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ABSTRACT

When writing pop or hip-hop music, musicians sometimes
sample from other songs and fuse the samples into their
own music. We propose a new task in the symbolic music
domain that is similar to the music sampling practice and a
neural network model named CollageNet to fulfill this task.
Specifically, given a piece of melody and an irrelevant ac-
companiment with the same length, we fuse them into har-
monic two-track music after some necessary changes to the
inputs. Besides, users are involved in the fusion process
by providing controls to the amount of changes along sev-
eral disentangled musical aspects: rhythm and pitch of the
melody, and chord and texture of the accompaniment. We
conduct objective and subjective experiments to demon-
strate the validity of our model. Experimental results con-
firm that our model achieves significantly higher level of
harmony than rule-based and data-driven baseline meth-
ods. Furthermore, the musicality of each of the tracks does
not deteriorate after the transformation applied by Colla-
geNet, which is also superior to the two baselines. !

1. INTRODUCTION

Recent years witnessed growing interest in symbolic multi-
track music generation with the development of deep neu-
ral networks [1-3]. In particular, generating an accompa-
niment for a given melody has been a topic of interest [4].
Current deep learning models for accompaniment genera-
tion and music arrangement focus on the generation qual-
ity. Only a few methods incorporate user control into the
generation process [5, 6].

In this work, we present a new task in the scope of
multi-track music generation, specifically, music fusion.

! Code is available at https://github.com/urkax/CollageNet
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Taking multiple unrelated music tracks as input, the task
is to fuse them into a harmonic multi-track music piece,
with some necessary changes to the input tracks; To in-
volve users into the fusion process, users can control how
much and on what aspects each input track can be changed.
This task is similar to the music sampling practice, which
started from hip-hop, and has been influencing pop and
electronic music writing as well [7, 8]: Musicians sam-
ple melodies, rhythmic patterns, or other musical elements
from other songs and fuse them into a new composition
after certain changes [9, 10]. Our proposed task can be
viewed as the first step towards the automation of the sam-
pling practice. This task opens new possibilities in music
arrangement and style fusion, and may lead to many cre-
ative applications involving user interaction into the music
generation process.

In this paper, we concentrate on the fusion of a mono-
phonic melody and an irrelevant polyphonic accompani-
ment with the same length. Specifically, we propose a
neural network model named CollageNet to fuse the two
tracks. We use two pretrained VAEs [11], one for the
melody and the other for the accompaniment. The melody
VAE computes a latent representation that disentangles
pitch and rhythm, while the accompaniment VAE com-
putes a latent representation that disentangles chord and
texture [12, 13]. We then use adversarial training [14, 15]
to train an actor model G to apply necessary transforma-
tions to the latent representations and decode them back
to musical notes, to achieve a harmonic fusion of the two
tracks while preserving a similarity to their original con-
tent. Because the latent representations are disentangled,
the G model allows users to control the amount of changes
along the disentangled musical aspects relatively indepen-
dently by manipulating their corresponding latent vectors.
An example of the input and output of the fusion process
is displayed in Figure 1.

As this is a new task, there is no existing method
to compare with. We therefore design two baselines, a
rule-based method and a data-driven method. Objective
and subjective experiments show that CollageNet signifi-
cantly improves the harmony between the two tracks while
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maintaining the similarities with the original input along
user specified aspects. The achieved level of harmony is
close to that of human-composed songs and is significantly
higher than that of the two baselines. Besides, results also
show that the musicality of each individual track does not
deteriorate after the fusion.

The key contributions of this paper are as follows:

* We put forward a new task on symbolic multi-track
music fusion, which is similar to the music sampling
practice in music writing of modern genres.

* We propose a neural method, which allows users to
control the degree of changes along several disentan-
gled aspects of the input tracks in the fusion process.

* Objective and subjective experiments show that our
proposed method outperforms two baseline methods
in terms of harmony and musical quality.

2. RELATED WORK
2.1 Multi-track Music Generation

Multi-track music generation aims at generating music
containing several tracks (parts) with different musical
characters but constituting a pleasing whole. Some re-
search focuses on harmonizing or accompanying a music
track in an offline fashion [16] or an online fashion [17,18],
while others focus on learning the representation of multi-
track music [19-23]. DeepBach was proposed to gener-
ate Bach chorales using a graphical model [20]. Yan et
al. proposed a part-invariant neural model to learn a rep-
resentation of multi-part music [21]. Dong et al. proposed
three models in different scenarios for multi-track genera-
tion using the GAN framework [22]. Simon et al. used a
hierarchical VAE to model multi-track music [23].

2.2 Controllable Music Generation

There has been much attention to controllable genera-
tion in the image domain, such as CVAE [24, 25] and
CGAN [26]. In recent years, there are also growing re-
search interest in controllable symbolic music generation.
Researchers proposed models to control quantifiable low-
level musical attributes like note density, etc. Hadjeres et
al. proposed a constrained method to train a VAE model
with a regularized latent space [27]. Similarly, Pati et al.
used a regularization loss within a mini-batch to train a
controllable VAE model [28]. As for high-level musical
features like musical arousal, Tan et al. proposed Music
FaderNets to control them by sliding the corresponding
low-level attributes. Music FaderNets are trained by first
modelling the low-level attributes and learn the high-level
features through semi-supervised clustering. [29].

2.3 Latent Space Transformations

There have been some studies in the image and text domain
that learn transformations in the latent space. Engel et al.
proposed to impose attributes on generated images through
transformations in the VAE latent space [15]. Similar idea

was applied in music domain for connective fusion [30].
Shen et al. proposed to disentangle textual content from
style by learning a shared content latent space for texts in
different style [31]. Mueller et al. proposed to improve the
input sequence by optimizing its latent vector of VAE [32].

3. PROPOSED METHOD

In this paper, we propose a new user-guided method that
can transform and combine a two-measure-long melody
and an unrelated accompaniment into harmonic two-track
music while maintaining a similarity to their original con-
tent. Specifically, we encode the melody and the accom-
paniment with the encoders of two disentangled VAEs re-
spectively. Then an actor model applies necessary trans-
formations to the pairs of latent representations, and the
decoders of the VAEs decode them back to musical notes.
The actor model G is trained against the critic model D
with adversarial training.

3.1 Model Architecture

Our model is based on the disentangled VAE frame-
work [12, 13], where the encoder takes an input = and
outputs a posterior ¢(z|x) for the latent vector z to sam-
ple from, and the decoder p(x|z) reconstructs the input.
The latent vector z disentangles different musical aspects,
each of which is encoded by a certain part of the vector.
Given a pair of melody and accompaniment, we use the
encoders of two VAEs to encode each to a latent vector.
Specifically, we use EC2-VAE [12] to encode the melody
input. The disentangled latent vector z,,¢; is a concatena-
tion of a vector for pitch z, and a vector for rhythm z,, i.e.,
Zmel = Zp @ zr 2. For the polyphonic accompaniment,
we use the disentangled VAE in [13] to compute the latent
vector z,.., which is a concatenation of a chord vector z.
and a fexture Vector z;, 1.e., Zgee = Ze D Zt..

After encoding the pair of melody and accompaniment
into latent vectors z,,¢; and z,.., we feed them to the actor
model G which transforms them into another latent vector
pair Z,,¢; and Z4... The actor model applies changes to the
latent vectors to achieve transformations on the music con-
tent and the pair is supposed to be more harmonic. By ap-
plying different amount of changes to different parts of the
latent vectors, the degree of transformations is controlled
along the different music aspects. The inference process is
displayed in Figure 2 (b).

While the encoders and decoders are pre-trained, the
actor model G is trained under an adversarial framework
together with a critic model D. The critic model is a bi-
nary classifier to distinguish positive samples and negative
samples of the latent vectors. The definition of the posi-
tive and negative samples is described in Section 3.2. It is
noted that the D model is not used in the inference process.

3.2 Training

Firstly, we pre-train the two VAEs for melodies and accom-
paniments. They are specially designed to learn a seman-

2 @ denotes for concatenation
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Figure 1. Example fusion result of CollageNet. An irrelevant pair of melody and accompaniment (left) is fused into a
more harmonic pair while similarities to the input tracks are maintained. The control parameters are set to ¢,,, = 0, ¢y =
1,cqc = 0.8, ¢4t = 0, so that rhythm of melody and chord of accompaniment are more preserved, while pitch of melody
and texture of accompaniment are more altered. The bar lines are for clear visualization, not musically meaningful.

tically disentangled latent space, but fundamentally, they
are both trained to maximize the evidence lower bound
(ELBO) [12,13]. The posterior ¢(z|x) of VAE is trained to
be close to the prior p(z), which is the standard normal dis-
tribution. We obtain prior samples utilized for adversarial
training by sampling latent vectors from p(z).

Afterwards, we adversarially train the G and D mod-
els in the latent space. The training diagram is given in
Figure 2 (a). Our dataset consists of two-track music seg-
ments, each of which has a monophonic melody track and
a polyphonic accompaniment track. Suppose there are N

music segments {argy?el, z. N |, with the i-th melody seg-

(@)
mel
ment indicated as xffc)c We define a pair of melody and

accompaniment with the same data index as a harmonic

ment indicated as x and the i-th accompaniment seg-

pair {xg,?el, 2.}, and define the set of harmonic pairs as
the harmonic pair set §2y,. To create disharmonic pairs ac-
(@)

e and an ac-

cordingly, we randomly pick a melody =

companiment ngc)c from the dataset with different data in-

dexes (i # j). The disharmonic pair is indicated as
{xffl)el, 2.}, and the disharmonic pair set is denoted as
th.

As discussed in Section 3.1, the D model is trained to
distinguish between positive samples and negative sam-
ples. Positive samples are latent vectors of the harmonic
pairs, indicated as {Zpel, Zacc} ~ ;. Negative sam-
ples include: (1) latent vectors of the disharmonic pairs
{Zmet;s Zace} ~ €7, (2) latent vectors sampled from prior
{Zmels Zace} ~ p(z), and (3) latent vectors produced by
the actor model G(znmel, Zace). Following [15], we intro-
duce the shorthand:

Ec:l (Zmela Zacc) 2 - log(D(zmel; Zacc))a (1)
£ —(1 — log(D(2met, Zace)))-

The training loss of the critic model D is as follows:

£c=0 (Zmel 5 Zacc)

£D = [»Cczl (Zmela Zacc)]
{ZnLelvzacc}NQi,

E [EC:O (Zmel 3 Zacc)]
{Zmels2zacc }~N*? (2)

[Cc:() (G(Zmel s ZaCC))] )

{ZmelsZacc }~N*?

where N* = Q3 U p(z).
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The actor model G is trained to transform disharmonic
latent vector pairs into a more harmonic pair. In other
words, it is trained to fool the D model. For simplic-
ity, we omit user control for this subsection, and we have:
{émelvéacc} = G(Zmel; Zacc)- The OUtPUtS {émelv 2acc}
are expected to be close to the inputs {znel, Zace } to pre-
serve a similarity on musical content. Therefore, the train-
ing loss of the actor model G consists of both an adversar-
ial loss L, and a distance loss Lg4. The adversarial loss
is:

EGa = E

{Zmelazacc}NNz

[Le=1(G(2mel> Zace)))- 3)

The distance loss is to constrain the distance between the
output and the input of the G model. For clarity, we define
a distance function p(2,z) = i”?lg log(1+ (2 —2)?)|Ix
for two latent vectors z and 2 in R%:. The &, is the av-
eraged scale of distribution ¢(z|z) over the training set:
7. = 2., 0:(2,). We scale the distance penalty by the
reciprocal of 2 because latent vector dimensions with a
smaller average scale contribute more to the identity of de-
coded data samples x [15]. Ignoring user control here, the
distance loss is defined as follows:

£Gd = p(émela Zmel) + p(éaca Zacc)a

where {2mel; 2acc}’ = G(zmela Zacc)-

“

The loss of the G model is the sum of these two parts, with
distance penalty scaled by A:

Lo =Lgq+ M\qq. 5)

3.3 User Control

As discussed in Section 3.1, the latent vectors of melodies
and accompaniments are disentangled into shorter vec-
tors related to particular musical aspects. Specifically,
Zmel = Zp @ Zp, and 2gec = 2z, @ 2. Users can control
the amount of changes along these four musical aspects
during the fusion process. To achieve that, aside from
{Zmel;s Zace}, the input of the G model is extended with
four scalars ¢p, Crnr, Cac, Cat € [0,1]. These scalars re-
spectively control pitch and rhythm of melodies, chord and
texture of accompaniments.
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Figure 2. The training diagram of the G and D model and
the inference diagram. The ¢,,(z|x) and p,,(z|z) are the
encoder and decoder of the VAE for melodies. The g, (z|z)
and p, (z|z) are from the VAE for accompaniments.

To impose such constraints on the G model, we ran-
domly sample the scalars from the standard uniform distri-
bution U (0, 1) for each data sample during training. The
distance penalty of latent vectors is scaled by the corre-
sponding scalars. Therefore, the distance loss in Eqn (4)
becomes:

[’/Gd =Cmp * p(épa zp) + Cmer - P(ém Zr)
+cac : p(écy Zc) + Cat * p(éh Zt);
where {2, ® 2., 2. @ 2} =

(6)

G(Zp @ 2ry Ze @ 2ty Cmp7 Cmrs Cac Cat)~

After being trained with distance loss L, the actor
model G can respond differently to the control input. For
instance, if the user adjusts c,,,, to a large value, then the
G model will produce 2, close to the input z,. Thus the
pitch feature of the melody will hardly change after the
transformation.

3.4 Implementation Details

For the disentangled VAEs, we use the same settings as
original papers [12, 13], except that for EC2-VAE we do
not use conditional information. The data representation
for melodies and accompaniments also follow the VAE pa-
pers. Both the G and D model take in latent vectors z,;
and z,... Different from [30], we sample from g(z|z)
to get latent vectors. Before concatenation, each of z,¢;
and z4.. are passed through linear layers and ReLU ac-
tivation. Then the concatenated vector is passed through
8-layer blocks made up of linear layers with 1024 outputs,
ReLU activation, and dropout layers with rate of 0.5. For
the output of the G model, we use the gate mechanism fol-
lowing [15]. The G and D models are trained using the
Adam optimizer [33], with learning rate of 3e-5, 31 of 0,
and S5 of 0.9.

4. EXPERIMENTS
4.1 Dataset

‘We use the POP909 dataset [34], which contains melodies
of 909 popular songs. Professional musicians composed
piano accompaniments for them. We choose the songs
with the time signature of 4/4 and randomly split them into
80%:10%:10% for training, validation, and test sets. Then
we extract 8-beat long segments from them with a stride of
1 beat. We randomly select 40k segments for the training
set, Sk segments for the validation set and 5k for the test
set. We quantize time to 16th notes, so each segment is 32
steps long and we augment the training data by transposing
them to all 12 keys.

4.2 Baseline Methods

As this is a new task, there is no existing methods to com-
pare with. Therefore, we design a data-driven method and
a rule-based method as baselines.

The data-driven baseline is derived from the proposed
method. It also trains a critic model D to distinguish be-
tween harmonic pairs and disharmonic pairs. However,
different from the proposed method, the D model in the
data-driven baseline is pre-trained without the terms in-
volving G. During the inference process, we use the
pre-trained D model to implement gradient optimiza-
tion Gradient Descent(zmers Zace; Le=1(Zmels Zace)). In
other words, we optimize the inputs z,,,¢; and z4.. to max-
imize the output of the pre-trained D model. We use the
Adam optimizer [33] and the learning rate of 0.005 for both
Zmel and Zace-

The rule-based baseline applies revisions to the pitches
and onsets of the melodies. According to music theory, to
create a harmonic accompaniment for a melody, their notes
should be on the same scale [35]. Besides, they need to be
composed of matched rhythm. To fuse a pair of unrelated
melody and accompaniment, the rule-based baseline tries
to make their pitch class histogram similar and put their
notes on the same onsets. At the same time, the revisions
should be minor to preserve the identity of the inputs. The
rule-based baseline only changes the input melody. For
every note of the melody, we find the closest pitch class
of the accompaniment notes. If the pitch distance is be-
low the threshold of one semitone, we change the melody
pitch to that pitch class. For example, if the pitch classes of
the accompaniment notes are { C, E, F}, and a note of the
melody is C#4. The closest pitch class is C, and the dis-
tance is below the pitch threshold of one semitone, then we
change the C#4 to C4. As for rhythm, we move the notes
of the melody to the same onsets of the accompaniment if
the time distance is under the onset threshold of two steps.
Besides, there is a 20% chance that a note retains even if it
is changeable.

4.3 Evaluation of Harmony

We aim to fuse disharmonic pairs of melodies and accom-
paniments into harmonic pairs. In this subsection, we eval-
uate the level of harmony of the outputs of CollageNet and
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harmony rate p(g'mcl; chl) p(gu,ucy Zacc)

Qan 10.10% - -
Data-driven baseline 61.70% 1.12 1.36

Rule-based baseline 67.27% 1.28 -
CollageNet-vanilla 92.59% 0.98 1.75
CollageNet (A = 0.1) 92.71% 0.92 1.89
CollageNet (A = 0.5) 89.58% 0.69 1.56
CollageNet (A = 1.0) 89.56% 0.66 1.35
CollageNet (A = 2.0) 84.58% 0.52 1.27

Table 1. Harmony rates of the disharmonic test set
Qqn, and output from CollageNet (with different distance
penalty \) and two baseline methods, which take data from
Qg as inputs. Besides, the average latent space distances
of melodies and accompaniments between the outputs 2
and inputs z of the methods are also reported.

baseline methods. It is hard to design exhaustive metrics
to evaluate the level of harmony. We use both the deep-
learning model and musical statistics to evaluate the level
of harmony.

We train a deep-learning evaluation model to discrimi-
nate between harmonic pairs and disharmonic pairs. The
evaluation model uses a PianoTree encoder [36] to encode
the polyphonic accompaniments, and a bidirectional GRU
to encode the monophonic melodies. Then the encoded
vectors are concatenated and passed through a multilayer
perceptron (MLP) to produce a score between 0 and 1 for
each pair of samples. The binary cross-entropy loss is used
to train the evaluation model with the data from €2;, and
Qqp. After training, the accuracy is about 90% in the test
set. We define harmony rate as the proportion of samples
identified as positive by the evaluation model.

The harmony rates of the four methods are displayed in
Table 1. The latent space distances p(Z, z) between outputs
Z and inputs z of the methods are also displayed. We report
the results of CollageNet with different distance penalty \.
In addition to CollageNet and two baselines, we also eval-
uate Collagenet-vanilla, which utilizes vanilla VAEs [36]
instead of disentangled VAEs. According to the results,
CollageNet can produce music with higher harmony rates
while making fewer changes to the inputs. Besides, with
a higher distance penalty, the performance of CollageNet
degrades slightly, and the latent space distances reduce. It
is noted that CollageNet and CollageNet-vanilla achieve
comparable harmony rates, but the disentangled VAEs in
CollageNet provides user control in the fusion process as
described in Section 3.3 and validated in Section 4.5.

Although the deep-learning model evaluates more com-
prehensively, it is agnostic. Inspired by [37,38], we adopt
several musical statistics to evaluate the level of harmony
of each pair of melody and accompaniment. Firstly, we
extract several features from both melodies and accompa-
niments. PCH is the pitch class histogram with 12 bins.
OH is the onset histogram with 32 bins corresponding to
32 time steps. RE is the rhythm pattern, a 32-dimensional
vector denoting states of every time step, including onsets,
holding states of any pitch, and rests. The PCH feature
reveals the pitch pattern of melodies and accompaniments,
while OH and RE reveal the rhythm pattern. For PCH and
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PCH OH

KLD, OAt |KLD| oAt | RET
Qn 096 0578 | 2171 0.471 | 0.643
Qan 502 0292 | 4522 0299 | 0.457

Data-driven baseline | 2.69  0.397 | 3421 0.377 | 0.531
Rule-based baseline 1.91 0459 | 1.831 0.464 | 0.662
CollageNet 1.38  0.588 | 2.228 0.476 | 0.612

Table 2. The musical statistics averaged over datasets
for harmony evaluation. The €2}, is the harmonic test set.
Two baseline methods and CollageNet take data from the
disharmonic test set {24, as inputs. The arrows indicate a
better direction.

OH, we calculate the Kullback-Leibler Divergence (KLD)
and Overlapping Area (OA) between the melody and ac-
companiment of each pair. For RE, we calculate the ratio
of the same pattern between the melody and accompani-
ment. The average values of these statistics are in Table 2.
According to the results, the outputs of the three methods
get closer to the harmonic test set (), than inputs from
Qan. CollageNet is significantly better in most metrics.
The rule-based baseline is better than the data-driven base-
line because it directly optimizes these metrics.

4.4 Evaluation of Music Quality

To fuse a pair of unrelated melody and accompaniment,
CollageNet and baseline methods change the inputs. The
fusion process may destroy the musicality of each of the in-
put tracks. Thus, we compare several musical statistics be-
tween created datasets and the original dataset to evaluate
the quality of transformed melodies and accompaniments
respectively. The datasets whose statistics are closer to the
test set are more similar to human-made music [37]. Dif-
ferent from Section 4.3 where the comparison is between
each pair of melody and accompaniment, the comparison
happens between two datasets in this subsection.

We calculate PC (pitch count), PI (pitch interval), and
IOI (inter-onset-interval) as in [37] from melodies and ac-
companiments respectively. Table 3 shows the results. Ex-
cept for CollageNet and baseline methods, we also calcu-
late the statistics of music generated by VAEs. The VAEs
generate music by sampling latent vectors from the prior
p(z) and decoding them to musical notes. According to
the results, although the rule-based baseline outperforms
the data-driven baseline in Table 1 and Table 2, its outputs
are very different from the real data. As for CollageNet,
the musicality of melodies and accompaniments does not
deteriorate after the transformation. The musical statistics
of CollageNet are closest to the test set.

4.5 Subjective Experiment

We implement subjective experiments to evaluate Colla-
geNet and the rule-based baseline methods. Before the
test, we ask the subjects three questions following [18]:

Do you master any musical instruments? Have you re-
ceived vocal training before? Have you learned music the-
ory systematically before?
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melody accompaniment
PC PI 101 PC 101
test set 10.7  0.024 3.1 31.6 2.02
VAE -0.30 +0.054 +0.05 | -3.7 +0.00
Data-driven baseline | -0.99 +0.099 +0.33 | -2.3 +0.14
Rule-based baseline | -1.33  +0.102 +0.33 - -
CollageNet -0.10 +0.010 +0.03 | -1.2 +0.01

Table 3. The average musical statistics of melodies and
accompaniments in the test set €2;,. For four methods, we
report the difference of their outputs from the test set. The
rule-based baseline does not alter accompaniments.

We denote the subjects who answer yes to any of these
questions as trained, other subjects as not-trained. We in-
vite 38 people to complete the survey. Among them, 20
people are trained and 18 people are not-trained.

Each subject listens to 16 randomly shuffled and anony-
mous music pieces, comprising of 4 pieces from the dishar-
monic pair set (45, 4 pieces from outputs of the rule-
based baseline, 4 pieces from outputs of CollageNet, and
4 pieces from the harmonic pair set {2;,. Therefore, 142
pieces of each kind of data are evaluated in total. The mu-
sic pieces are rendered using violin for melodies and pi-
ano for accompaniments. The subjects rate the harmony of
these pieces on a 5-point scale where “1” indicates “dishar-
monic” and “5” indicates “harmonic”. They are told to
concentrate on the coherence of melodies and accompani-
ments. Figure 3 (a) illustrates the average harmony score.
The outputs of CollageNet are rated as more harmonic than
the rule-based baseline.

Then each subject is asked to listen to four pieces of
melodies from outputs of the rule-based baseline, outputs
of CollageNet, and €2, each; four pieces of accompani-
ments from outputs of CollageNet and €2}, each (the rule-
based baseline does not revise accompaniments). They
judge whether each piece is composed by humans or gen-
erated by machine. Figure 3 (b) illustrates the average per-
centage of pieces rated as human-made by the subjects.
Although the rule-based baseline can fuse the disharmonic
inputs, nearly half of the output melodies of the rule-based
baseline are regarded as machine-made. CollageNet pro-
duces both harmonic and high-quality music. Such obser-

= trained for accompaniment
= not-trained for mcm pammnnt

5 Htrained W not- tramed
3389 ~ 3847

4313 m trained for melody

2.138 W not-trained for melody
4 3.287 100

II II |
0 0

Qqan Rule-based CollageNet
baseline

78.8 80.6 863 347

nlE
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~
o
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@

IS

S S

-
~
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(a) harmony score (b) human-made percentage

Figure 3. Average harmony score for two-track segments
from four datasets are displayed. And human-made per-
centage are calculated for melodies and accompaniments
respectively, which are from three datasets. The scores of
trained subjects and not-trained subjects are displayed.
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Figure 4. All similarity scores on a 5-point scale given by
subjects for melodies and accompaniments. The melodies
and accompaniments are produced by CollageNet with dif-
ferent user control ¢,,ei8qcc. Each circle represents all the
songs with the specific melody score and accompaniment
score. The size of the circles indicates the number of the
songs, and the color of the circles indicates the average
Cmel&acc Of the songs.

vation is consistent with the conclusions of Section 4.4.

To demonstrate the validity of CollageNet’s user con-
trol, the subjects listen to the output melodies and ac-
companiments respectively of CollageNet with sliding user
control inputs. And the subjects rate the similarity of each
output melody and accompaniment to the inputs. We de-
fine the term ¢yei&ace = Cmp = Cmr = 1 — Cae = 1 — Cat-
Each subject rates two groups of songs, with each group
consists of six melodies and accompaniments produced
with different c,ei8qcc Sliding from O to 1. The scores
are on a 5-point scale where “1” indicates “similar” and
“5” indicates “different”. Figure 4 displays all the scores.
As the ¢ei8ace increases, the output melodies are consid-
ered more similar to the input, while the output accompa-
niments are the opposite.

S. CONCLUSION

In this paper, we presented a new task and a neural ap-
proach on multi-track music fusion, which is similar to the
music sampling practice. Specifically, given an unrelated
pair of melody and accompaniment of the same length, the
proposed approach fuses them to produce harmonic two-
track music while maintaining their musical identity. Be-
sides, users can control the magnitude of changes along
disentangled musical aspects. We conducted objective and
subjective experiments and compared the proposed ap-
proach with rule-based and data-driven baseline methods.
Experimental results showed that the proposed method
achieved significantly higher level of harmony than that of
baselines, with musically high-quality outputs.

For future work, CollageNet can be extended to arbi-
trary tracks and longer music pieces. Besides, similar ideas
and systems can be explored in the audio domain.
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