scenarios used by the Fed. We find that negative aggregate supply

shocks can cause large drops in the equilibrium asset price, and that relatively small LSAPs may

be su¢cient to overturn these e§ects. Moreover, for our calibrated parameters, the economy

features regions of multiple equilibria and regions where the economy falls into a unique bad

equilibrium with bankruptcy and low asset prices. LSAPs are powerful in the neighborhood of

the high-price equilibrium (when there are multiple equilibria), and they significantly narrow

the set of scenarios under which the economy falls into the unique bad equilibrium.

Finally, we extend the model to show how firms’ debt overhang problems interact with our

risk-centric mechanism. The corporate debt overhang problem creates a feedback mechanism

between asset prices and aggregate supply. This feedback makes the market’s e§ective risk

tolerance (and hence the required Sharpe ratio) more sensitive to asset prices, which in turn

strengthens our amplification mechanism and the e§ectiveness of LSAPs.

Section 1 describes the model and shows how supply shocks can trigger amplified drops in

asset prices and aggregate demand. Section 2 shows how LSAPs operate in this environment.

Section 3 derives the asset demand elasticities in our model and provides quantifiable formulas for

the marginal price impact of supply shocks and LSAPs. This section also uses recent estimates

of asset demand elasticities to assess the quantitative strength of the model’s amplification

mechanism and the power of LSAPs. Section 4 presents an extension with debt overhang.

Section 5 concludes. The appendices contain the derivations and proofs omitted from the text

as well as the details of our calibration exercise.

Literature review. Our paper contributes to a growing literature that emphasizes the role of

leveraged financial intermediaries in asset pricing (see, e.g., Shleifer and Vishny (1997); Brunner-

meier and Pedersen (2009); Geanakoplos (2010); Adrian and Shin (2010); Garleanu and Pedersen

(2011); He and Krishnamurthy (2013, 2018); Brunnermeier and Sannikov (2014); Adrian et al.

(2014); He et al. (2017); Haddad and Muir (forthcoming)).5 Like most of this literature, we em-

phasize the financial health of “banks” as a key determinant of asset prices, but we also explore

the interaction of this mechanism with nominal rigidities and monetary policy. In particular,

our model generates macroeconomic e§ects driven by aggregate demand fluctuations, whereas

the previous literature mostly emphasizes financial frictions on the supply side of the economy.6

We uncover additional amplification mechanisms for asset prices when monetary policy is con-

5More broadly, our paper is part of a large finance literature that studies the e§ect of risk tolerance hetero-
geneity for asset prices (e.g., Dumas (1989); Wang (1996); Chan and Kogan (2002); Bhamra and Uppal (2009);
Longsta§ and Wang (2012); Gârleanu and Panageas (2015)). A related literature studies the asset pricing e§ects
of limited market participation (e.g., Mankiw and Zeldes (1991); Heaton and Lucas (1996); Basak and Cuoco
(1998); Vissing-Jørgensen (2002); Cao et al. (2005); Gomes and Michaelides (2008); Guvenen (2009); Iachan et al.
(forthcoming)).

6Also related is Caballero and Krishnamurthy (2009), who show how the endogenous leverage of the US
economy caused by the global demand for safe assets creates instability with respect to supply shocks. See also
Kiyotaki and Moore (1997); Beaudry and Lahiri (2014); Di Tella (2017); Cao et al. (2019).
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strained and highlight the role of LSAPs in reversing this amplification. Finally, we characterize

the price elasticity of asset demand in this environment. We show that the heterogeneity in risk

tolerance contributes to the inelastic demand for aggregate assets observed in normal times (see

Gabaix and Koijen (2020); Koijen and Yogo (2020)), and it reduces the elasticity further after

a large recessionary shock.

At a methodological level this paper adopts the risk-centric perspective in Caballero and

Simsek (2020, 2021b). The novel ingredient is that the supply shock endogenously lowers risk

tolerance. Kekre and Lenel (2020) features a similar mechanism, although they do not look

at the e§ect of supply shocks or LSAPs. In particular, they calibrate a model in the spirit of

Caballero and Simsek (2020) and show the power of conventional monetary policy in a§ecting

the risk premium when agents have heterogeneous risk tolerance (or more broadly, heterogeneous

marginal propensities to take risk). Similarly, Caballero and Farhi (2018) show that when a large

share of wealth is allocated to extremely risk-intolerant agents (Knightians) in a New Keynesian

framework with a zero lower bound on interest rates, the economy may fall into a “safety trap.”

Like our paper, they show that asset market policies where the government absorbs part of the

risk of the economy (and replace it with safe assets) can be highly e§ective. However, their

focus is on the macroeconomic implications of a chronic scarcity of safe assets rather than on

the role of endogenous risk intolerance following a large real shock. More broadly, our paper

is part of a New Keynesian literature that emphasizes the role of changes in risk premium in

driving aggregate demand fluctuations (see, e.g., Ilut and Schneider (2014); Basu and Bundick

(2017)).

Our paper is also related to a large macroeconomics literature that emphasizes the role of

financial intermediaries and asset prices for aggregate demand and economic activity (see Gertler

and Kiyotaki (2010) for a review). Our paper highlights that intermediaries and asset prices

matter even without financial frictions, although adding conventional frictions would strengthen

our mechanisms. Our approach shifts focus from the intermediaries’ role in lending and credit

allocation to their role in absorbing aggregate risk. We make predictions for prices of assets that

are not intermediated by traditional banks (such as stock prices), and we show that aggregate

demand also depends on the financial health of nontraditional “banks” (such as hedge funds,

active mutual funds, investment banks, broker-dealers, and so on).7

Our analysis of LSAPs is related to a growing literature on the role of central bank asset

purchases in stimulating aggregate demand when conventional monetary policy is constrained.

Empirical evidence suggests these policies have a meaningful impact on asset prices (see Bernanke

(2020)) but the underlying mechanisms are not fully understood. The literature emphasizes ei-

ther financial frictions and credit (e.g., Gertler and Karadi (2011); Del Negro et al. (2017)),

portfolio balance e§ects in segmented markets (e.g., Vayanos and Vila (2009); Ray (2019)), or

7 Incidentally, the share of bank loans and mortgages in the U.S. nonfinancial corporations’ total borrowing
(the sum of their total loans and debt securities) has declined from nearly 50 percent before the mid-1970s to
less than 20 percent today (source: Financial Accounts of the United States, series FL103168005, FL103165005,
FL104123005, FL104122005).
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signaling e§ects (see, e.g., Bhattarai et al. (2015)). The mechanism in our paper is di§erent

and relies on the government’s ability to absorb aggregate risk using its future tax capacity in

a non-Ricardian model (see also Silva (2016)).8 We also provide a quantifiable formula for the

asset price impact of these risky LSAPs. With realistic aggregate asset demand elasticities, our

calibration suggests that central bank purchases of risky assets can a§ect asset prices substan-

tially, which is consistent with the findings of a growing empirical literature (see, e.g., Caballero

(1999); Charoenwong et al. (2019); Barbon and Gianinazzi (2019)).

In terms of whether demand factors can exacerbate the direct e§ect of a supply shock, the

closest paper to ours is Guerrieri et al. (2020) (see also Baqaee and Farhi (2020); Bigio et al.

(2020); Woodford (2020)). They provide a clean decomposition of the ingredients needed for an

a¢rmative answer in a two-period, deterministic model. They conclude that, in such a model,

aggregate demand cannot exacerbate the supply recession when the economy has a single sector,

regardless of whether markets are complete or incomplete. In contrast, they show that in a multi-

sector environment there are configurations of preference parameters where demand responds by

more than supply, especially if markets are incomplete. Our risk-based mechanism is orthogonal

to theirs. In fact, our model has a single sector.

Our paper is related to a growing empirical finance literature that analyzes the drivers of

asset prices in the Covid-19 recession (e.g., Gormsen and Koijen (2020); Landier and Thesmar

(2020); Ramelli and Wagner (2020); Croce et al. (2020); Davis et al. (2020)). This literature

typically attributes the large decline and the subsequent recovery of risky asset prices in the

Covid-19 recession to changes in the risk premium. From the lens of our model, the initial shock

and its amplification increased the risk premium, whereas LSAPs helped reduce it. In line with

this interpretation, the literature finds that the central bank asset purchases had a large positive

impact on asset prices (Fed (2020); Cavallino and De Fiore (2020); Haddad et al. (2020)), even

in emerging markets (Arslan et al. (2020)).

The Covid-19 shock also triggered a large response among macroeconomists. For example,

Eichenbaum et al. (2020); Faria-e Castro (2020) embed pandemic shocks and their constraints

on economic activity within DSGE models and study the role of fiscal policy and di§erent con-

tainment strategies. Baker et al. (2020) document the dramatic spike in uncertainty and study

its impact in a real business cycle model. Our analysis is complementary as we emphasize the

excessive aggregate demand contraction that results from supply shocks–which is exacerbated

by uncertainty–and we highlight the damage caused by the pricing of uncertainty. Fornaro and

Wolf (2020a,b) provide a stylized New Keynesian model and capture the Covid-19 shock as a

decline in (exogenous and endogenous) expected growth. Their mechanisms and policy analysis

do not operate through endogenous spikes in risk intolerance and asset price spirals, which is

8 In this broad sense, our policy mechanism builds upon the extensive literature spurred by Holmström and
Tirole (1998) on the space created by the taxation power of the government to expand the supply of liquidity.
Also, our model provides a distinct microfoundation for the portfolio balance theory of monetary policy pioneered
by Tobin (1969). In our model, the central bank shifts the aggregate supply of risky assets that needs to be
absorbed by the private sector.
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our focus. Correia et al. (2020) use the 1918 flu pandemic to empirically analyze the economic

costs of pandemics and find a role for both supply- and demand-side channels, consistent with

our analysis.9

1. A Model of Endogenous Risk Intolerance

We present a model that illustrates how a supply shock can reduce risk tolerance in financial

markets and induce an asset price and aggregate demand contraction that amplifies the supply

shock. Later on, we discuss how adding exogenous demand shocks strengthens our results. Our

mechanism operates through heterogeneous risk tolerance: the decline in asset prices due to the

supply shock lowers risk-tolerant agents’ wealth share and increases their leverage. As these

agents attempt to lower their exposure to risk, e§ective risk tolerance declines. If the interest

rate policy is constrained, risk intolerance leads to low asset prices and aggregate demand. The

demand-induced decline in asset prices further lowers the wealth share of risk-tolerant agents,

and so on.

1.1. Environment and equilibrium

Consider an economy with infinitely many periods, t 2 {0, 1, 2, ...}, a single consumption good,
and a single factor, capital (see Appendix B for an extension that also features a non-capitalized

factor such as labor). There is no investment or depreciation and capital is normalized to one

unit. We let zt denote the productivity of capital in period t. Potential output is equal to

productivity, zt, but actual output, yt, can be below this level due to nominal rigidities and a

shortage of aggregate demand.

Our focus is on period 0, which we view as the short run. The short run has three features.

First, there is aggregate risk about future productivity (z1), which leads to a risk premium and a

non-trivial portfolio choice. Second, monetary policy might be constrained, which allows output

to be influenced by aggregate demand. Finally, motivated by the Covid-19 recession, we focus

on supply shocks that we model as a decline in initial productivity, z0, relative to a normalized

level, z0 = 1. Periods t ≥ 1 feature no aggregate risk about future productivity (zt+1). This

assumption also implies that monetary policy is unconstrained for periods t ≥ 1. These features
simplify the analysis by enabling us to focus on the equilibrium in period 0. Starting from period

1 onward, output is equal to its potential and agents consume a constant fraction of this output

(determined by their wealth share in period 1).

Formally, agents observe the productivity, zt, at the beginning of the corresponding period

t (before they take decisions). Given the initial productivity, z0, future productivity evolves

9There are also several papers that embed SIR type epidemiological models into macroeconomic models and
study the optimal containment policy that balances health concerns and economic costs (e.g., Alvarez et al. (2020);
Gourinchas (2020); Berger et al. (2020); Callum et al. (2020); Bethune and Korinek (2020)). We do not address
this important trade-o§ and take as given the broad supply implications of the containment policies.

7



according to

log z1 ∼ N
(
log z1 −

σ2

2
,σ2
)
where log z1 = ' log z0 + g (1)

and log zt = log zt−1 + g for t > 1.

At period 0, from the agent’s perspective, productivity at period 1 is uncertain and log-normally

distributed, where z1 is the expected productivity and σ is its volatility. The parameter ' 2 [0, 1]
is the persistence of the initial productivity shock. When ' = 0, the initial shock is fully

transitory and does not a§ect future productivity. When ' = 1, the shock is fully persistent and

shifts future productivity one-to-one. For most of the analysis, we focus on persistent shocks,

' = 1, to streamline exposition. However, we set up the model with general ' to illustrate that

our results hold for mildly persistent or even fully transitory shocks. In subsequent periods,

t > 1, productivity is deterministic and grows at a constant rate.

The supply side of the economy features standard New Keynesian production firms described

in Appendix A.1. These firms choose their capital utilization rate, ηt 2 [0, 1], where yt = ηtzt.

They can increase capital utilization for free until ηt = 1 and cannot increase it beyond this

level. For simplicity, firms have fully sticky nominal prices that they don’t change (see Remark

1 for the case with partially sticky prices). With these assumptions, output is determined by

the aggregate demand for goods (aggregate consumption) up to the capacity constraint,

yt =
X

i

cit ≤ zt, (2)

where cit denotes consumption by agent i at time t. Firms optimally meet the available demand

at their preset price as long as the price is higher than their marginal cost (which is zero when

ηt < 1 and becomes infinitely high when ηt = 1).

There are two types of financial assets. The “market portfolio” represents claims to all output

(which accrues to production firms as earnings). We denote the (ex-dividend) price of the market

portfolio at date t with ztPt, so that Pt corresponds to the price per unit of productivity. We let

rt denote the log return of the market portfolio:

rt = log

(
yt+1 + zt+1Pt+1

ztPt

)
. (3)

There is also a risk-free asset in zero net supply whose (nominal and real) return is set by the

central bank. We let rft denote the log risk-free rate.

The demand side features two types of agents, i 2 {b, h}. Type b agents (“banks”) are more
risk tolerant than type h agents (“households”). Formally, agents have Epstein-Zin utility with

risk aversion parameters given by 1/τ i that satisfy τ b > τh. We refer to τ i as agent i’s risk

tolerance. Agents also have common elasticity of intertemporal substitution (EIS) equal to one,
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and common discount factor denoted by e−ρ. We write agents’ flow budget constraints as

cit + a
i
t = Ait,

Ait+1 = ait

(
!it exp (rt) +

(
1− !it

)
exp

(
rft

))
.

Agents start each period with wealth Ait and decide how much to consume, ct, and how much

wealth to carry to the end of the period, ait. They allocate a fraction of this end-of-period

wealth to the “market portfolio,” !it, and the residual fraction to the risk-free asset. This

portfolio provides them with their next period wealth, Ait+1.

We formally state and solve the investors’ problem in Appendix A.2. Because EIS = 1,

agents spend a fixed fraction of their wealth in every period,

cit =
(
1− e−ρ

)
Ait and ait = e

−ρAit. (4)

Consider agents’ optimal portfolio choice. Starting from period 1 onward, there is no uncertainty

and agents are indi§erent between the two assets,

rt = r
f
t for t ≥ 1. (5)

In period 0, agents’ weight on the market portfolio is approximately given by

!i0σ ' τ i
r0 − r

f
0

σ
where r0 = E [r0] +

σ2

2
. (6)

Here, r0 denotes the log of the expected gross return on the market portfolio. Eq. (6) is

a standard mean-variance portfolio optimality condition that says the risk of agents’ optimal

portfolio (the left side) is proportional to the Sharpe ratio on the market portfolio (the right

side). This equation holds exactly in continuous time but only approximately in discrete time.

To simplify the analysis, we assume the equation is exact.10

The asset market clearing conditions are given by

X

i

ait =
X

i

!ita
i
t = ztPt. (7)

At the end of every period, aggregate wealth is equal to the (ex-dividend) price of the market

portfolio, both before and after agents’ portfolio decisions.

Finally, there is a central bank that manages demand by setting the nominal interest rate

(which is the same as the real interest rate since prices are fully sticky). We assume the central

bank sets the interest rate to replicate the supply-determined output level, subject to a lower

10Specifically, agents approximate their portfolio problem with problem (A.14) stated in the appendix, which
leads to the optimality condition (6). This approximation works well for relatively short investment horizons and
is widely used in the literature (see, e.g., Campbell and Viceira (2002)).
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bound constraint, rft ≥ 0. Specifically, suppose the interest rate policy follows a standard Taylor
rule, rft = max (0, (yt − zt)). We focus on the limit  ! 1, in which case this rule implies
that either the interest rate is positive and output is at its potential, rft = r

f∗
t > 0 and yt = zt;

or the interest rate is constrained and there is a demand recession, rft = 0 and yt ≤ zt. Here,

rf∗t (“rstar”) denotes the natural interest rate consistent with making output equal to potential

output, yt = zt [see Eqs. (11) and (20)].

Given agents’ initial positions, Ai0, the equilibrium corresponds to a path of allocations and

prices that satisfy Eqs. (1− 7) along with the central bank’s policy rule. We next characterize
the equilibrium in three steps. First, we describe a tight relationship between asset prices and

output that applies in each period. We then describe the equilibrium in periods t ≥ 1. Finally,
we specify agents’ initial positions, Ai0, and characterize the equilibrium in period 0. In the rest

of the section, we investigate how supply shocks in period 0 a§ect this equilibrium.

Output-asset price relation. Eq. (4) implies that consumption is a fraction of agents’

end-of-period wealth

cit =
1− e−ρ

e−ρ
ait, which implies ct ≡

X

i

cit =
1− e−ρ

e−ρ
ztPt. (8)

Here, we have defined aggregate consumption, ct, and used the asset market clearing condition

(7). Combining this with Eq. (2), we further obtain,

yt = ct =
1− e−ρ

e−ρ
ztPt. (9)

We refer to this equation as the output-asset price relation. This relation says that higher asset

prices increase aggregate wealth and consumption, which leads to greater output (see Remark

2 for discussion and various extensions).

Setting yt = zt in (9), we also solve for the e¢cient level of asset price per productivity as

P ∗ =
e−ρ

1− e−ρ
. (10)

This is the asset price per unit of productivity that ensures output is at its potential. If there is

a supply shock that reduces zt, asset prices should fall proportionally to ztP ∗, but no further.

Any further reduction in asset prices would trigger a demand recession as illustrated by (9).

Equilibrium in periods t ≥ 1. We next solve the equilibrium backward. Suppose agents

start period 1 with wealth levels, Ai1. Appendix A.2.2 characterizes the continuation equilibrium

10



as follows,

yt = zt with zt = z1e
g(t−1) (11)

rt = rf∗t = ρ+ g > 0

Pt = P ∗

cit =
(
1− e−ρ

)
Ait with Ait = A

i
1e
g(t−1).

Since there is no uncertainty, the economy immediately reaches a deterministic balanced growth

path in which output is equal to its potential and grows at a constant rate [(1)]. Agents’ wealth

and their consumption grow at the same rate as productivity. The interest rate is positive and

the asset price per productivity is at its e¢cient level. Intuitively, the interest rate constraint

does not bind and the central bank ensures the economy operates at its potential.

Initial endowments. Our focus is on the equilibrium in period 0, which depends on (among

other things) agents’ initial endowments, Ai0. In a model with endogenous history, risk tolerant

banks would take a levered position on the market portfolio in the (unmodeled) period −1, with
a leverage ratio that would depend on relative risk tolerances and anticipated shocks. Therefore,

we endow banks with initial positions that feature leverage:

Ab0 = max
(
0, Ãb0

)
and Ah0 = min

(
y0 + z0P0, Ã

h
0

)
, (12)

where

Ãb0 = κ (y0 + z0P0)− κl (1 + P ∗) (13)

Ãh0 = (1− κ) (y0 + z0P0) + κl (1 + P ∗) ,

for some κ, l 2 (0, 1) .

Eq. (13) describes banks’ endowments and wealth assuming they are not bankrupt. Banks

initially hold a fraction of the market portfolio, κ. They also owe κl (1 + P ∗) units of safe debt.

We have normalized the debt level so that in the benchmark, defined as the case when there is no

demand recession, P0 = P ∗, and the supply shock is normalized to one, z0 = 1, banks’ leverage

ratio (defined as their debt-to-asset ratio) is l. Households hold the mirror image positions: they

hold the residual fraction of the market portfolio, 1 − κ, as well as banks’ safe debt. Eq. (12)

adjusts agents’ wealth for the possibility of bankruptcy. When Ãb0 < 0, the value of banks’ assets

is less than their outstanding debt. In this case, banks are bankrupt and their actual wealth is

zero, Ab0 = 0. Households take over banks’ assets and hold all of the market portfolio, so their

wealth becomes Ah0 = y0 + z0P0.

11



Equilibrium in period 0. Next consider the characterization of the equilibrium asset price,

z0P0. To facilitate the analysis, we define banks’ (end-of-first-period) wealth share as

α ≡
ab0
z0P0

.

Households’ wealth share is the residual, 1 − α ≡ ah0
z0P0

. Using this notation, we can write the

asset market clearing condition (7) as

α!b0 + (1− α)!
h
0 = 1. (14)

The equilibrium asset price is determined by this condition together with agents’ wealth shares,

α, 1− α, and their optimal portfolio weights, !b0,!
h
0 .

To calculate the wealth shares, we use the output-asset price relation in (9) together with

agents’ initial positions in (12) and their optimal saving rule in (4). For banks’ wealth share, we

obtain

α = α (z) ≡ max
(
0,

(
1−

l

z

)
κ

)
where z = z0

P0
P ∗
. (15)

To understand this expression, first consider the benchmark with P0 = P ∗ and the supply

shock normalized to one, z0 = 1. In this benchmark, z = 1 and banks’ wealth share is given by

α = (1− l)κ: their initial share of assets net of their leverage. Now suppose asset valuations fall,
z = z0 (P0/P

∗) < 1, either because of a decline in productivity, z0, or a decline in the asset price

per productivity, P0. This decline causes banks’ wealth share to fall below the benchmark (and

households’ wealth share increases above the benchmark). Intuitively, since banks are levered,

a decline in asset valuations reduces their wealth more than it reduces households’ wealth. This

mechanism will play an important role for our results. If asset valuations decline beyond banks’

initial leverage, z = z0 (P0/P ∗) < l, banks are bankrupt and their wealth share falls to zero.

To calculate the optimal portfolio weights, first note that Eqs. (3) and (9) imply the (log)

return on the market portfolio is given by r0 = ρ + log
(
z1P !

z0P0

)
. Combining this with Eq. (1),

we solve for the (log) expected return,

r0 = E [r0] +
σ2

2
= ρ+ log

z1
z0
− log

(
P0
P ∗

)
. (16)

Substituting this return into Eq. (6), we obtain

!i0σ = τ i
ρ+ log z1z0 − log

(
P0
P !

)
− rf0

σ
. (17)

Combining Eqs. (14− 17), we arrive at the central equation of our analysis, the risk balance
condition:

σ

τ (z0p0)
=
ρ+ log z1z0 − log (p0)− r

f
0

σ
, (18)
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where p0 denotes the normalized asset price per productivity,

p0 ≡
P0
P ∗

2 [0, 1] ,

while τ (·) corresponds to the e§ective risk tolerance function,

τ (z) ≡ α (z) τ b + (1− α (z)) τh

= max

(
τh, τh +

(
1−

l

z

)
κ
(
τ b − τh

))
. (19)

Eq. (18) says that the risk the economy generates normalized by the e§ective risk tolerance

(the left side) should be compensated by a su¢ciently high reward per unit of risk (the right

side). Specifically, the right side is the actual (expected) Sharpe ratio on the market portfolio:

the risk premium per unit of risk. In the rest of the paper, we refer to the expression on the left

side as the required Sharpe ratio, and note that the equilibrium in risk markets obtains when the

actual and required Sharpe ratios are equal.

Eq. (19) illustrates that e§ective risk tolerance depends on a wealth-weighted average of

investors’ risk tolerances. The second line, which uses Eq. (15), solves for the e§ective risk

tolerance and shows that it is increasing in z = z0p0. In particular, a decline in asset prices–

either through reduced productivity, z0, or reduced valuation per productivity, p0–reduces the

e§ective risk tolerance. Lower asset prices reduce banks’ wealth share, which lowers the e§ective

risk tolerance since τ b > τh. If banks go bankrupt, the e§ective risk tolerance is the households’

tolerance, τ (z) = τh.

The equilibrium normalized price, p0 = P0
P ! , and the risk-free rate, r

f
0 , are then determined

by the risk balance condition (18) (solved with the endogenous risk tolerance in (19)) and the

monetary policy rule. Given the asset price, P0, the equilibrium output is determined by the

output-asset price relation (9).

Remark 1 (Partially sticky prices). While we assume fully sticky prices, the analysis naturally
extends to the case in which a fraction of firms adjust their prices in each period. In this case,

aggregate output is still determined by aggregate demand [see (2)] and the central bank still

manages demand by setting the nominal interest rate (which still influences the real interest

rate). The main di§erence is that, when there is a demand recession in period 0, the equilibrium

also features some disinflation–firms that get to adjust in period 0 cut their nominal prices

(since recession lowers their marginal costs). Moreover, this downward price adjustment does

not necessarily mitigate the demand recession. Adjusting firms increase their demand at the

expense of other firms, but aggregate demand is ultimately determined by monetary policy. In

fact, if the central bank follows a standard inflation targeting policy (once the economy recovers),

partial flexibility can induce agents to expect disinflation, which can further tighten the lower

bound on the real interest rate (see Caballero and Simsek (2020) for further discussion).
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Remark 2 (Output-asset price relation). The output-asset price relation can also be interpreted
as a reduced form for various channels that link asset prices and aggregate demand. For example,

suppose we split consumers (and income) between our agents (share γ) and a group of hand-

to-mouth consumers (share 1 − γ). Then, our agents’ consumption is still given by (8) and

aggregate consumption is given by

ct = γ
1− e−ρ

e−ρ
ztPt + (1− γ) yt.

Using yt = ct, we once again obtain Eq. (9). In Appendix B, we show that a version of this

equation also holds in an extension in which there is a non-capitalized factor (such as labor),

and hand-to-mouth households hold all of the income from that factor whereas our banks and

households hold all of the market portfolio.11 In Caballero and Simsek (2020) we show that

adding investment also leaves the output-asset price relation qualitatively unchanged (due to a

Q-theory mechanism); and in Section 4 we show that adding a corporate debt overhang problem

strengthens the relation (output becomes even more sensitive to asset prices).

1.2. Partly temporary supply shocks

We next consider the comparative statics of partly temporary supply shocks–a reduction in

z0 with partial anticipated recovery, log z1 = g + ' log z0 [see (1)]. An example is the supply

component of the Covid-19 shock. In this context, we illustrate how, when banks’ e§ective

leverage is su¢ciently high, supply shocks reduce aggregate demand by more than the aggregate

decline in potential output (i.e., y0 < z0, for an unchanged interest rate), and hence induce the

central bank to cut the interest rate.

First suppose there is no lower bound on the interest rate. In this case, the central bank

always ensures output is equal to its potential, rf0 = r
f∗
0 and y0 = z0. This outcome requires the

asset price per productivity to be at its e¢cient level, p0 = P0
P ! = 1 [see (10)]. Combining this

with Eqs. (18) and (1), we solve for the output-stabilizing interest rate (“rstar”),

rf∗0 = ρ+ log
z1
z0
−

σ2

τ (z0)
where log

z1
z0
= g − (1− ') log z0. (20)

Consider a decline in z0 in the case with ' < 1. Eq. (20) illustrates that this decline exerts

two e§ects on “rstar.” On the one hand, a decline in z0 increases the expected capital gain, z1z0 ,

which increases “rstar.” Intuitively, while supply and asset prices are currently low, they are

expected to partly recover. The expected recovery raises the actual Sharpe ratio and induces

agents to invest in the market portfolio [see (17)], which exerts upward pressure on the asset

11Specifically, we obtain yt = ct =
1"e!ρ

e!ρ
y!t Pt [see (B.1)], where y

!
t = (n+ 1) zt denotes the potential output

that combines the fraction that accrues to the non-capitalized factor (nzt) and the capitalized factor (zt). This
extension is useful for calibration purposes since in practice a large share of income accrues to labor or other non-
capitalized factors. Accounting for this income via the parameter n provides additional flexibility in matching
the aggregate ratio of capitalized wealth to consumption, ztPt

ct
(see Appendix B).
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price per productivity. That is, the central bank needs to increase the interest rate to keep

asset prices at the e¢cient level. On the other hand, a decline in z0 also reduces banks’ wealth

share [see (15)], which decreases “rstar.” Since banks are levered, a decline in asset valuations

reduces their wealth more than households’ wealth. This decreases e§ective risk tolerance and

puts downward pressure on the asset price per productivity. That is, the central bank needs to

cut the interest rate to keep asset prices at the e¢cient level.

The second channel dominates (locally), dr
f!
0
dz0

> 0, as long as the parameters satisfy z0 > l

(no bankruptcy) and
l/z0

τh/κ
τb−τh + 1− l/z0

> (1− ')
1

r0 − r
f∗
0

. (21)

Here, we have substituted the risk premium, r0 − r
f∗
0 = σ2

τ(z0)
[see (16) and (20)]. As we will

see, the inverse of the risk premium,
(
r0 − r

f∗
0

)−1
, controls the asset demand elasticity in our

model (this is in fact its functional role in the model–see Section 3.1). Therefore, Eq. (21)

says that supply shocks are more likely to reduce aggregate demand by more than the decline

in potential output when: (i) the asset demand elasticity is relatively low, (ii) the shock is more

persistent (higher '), (iii) agents’ risk tolerance is more heterogeneous (greater τb

τh
), (iv) banks

have greater initial leverage (greater l), and (v) the shock is more severe (lower z0).

For the rest of the paper, we isolate our leverage mechanism and simplify the analysis by

focusing on permanent supply shocks, ' = 1, so that log z1 = log z0 + g. The (unconstrained)

risk-free interest rate is then given by [cf. (20)]

rf∗0 = ρ+ g −
σ2

τ (z0)
. (22)

In this case a decrease in z0 always (weakly) reduces aggregate demand and the interest rate.

This simplifies the equations but is not necessary for our results: we could have instead worked

with parameters that satisfy (21). In Appendix B, we calibrate our model and show that

condition (21) is plausible. The condition reduces to a joint restriction between the severity of

the shock and its persistence. When the shock is mildly persistent (' ' 20%), the condition

holds for arbitrarily small shocks (for each z0 ≤ 1) in our baseline calibration.

1.3. Supply shocks and asset price spirals

We next consider the case where there is a lower bound on the interest rate. In this case, the

supply shock can cause a demand recession. We assume the parameters satisfy [see (19)]

τ (1) ≥
σ2

ρ+ g
> τh. (23)

The first inequality ensures that when the supply is equal to its benchmark level, z0 = 1, there

is an equilibrium with an unconstrained (positive) interest rate. The second inequality ensures
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that, if households control all the wealth in the economy, the interest rate is constrained (zero).

To characterize the equilibrium more generally, we define two cuto§s for productivity that

we denote with zh and z∗. Below the first cuto§, zh, there is an equilibrium where banks go

bankrupt and households control all wealth. To calculate this cuto§, suppose there is bankruptcy.

Using the risk balance condition (18) with τ = τh (and rf0 = 0), we obtain

ph ≡ exp
(
ρ+ g −

σ2

τh

)
< 1. (24)

Note that ph is the minimum normalized asset price. Suppose the normalized price falls to this

level, p0 = ph. Then, Eq. (15) implies banks will indeed go bankrupt as long as productivity is

su¢ciently low:

z0 < z
h ≡

l

ph
. (25)

When z0 < zh, there is always a bankruptcy equilibrium. Note that the cuto§ zh is increasing

in l: bankruptcy is more likely when banks have greater initial leverage.

The second cuto§, z∗, is the productivity level above which there is a supply determined

equilibrium with the e¢cient price p0 = 1. To calculate this cuto§, we use the risk balance

condition (18) with p0 = 1 and r
f
0 = 0 to obtain the value of z

∗ < 1 that solves

τ (z∗) =
σ2

ρ+ g
. (26)

When z0 > z∗, there is always an equilibrium with the e¢cient asset price. Our main result in

this section characterizes the equilibrium for arbitrary z0.

Proposition 1. Consider the equilibrium with condition (23). Let zh and z∗ denote the cuto§s

defined by Eqs. (25) and (26).

(i) If z0 > zh, then the equilibrium is unique and does not feature bankruptcy. If z0 2
(
zh, z∗

)

(assuming the interval is nonempty), then the equilibrium features an interior asset price, p0 2(
ph, 1

)
, that solves

σ

τh +
(
1− l

z0p0

)
κ (τ b − τh)

=
ρ+ g − log p0

σ
. (27)

Reducing productivity reduces the equilibrium price per productivity, dp0dz0 > 0. If z0 ≥ z
∗ (as well

as z0 > zh), the equilibrium features the e¢cient asset price, p0 = 1.

(ii) If z0 ≤ zh, then there is a bankruptcy equilibrium with the low asset price, p0 = ph < 1.

There might also be other equilibria. When z0 2
[
z∗, zh

]
(assuming the interval is nonempty),

there is also an equilibrium with the e¢cient asset price, p0 = 1.

Proof. See Appendix A.2.4.

The first part of Proposition 1 shows that the equilibrium is unique as long as the shock
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Figure 2: E§ect of supply shocks when the interest rate is constrained–the case with a unique
equilibrium.

is not severe enough to trigger bankruptcy (z0 > zh). In this region, when the supply shock

is below a cuto§ (z0 < z∗), the equilibrium features a demand recession. More severe supply

shocks lead to lower asset prices and more severe demand recessions. As we will see below,

these supply shocks also generate downward spirals and have an amplified e§ect on asset prices

and aggregate demand. The second part of Proposition 1 shows that, when the shock is severe

enough to trigger bankruptcy (z0 < zh), these amplification mechanisms can lead to multiple

equilibria.

To illustrate the first part, consider parameters that lead to a unique and interior equilibrium

price, zh < z0 < z∗. Substituting rf0 = 0 in the risk balance condition (18), we find that the

normalized price solves Eq. (27). This equation has a natural interpretation. The right side

is the actual Sharpe ratio (with constrained interest rate rf0 = 0). It is decreasing in p0: lower

asset prices increase the risk premium and the Sharpe ratio. The left side is the required Sharpe

ratio (assuming there is no bankruptcy). It is also decreasing in p0: lower asset prices transfer

(relative) wealth from banks to households, which reduces e§ective risk tolerance and requires

a greater Sharpe ratio for agents to absorb the risk.

Figure 2 plots these curves and the resulting equilibrium for a particular parameterization

that satisfies zh < z∗. The dashed lines correspond to the benchmark productivity level, z0 = 1,

which satisfies z0 > z∗ (by assumption). In this benchmark case, there is a corner equilibrium

in which the asset price is e¢cient, p0 = 1, and the interest rate is positive, rf0 > 0. The

solid lines consider a lower productivity level, z0 2
(
zh, z∗

)
, and illustrate how a supply shock

can generate severe downward spirals in asset prices. Starting from the benchmark, a decline

in productivity reduces asset prices and e§ective risk tolerance. This shifts the curve for the
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Figure 3: E§ect of supply shocks when the interest rate is constrained–the case with multiple
equilibria.

required Sharpe ratio upward. The central bank reacts by cutting interest rates, which increases

the actual Sharpe ratio, but the central bank encounters a lower bound constraint, rf0 = 0.

When the risk free rate cannot fall any farther, asset prices and aggregate demand decline more

than the decline in productivity–in order to increase the actual Sharpe ratio. The reduction

in asset prices further damages banks’ balance sheets and increases the required Sharpe ratio,

which further reduces asset prices, and so on.

The figure also illustrates that, due to this amplification mechanism, the Sharpe ratio rises

more than the initial impact of the shock (captured by the vertical shift from the dashed red line

to the solid red line). Consequently, the asset price falls considerably more than the direct e§ect

of the negative supply shock. Moreover, there is greater amplification when risk tolerance and

the required Sharpe ratio are more sensitive to asset prices (when the solid red line is steeper),

which happens with greater l or lower z0 [see Eq. (27)]. Hence, supply shocks induce a larger

contraction in asset prices and aggregate demand when banks have greater leverage or when the

shock is more severe.

To illustrate the second part of Proposition 1, consider parameters that allow for bankruptcy

and multiple equilibria, z∗ < z0 < zh. Since z0 < zh, there is a bankruptcy equilibrium with

the lowest asset price, p0 = ph. However, since z0 > z∗, there is also an equilibrium with the

e¢cient asset price, p0 = 1.

Figure 3 illustrates these equilibria by plotting the required and the actual Sharpe ratio

curves. The high- and the low-price equilibria are marked with H and L, respectively.12 Starting

12There is also an interior equilibrium that corresponds to the intersection of the two curves. However, this
equilibrium is unstable: small price deviations would bring the equilibrium to either H or L.

18



from the high-price equilibrium H, a decline in asset prices weakens banks’ balance sheets

substantially, which rapidly raises the required Sharpe ratio. This in turn reinforces the large

fall in asset prices and culminates in the low-price equilibrium L that features bankruptcy. As

this discussion suggests, multiplicity is more likely when banks have greater leverage. In fact,

the parameters used in Figure 3 are the same as those used in Figure 2, with the di§erence that

we raise banks’ initial leverage l (and also adjust banks’ risk tolerance τ b to keep the benchmark

risk tolerance τ (1) unchanged).

Remark 3 (Adding demand shocks). In our analysis we focus on the endogenous response of
asset prices and aggregate demand to a large supply shock. However, most recessions (including

the Covid-19 recession) are driven by a complex combination of supply and demand shocks. There

are at least three ways to introduce demand shocks into our framework. First, as in Caballero

and Simsek (2020), agents’ risk perception, σ, may rise. Second, consumers may become more

conservative and lower their discount rate, ρ (increase saving). Third, consumers may become

more pessimistic about growth, g, as in Lorenzoni (2009); Caballero and Simsek (2021b). Eq.

(22) illustrates that all these channels put direct downward pressure on rf∗0 , which translates into

a larger aggregate demand recession once rf0 reaches the lower bound.

2. Large-scale Asset Purchases

The downward spiral caused by the endogenous decline in risk tolerance suggests that policy

interventions that absorb some risky assets during severe risk-o§ events can be powerful. We now

introduce unconventional monetary policy in the form of large-scale asset purchases (LSAPs) and

demonstrate their e§ectiveness in reversing the spiral. We also briefly discuss the determinants

of optimal LSAPs.

Modeling LSAPs requires introducing a fiscal authority: even if the asset purchases are

made by the central bank, the gains and losses from these positions ultimately accrue to the

treasury. We merge the fiscal and monetary authorities into a third agent which we refer to as

the government and denote by superscript g.

Formally, the government is endowed with no resources in period 0. In each future period t ≥
1, the government has resources given by ytηg. We think of these resources as the government’s

future tax capacity. They can be “microfounded” by introducing a group of agents other than

banks and households (e.g., the future generation) from which the government will be able

to extract some taxes. We assume future tax capacity is proportional to future output, which

simplifies the analysis but is not necessary for our results (in fact, making the government’s tax

capacity safer would strengthen our results).

With the proportionality assumption, the government can equivalently be thought of as

being endowed with ηg units of the market portfolio at the end of period 0. In particular, the

government starts with wealth

ag0 = z0P0η
g. (28)
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In period 0, the government chooses the fraction of its wealth to allocate to the market portfolio,

!g0. This determines the government’s wealth in period 1,

Ag1 = a
g
0

(
!g0 exp (rt) + (1− !

g
0) exp r

f
t

)
.

We restrict attention to portfolio allocations that satisfy !g0 ≥ 1. Choosing !g0 = 1 replicates

the government’s initial endowment. The government is already fully exposed to the market

portfolio through its future tax revenues, and it can further increase its exposure by borrowing

and investing in risky assets.

The presence of the government changes the asset market clearing condition [cf. (7)]:

X

i2{b,h,g}

!i0a
i
0 = z0P0 (1 + η

g) . (29)

The right side illustrates that the government’s tax capacity implicitly expands the supply of

the market portfolio. The left side illustrates that the government also expands demand.

In subsequent periods t ≥ 1, the government chooses its spending and asset holdings subject
to flow budget constraints similar to the agents [see (A.23) in the appendix]. Since our focus is

in period 0, we keep the equilibrium in future periods simple. Specifically, the government main-

tains a constant-growth spending path (like the agents). With these assumptions the balanced

growth path equilibrium in (11) generalizes to this case (see Appendix A.3.2).

Given a government portfolio choice in the initial period, !g0 ≥ 1, our definition of equilibrium
generalizes in straightforward fashion. In the rest of the section, we characterize the equilibrium

and the asset price impact of LSAPs. At the end of the section, we discuss the determinants of

optimal LSAPs.

2.1. Equilibrium with large-scale asset purchases

Investors’ optimality conditions are the same. Therefore much of the earlier analysis applies

in this setting. Specifically, Eqs. (9) , (15), and (17) still hold. Using Eq. (29), we obtain an

analogue of the market clearing condition (14):

α!b0 + (1− α)!
h
0 + η

g!g0 = 1 + η
g. (30)

Combining these observations, we obtain an analogue of the risk balance condition (18):

σ (1− λ)
τ (z0p0)

=
ρ+ g − log (p0)− r

f
0

σ
, (31)

where λ ≡ ηg (!g0 − 1) and τ (z) is given by the same expression as before [see (19)].
Eq. (31) illustrates that LSAPs e§ectively take some risk out of the market. Specifically, the

risk balance condition is equivalent to an economy in which the risk is reduced by a fraction λ.
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How much risk LSAPs remove depends on the government’s tax capacity, ηg, and the riskiness

of its portfolio, !g0 ≥ 1. When η
g = 0 or !g0 = 1 the policy does not reduce risk, and the risk

balance condition (and the equilibrium) is the same as before. In subsequent analysis, we refer

to λ as the size of the LSAP program.

In this context, first consider the equilibrium when the interest rate constraint does not bind.

Substituting p0 = 1 into (31), we solve for the unconstrained interest rate [cf. Eq. (22)]:

rf∗0 = ρ+ g −
σ2

τ (z0)
(1− λ) .

When the interest rate is not constrained, LSAPs do not a§ect asset prices, z0P ∗, or output,

y0 = z0, but they translate into higher interest rates. As LSAPs take risk out of the market,

they exert upward pressure on asset valuations and aggregate demand. Conventional monetary

policy responds by raising the interest rate to keep asset prices and aggregate demand consistent

with potential output.

We next consider the case in which the interest rate can be constrained and generalize

Proposition 1. We assume the following analogue of (23):

τ (1) ≥
σ2

ρ+ g
>

τh

1− λ
. (32)

As before, we also define two cuto§ productivity levels, zh (λ) , z∗ (λ). Let

zh (λ) =
l

ph (λ)
where ph (λ) = exp

(
ρ+ g −

σ2 (1− λ)
τh

)
< 1. (33)

Here, zh (λ) is the cuto§ productivity below which there is a bankruptcy equilibrium, and ph (λ)

is the normalized price in a bankruptcy equilibrium [cf. (24− 25)]. Increasing λ increases the
normalized price, ph (λ), and decreases the cuto§, zh (λ): LSAPs increase the worst-case asset

price level and shrink the set of productivity realizations that allow for bankruptcy.

Let z∗ (λ) 2 (0, 1) denote the unique solution to

τ (z∗)

1− λ
=

σ2

ρ+ g
. (34)

As before, z∗ (λ) is the cuto§ productivity above which there is a supply determined equilibrium

with the e¢cient price [cf. (26)]. LSAPs expand the set of productivity realizations that allow

for an e¢cient price equilibrium. The next result characterizes the equilibrium when it is unique

and interior. The case with multiple equilibria is similar to Proposition 1.

Proposition 2. Consider the equilibrium with LSAPs, λ = ηg (!g0 − 1) ≥ 0, and conditions

(32). Suppose z0 2
[
zh (λ) , z∗ (λ)

]
given the cuto§s in Eqs. (33− 34). There exists a unique
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Figure 4: E§ect of LSAPs when the interest rate is constrained–the case with a unique equi-
librium.

equilibrium with an interior normalized price, p0 2
(
ph (λ) , 1

)
, that solves

σ (1− λ)

τh +
(
1− l

z0p0

)
κ (τ b − τh)

=
ρ+ g − log (p0)

σ
. (35)

The normalized price is increasing in the size of the LSAP program, dp0dλ > 0.

Proof. See Appendix A.3.3.

Consider Figure 4, which illustrates Eq. (35). LSAPs shift the required Sharpe ratio curve

downward without a§ecting the actual Sharpe ratio curve. In equilibrium, this shift leads to a

lower Sharpe ratio and a higher asset price. In fact, LSAPs have an amplified e§ect on the Sharpe

ratio: the change in the equilibrium Sharpe ratio is much greater than the initial downward shift

of the curve. As LSAPs increase asset prices, they improve banks’ balance sheets, which further

reduces the required Sharpe ratio and raises asset prices. Essentially, LSAPs help undo the

downward spirals created by supply shocks illustrated in Figure 2.

LSAPs can have even more powerful e§ects when there are multiple equilibria. Figure 5

illustrates this by plotting the e§ect of LSAPs for parameters that lead to multiplicity. The

dashed red line illustrates the risk premium curve without LSAPs, which leads to multiple

equilibria (denoted by L and H in the figure). The solid red line illustrates the e§ect of LSAPs

of the same size as in the previous case (with a unique equilibrium). In this case, LSAPs

eliminate the low-price equilibrium. By removing risk from the market, the policy reduces the

required Sharpe ratio and increases asset prices, which triggers a virtuous spiral that culminates
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Figure 5: E§ect of LSAPs when the interest rate is constrained–the case with multiple equilib-
ria.

in the high-price equilibrium (denoted by H 0 in the figure).

2.2. Optimal LSAPs

When should central banks engage in greater LSAPs? We address this question in Appendix

A.4. Here, we summarize the results. We endow the government with an Epstein-Zin utility

function over its future spending, {cgt }
1
t=1, with its own risk tolerance parameter, τ

g. We then

set up a constrained Pareto planning problem in a simpler version of the model in which we

collapse the banks and households into a single representative agent (the market), taking the

market’s risk tolerance parameter as τ (1)–the benchmark e§ective risk tolerance. This results

in the following policy problem:

max
λ≥0

(
1− e−ρ

)
log (p0 (λ))−

1

2
e−ρσ2

 
ηg
1

τ g

(
1 +

λ

ηg

)2
+

1

τ (1)
(1− λ)2

!
. (36)

The government balances three terms. The first term, (1− e−ρ) log (p0 (λ)), captures the govern-
ment’s desire to close the output gap in period 0. In our model, this is equivalent to closing asset

price gaps [see (9)]. The second term captures disutility from the risk in the government’s portfo-

lio. This disutility depends on the government’s risk tolerance, τ g, and its leverage, !g0 = 1+
λ
ηg .

The last term captures the disutility from risk in the representative agent’s (the market’s) port-

folio. Hence, the government trades o§ macroeconomic stabilization objectives with the optimal

allocation of risk.

We characterize the optimal LSAPs assuming the government is weakly less risk tolerant than
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the market, τ g ≤ τ (1). This ensures that, absent macroeconomic stabilization benefits (when

p00 (λ) = 0), the government would not use LSAPs, λ = 0. Nonetheless, in a demand recession the

government might use LSAPs since they raise asset prices and output, p00 (λ) > 0. Problem (36)

implies that optimal LSAPs are greater when the government has greater risk tolerance (τ g) and

greater tax capacity (ηg). Greater capacity helps because it enables the government to achieve

the same impact on financial markets with less leverage on its own portfolio (!g0 = 1 +
λ
ηg ).

Importantly, problem (36) illustrates that optimal LSAPs depend on the marginal price

impact of LSAPs, d log(p0)dλ . This price impact is greater when the required Sharpe ratio is more

sensitive to asset prices (when the solid red line in our figures is steeper), which happens with

greater l or lower z0 (see Proposition 3 in the next section for an analytical characterization). In

Appendix A.4, we numerically verify that the government optimally engages in greater LSAPs

when initial leverage is greater or the supply shock is more severe–as long as banks are not

bankrupt under the optimal LSAPs.13

3. A Quantification Based on Asset Market (In)elasticity

A recent literature argues that in practice demand elasticities for aggregate assets are much lower

than implied by standard models, and that these low elasticities are behind the large observed

asset price fluctuations (see, e.g., Gabaix and Koijen (2020)). In this section, we calculate the

asset demand elasticity in our model and use this elasticity to provide quantifiable formulas

for the marginal price impact of supply shocks and LSAPs. We find that the asset demand

elasticity in our model is lower than in a baseline model with homogeneous risk tolerance, and

more so when banks are more levered. Therefore, heterogeneity in risk tolerance helps explain

part of the demand inelasticity in normal times, and endogenously reduces the demand elasticity

after a recessionary shock (that increases banks’ e§ective leverage). These features provide a

complementary intuition for our mechanisms. A large shock not only induces levered banks to

sell a disproportionate amount of assets (at a given price), but it makes asset demand more

inelastic and requires a larger price drop for the market to reach equilibrium. By the same

token, LSAPs are especially powerful after a large shock because their marginal impact on asset

prices depends inversely on the asset demand elasticity.

Aggregate asset market elasticity estimates also provide a direct target for quantifying our

mechanisms. Later in this section, we calibrate the pre-shock elasticity to match estimates

from the recent literature and banks’ leverage to match the recent stress test scenarios used

by the Fed. Our calibration and price impact formulas imply that supply shocks and LSAPs

both induce quantitatively meaningful e§ects on the equilibrium asset price. These results are

13With bankruptcy, the optimal policy might feature a discontinuity and the local comparative statics do not
necessarily apply. In particular, there are parameters where improving productivity z0 increases optimal LSAPs.
This happens when the government finds it too costly to save the banks via an LSAP program. As z0 improves,
the government at some point finds it optimal to save the banks, which induces a discrete upward jump in optimal
LSAPs. Likewise, when banks are bankrupt, decreasing their initial leverage might increase optimal LSAPs.
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consistent with an emerging empirical literature that finds central banks’ risky asset purchases

in recent decades have had sizeable e§ects on asset prices.14

3.1. Price impacts and asset demand elasticities

Our main result in this section characterizes the marginal price impact of supply shocks and

LSAPs along with the asset demand elasticity. Consider the setup with LSAPs, λ ≥ 0. Let qi0
denote the demand for the market portfolio from type i agents, after adjusting for the e§ect of

the price on their wealth:

qb0 = !b0 (p0)α (z0p0) and q
h
0 = !h0 (p0) (1− α (z0p0)) .

The functions, α (·) and !i0 (·) do not explicitly depend on λ, since the LSAP policy a§ects

the agents’ wealth and portfolio choice only through its impact on prices and returns. We let

q0 = q
b
0 + q

h
0 denote the aggregate asset demand and observe that the equilibrium obtains when

q0 = 1− λ [see (30)].

Proposition 3. Consider the neighborhood of a stable and interior equilibrium for a fixed LSAP
policy, λ ≥ 0. The price impact of supply shocks and LSAPs are given by, respectively,

d log p0
d log z0

=
@ log q0
@ log z0

(
@ log q0
−@ log p0

)−1
(37)

d log p0
dλ

=
1

1− λ

(
@ log q0
−@ log p0

)−1
, (38)

where @ log q0
@ log z0

denotes the aggregate asset demand impact of a supply shock given by

@ log q0
@ log z0

=

l
z0p0

τh/κ
τb−τh + 1−

l
z0p0

. (39)

Likewise, @ log q0
−@ log p0 denotes the price elasticity of aggregate asset demand given by

@ log q0
−@ log p0

=
1

r0 − r
f
0

−
l

z0p0
τh/κ
τb−τh + 1−

l
z0p0

, (40)

where r0 − r
f
0 = ρ+ g − log (p0)− r

f
0 denotes the risk premium in equilibrium.

Explanation. Proposition 3 considers comparative statics in the neighborhood of an interior

and stable equilibrium. In particular, the interest rate is constrained, rf0 = 0, and does not

14See, e.g., Charoenwong et al. (2019); Barbon and Gianinazzi (2019) for studies of the asset price impact of
the Bank of Japan’s stock purchases over the last decade, and Caballero (1999) for a description of the Hong
Kong stock market intervention during the Asian crisis of the late 1990s.
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react to the change. Eq. (37) says that the price impact of a supply shock is increasing in its

asset demand impact, @ log q0@ log z0
, and decreasing in the price elasticity of asset demand, @ log q0

−@ log p0 .

When this price elasticity is lower, a given demand impact (the exogenous flow) triggers a

bigger price drop in order to generate the counteracting demand change (the endogenous flow)

necessary to equilibrate the market. For the same reason, Eq. (38) says that the price impact of

LSAPs is decreasing in the aggregate demand elasticity. In fact, for relatively small interventions

(1− λ ' 1), the LSAPs’ price impact is the inverse of the aggregate demand elasticity.
Eqs. (39) and (40) characterize the asset demand impact and the elasticity of the asset

demand. In our model, these terms follow a similar structure. In a baseline model with homo-

geneous risk tolerance, τ b = τh, supply shocks do not have a demand impact, @ log q0@ log z0
= 0, and

the demand elasticity is the inverse of the risk premium, @ log q0
−@ log p0 =

1

r0−r
f
0

. With heterogeneous

risk tolerance, τ b > τh, supply shocks have a positive demand impact, @ log q0@ log z0
> 0, and the de-

mand elasticity is lower than in the baseline, @ log q0
−@ log p0 <

1

r0−r
f
0

. This reduced elasticity finding is

relevant for a quantitative analysis. With standard calibrations of the equity risk premium, the

baseline model typically features a demand elasticity that is too high relative to recent empirical

estimates. Therefore, risk tolerance heterogeneity helps close the gap between the theory and

the data (see Section 3.2 for further discussion).

Eqs. (39) and (40) show that the supply shocks have a greater demand impact, and demand

is more inelastic, when banks have a greater e§ective initial leverage, l
z0p0

: the leverage at the

moment when asset prices decline, z0p0 < 1, and banks have not yet adjusted their initial

positions. This term can be sizeable, especially after a large (and unanticipated) drop in z0.

Moreover, once asset prices decline endogenously, the e§ective leverage increases endogenously,

further strengthening the e§ects.

Taken together, Eqs. (37− 40) provide a complementary intuition for our main results.
When risk tolerance is heterogeneous and e§ective leverage is high, a negative productivity

shock causes a large asset price decline through two distinct channels. First, the shock induces

sizeable outflows at the initial price. Second, since the shock raises banks’ e§ective leverage, it

further reduces the market’s demand elasticity and therefore its ability to absorb these flows.

Both e§ects contribute to the large price drop illustrated in Figure 2. The decline in the market’s

demand elasticity is also behind the large impact of LSAPs illustrated in Figure 4.

Sketch of proof. To provide further intuition, we present a sketch of the proof of Proposition

3 (completed in Appendix A.5). Eqs. (37) and (38) follow from di§erentiating the equilibrium

condition, log q0 = log (1− λ), with respect to log z0 and λ, respectively.
We next derive the asset demand impact of productivity shocks, @ log q0@ log z0

. First consider the

impact on banks’ asset demand, qb0. Using Eqs. (15) and (17), we have

log qb0 = log
(
!b0α

)
= log

(
τ b

σ2

(
ρ+ g − log (p0)− r

f
0

))
+ log

((
1−

l

z0p0

)
κ

)
. (41)
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Di§erentiating with respect to log productivity, we obtain

@ log qb0
@ log z0

=

l
z0p0

1− l
z0p0

. (42)

Keeping the relative price p0 constant, an increase in productivity, z0, increases asset valuations

without changing asset returns (and therefore agents’ leverage ratios, !i0). High valuations

increase banks’ wealth share, α (z0p0), which increases their purchasing power and asset demand.

The strength of this channel depends on banks’ e§ective initial leverage, l
z0p0

.

In Appendix A.5, we follow similar steps to calculate the impact on households’ asset demand,

qh0 , as well as aggregate asset demand, q0 = q
b
0+ q

h
0 , and prove Eq. (39). A positive productivity

shock reduces households’ wealth share and asset demand. Nonetheless, a productivity shock

still increases aggregate demand because its positive impact on banks’ demand dominates its

negative impact on households’ demand. In fact, Eqs. (39) and (42) imply that the aggregate

impact closely resembles the banks’ demand impact. In the limit with highly heterogeneous risk

tolerance ( τ
b

τh
!1), the two expressions become identical. The aggregate asset demand impact

is a quantity-weighted average of banks’ and households’ demand impacts. Since banks are more

risk tolerant, they choose a leveraged position in the market portfolio and thus are more central

for the aggregate asset demand impact. Recall that banks start with a levered position (due

to their past investment decisions). Therefore, a positive productivity shock transfers relative

wealth to banks and increases aggregate asset demand.15

Next consider the price elasticity of asset demand, @ log q0
−@ log p0 . As before, it is useful to start

by characterizing the elasticity of banks’ demand, qb0. Di§erentiating Eq. (41) with respect to

the log price, and evaluating at the equilibrium price, we obtain

@ log qb0
−@ log p0

=
1

r0 − r
f
0

−
l

z0p0

1− l
z0p0

. (43)

Here, we substituted the equilibrium expected return, r0 = ρ+g− log p0 [see (16)]. A decrease in
the asset price a§ects banks’ asset demand through two channels. First, low prices induce banks

to take on greater risk, !b0 (p0), which raises their desired asset purchases. This is the standard

channel in a variety of finance models and it implies an elasticity given by the inverse of the

risk premium, 1

r0−r
f
0

. Our model features a second channel that reduces the demand elasticity.

Low asset prices decrease banks’ wealth share, α (z0p0), which decreases their purchasing power

and demand. In fact, the decline in the asset price z0p0 has the same impact on banks’ wealth

share regardless of whether that decline comes from the the productivity, z0, or the price per
15This result and its intuition are related to the analysis in Kekre and Lenel (2020). They show that a valuation

shock (driven by a change in the policy interest rate) decreases the risk premium only if the shock redistributes
wealth toward agents with a greater marginal propensity to take risk (MPR). They also find that, when agents’
initial leverage reflects the positions they would like to take given their MPRs, a positive valuation shock (driven
by a policy interest rate cut) redistributes wealth to high MPR agents and thus reduces the risk premium. In our
setting banks have a greater MPR than households.
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productivity, p0. Therefore, the adjustment term in (43) is exactly the same as the demand

impact that we characterized earlier, @ log q
b
0

@ log z0
[cf. (42)].

In Appendix A.5, we further characterize the elasticity of aggregate demand, q0 = qb0+q
h
0 , and

prove Eq. (40). As before, the aggregate demand elasticity is very similar to banks’ elasticity

and it becomes the same as banks’ elasticity in the limit with highly heterogeneous risk tolerance

( τ
b

τh
!1).

3.2. A quantitative exploration

Although our model is highly stylized, Proposition 3 is useful for gauging the quantitative im-

portance of our mechanisms. We calibrate the model in Appendix B (after slightly extending

the model to introduce a non-capitalized factor). Here, we summarize the calibration exercise

and conduct back-of-the-envelope calculations using Eqs. (37− 40).
We set τ b = 1/3.7 = 0.27 based on the empirical analysis in He et al. (2017). The parameters,

τh and κ, do not make much of a di§erence as long as the term τh/κ
τb−τh is relatively small–which

we assume since our focus is on heterogeneous risk tolerance. We set τh = τ b/10 and κ = 0.75.

The leverage parameter, l, plays a more important role. We calibrate this parameter to match

the relationship between the rate of banks’ losses and the decline in banks’ equity capital in the

adverse scenario of the Fed’s June 2020 stress tests. This leads us to set l = 0.71, which implies

an initial leverage ratio, 1
1−l ' 3.4. With these assumptions, we calculate the demand impact of

productivity shocks in Eq. (39) as

@ log q0
@ log z0

∣∣∣∣
z0p0=1

=
l

τh/κ
τb−τh + 1− l

= 1.63. (44)

At the pre-shock benchmark (when z0p0 = 1), a 1% decline in asset valuations (driven by a

negative productivity shock) induces a 1.63% reduction in aggregate asset demand.

It remains to calibrate the aggregate demand elasticity in (40). Recent empirical analyses

suggest this elasticity could be up to two orders of magnitude smaller in the data than what

is implied by standard models. For instance, Gabaix and Koijen (2020) estimate a demand

elasticity of 0.2 for the U.S. stock market whereas the standard model without heterogeneity

would predict something around 20 (when the risk premium is equal to 5%). Other studies

suggest similarly low elasticities for aggregate assets in other contexts, e.g., around 0.45 for the

Chilean stock market (Da et al. (2018)); between 0.15 and 0.38 for the Chinese stock market

(Li et al. (2020)); and around 0.19 for the U.S. style portfolios (Ben-David et al. (2020)). To

be conservative, we target an elasticity equal to 1 in the pre-shock benchmark (when z0p0 = 1).

Using Eqs. (40) and (44), we solve

(
r0 − r

f
0

)−1
− 1.63 = 1. (45)
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This requires setting r0 − r
f
0 = 38%. Clearly, this is an unrealistically high risk premium.

However, matching the appropriate aggregate demand elasticity is an issue for all models that

rely on the standard portfolio choice setup (as we do). Therefore, we view the high calibrated

risk premium as capturing unmodeled frictions such as investment mandates that reduce the

demand elasticity in practice (see Gabaix and Koijen (2020) for an extensive discussion of these

frictions). Having said this, note that the heterogeneity in risk tolerance significantly reduces

the gap between the models and the data: absent heterogeneity (or with l = 0), we would have

to calibrate r0 − r
f
0 = 100% to generate the same demand elasticity.

Quantifying the price impact of supply shocks. With the calibration in hand, we next

consider Eq. (37) that describes the marginal price impact of a supply shock. We first evaluate

this equation at the pre-shock asset price, z0p0 = 1, to obtain

d log p0
d log z0

∣∣∣∣
z0p0=1

=
1.63

2.63− 1.63
= 1.63. (46)

This shows that our mechanism can be quantitatively strong: For small shocks, a 1% decline in

productivity results in a 1.63% reduction in the asset price per productivity (when the interest

rate does not or cannot react). Since banks are levered, a negative shock to asset valuations

induces a sizeable reduction in asset demand [see (44)]. With realistic demand elasticities [see

(45)], this translates into a sizeable additional drop in asset prices.

In Appendix B, we present an exact solution for a calibration that also matches rf0 = 0.01

when z0p0 = 1: in the pre-shock benchmark, there is room to cut interest rates by 1 percent

point (similar to the degree of monetary policy room at the onset of the Covid-19 shock).

Without LSAPs (when λ = 0), the calibrated model features multiple equilibria, since ph =

0.6, zh = l/ph = 1.18 and z∗ ' 0.985 (see Proposition 1). Figure 6 plots the asset price per

productivity in the best (highest-price) equilibrium as a function of productivity. A 1.5 percent

negative productivity shock is su¢cient to push the interest rates to zero (since z∗ ' 0.985).

Additional declines in productivity leave the interest rate unchanged and reduce the asset price

per productivity. In this range (z0 ≤ z∗), the price impact formulas we developed earlier–

under the assumption that the interest rate does not react–apply. The dashed line illustrates

the predicted price decline based on the pre-shock approximation in (46). This approximation

works well for small shocks around the cuto§ productivity z∗ (even though we evaluate the

formula for a slightly higher price than at the cuto§, z0p0 = 1 > z∗).

For larger shocks, the actual price decline exceeds the predicted decline from the pre-shock

approximation. For instance, consider z0 = 0.97, which corresponds to about a 1.5% decline

in productivity from z∗. The exact equilibrium features p0 ' 0.95, which corresponds to a 5%
decline in price per productivity–a much bigger decline than the approximation predicts. To

understand this discrepancy, suppose z0 = 0.97 and consider Eq. (37) evaluated at the exact
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Figure 6: Equilibrium with calibrated parameters and no LSAPs. The solid line plots
the asset price per productivity in the highest-price equilibrium. The dashed line (resp. the
solid line) illustrates the predicted price based on the pre-shock (resp. the post-shock) log-linear
approximation around the cuto§ productivity, z∗ [see Eqs. (46) and (47)].

equilibrium price z0p0 ' 0.92.16 This gives a post-shock approximation:

d log p0
d log z0

∣∣∣∣
z0p0=0.92

=
2.07

2.63− 2.07
' 3.66. (47)

This approximation suggests that a 1.5% decline in productivity induces approximately a 5.5%

decline in the price per productivity, which is not far from the exact e§ect (see the dotted line

in Figure 6). The reason is that the endogenous drop in asset prices increases banks’ e§ective

leverage ( l
z0p0

= 0.77 > l = 0.71). This endogenous increase in leverage not only increases

the direct impact of the shock on asset demand, as illustrated by the numerator of (47), but

it also reduces aggregate demand elasticity, as illustrated by the denominator of (47). Put

di§erently, large shocks trigger disproportionately large asset sales while simultaneously reducing

the market’s ability to absorb those sales. In fact, for the calibrated parameters, these nonlinear

dynamics are quite powerful: when z0 falls beyond the range plotted in Figure 6, the high-price

equilibrium disappears and the unique equilibrium features bankruptcy with a very low price

per productivity (p0 = ph = 0.6).

The upshot of this analysis is that our amplification mechanism can be quantitatively large,

16We still use the pre-shock level of the baseline elasticity,
!
r0 ! rf0

""1
= 2.63. That is, we ignore the changes

in this term due to changes in the risk premium (driven by the asset price decline). This is because we view the

term
!
r0 ! rf0

""1
as capturing unmodeled factors that drive the baseline elasticity.
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Figure 7: The price impact of LSAPs with calibrated parameters. The solid (resp.
the dashed line) line plots the asset price per productivity in the highest-price equilibrium with
LSAPs (resp. without LSAPs).

even with a relatively low level of initial leverage, as long as the aggregate asset demand elasticity

is calibrated to a level consistent with recent estimates. Moreover, risk-tolerance heterogeneity

helps explain the low asset demand elasticity observed even during normal times.

Quantifying the price impact of LSAPs. Next consider Eq. (38), which describes the

marginal price impact of LSAPs. We evaluate this equation at the equilibrium with z0 = 0.97.

The asset demand elasticity evaluated at the equilibrium asset price is approximately given

by @ log q0
−@ log p0

∣∣∣
z0p0=0.92

= 2.63 − 2.07 = 0.56 [see (47)]. Therefore, Eq. (38) implies that the

price impact of LSAPs at this equilibrium is approximately d log p0
dλ = 1

1−λ
1
0.56 . In particular,

if the government purchases 1% of the asset supply, the price per productivity increases by

approximately 1.8%.

Figure 7 illustrates the impact of a 1% government asset purchase in the exact solution for

the range of productivity shocks plotted in Figure 6. For z0 = 0.97, the exact impact is close to

the level predicted by the approximation (the discrepancy is driven by the endogeneity of the

baseline elasticity,
(
r0 − r

f
0

)−1
, as we describe in Footnote 16). LSAPs have a sizeable impact

on the equilibrium price as long as the interest rate is constrained. LSAPs also expand the range

of productivities that allow for a high-price equilibrium. In fact, the marginal impact of LSAPs

is extremely large for the range, z0 2 [0.964, 969]. In these cases, the best equilibrium with

a 1% government asset purchase features a relatively high price (plotted) whereas the unique

equilibrium without LSAPs features bankruptcy with a very low price, p0 = ph = 0.6 (outside
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the plot). We conclude that LSAPs can have a quantitatively meaningful e§ect on asset prices

and therefore on aggregate demand and output.

4. Debt Overhang and Firm Insolvency

Since our main goal in this paper is to isolate the feedback between investors’ endogenous risk

tolerance and a large supply shock, we removed all other financial mechanisms. One financial

mechanism that is particularly concerning in the context of the Covid-19 shock is firms’ debt

overhang. In this section we add debt overhang and show how it interacts with our risk-centric

mechanism. E§ectively, the corporate debt overhang problem creates a feedback between asset

prices and productivity. This feedback makes the market’s e§ective risk tolerance (and hence

the required Sharpe ratio) more sensitive to asset prices, which strengthens our amplification

mechanism and makes LSAPs more e§ective.

Recall that our baseline model features (New Keynesian) production firms that manage

capital, produce (according to demand), and distribute their earnings to their owners. The

market portfolio (which the agents trade among themselves) is a financial claim on all production

firms. In this section, we assume production firms not only manage capital but also have debt

liabilities (or debt claims) on each other. The market portfolio consists of the outstanding equity

shares of all production firms. The value of an individual firm’s equity is the value of its capital

net of its debt liability (or plus its debt claim). Firms’ debt liabilities and claims sum to zero,

so the value of the market portfolio is still equal to the value of aggregate capital. However, the

value of an indebted firm’s equity share is less than the value of its capital. If the outstanding

debt is too large, then the firm becomes insolvent.

Formally, there is a continuum of mass one of firms denoted by ν 2 [0, 1]. Each firm manages
one unit of capital and starts with an outstanding debt position, b0 (ν), that must be settled in

period 0. If b0 (ν) > 0, the firm has a debt liability to other firms. If b0 (ν) < 0, the firm has

debt claims on other firms. These outstanding positions are distributed according to a cumulative

distribution function dF (·) that satisfies
R
ν b0 (ν) dF (ν) = 0.

The firm can pay its debt using its earnings y0 (ν), or by issuing new claims backed by the

(end-of-period) value of its assets (capital) z0P0. To make the analysis stark, we assume the

firm faces no borrowing constraints. For concreteness, consider a firm whose debt exceeds its

earnings, b0 (ν) > y0 (ν). First suppose the firm’s debt is not too large,

b0 (ν) ≤ y0 (ν) + z0P0. (48)

We assume this firm issues new equity shares without frictions so that (at the end of the period)

the firm becomes entirely equity financed and previous debtholders own a fraction of the firm

ζ 2 [0, 1] that satisfies b0 (ν) − y0 (ν) = ζP0z0.17 Next consider a firm with more debt that

17While we describe a specific financing arrangement, other arrangements would also work and would lead to
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violates condition (48). These firms cannot fully pay back their debt: they become insolvent

and go through a bankruptcy process that restructures their debt.

We assume insolvency is costly: specifically, insolvent firms’ productivity shrinks to a fraction

of solvent firms’ productivity, γ 2 [0, 1] (for all periods t ≥ 0). The parameter γ captures the

e¢ciency of bankruptcy (or reallocation, when bankruptcy is not available). If γ = 1, an

insolvent firm continues to operate at the same productivity as before. If γ < 1, which is

empirically more likely, insolvency lowers the firm’s productivity permanently.18

To close the model, we assume aggregate demand in period 0 is distributed among the solvent

and insolvent firms according to their relative productivity levels. Specifically, let y0 denote the

output of a solvent firm. We assume the output of an insolvent firm is given by γy0. Letting

S 2 (0, 1) denote the fraction of solvent firms, aggregate output is given by

y0 = Sy0 where S = S + (1− S) γ = γ + (1− γ)S.

Likewise, we denote the value of a solvent firm’s assets by P0z0. Then, the aggregate value of

assets (or the market portfolio) is given by Sz0P0. Note that the asset price per (e§ective)

productivity is still given by P0. The rest of the model is unchanged.

Most of the analysis is similar to Section 1. In periods t ≥ 1, Eqs. (11) apply with the

di§erence that yt = Szt. Insolvencies that take place in period 0 permanently reduce productivity

and output in subsequent periods. Consider period 0 where the interest rate policy might be

constrained and output might also be influenced by aggregate demand. We have the following

analogue of Eq. (9):

y0 =
X

i

ci0 =
1− e−ρ

e−ρ
Sz0P0.

Aggregate demand is still determined by aggregate wealth, but the latter has shrunk by a factor

of S. Recall that aggregate supply has also shrunk by the same factor. Using y0 = Sy0,

we obtain y0 = 1−e"!
e"!

z0P0: the output-asset price relation in (9) applies for a solvent firm.

Therefore, the e¢cient asset price per productivity is still given by P ∗ = e"!

1−e"! . As before, we

define p0 = P0/P ∗ 2 [0, 1] as the normalized price per productivity.
Combining the output of a solvent firm, y0 = 1−e"!

e"!
z0P0, with the solvency constraint (48),

we solve for the fraction of solvent firms:

S = Pr

{
b (ν) ≤

z0P0
e−ρ

}
= F

(
z0P0
e−ρ

)
= F

(
z0p0
1− e−ρ

)
.

identical allocations for firms that meet condition (48). Under no arbitrage (which holds in our model) and no
borrowing constraints (which we assume), the firm’s value is independent of whether it issues debt or equity (or
other claims) and from whom it borrows.
18The parameter ! is likely to have been especially low in the Covid-19 recession because the virus and lockdown

measures restricted bankruptcy courts’ capacity.
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This in turn implies the following aggregate output-asset price relation [cf. (9)]:

y0 = S (z0p0) z0p0 where S (z0p0) ≡ γ + (1− γ)F
(

z0p0
1− e−ρ

)
. (49)

Intuitively, debt overhang strengthens the output-asset price relation. Higher asset prices

not only increase aggregate demand, as in our earlier analysis, but they also increase aggregate

supply by enabling a greater fraction of indebted firms to remain solvent.

Next consider the characterization of the normalized asset price per productivity, p0 2 [0, 1].
Most of the analysis from Section 1 applies in this case. The main di§erence concerns banks’

wealth share, which is now given by

α = α (z) where z = S (z0p0) z0p0.

Here, α (z) is the same function as before [see (15)]. Consequently, the risk balance condition is

now given by [cf. (18)]

σ

τ
(
S (z0p0) z0p0

) = ρ+ g − log (p0)− r
f
0

σ
. (50)

Intuitively, debt overhang strengthens the impact of asset prices on risk tolerance. An

increase in firm insolvencies (a decrease in S) reduces the aggregate value of assets, which in

turn reduces banks’ wealth share. This reduces the market’s e§ective risk tolerance and increases

the required Sharpe ratio.19

The equilibrium is characterized by Eqs. (49) and (50) and the interest rate policy. Figure

8 illustrates the equilibrium for the earlier example that features a constrained interest rate

rf0 = 0. We assume the outstanding claims are uniformly distributed over [−b, b] for some b ≥ 0.
As before, the left panel shows the equilibrium as the intersection of the required and actual

Sharpe ratios. The dashed red line plots the required Sharpe ratio for the baseline case in which

firms do not have outstanding debt (b = 0). The solid red line shows the required Sharpe ratio

when firms are indebted (b > 0) and insolvency is costly (γ < 1). Debt overhang shifts the curve

for the required Sharpe ratio upward. This lowers the normalized asset price and exacerbates

the demand recession (solid blue and red lines).

The right panel sheds further light on the mechanism by plotting the fraction of solvent firms,

S. With debt overhang, the supply shock in this example would induce some insolvencies even

if there were no demand recession, p0 = 1. However, the equilibrium features more insolvencies.

Intuitively, low demand and asset prices (p0 < 1) push a greater fraction of firms into distress

by reducing their earnings and asset prices.

19The actual Sharpe ratio remains unchanged. To see this, note that the market portfolio return is given by

r0 = " + log
!
Sz1P

"

Sz0P0

"
. This expression is the same as before since the current price and the future productivity

(future payo§s) both scale with S [see (16)].
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Figure 8: The e§ect of supply shocks when the interest rate is constrained and firms have a debt
overhang problem and face costly insolvencies.

Importantly, Figure 8 illustrates that debt overhang also worsens asset price spirals (captured

by the steepening of the required Sharpe ratio curve), as it makes the e§ective risk tolerance

more sensitive to asset prices [see (50)]. This feature, together with our analysis in the previous

sections, suggests that debt overhang also increases the marginal impact of LSAPs (e.g., Figure

4), which we verify in numerical simulations.

5. Final Remarks

In this paper we show that real (non-financial) shocks can endogenously reduce the market’s

risk tolerance and induce large contractions in asset prices and aggregate demand, and we

demonstrate the e§ectiveness of LSAPs in mitigating these contractions. The key ingredient is

heterogeneity in investors’ risk tolerance. As aggregate conditions worsen, asset prices and the

wealth share of risk tolerant agents decline. Thus, the “representative agent” becomes less risk

tolerant and demands a higher Sharpe ratio to hold risky assets. With unconstrained monetary

policy, a cut in interest rates is the most e§ective mechanism to increase the market’s Sharpe

ratio. If the central bank cannot cut interest rates, asset prices drop further and drag down

aggregate demand and the wealth share of risk tolerant agents, triggering a downward spiral.

LSAPs improve asset prices and aggregate demand by transferring risk to the government’s

balance sheet, and can be powerful since they reverse the downward spiral. Optimal LSAPs

are larger when the government has greater future fiscal capacity and when the economy is

more unstable at the outset, which happens when the risk tolerant agents’ initial leverage is

greater and when the shock is more severe. Corporate debt overhang problems strengthen our

mechanisms by making the wealth share of risk tolerant agents (and thus the market’s risk

tolerance) more sensitive to asset prices.

35



Although our model is highly stylized, we can use it to gauge the quantitative importance of

our mechanisms by focusing on the price elasticity of asset demand. We find that heterogeneity

in risk tolerance helps explain the inelastic demand for aggregate assets observed in normal

times, and it further reduces demand elasticity after a recessionary shock. When we calibrate

the model to match recent estimates of aggregate asset demand elasticity and banks’ leverage

implied by the Fed’s recent stress test scenarios, we find that aggregate shocks can induce a severe

decline in asset prices absent policy intervention. In this context, we also find that LSAPs have

a quantitatively meaningful impact on asset prices and output. The LSAPs have a sizeable

impact as long as the economy is in a demand recession, and their marginal impact increases

with the severity of the shock. In addition, the calibrated economy has multiple equilibria and

LSAPs help shrink the range of shocks that plunge the economy into a unique bad equilibrium

with bankruptcy and low asset prices.

Our analysis lends support to the unprecedented (in terms of size and speed) asset market

interventions by the Fed and other major central banks around the world in response to the

financial distress caused by the Covid-19 shock, and it highlights the importance of targeting

assets held by levered investors. Importantly, the rationale for this policy in our framework is not

to protect “the financial pipeline,” however important this may be, but to boost aggregate demand

when conventional monetary policy is constrained. While we focus on LSAPs, our analysis also

supports other policy mechanisms that help reestablish equilibrium in risk markets. For example,

loosening capital requirements is likely to increase e§ective risk tolerance and hence reduce the

required Sharpe ratio. Likewise, any public guarantee or put policy that reduces perceived

volatility is likely to reduce the gap between the required and actual Sharpe ratios at any given

asset price level. We will explore some of these policies in future work.

An important practical concern with policies that support asset markets is the perception

that they are distributionally unfair. Two observations diminish these concerns. First, in our

framework the goal of these policies is not to transfer resources to risk-tolerant agents (“banks”)

but to boost aggregate demand. As such, these policies increase everyone’s income (see Remark

2 for an example where hand-to-mouth consumers can be a main beneficiary). Second, the

wealth share of “banks” in our model declines more than in a benchmark frictionless model in

which outcomes are supply determined. Appropriately designed LSAPs (as well as conventional

monetary policy) do not make “banks” wealthier–they only mitigate the additional decline in

their wealth share that results from a demand recession.

A similar argument mitigates the concern that LSAPs can exacerbate moral hazard (see

Bornstein and Lorenzoni (2018) for a formal analysis in the context of conventional monetary

policy). The goal of the policy is not to insure “banks” against aggregate shocks, but only

against the excessive decline in asset prices due to the constraint on monetary policy. Naturally,

for shocks that are more predictable than the Covid-19 shock, LSAPs could be complemented

with ex-ante macroprudential policies in order to reduce the magnitude of the required ex-post

intervention. However, macroprudential policies are beneficial because of the aggregate de-
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mand externalities present in these models (e.g., Korinek and Simsek (2016); Farhi and Werning

(2016); Caballero and Simsek (2020)), that might be compounded by fire-sale externalities (e.g.,

Lorenzoni (2008); Dávila and Korinek (2018)), rather than because of moral hazard concerns.

In isolating our key mechanisms, we ignored realistic dynamic aspects of the transmission

of monetary policy. We complement this analysis in Caballero and Simsek (2021a), where we

abstract from endogenous risk intolerance and focus on a version of the model where asset prices

a§ect aggregate demand with a lag, as is well documented. In that context, we show that the

optimal monetary policy response to the emergence of a negative output gap is front-loaded.

In response to the policy, asset prices rise rapidly while aggregate demand recovers with a lag,

which creates a large temporary gap between asset prices and real activity. This gap is consistent

with the wide Wall Street/Main Street disconnect observed after the massive Fed intervention

following the Covid-19 shock.

Finally, we do not argue that asset market policies should substitute for all other aggregate

demand policies. In fact, the global expansion in fiscal policy in response to the Covid-19 shock

has been as fast and remarkable as the response by central banks, and this seems appropriate

to us. A pragmatic response to any severe recessionary shock mixes monetary and fiscal policy

responses. Our paper highlights that LSAPs share many features with conventional monetary

policy, and therefore provide an appropriate response when conventional monetary policy is

constrained.
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A. Appendix: Omitted derivations and proofs

This appendix presents the analytical derivations and proofs omitted from the main text. We first provide

a New Keynesian microfoundation for nominal rigidities that ensure output is determined by demand

[see Eq. (2)]. We then present the details of the baseline model without LSAPs. Next, we consider the

model with LSAPs. We then characterize the optimal LSAPs and derive the results we discuss in Section

2.2. Finally, we calculate the asset demand elasticities and the marginal price impact formulas that we

use in Section 3.1.

A.1. New Keynesian microfoundation for nominal rigidities

The supply side features monopolistically competitive New Keynesian firms. Specifically, a continuum of

measure one of production firms denoted by ν own the capital stock (in equal proportion). They produce

di§erentiated goods, yt (ν), subject to the technology,

yt (ν) = ηt (ν) zt. (A.1)

Here, ηt (ν) 2 [0, 1] denotes the firm’s choice of capital utilization. We assume utilization is free up to
ηt (ν) = 1 and infinitely costly afterwards. The production firms sell their output to a competitive final

goods firm with the CES technology,

yt =

(Z 1

0

yt (ν)
"!1
" dν

)"/("−1)
for some " > 1. (A.2)

This implies the demand for a production firm satisfies,

yt (ν) ≤ qt (ν)
−"
yt (A.3)

where qt (ν) = Qt (ν) /Qt and Qt =
(Z

Qt (ν)
1−"

dν

)1/(1−")
.

Here, qt (ν) denotes the firm’s relative price, which depends on its nominal price, Qt (ν), as well as the

ideal nominal price index, Qt.

When capital is underutilized, ηt (ν) < 1, the marginal cost of production is zero. Therefore, without

nominal rigidities, the equilibrium always features full factor utilization, ηt (ν) = 1 and yt = yt (ν) = zt
(see Caballero and Simsek (2020) for a derivation).

In contrast, we assume production firms have a preset nominal price that is common across firms,

Qt (ν) = Q. Thus, the relative price of a firm is fixed and equal to one, qt (ν) = 1. The firm chooses

the remaining variables, ηt (ν) 2 [0, 1] , yt (ν), to maximize its earnings, yt (ν), subject to Eqs. (A.1) and
(A.3). The firm’s problem becomes,

max
ηt(ν)

ηt (ν) zt s.t. 0 ≤ ηt (ν) ≤ 1 and ηt (ν) zt ≤ yt.

The solution is given by, ηt (ν) = min
(
1, ytzt

)
. The firm optimally increases its production until the

supply or the demand constraint binds. Using Eq. (A.2) to aggregate across all firms, we obtain Eq. (2)

in the main text: that is, output is determined by aggregate demand subject to the capacity constraint.
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A.2. Baseline model without policy

In this section, we complete the characterization of the equilibrium for the baseline model analyzed

in Section 1. First, we formally state agents’ preferences and problem. We then derive the optimality

conditions and characterize the equilibrium for periods t ≥ 1 that feature no uncertainty. Then, we derive
the (approximate) optimality conditions for period 0, characterize the equilibrium, and prove Proposition

1.

A.2.1. Agents’ preferences and problem

Type i agents have recursive utility defined as,

logU it =
(
1− e−ρ

)
log
(
cit
)
+ e−ρ log V it+1 (A.4)

where V it+1 =
(
E

[(
U it+1

)1−1/τ i
])1/(1−1/τ i)

.

Here, V it+1 captures a certainty-equivalent measure of the next period’s continuation utility. Note that

the EIS is equal to one and the RRA is equal to 1/τ i > 0. The case with τ i = 1 is equivalent to time-

separable log utility. Absent an approximation, agents choose the path of consumption and portfolio

allocations,
{
cit,!

i
t

}1
t=0
, that maximize (A.4) subject to the following budget constraints

cit + a
i
t = Ait (A.5)

Ait+1 = ait

(
!it exp (rt) +

(
1− !it

)
exp

(
rft

))
.

We also impose a nonnegative wealth requirement, Ait+1 ≥ 0, which is su¢cient to rule out Ponzi schemes.

A.2.2. Optimality conditions and equilibrium in periods t ≥ 1

Starting period 1 onward, there is no residual uncertainty. Therefore, the utility function in (A.4) reduces

to time-separable log utility. To see this, note that V it+n = U
i
t+n for each t+n ≥ t > 1. Substituting this

into (A.4), and iterating forward, we obtain:

logU it =
(
1− e−ρ

) 1X

n=0

(
e−ρ
)n
log cit+n for t ≥ 1. (A.6)

It is then easy to check that the optimal consumption is given by,

cit =
(
1− e−ρ

)
Ait.

This verifies Eq. (4) for periods t ≥ 1. Since there is no uncertainty, agents allocate their portfolio to the
asset that has the higher return. In equilibrium, the asset returns are equated for asset markets to clear,

rt = r
f
t for t ≥ 1. This verifies Eq. (5).

We next characterize the equilibrium for periods t ≥ 1 and establish (11). We conjecture an equilib-
rium in which the returns are strictly positive, rt = r

f
t > 0, and the output is at its e¢cient level, yt = zt.

In view of the output-asset price relation (9), this implies Pt = P ∗ = e!ρ

1−e!ρ [see (10)]. Substituting this
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into the asset return (3), and using (1), we obtain,

rt = log

(
zt+1
zt

1 + P ∗

P ∗

)
= ρ+ g for t ≥ 1.

This also implies rft = rt = ρ + g, verifying that the interest rate is strictly positive. Substituting this

into agents’ flow budget constraint in (A.5), and using Eq. (4), we obtain,

Ait+1 = a
i
t exp (ρ+ g) = A

i
t exp (g) = A

i
1 exp (gt) .

This establishes that the continuation equilibrium is given by (11).

We also calculate agents’ continuation utility in period 1 along the equilibrium path. Substituting

cit = (1− e−ρ)Ait and Ait = Ai1 exp (g (t− 1)), Eq. (A.6) implies

logU i1
(
Ai1
)
= logU1 (1) + logA

i
1. (A.7)

Here, U1 (1) captures agents’ (common) unit-wealth continuation utility. It depends on the parameters

(ρ, g) but it is independent of the realization of the productivity shock in period 1, z1. This enables us to

capture the agent’s preferences in period 0 with the following shifted utility function,

ui0
(
Ai0
)
≡ logU i0 − e

−ρ logU1 (1)

=
(
1− e−ρ

)
log
(
ci0
)
+ e−ρ log

(
E

[(
Ai1
)(τ i−1)/τ i

])τ i/(τ i−1)
. (A.8)

A.2.3. Optimality conditions in period 0

Next consider the agent’s problem in period 0. Using Eqs. (A.8) and (A.5), we can write the agent’s

problem as

ui0
(
Ai0
)

= max
c0,a0,!

(
1− e−ρ

)
log c0 + e

−ρ log

(
E

[
A
(τ i−1)/τ i
1

])τ i/(τ i−1)
(A.9)

s.t. c0 + a0 = A
i
0

and A1 = a0

(
! exp (r0) + (1− !) exp

(
rf0

))
. (A.10)

Here, A1, denotes the wealth in period 1 as a function of the initial and the realized productivity. Recall

that agents’ initial endowments, Ai0, are given by (12).

In view of the Epstein-Zin functional form, agents can be thought of as solving the intertemporal

problem,

ui0
(
Ai0
)
= max

a0

(
1− e−ρ

)
log
(
Ai0 − a0

)
+ e−ρ log

(
RCE,i0 a0

)
. (A.11)

Here, RCE,i0 denotes investors’ certainty-equivalent portfolio return per dollar. Absent an approximation,

it would correspond to the solution to the following portfolio optimization problem:

RCE,i0 = max
!

(
E
h
(Rp0)

(τ i−1)/τ i
i)τ i/(τ i−1)

(A.12)

and Rp0 = ! exp (r0) + (1− !) exp
(
rf0

)
.
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The variable, Rp0, denotes the realized portfolio return per dollar.

The first order condition for problem (A.11) implies Eq. (4) in the main text. That is, regardless

of her certainty-equivalent portfolio return, the investor consumes and saves a constant fraction of her

lifetime wealth.

The portfolio problem (A.12) is more complicated. To simplify the problem, we note that Eqs. (3) , (9)

and (1) imply,

r0 = ρ+ log

(
z1P

∗

z0P0

)
∼ N

(
ρ+ log

z1
z0
− log

(
P0
P ∗

)
−
σ2

2
,σ2
)
. (A.13)

Thus, the market portfolio return follows a log-Normal distribution. In general, the portfolio return in

(A.12) does not follow a log-Normal distribution. However, for relatively short horizons, the portfolio

return remains close to a log-Normal distribution. This motivates an approximation that is widely used

in the literature (see Campbell and Viceira (2002)). This approximation becomes exact if the portfolio

return follows a log-Normal distribution (! = 1) as well as in the continuous time limit.

Specifically, we assume agents choose portfolios (and evaluate the resulting certainty-equivalent re-

turn, RCE,i0 ) by solving the following approximate portfolio problem:

logRCE,i0 − rf0 ' max
!

!π −
1

2

1

τ i
!2σ2 (A.14)

where π = E [r0] +
σ2

2
− rf0 .

Here, π denotes the risk premium on the market portfolio and σ is its standard deviation (measured in

log returns). The problem says that the agent trades o§ its portfolio mean (in excess of the risk-free rate),

!π, with its portfolio variance, !2σ2. The first order condition for this problem implies Eq. (6) in the

main text.

A.2.4. Equilibrium in period 0

Recall that the equilibrium is characterized by Eqs. (18− 19) along with the monetary policy rule. In the
main text, we derive these equations. We also characterize the equilibrium with partly temporary supply

shocks (see Section 1.2). We next characterize the equilibrium with permanent supply shock, assuming
z1
z0
= g, and prove Proposition 1.

We first describe the equilibrium in terms of an auxiliary function. Consider the function:

F (p0; z0) =
σ2

τ − κl(τb−τh)
z0p0

+ log (p0)− (ρ+ g) (A.15)

where τ = τh + κ
(
τ b − τh

)
.

This function is defined over the domain p0 2
(
p
0
,1
)
, where p

0
=

κl(τb−τh)
z0τ

. Eq. (18) implies that

every interior equilibrium, p0 2
(
ph, 1

)
, corresponds to a zero of this function. Conversely, every zero of

the function that falls in the range, p0 2
(
ph, 1

)
, corresponds to an interior equilibrium. The zeros that

fall outside this range do not correspond to an equilibrium. Finally, there is a corner equilibrium with

p0 = 1 (and r
f
0 ≥ 0) i§ F (1; z0) ≤ 0; and there is a corner equilibrium with p0 = ph (and bankruptcy) i§

F
(
ph; z0

)
≥ 0.

We next establish some properties of the auxiliary function that facilities the proof. Consider the
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monotone change of variables:

τ = τ −
κl
(
τ b − τh

)

z0p0
, p0 =

κl
(
τ b − τh

)
/z0

τ − τ
. (A.16)

In terms of the new variable, the auxiliary function corresponds to the transformed function:

f (τ) ≡

 
σ2

τ − log (τ − τ) + log l − log z0
− (ρ+ g) + log

(
κ
(
τ b − τh

))
!
. (A.17)

This function has the domain τ 2 (0, τ), and it is strictly convex, that is:

f 00 (τ) =
2σ2

τ
+

1

(τ − τ)2
> 0

The function also satisfies limτ!0 f (τ) = limτ!τ f (τ) = 1. These observations imply that the zeros
of the transformed function f (·) have the same characteristics as an upward-pointing parabola. The
original function F (·; z0) adopts the same characteristics. In particular, the function either does not have
any (interior) zero:

F (p0; z0) ≥ 0 for p0 2
(
p
0
,1
)
, (A.18)

or it has exactly two interior zeros:

F
(
p10; z0

)
= F

(
p20; z0

)
= 0 for p

0
< p10 < p

2
0 (A.19)

with F (p0; z0) < 0 for p0 2
(
p10, p

2
0

)
and F (p0; z0) > 0 otherwise.

Proof of Proposition 1. Consider the first part that concerns the case, z0 > zh = l
ph
[see (25)]. This

condition implies the auxiliary function in (A.15) satisfies:

F
(
ph; z0

)
=

σ2

τ (z0ph)
+ log

(
ph
)
− (ρ+ g)

<
σ2

τh
+ log

(
ph
)
− (ρ+ g) = 0. (A.20)

Here, the inequality follows since z0 > zh = l
ph
implies τ

(
z0p

h
)
> τ (l) = τh. The equality follows from

the definition of ph. This rules out the corner equilibrium with p0 = ph. Combining this observation with

Eq. (A.19) also implies that we must have the case (A.19) with ph falling between the two zeros. This

in turn implies there is a unique equilibrium that depends on the sign of F (1; z0). When F (1; z0) > 0,

there is an interior equilibrium with p0 2
(
ph, 1

)
. When F (1; z0) ≤ 0, there is a corner equilibrium with

p0 = 1. Note also that F (1; z0) = σ2

τ(z0)
− (ρ+ g) implies that the condition, F (1; z0) > 0, is equivalent

to z0 < z∗ from the definition of z∗ [see (26)]. This proves that there is a unique interior equilibrium

when z0 < z∗ (and z0 > zh) and there is a unique corner equilibrium when z0 ≥ z∗ (and z0 > zh).
Next consider the comparative statics of the interior equilibrium with respect to z0. Note that

F (p0; z0) is decreasing in z0. Therefore, greater z0 shifts F (p0; z0) downward, which increases the

(greater) zero of the function that corresponds to the equilibrium. This establishes dp0dz0
> 0 and completes

the proof of the first part.

Next suppose z0 < zh = l
ph
. We have the opposite of (A.20), which implies that there is a corner
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equilibrium with p0 = ph. In this case, there can also be other equilibria. To see this, consider z0 2
(
z∗, zh

)

(assuming the interval is nonempty). Then, we have:

F (1; z0) =
σ2

τ (z0)
− (ρ+ g) <

σ2

τ (z∗)
− (ρ+ g) = 0. (A.21)

Here, the inequality follows since z0 > z∗ and the equality follows from the definition of z∗. This implies

that there is a corner equilibrium with p0 = 1. In particular in this case p0 = ph and p0 = 1 are both

corner equilibria. This completes the proof of the proposition.

A.3. Model with large-scale asset purchases

In this section, we present the details of the extended model with LSAPs that we analyze in Section 2.

We first describe the government’s budget constraints. We then describe the government’s decisions in

periods t ≥ 1 and characterize the equilibrium in these periods. Then, we complete the characterization of
the equilibrium in period 0 and prove Proposition 2. Section A.4 at the end of this appendix characterizes

the optimal LSAPs that we discuss in Section 2.2.

A.3.1. Government’s budget constraints

The government is endowed with some income in future periods t ≥ 1 given by ytηg. These endowments
can be thought of as tax claims on future generations that are not active in financial markets in period

0. In particular, future government taxes (or spending) do not directly a§ect the agents that are active

in financial markets in period 0, which implies that Ricardian equivalence does not apply in this period.

We also assume future tax capacity is proportional to future output, which simplifies the analysis but is

not necessary for our results (in fact, making the government’s tax capacity safer would strengthen our

results).

Specifically, that the government can be equivalently thought of as being endowed with ηg units

of the market portfolio at the end of period 0 (excluding the dividend income in period 0). Thus, the

government’s wealth at the end of period 0 is given by Eq. (28),

ag0 = z0P0η
g.

In period 0, the government chooses the fraction of its wealth to allocate to the market portfolio, !g0.

This determines the government’s wealth in period 1, that is,

Ag1 = a
g
0

(
!g0 exp (r0) + (1− !

g
0) exp r

f
0

)
. (A.22)

Note that choosing !g0 = 1 replicates the government’s initial endowment. Choosing a greater portfolio

weight, !g0 > 1,corresponds to investing additional units of the risky asset by issuing safe assets.

In periods t ≥ 1, the government chooses its spending, cgt , assets a
g
t , and portfolio allocation, !

g
t .

Therefore, its budget constraints satisfy the following analogue of agents’ budget constraints (A.10),

cgt + a
g
t = Agt (A.23)

Agt+1 = at

(
!gt exp (rt) + (1− !

g
t ) exp

(
rft

))
for t ≥ 1.
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A.3.2. Equilibrium in periods t ≥ 1 with government

Note that government tax revenues e§ectively expand the supply of the market portfolio by ηg units.

Therefore, agents start period 1 with initial wealth levels, Ai1 (determined by their past investment

decisions), that satisfy the resource constraint

X

i2{g,b,h}

Ai1 = (y1 + z1P1) (1 + η
g) . (A.24)

Likewise, asset market clearing conditions for each t ≥ 1 are given by [cf. (7)],

X

i2{g,b,h}

ait =
X

i2{g,b,h}

!ita
i
t = ztPt (1 + η

g) . (A.25)

The equilibrium depends on the spending path the government chooses, {cgt }
1
t=1. Recall that absent

government the economy is on a balanced growth path in which output is at its potential and agents’

consumption and assets grow at the constant rate, g [see Eqs. (11)]. We assume the government also

chooses to grow its spending at the constant rate, g (subject to its lifetime budget constraint). This

assumption is natural, and it is also optimal given the government’s objective function that we introduce

later in the appendix.

With this assumption, we conjecture that the equilibrium in periods t ≥ 1 satisfies the equations in
(11) as before. In particular, all agents–including the government–spend a constant fraction of their

wealth and maintain constant wealth growth. It is easy to check that these allocations are optimal for

agents i 2 {b, h}. The allocations also satisfy the government budget constraints in (A.23). Finally, the
allocations satisfy the market clearing conditions in (A.25) given initial allocations that satisfy (A.24).

The portfolio allocations are indeterminate since agents are indi§erent between the market portfolio and

the risk-free asset. This verifies the equilibrium for periods t ≥ 1.

A.3.3. Equilibrium in period 0 with government

We next characterize the equilibrium in period 0 with LSAPs and establish Proposition 2. Consider the

analogue of the function (A.15) that incorporates LSAPs:

F (p0; z0,λ) =
σ2 (1− λ)

τ − lκ(τb−τh)
z0p0

+ log (p0)− (ρ+ g) (A.26)

where τ = τh + κ
(
τ b − τh

)
.

Every interior equilibrium, p0 2
(
ph (λ) , 1

)
, corresponds to a zero of this function. Conversely, any zero

of the function that falls in the interior range, p0 2
(
ph (λ) , 1

)
, corresponds to an equilibrium. The zeros

that fall outside this range do not correspond to an equilibrium. There is a corner equilibrium with

p0 = 1 i§ F (1; z0,λ) ≤ 0; and there is a corner equilibrium with p0 = ph i§ F
(
ph; z0,λ

)
≥ 0. Finally,

the function F (p0; z0,λ) satisfies the same property that we established for the special case with λ = 0:

one of cases (A.18) and (A.19) holds.

Proof of Proposition 2. Suppose zh (λ) < z∗ (λ) and consider a shock z0 2
(
zh (λ) , z∗ (λ)

)
. Following

the same steps as in Proposition 1, there exists a unique equilibrium that corresponds to the (greater) zero

of the function, F (p0; z0,λ), that falls in the range, p0 2
(
ph (λ) , 1

)
. Consider the comparative statics with
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respect to the size of the LSAPs, λ. Eq. (A.26) implies that increasing λ shifts the function, F (p0; z0,λ),

downward. This increases the (greater) zero and raises the equilibrium price, that is, dp0dλ > 0.

A.4. Optimal LSAPs

In the main text, we focus on the impact of the LSAPs on equilibrium. In this appendix, we analyze the

optimal LSAPs and derive the results we discuss in Section 2.2. Recall that the government chooses the

initial leverage of its portfolio, !g0 ≥ 1 (and maintains a constant-growth spending path in subsequent

periods), but otherwise does not interfere with the equilibrium. To analyze the welfare impact of this

policy, we first introduce the government’s own utility function. We then set up a constrained Pareto

planning problem in a simpler version of the model in which we collapse the banks and households into a

single representative agent. Finally, we use the objective function from the simpler model to characterize

the optimal LSAPs in the original model and we describe the comparative statics of these optimal LSAPs.

A.4.1. Government’s utility function

Recall that the government chooses a path of spending, {cgt }
1
t=1. Suppose the government’s utility function

over this path is similar to the other agents’ utility function [cf. (A.4)],

logUg0 = e−ρ log V g1 (A.27)

and logUgt =
(
1− e−ρ

)
log (cgt ) + e

−ρ log V gt+1 for t ≥ 1,

where V gt+1 =
(
E
h(
Ugt+1

)1−1/τgi)1/(1−1/τg)
.

That is, the government has Epstein-Zin preferences with EIS equal to 1 and RRA equal to τg.

First consider the government’s optimal choice in periods t ≥ 1. In these periods, the government’s
decision does not a§ect output (which is already at its potential) so the government maximizes its own

utility, Ugt , subject to the flow budget constraints in (A.23). Consequently, the analysis in Section A.2.2

applies also for the government. In particular, the constant-growth spending allocations described in

Section A.3.2 are optimal for the government.

Next consider the government’s own utility in period 0. As before, the government’s continuation

utility satisfies Eq. (A.7). Thus, we can capture the government’s preferences in period 0 with the shifted

utility function [cf. (A.8)],

ug0 (a
g
0) = logUg0 − e

−ρ logU1 (1)

= e−ρ log
(
E [Ag1]

(τg−1)/τg
)τg/(τg−1)

where Ag1 = R
p
0a
g
0

= e−ρ log
(
RCE,g0 ag0

)
where RCE,g0 =

(
E
h
(Rp0)

(τg−1)/τg
i)τg/(τg−1)

Here, the last line writes the utility function in terms of the certainty equivalent return. Applying the

log-Normal approximation to this return, similar to the agents, we have [cf. (A.14)],

logRCE,g0 ' rf0 + !
g
0

(
E [r0] +

σ2

2
− rf0

)
−
1

2

1

τg
(!g0)

2
σ2

= (1− !g0) r
f
0 + !

g
0

(
ρ+ g − log

P0
P ∗

)
−
1

2

1

τg
(!g0)

2
σ2. (A.28)
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Here, the second line substitutes for the expected return from (A.13). Combining these observations and

using ag0 = z0P0η
g [see (28)], we calculate the government’s approximate utility as,

ug0 = e−ρ
(
log
(
RCE,g0

)
+ log (z0η

g) + logP0

)

= ...+ e−ρ
(
(1− !g0) r

f
0 + !

g
0

(
ρ+ g − log

P0
P ∗

)
−
1

2

1

τg
(!g0)

2
σ2 + logP0

)
. (A.29)

Here, the last line ignores the terms that are exogenous to the equilibrium.

A.4.2. Government’s constrained Pareto problem in a simpler model

Note that, in period 0, the government’s choice can a§ect output. Thus, the government takes into

account other agents’ utilities as well as its own utility. To simplify the setup, we merge the other agents

(banks and households) into a single agent, which we refer to as the market, with risk tolerance τm. This

enables the government to evaluate agents’ expected utility with an exogenous risk tolerance (as opposed

to an endogenous risk tolerance that depends on, among other things, distributional considerations that

are not our focus). We next calculate the market’s equilibrium utility in period 0. We then combine it

with the government’s utility in period 0 and describe a constrained Pareto problem.

The simpler model adopts many features of the original model. In particular, the market’s equilibrium

utility is given by [cf. (A.11)],

um0 (A
m
0 ) =

(
1− e−ρ

)
log (Am0 − a

m
0 ) + e

−ρ log
(
RCE,m0 am0

)

=
(
1− e−ρ

)
log
((
1− e−ρ

)
Am0
)
+ e−ρ log

(
RCE,m0 e−ρAm0

)

= ...+
(
1− e−ρ

)
logAm0 + e

−ρ
(
logRCE,m0 + logAm0

)
.

Here, the second line substitutes the optimal consumption from (4). The last line simplifies the expression

and ignores the exogenous terms. In equilibrium, the market is endowed all of the initial wealth, Am0 =

y0 + z0P0 =
z0P0
e!ρ [see (9)]. In addition, the market’s certainty equivalent return satisfies an analogue of

Eq. (A.28). Combining these observations, the market’s (approximate) utility is given by,

um0 = ...+
(
1− e−ρ

)
log

z0P0
e−ρ

+ e−ρ
(
logRCE,m0 + log

z0P0
e−ρ

)

= ...+
(
1− e−ρ

)
logP0 + e

−ρ

 
(1− !m0 ) r

f
0 + !

m
0

(
ρ+ g − log P0

P"

)
− 1

2
1
τm (!

m
0 )

2
σ2

+ logP0

!
.(A.30)

We next turn to the government’s constrained Pareto problem. Let ξ denote the government’s Pareto

weight on its own utility relative to the market’s utility. In general, the government solves,

max
!g0

ξug0 + u
m
0

s.t. P0 (!
g
0) , r

f
0 (!

g
0) are determined in equilibrium

and !m0 + η
g!g0 = 1 + η

g. (A.31)

The second line explicitly states the dependence of the price and the interest rate on the government’s

portfolio choice. The last line is the asset market clearing condition [cf. (30)].
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To simplify the problem further, we focus on a special case in which the government’s relative Pareto

weight (on own utility) coincides with the relative size of its endowment,

ξ = ηg. (A.32)

For this case, using Eqs. (A.29) , (A.30) , and (A.31), the government’s objective function becomes,

ηgug0 + u
m
0 = ...+

(
1− e−ρ

)
log (P0)−

1

2
e−ρσ2

(
ηg
1

τg
(!g0)

2
+

1

τm
(!m0 )

2

)
.

As before we have ignored constant terms (including ρ+g+logP ∗). Note that the Pareto weight in (A.32)

helps cancel most of the terms that feature the asset price or the interest rate. Intuitively, changes in the

asset price or the interest rate result in pecuniary externalities that raise one agent’s utility while reducing

the other agent’s utility. With an appropriate choice of the Pareto weight, these pecuniary externalities

“net out.” The asset price for the current period, log (P0), does not cancel because it represents aggregate

demand externalities. Specifically, this term captures the impact of asset price changes on output and

the market’s consumption in period 0 [see (A.30)].

In sum, when the market consists of a representative agent and the government uses the relative

Pareto weight in (A.32), the government solves the constrained Pareto problem,

max
!g0

(
1− e−ρ

)
log (p0 (!

g
0))−

1

2
e−ρσ2

(
ηg
1

τg
(!g0)

2
+

1

τm
(1− ηg (!g0 − 1))

2

)
. (A.33)

Here, we substituted the normalized price, p0 = P0
P" (and ignored the constant term logP ∗). We have also

substituted !m0 = 1− ηg (!
g
0 − 1) from the market clearing condition (A.31). Note that the government’s

objective function features three terms. The first term, (1− e−ρ) log (p0 (!
g
0)), captures the government’s

desire to close the output gap in period 0. In our model, this is equivalent to closing asset price gaps [see

(9)]. The second term, 1
τg (!

g
0)
2, captures the disutility from the risk in the government’s portfolio. The

remaining term captures the disutility from the risk in the representative agent’s (the market’s) portfolio,
1
τm (1− η

g (!g0 − 1))
2. Hence, the government trades o§ the macroeconomic stabilization objectives with

the optimal allocation of risk.

A.4.3. Optimal LSAPs and comparative statics

We next use the constrained Pareto problem for the simpler model to set up a planning problem for the

original model. Specifically, we assume the government maximizes the objective function in (A.33) with

τm = τ (1)–the benchmark e§ective risk tolerance, τ (1). Put di§erently, that the government e§ectively

ignores the changes in the e§ective risk tolerance due to the supply shock.20 Formally, the government

solves Eq. (36) that we state in the main text,

max
λ≥0

(
1− e−ρ

)
log (p0 (λ))−

1

2
e−ρσ2

 
ηg
1

τg

(
1 +

λ

ηg

)2
+

1

τ (1)
(1− λ)2

!
.

Here, we have also written the problem in terms of the size of the LSAPs program, λ = ηg (!g0 − 1).

20This can be viewed as a conservative assumption since the shock reduces the e§ective risk tolerance, which
would make the government even more willing to absorb risk via LSAPs.
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We solve this problem for the case in which the government is weakly less risk tolerant than the

market,

τg ≤ τm = τ (1) . (A.34)

This ensures that, if there was no demand recession, the government would not use LSAPs. That is,

the reason for LSAPs in our model is not a financial friction. Instead, the government uses LSAPs to

respond to the demand recession when it cannot cut interest rates. To see this, suppose there is a unique

and interior equilibrium price denoted by p0 (λ) [see Proposition 2]. The condition for an optimum with

a positive LSAPs, λ > 0, is then given by

[
1

τg

(
1 +

λ

ηg

)
−

1

τ (1)
(1− λ)

]
σ2 =

1− e−ρ

e−ρ
d log p0 (λ)

dλ
. (A.35)

Eq. (A.35) says that the government stops purchasing risky assets when its marginal cost of portfolio

risk relative to the market (the left side) is proportional to the marginal price impact, d log p0(λ)dλ . If this

price impact was zero, then the corner solution λ = 0 would be optimal since the government is relatively

less risk tolerant. When the economy is in a demand recession, the price impact is strictly positive,
d log p0(λ)

dλ > 0 [see Proposition 2], so the government might find it optimal to use LSAPs.

Eq. (A.35) also suggests that the size of the optimal LSAPs satisfies intuitive comparative statics

(which we verify in numerical simulations). The optimal LSAPs is increasing in the government’s risk

tolerance, τg > 0, and its tax capacity, ηg > 0. Greater capacity helps because it enables the government

to achieve the same impact on financial markets with a smaller impact on its own risk exposure.

More subtly, Eq. (A.35) suggests that factors that increase the asset price impact of LSAPs, d log p0(λ)dλ ,

raise the optimal LSAPs. Proposition 3 in Section 3.1 suggests this price impact is greater when the

supply shock is more severe (lower z0) or the private sector initially has greater leverage (greater l). We

verify that these comparative statics typically hold in numerical simulations (as long as banks are not

bankrupt under the optimal LSAPs). Figure 9 illustrates these results for the parameters in our earlier

analysis (see Figures 2 and 4). We set the government’s risk tolerance to be the same as the market’s

risk tolerance, τg = τ (1). The government optimally chooses to use LSAPs. The left panel shows that

increasing the severity of the shock increases the size of the optimal LSAPs. The right panel shows that

increasing banks’ initial leverage has the same e§ect. In this panel, as we increase l we also adjust banks’

risk tolerance to keep the e§ective benchmark risk tolerance τ (1) unchanged (which leads to a more

meaningful comparison).

A.5. Price impacts and asset demand elasticities

In this appendix, we prove Proposition 3 that characterizes the price impact of supply shocks and LSAPs

we well as the asset demand elasticities in our setting. Consider the neighborhood of a stable and interior

equilibrium (e.g., the case with a unique equilibrium) given λ ≥ 0 (that is, with or without LSAPs). We
let qi0 denote the demand for the market portfolio from type i agents, after adjusting for the e§ect of the

price on their wealth, that is

qb0 = !b0 (p0)α (z0p0) and q
h
0 = !h0 (p0) (1− α (z0p0)) .

Recall that with LSAPs agents’ portfolio weights, !i0, are still given by Eq. (17). Likewise, agents’ wealth

shares, α and 1− α, are still given by Eq. (15). Therefore, the size of the LSAPs policy, λ ≥ 0, does not
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Figure 9: Optimal LSAP as a function of productivity, z0 (left panel, inverted scale) and banks’
initial leverage, l0 (right panel).

directly a§ect agents’ demand (it a§ects demand indirectly through the equilibrium price, p0). Recall also

that we use q0 = qb0+q
h
0 to denote the aggregate asset demand. The equilibrium obtains when q0 = 1−λ

[see (30)].

Proof of Proposition 3. We first derive the price impact of supply shocks and LSAPs. Totally

di§erentiating the equilibrium condition, log q0 = log (1− λ), with respect to log z0, we prove Eq. (37),

d log p0
d log z0

=
@ log q0
@ log z0

(
@ log q0
−@ log p0

)−1
.

Totally di§erentiating the same equilibrium condition with respect to λ, we also prove Eq. (38),

d log p0
dλ

=
1

1− λ

(
@ log q0
−@ log p0

)−1
.

Here, we have used that the partial derivative of agents’ demand with respect to the size of the LSAPs

program is zero, @q
i
0

@λ =
@q0
@λ = 0, because the LSAPs a§ect agents’ demand only through their impact on

the asset price.

We next derive the asset demand impact of a supply shock, @ log q0@ log z0
. In the main text, we characterize

the impact on banks’ demand, qb0. Consider the impact on households’ demand, q
h
0 . Using Eqs. (15) and

(17), we calculate

log qh0 = log
(
!h0 (p0) (1− α (z0p0))

)

= log

(
τh

σ2

(
ρ+ g − log p0 − r

f
0

))
+ log

(
1− κ+

l

z0p0
κ

)
. (A.36)
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Di§erentiating with respect to log productivity, and evaluating at the equilibrium price, we obtain,

@ log qh0
@ log z0

= −
l

z0p0
κ

1− κ+ l
z0p0

κ
. (A.37)

Unlike with banks, an increase in asset valuations (driven by a positive productivity shock) decreases

households’ demand [cf. (42)]. High asset prices increase households’ wealth less than banks’ wealth.

Therefore, high asset prices decrease households’ wealth share, 1−α (z0p0), which in turn decreases their
purchasing power and demand.

Next consider the impact on the aggregate demand, q0 = qb0 + q
h
0 . We have,

@ log q0
@ log z0

=
qb0
q0

@ log qb0
@ log z0

+
qh0
q0

@ log qh0
@ log z0

(A.38)

=
qb0
1− λ

l
z0p0

1− l
z0p0

−
qh0
1− λ

l
z0p0

κ

1− κ+ l
z0p0

κ

=
(
τ b − τh

)
κ
ρ+ g − log (p0)− r

f
0

(1− λ)σ2
l

z0p0

=

(
τ b − τh

)
l

z0p0
κ

τh + (τ b − τh)
(
1− l

z0p0

)
κ
.

Here, the second line substitutes the demand impact formulas from Eqs. (42) and (A.37) as well as the

market clearing condition, q0 = 1− λ [see (30)]. The third line substitutes for the equilibrium quantities

using Eqs. (41) and (A.36). The last line substitutes the risk balance condition (35). This proves (39).

We finally derive the price elasticity of the aggregate asset demand, @ log q0
−@ log p0

. In the main text,

we characterize banks’ demand elasticity. Di§erentiating Eq. (A.36) with respect to the log price, and

evaluating at the equilibrium price, we obtain,

@ log qh0
−@ log p0

=
1

r0 − r
f
0

+

l
z0p0

κ

1− κ+ l
z0p0

κ
. (A.39)

The first term is the same as its counterpart with banks’ elasticity, while the second term is di§erent [cf.

(43)]. Unlike with banks, the endogenous wealth channel increases households’ demand elasticity. Intu-

itively, the decline in asset valuations, z0p0, has the same impact on households’ wealth share regardless

of whether it is driven by a decline in productivity, z0, or price per productivity, p0. Therefore, through

the wealth channel, a decline in p0 has the same impact on households’ demand as a decline in z0 that

we discussed earlier [cf. (A.37)].

Next consider the elasticity of the aggregate asset demand, q0 = qb0 + q
h
0 . Following the same steps
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as in (A.38), we obtain,

@ log q0
−@ log p0

=
qb0
q0

@ log qb0
−@ log p0

+
qh0
q0

@ log qh0
−@ log p0

(A.40)

=
1

r0 − r
f
0

−

"
qb0
1− λ

l
z0p0

1− l
z0p0

−
qh0
1− λ

l
z0p0

κ

1− κ+ l
z0p0

κ

#

=
1

r0 − r
f
0

−
(
τ b − τh

)
κ
ρ+ g − log (p0)− r

f
0

(1− λ)σ2
l

z0p0

=
1

r0 − r
f
0

−

(
τ b − τh

)
l

z0p0
κ

τh + (τ b − τh)
(
1− l

z0p0

)
κ
.

This establishes Eq. (40) and completes the proof of the proposition.
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B. Appendix: Details of the Quantitative Exploration

In this appendix, we present the details of the calibration exercise we discuss in Remark 2 and Sections

1.2 and 3.2. Since the model is stylized, this calibration is suggestive: its main purpose is to show that

the mechanisms we emphasize in the main text can be quantitatively large–at least in terms of the order

of magnitudes.

To facilitate the calibration, we first slightly extend the model to introduce a non-capitalized factor

such as labor and entrepreneurial capital. This extension allows for a more flexible target for the aggregate

value of capitalized assets relative to the aggregate consumption. We then calibrate the model and discuss

the plausibility of condition (21) (from Section 1.2) that determines whether partly temporary shocks

(' ≤ 1) can induce a demand recession. We then consider the case with permanent shocks, ' = 1, and
provide a graphical illustration of the calibrated equilibrium (the calibrated analogues of Figures 2 and

3). Finally, we provide a graphical illustration of the calibrated equilibrium with LSAPs (the calibrated

analogue of Figures 4 and 5). These figures complement Figures 6 and 7 from Section 3.2 that plot the

asset price in the calibrated equilibrium without and with LSAPs, respectively, for a range of productivity

shocks.

Extension with a non-capitalized factor. Consider a version of the model in which the economy

is endowed with n units of a non-capitalized factor in addition to one unit of capital (as before). For

simplicity, the two factors are separable and equally a§ected by productivity. In particular, potential

output is given by,

y∗t = (n+ 1) zt.

Absent nominal rigidities, factor incomes would be given by ynt =
n
n+1y

∗
t and y

k
t =

1
n+1y

∗
t , respectively.

We assume that a demand recession reduces the income that accrues to each factor proportionally, that

is:

ynt =
n

n+ 1
yt and ykt =

1

n+ 1
yt.

As before, total output is determined by aggregate spending, yt = ct. To maintain the basic structure

of the model, we also introduce hand-to-mouth agents that receive all of the non-capital income (see

Remark 2). The remaining agents (banks and households) hold and trade the market portfolio–which

now represents a claim on the capital income. The rest of the model is unchanged.

In this version of the model, aggregate spending is given by,

ct =
n

n+ 1
yt +

1− e−ρ

e−ρ
ztPt.

After substituting yt = ct and rearranging terms, we obtain,

yt = ct =
1− e−ρ

e−ρ
y∗t Pt, where y

∗
t = (n+ 1) zt. (B.1)

Hence, a version of the output-asset price relation (9) still applies. Setting yt = y∗t , the e¢cient asset price

is the same as before, P ∗ = e!ρ

1−e!ρ [see (10)]. However, the e¢cient capitalized wealth to consumption

ratio is di§erent, P"

n+1 , which allows for a more flexible calibration. The term, n + 1, corresponds to

a Keynesian multiplier : one dollar spending induced by capitalized wealth increases the equilibrium

consumption and output by n+ 1 dollars–assuming the interest rate remains unchanged (see Remark 2
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for an intuition).

The rest of the analysis is unchanged. In particular, in future periods monetary policy is unconstrained

and capital income is equal to productivity, ykt = zt for each t ≥ 1. Consequently, the asset price in

period 0 is still determined by the risk balance condition (18). It follows our results from the main text

(in particular, Propositions 1-3) apply also in this extension.

Calibration. We next calibrate the model to the US data. First consider the macroeconomic variables.

Every period corresponds to a year. We identify output with aggregate consumption: specifically, we

exclude government spending, investment, and net exports since these variables are driven by forces

outside our model. We set ρ to target the (yearly) MPC out of wealth based on recent empirical estimates.

Chodorow-Reich et al. (forthcoming) estimate an MPC out of stock wealth equal to 3 cents, and Mian

et al. (2013) estimate an MPC out of housing wealth equal to 5-7 cents. We target the average of the

two estimates and set 1−e!ρ
e!ρ ' ρ = 0.045. We set n to target the aggregate household net worth to

consumption ratio in the last quarter of 2019, P"

n+1 ' 8.21 With P ∗ = 1
0.045 , this implies n ' 1.7. The

implied share of non-capitalized income to total income is given by, n
n+1 = 0.63, which is close to the

labor share of income in the data. The implied Keynesian multiplier, n + 1 = 2.7, is relatively high

but not too far from the typical empirical estimates. For instance, the meta analysis in Chodorow-Reich

(2019) suggests that the aggregate zero lower bound multiplier is at least 1.7 (and it could be considerably

greater than this level since the empirical estimates often identify a cross-sectional multiplier, and the

aggregate zero lower bound multiplier exceeds the cross-sectional multiplier in standard models).

Next consider the asset pricing variables. We set banks’ risk tolerance based on He et al. (2017).

Specifically, they proxy “banks”’ financial health with primary dealers’ equity capital ratio, and they

show that shocks to this measure explain the cross-section of returns for a broad set of asset classes.

Their evidence and model suggests τ b = 1
3.7 = 0.27 (see their Table 5). We set households’ risk tolerance

to a relatively small fraction of banks’ tolerance, τh = τ b/10. We set κ = 0.75 to match the fraction of

non-real-estate wealth relative to total household net worth at the end of 2019 (source: Financial Accounts

of the US). This loosely captures the idea that most non-real-estate risk is intermediated, whereas most

real-estate risk is directly held by households. Our analysis is robust to reasonable variations in τh and

κ as long the ratio, τh/κ
τb−τh , is relatively small.

The leverage parameter plays a more central role. Conceptually, it captures the decline in banks’

wealth for a given decline in the value of their assets. We calibrate this parameter to match the relationship

between the banks’ losses and the banks’ capital in the adverse scenario described in the Fed’s June 2020

stress tests. The scenario projects an average loan loss rate of 6.3% for banks’ portfolios and a decline

in banks’ (tier 1) capital ratio from 12% to 10%. In our model, banks’ capital ratio is proportional to

their wealth share, α (z) = 1 − l
z . We match the projected loan loss in the scenario by assuming that z

declines by 6.3%. We then match the decline in bank capital by solving, α (1− 6.3%) = 10%
12%α (1). This

implies l ' 0.7 and 1
1−l ' 3.4. Intuitively, a 6.3% portfolio loss generates a roughly 20% decline in bank

capital when banks have a leverage ratio of slightly above 3.22

As we discuss in the main text, we also target a baseline (homogeneous-agent) demand elasticity,

21Specifically, in 2019 Q4, household net worth was $118 trillion (source: Financial Accounts of the U.S., series
FL152090005.Q), and the aggregate personal consumption expenditure was $14.7 trillion (source: U.S. National
Income and Product Accounts, table 1.1.5).
22For the details of the stress tests, see: https://www.federalreserve.gov/publications/files/2020-dfast-results-

20200625.pdf
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(
r0 − r

f
0

)−1
= 2.63, to achieve a pre-shock elasticity equal to 1 [see (44− 45)]. This implies a large

risk premium that we interpret as a stand-in for unmodeled frictions such as investment mandates that

reduce the asset demand elasticity in practice (discussed in Gabaix and Koijen (2020)). For the risk-free

interest rate, we target rf0 = 0.01 to capture the distance between the policy interest rate and the zero

lower bound at the onset of the Covid-19 shock. We hit these targets by choosing σ and g that jointly

solve,

r0 − r
f
0 =

σ2

τ (1)
= 0.38

r0 = ρ+ g = 0.39,

where τ (1) = τh+(1− l)κ
(
τ b − τh

)
' 0.08 is already calibrated. The implied levels of the parameters, σ

and g, are higher than their real-world counterparts. These parameters shouldn’t be interpreted literally:

they stand in for frictions missing from our stylized model (such as investment mandates that reduce the

demand elasticity).

Can partly temporary supply shocks induce a demand recession? Consider the case

in which shocks can be partly temporary, ' ≤ 1. Recall from Section 1.2 that partly temporary shocks

reduce demand more than the supply–and therefore induce the Fed to cut the interest rate–as long as

condition (21) holds,
l/z0

τh/κ
τb−τh + 1− l/z0

> (1− ')
1

r0 − r
f
0

.

With our calibration, this condition becomes,

0.7/z0
0.16 + 1− 0.7/z0

> (1− ') 2.63.

Hence, the condition implies a joint restriction about the severity of the supply shock, z0, and its persis-

tence, ', that is:

z0 < 0.62 +
0.23

1− '
.

This condition is plausible. In the extreme case when the shock is fully transitory, ' = 0, the condition

holds as long as z0 < 85%. When the shock is mildly persistent, ' ' 0.19, the condition holds for each
productivity level below the benchmark, z0 < 1. Hence, in the calibrated equilibrium, either su¢ciently

(though not unreasonably) large shocks or mildly persistent shocks is su¢cient for supply shocks to reduce

demand more than the supply.

Calibrated equilibrium without LSAPs. Next consider fully persistent shocks, ' = 1. Propo-

sition 1 in the main text characterizes the equilibrium analytically. Figure 10 provides a graphical

illustration of the equilibrium by plotting the actual and the required Sharpe ratios (cf. Figures 2 and

3). As before, the dashed lines correspond to the benchmark productivity level, z0 = 1, and the solid

lines correspond a lower productivity level, z0 = 0.97. The equilibrium features multiplicity (both in the

benchmark and after the shock). We focus on the comparative statics of the highest-price equilibrium.

The figure illustrates that a relatively small productivity shock is su¢cient to induce a demand recession

with a low asset price per productivity, p0 ' 0.95, even in the best equilibrium. Figure 6 in the main text
plots the equilibrium price per productivity for a wider range of productivity shocks, z0 (that include
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Figure 10: E§ect of supply shocks in a calibrated equilibrium.
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Figure 11: Asset price impact of LSAPs in a calibrated equilibrium.

z0 = 0.97).

Calibrated equilibrium with LSAPs. We next consider the case with LSAPs, λ = ηg (!g0 − 1) ≥
0. Proposition 2 in the main text characterizes the equilibrium analytically. We consider the productivity

shock, z0 = 0.97, and suppose the government purchases 1% of the asset supply, λ = ηg (!g0 − 1) = 1%.
As before, we focus on the highest-price equilibrium when it exists. Figure 11 illustrates how the LSAPs

a§ect this equilibrium. The LSAPs reduce the required Sharpe ratio and increase the asset price (in

the highest-price equilibrium). The figure illustrates that a relatively small LSAPs policy has a sizeable

impact on the equilibrium asset price (and therefore output). Figure 7 in the main text illustrates the

asset price impact of this policy for a wider range of productivity shocks, z0 (that include z0 = 0.97).
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