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Abstract

We consider the problem of extracting joint and individual signals from multi-
view data, that is, data collected from different sources on matched samples. While
existing methods for multi-view data decomposition explore single matching of data
by samples, we focus on double-matched multi-view data (matched by both sam-
ples and source features). Our motivating example is the miRNA data collected
from both primary tumor and normal tissues of the same subjects; the measure-
ments from two tissues are thus matched both by subjects and by miRNAs. Our
proposed double-matched matrix decomposition allows us to simultaneously extract
joint and individual signals across subjects, as well as joint and individual signals
across miRNAs. Our estimation approach takes advantage of double-matching by
formulating a new type of optimization problem with explicit row space and column
space constraints, for which we develop an efficient iterative algorithm. Numerical
studies indicate that taking advantage of double-matching leads to superior signal
estimation performance compared to existing multi-view data decomposition based
on single-matching. We apply our method to miRNA data as well as data from
the English Premier League soccer matches and find joint and individual multi-view
signals that align with domain-specific knowledge.
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1 Introduction

Multi-view data (collected on the same samples from multiple views or data sources) are

increasingly common with advances in multi-omics and other data collection technologies.

In matrix form, each view d corresponds to a matrix Xd with n rows for the matched sam-

ples, and pd columns for corresponding measurements. While typically the distinct views

are only matched by samples, in some cases the views are double-matched: matched by

both samples (matched rows) and view features (matched columns). A motivating example

is the miRNA data from The Cancer Genome Atlas (TCGA) project collected from both

primary tumor and normal tissues of the same subjects; the measurements from two tissues

represent two views X1, X2 ∈ Rn×p that are matched both by n subjects and p miRNAs.

Our goal is to extract common (across tissues) as well as individual (tissue-specific) signals

from each view, where common/individual signals have two meanings: common/individual

signals across subjects, and common/individual signals across miRNAs.

Several methods have been proposed that allow to extract common (joint) structure

from the multi-view data. Canonical correlation analysis (Hotelling, 1992) seeks linear

combinations of features from each view that have maximal correlation. Similarly, partial

least squares (PLS) (Rosipal and Krämer, 2005) maximizes the covariance, with OnPLS

(Löfstedt and Trygg, 2011), multiple coinertia analysis (Meng et al., 2014) and inter-battery

analysis (González Rojas, 2016) considering extensions to more than two views. JIVE (Lock

et al., 2013) decomposes each view into joint and individual signals, where joint signals are

due to matched samples. CIFE (Zhou et al., 2016) and AJIVE (Feng et al., 2018) consider

the same joint and individual decomposition as JIVE, however use a different estimation

procedure. Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2018, 2020) disen-

tangles common and individual information using group factor analysis with the sparsity

structure. DISCO-SCA (Schouteden et al., 2014) uses simultaneous components model

(Van Deun and Smilde, 2009) with subsequent rotation. iNMF (Yang and Michailidis,

2016) is a non-negative matrix factorization extension of JIVE. SLIDE (Gaynanova and Li,

2019) allows for partially-common structures when the number of views is larger than two.

Despite the considerable developments in multi-view data decompositions that extract
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joint and individual signals, these methods (JIVE, CIFE, AJIVE, MOFA, DISCO-CCA,

SLIDE, iNMF) are designed for single-matched multi-view data (matched by samples)

rather than double-matched in our motivating example. Applying these methods to double-

matched data will lead to extraction of joint signals only in one direction. Let X1, X2 ∈

Rn×p be data matrices corresponding to double-matched views, and let Â1, Â2 ∈ Rn×p

be estimated signal matrices obtained by applying one of the existing approaches (e.g.

JIVE, CIFE, AJIVE, etc). Then Â1 and Â2 will have joint signal in their column spaces

(corresponding to matched rows), but no joint signal in their row spaces (corresponding

to matched columns). A naive approach to estimate joint signal in the row space is to

apply the same method to transposed X>1 ,X
>
2 ∈ Rp×n leading to Ã1, Ã2 ∈ Rp×n with the

joint signal corresponding to matched p features. However, there is no guarantee that the

estimated signals agree with each other, that is in general Ãd 6= Â>d , which we confirm in our

simulation studies (Section 3.2). Furthermore, some signal rank estimations methods, e.g.

permutation approach in Lock et al. (2013) or bi-cross-validation approach in Gaynanova

and Li (2019), can lead to different estimated ranks for the same X1, X2 depending on

whether the matching by rows or the matching by columns is used (Section 3.1).

Several methods consider the problem of extracting signal from double-matched multi-

view data. Population value decomposition (Crainiceanu et al., 2011) is an extension of

singular value decomposition to double-matched data, however it only allows to extract joint

signal, and does not extract individual signal. Similarly, 3-way PCA (Wold et al., 1987) and

tensor decompositions (Zhou et al., 2016) extract joint signals, but not individual. Linked

matrix factorization (O’Connell and Lock, 2019) and bidimensional integrative factorization

(Park and Lock, 2020) are designed for the case where each pair of views is either matched

by rows or by columns, but not simultaneously by both as in our motivating example.

In this work, we propose the double-matched matrix decomposition (DMMD) for multi-

view data that allows to extract joint and individual signals in both row and column di-

rections simultaneously, in contrast to existing approaches. First, we prove that DMMD

decomposition exists, and characterize conditions for its uniqueness. Second, we propose

an estimation approach that takes advantage of the fact that the signal matrices must
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coincide whether the joint and individual signals are considered in the row direction, or

in the column direction. We pose this estimation as a new type of optimization problem

with explicit row space and column space constraints, for which we develop an efficient

iterative algorithm. Third, we show that DMMD has superior signal estimation perfor-

mance compared to existing methods for single-matched data even when underlying true

signal ranks are known (Section 3.2), thus confirming the advantage of taking into account

double-matched structure in estimation.

The rest of the paper is organized as follows. In Section 2, we formulate the proposed

double-matched matrix decomposition, and derive an algorithm for its estimation. In

Section 3, we compare DMMD to existing methods on simulated data. In Section 4, we

illustrate DMMD on the double-matched miRNA data from TCGA, and double-matched

English Premier league soccer match data. In Section 5 we conclude with discussion.

2 Method

2.1 Notation

For a matrix A ∈ Rn×p, we let AT be its transpose, C(A) be its column space and R(A)

be its row space. We use ‖A‖F =
√∑n

i=1

∑p
j=1 a

2
ij to denote its Frobenius norm. For two

matrices A1 ∈ Rn×p1 and A2 ∈ Rn×p2 , we write [A1,A2] ∈ Rn×(p1+p2) to denote the column-

wise concatenation. We say C(A1) is orthogonal to C(A2) if for any vector x1 ∈ C(A1) and

any vector x2 ∈ C(A2), it holds that x1 ⊥ x2. We use Id to denote an identity matrix.

We use ei = (0, · · · , 0, 1, 0, · · · , 0)T with only the i-th element being one to denote the

standard basis vector. We use script-style letter U to denote a vector space formed by the

matrix U with columns corresponding to orthonormal basis vectors, C(U) = U .

2.2 Model

We consider two double-matched data matrices X1 ∈ Rn×p and X2 ∈ Rn×p. We assume

additive decomposition Xk = Ak + Ek, k = 1, 2, where Ak is the signal matrix and Ek is

the noise matrix. We further assume each signal matrix Ak is low-rank, which is common
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in the literature (Udell and Townsend, 2019). Our goal is to estimate Ak from Xk, and

identify parts of the signal that are joint/individual across row dimension n (samples) as

well as parts of the signal that are joint/individual across column dimension p miRNAs).

Existing methods for estimation of Ak in single-matched multi-view data (Lock et al.,

2013; Feng et al., 2018; Zhou et al., 2016; Yang and Michailidis, 2016; Gaynanova and

Li, 2019) are based on separating the signal matrix into joint and individual parts with

respect to the matched dimension, that is Ak = Jk + Ik. For example, in JIVE model

(Lock et al., 2013; Feng et al., 2018; Zhou et al., 2016), the joint matrices J1 and J2 share

the same column space, i.e., C(J1) = C(J2) = C(J). The individual matrices I1 and I2 are

orthogonal to the joint space and have zero intersection of their respective column spaces,

i.e., C(J) ⊥ C(Ik),∩2
j=1C(Ik) = {0}. Furthermore, given the signal matrices Ak, the JIVE

decomposition is unique (Lock et al., 2013; Feng et al., 2018).

Our proposal is based on the observation that for double-matched signal matrices Ak,

the JIVE decomposition must hold with respect to both dimensions (row and column)

simultaneously. We formalize this observation in the following lemma, which is a general-

ization of Lemma 1 from Feng et al. (2018).

Lemma 1 Given two signal matrices A1,A2 ∈ Rn×p , there are unique sets of matrices

{Jc1,Jc2}, {Ic1, Ic2}, {Jr1,Jr2} and {Ir1, Ir2} such that

(1) Ak = Jck + Ick = Jrk + Irk, k = 1, 2

(2) C(Jck) =M⊂ C(Ak), k = 1, 2

(3) R(Jrk) = N ⊂ R(Ak), k = 1, 2

(4) M⊥ C(Ick),N ⊥ R(Irk), k = 1, 2

(5) C(Ic1) ∩ C(Ic2) = {0},R(Ir1) ∩R(Ir2) = {0}

Here M represents the joint column structure (common signal for n samples) and N rep-

resents joint row structure (common signal for p features) of the signal matrices {A1,A2}.

Similarly, Ick and Irk represent the individual column signals and individual row signals,

respectively. Lemma 1 applies to double-matched matrices {A1, · · · ,AK} from more than

two views (K > 2); we only present case K = 2 as it is sufficient for motivating datasets.

In light of Lemma 1, we consider the following Double-Matched Matrix Decomposition
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X1

X2

Jc Ic Noise

(a) Column decomposition

X1

X2

Jr Ir Noise

(b) Row decomposition

Figure 1: Two double-matched matrices are decomposed into joint structure, individual
structures and noise in both row and column directions according to DMMD model (1),
here n = 80, p = 40, rank(A1) = 15, rank(A2) = 12, rank(M) = 7 and rank(N) = 5.

(DMMD) for observed X1 ∈ Rn×p and X2 ∈ Rn×p

Xk = Jck + Ick︸ ︷︷ ︸
Ak

+Ek = Jrk + Irk︸ ︷︷ ︸
Ak

+Ek, k = 1, 2; (1)

where Jck, Jrk, Ick, Irk satisfy the above conditions. The main novelty of DMMD is that

the signal Ak is constrained to be the same whether it is decomposed in column or in row

direction. In what follows, we use rk = rank(Ak), k = 1, 2, to denote the total rank of

each signal matrix; M and N to denote the matrices that contain basis vectors of M and

N column-wise, respectively; rc = rank(M) to denote the rank of joint column structure,

and rr = rank(N) to denote the rank of joint row structure. Figures 1a and 1b show an

example of the decomposition (1) on a simulated data.

2.3 Estimation

To fit model (1), we propose the following estimation approach:

Step 1: Estimate proxy signals. Estimate the total ranks of A1 and A2, and construct

proxy signal matrices Z1 and Z2 from X1 and X2 given those ranks.

Step 2: Estimate joint structure. Use proxy signals Z1 and Z2 to estimate basis vec-
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Data X1 Data X2

Step1: Estimate proxy signals

Proxy Signal Z1 Proxy Signal Z2

Step1: Estimate proxy signals

Joint Column Space 
1 

Joint Row Space      
1

Step2: Estimate joint structure

                                              
Signal                    

A1 = Jc1 + Ic1 

                                   
Signal                    

A2 = Jc2 + Ic2Step 3 Step 3

A2 = Jr2 + Ir2A1 = Jr1 + Ir1

Figure 2: Summary of the proposed estimation approach for fitting DMMD model (1).

tors of M (joint column structure) and N (joint row structure).

Step 3: Estimate signals with given joint structure. Fit model (1) conditionally on

the estimated M, N from step 2 and estimated total ranks from step 1.

Figure 2 shows the flow chart summarizing DMMD estimation steps. In Supplement S5,

we describe a variation of Step 3 that allows for iterative updates of initial M, N from

Step 2 leading to iterative DMMD (DMMD-i). Numerically, the two approaches are very

similar, but DMMD-i has a significantly higher computational cost (Section 3).

2.3.1 Estimation of proxy signals

We estimate proxy low-rank signal matrices Zk from observed Xk using low-rank singular

value decomposition of Xk (Jha and Yadava, 2010). We propose to use the profile likelihood

7



approach (Zhu and Ghodsi, 2006) to estimate the total rank of the signal.

Let d1 ≥ d2 ≥ · · · ≥ dm be the ordered singular values of matrix X1, where m =

min(n, p). Given a fixed q with 1 ≤ q ≤ m, define sets D1 = {d1, d2, · · · , dq} and D2 =

{dq+1, · · · , dm}. Zhu and Ghodsi (2006) assume that the elements of D1 and D2 come

from the normal distributions N(µ1, σ
2) and N(µ2, σ

2), respectively. Let f(·;µ, σ2) be the

probability density function of N(µ, σ2). Then the log-likelihood is

l(q, µ1, µ2, σ
2) =

q∑
i=1

log f(di;µ1, σ
2) +

m∑
j=q+1

log f(dj;µ2, σ
2).

Given q, the MLEs are µ̂1 =
∑q

i=1 di/q, µ̂2 =
∑m

j=q+1 dj/(m − q) and σ̂2 = [(q − 1)s21 +

(m − q − 1)s22]/m, where s21 and s22 are the sample variances of elements in D1 and D2,

respectively. We estimate the rank of signal A1 by maximizing the profile likelihood over

q and set r1 = q̂, where q̂ is the maximizer. The same approach is used for X2. Given rk,

we obtain proxy signal matrix Zk by corresponding rank-rk SVD of observed Xk.

Remark 1 We use profile likelihood approach for rank estimation as it is fast and performs

well in our simulations, however an alternative rank estimation approach can be used in this

step. Some examples are permutation method (Lock et al., 2013), edge distribution method

(Onatski, 2010) and Bi-Cross-Validation method (Owen and Perry, 2009). We compare

these approaches in simulations in Section 3.1.

2.3.2 Estimation of joint structure

In this section we estimate the joint column structure M and the joint row structure N

based on the proxy signals Z1 and Z2. From the proof of Lemma 1, the joint column

structure M = C(A1) ∩ C(A2) and the joint row structure N = R(A1) ∩ R(A2). Thus, a

naive way to estimate M is to consider the intersection of column spaces of proxy signals

Z1 and Z2, C(Z1)∩C(Z2), however Zk is only an estimate of Ak. Thus, in practice C(Z1)∩

C(Z2) = {0} due to the corruption of true joint structure by noise. To circumvent this

difficulty, we propose to use principal angles to measure the similarity between C(Z1) and

C(Z2). Both CCA(Avron et al., 2013) and inter-battery factor analysis (González Rojas,

2016) also use the cosines of principal angles to measure similarity. We propose to separate
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the principal angles into two groups: small angles indicating common signals (albeit not

exactly equal) and large angles indicating individual signals. Similar idea is used in Feng

et al. (2018), however our approach for determining the angle cutoff is different.

We first review principal angles. Let U and V be subspaces with dim(U) = h1, dim(V) =

h2 in Rn. Let h = min(h1, h2), then the principal angles Θ(U ,V) = {θk ∈ [0, π
2
]|k =

1, 2, · · · , h} between U and V are recursively defined by

cos θk = max
x∈U

max
y∈V
|xTy| = |xTk yk|

subject to ‖x‖ = ‖y‖ = 1,xTxi = 0,yTyi = 0, i = 1, 2, · · · , k − 1.

The vectors {x1, · · · ,xh} and {y1, · · · ,yh} are called principal vectors. Principal angles

can be calculated using singular value decomposition (Knyazev and Argentati, 2002). Let

X ∈ Rn×h1 and Y ∈ Rn×h2 be the orthogonal matrices formed by concatenating orthonor-

mal basis vectors of U and V column-wise, respectively. Let SVD of XTY be UΣVT

where Σ is a h1 by h2 diagonal matrix with singular values s1(X
TY), · · · , sh(XTY) in

non-increasing order. Then cos Θ(U ,V) = {s1(XTY), · · · , sh(XTY)}. Moreover, the corre-

sponding principal vectors are given by the first h columns of XU and YV.

Using principal angles, we estimate joint column structure M from Z1 (with rank

r1) and Z2 (with rank r2) as follows. First we calculate the principal angles θ1, · · · , θl, l =

min(r1, r2), and principal vectors {u1, · · · ,ul} and {v1, · · · ,vl} between two column spaces

C(Z1) and C(Z2). Since the joint rank could be 0 or l, we add artificial θ0 = 0 and

θl+1 = π/2 angles into the principal angle vector. We then separate the angles into two

groups by using profile likelihood as described in Section 2.3.1 to estimate the optimal

cutoff q̂. The estimated joint column rank is then rc = q̂ − 1. We estimate the basis for

joint column structureM by calculating the element-wise average of principal vectors, e.g.,

wi = 1
2
(ui + vi), i = 1, 2, · · · , rc, corresponding to the smallest rc principal angles. The

basis of joint row structure N together with its rank rr is determined similarly from the

row spaces R(Z1) and R(Z2). Let M and N be the matrices containing averaged principal

vectors corresponding to M and N , respectively. To form basis vectors, we orthogonalize

M and N using Gram-Schmidt process. The full procedure is summarized in Figure 3.
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Principal vectors  

Proxy signal Z1

Proxy signal Z2

                    
Column space 

                    
Column space

                        
Row space 

                        
Row space 

                   
Principal angles 

                    
Principal angles  

                   
Principal vectors  

                                                     
Separate principal 

angles by PL:

                                       
Calculate basis for       :  

                           
Separate principal 

angles by PL:

                                       
Calculate basis for      :  

Figure 3: Procedure of calculating joint structure in DMMD

Remark 2 An alternative rank estimation approach can be used in this step. Some exam-

ples are permutation method (Lock et al., 2013), Bi-Cross-Validation method (Owen and

Perry, 2009) and Wedin bound method (Feng et al., 2018). See Section 3.1 for comparison.

2.3.3 Estimation of signals with given joint structure

We consider the estimation of the signals Ak, k = 1, 2, in (1) given the joint structures

M and N . Our goal is to find the closest matrix to Xk that simultaneously contains both

given joint column structure M and given joint row structure N , that is to solve

minimize
Ak∈Rn×p

‖Xk −Ak‖2F (2)

such that C(M) ⊂ C(Ak), C(N) ⊂ R(Ak), rank(Ak) = rk, k = 1, 2,

where rk is the total rank for signal Ak as in Section 2.3.1, M is the joint column space with

rc basis in Rn and N is the joint row space with rr basis in Rp estimated as in Section 2.3.2.

In Supplement S5, we describe a variation of (2) with additional minimization over joint

structures that allows for iterative updates of initial M, N, leading to iterative DMMD

(DMMD-i). We compare DMMD and DMMD-i in Section 3.
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To solve (2), we first consider a simplified problem by removing the row-space constraint,

for which we derive a closed-form solution.

Lemma 2 Given X ∈ Rn×p, M ∈ Rn×rc with orthonormal columns with rank(MMTX) =

rc, and rank r with rc ≤ r ≤ min(n, p), consider

minimize
A∈Rn×p

‖X−A‖2F such that C(M) ⊂ C(A), rank(A) = r. (3)

Let A∗M = MMTX + RRTX, where the columns of R are the first r − rc left singular

vectors of (Id −MMT )X. Then A∗M is the global minimizer of (3). Furthermore, if

matrix (Id−MMT )X has distinct (r− rc)-th and (r− rc + 1)-th singular values, then A∗M

is the unique minimizer of (3).

From Lemma 2, the columns of matrix [M,R] are the basis vectors of the column-space

of the solution A∗M to (3). Similarly, consider a simplified problem (2) with row-space

constraint, but no column-space constraint.

Lemma 3 Given X ∈ Rn×p, N ∈ Rp×rr with orthonormal columns with rank(XNNT ) =

rr, and rank r with rr ≤ r ≤ min(n, p), consider

minimize
A∈Rn×p

‖X−A‖2F such that C(N) ⊂ R(A), rank(A) = r. (4)

Let A∗N = XNNT + XSST , where the columns of S are the first r − rr right singular

vectors of X(Id−NNT ). Then A∗N is the global minimizer of (4). Furthermore, if matrix

X(Id−NNT ) has distinct (r − rr)-th and (r − rr + 1)-th singular values, then A∗N is the

unique minimizer of (4).

The columns of matrix [N,S] are the basis vectors of the row-space of the solution A∗N

to (4). Given the closed form solutions to (3) and (4), we propose an iterative algorithm

for the full problem (2), where we alternate the update of column space with the update

of the row space. The full algorithm is summarized in Algorithm 1. In words, we first

initialize the full column space M̃k of each signal matrix, and update the row space that

is not captured by N. Given the updated full row space of each signal matrix Ñk, we

then update the column space that is not captured by M. At each step, the current
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estimated signal matrix is A
(t)
k = M̃

(t)
k M̃

(t)T
k XkÑ

(t)
k Ñ

(t)T
k , which is feasible as long as it has

full rank rk (this is always satisfied in our numerical studies because of noisy Xk). Once

the estimated signal matrices Ak are obtained, by construction it holds that for k = 1, 2:

Jck = MM>Ak, Ick = (Id−MM>)Ak. Similarly, Jrk = AkNN>, Irk = Ak(Id−NN>).

Let L
(t)
k be the objective function of (2) at iteration step t, L

(t)
k = Lk(R

(t),S(t)) = ‖Xk−

A
(t)
k ‖2F = ‖Xk − (MMT + R(t)R(t)T )Xk(NNT + S(t)S(t)T )‖2F . We show that Algorithm 1 is

guaranteed to converge as it leads to non-increasing sequence of L
(t)
k .

Proposition 1 If at each iteration step t in Algorithm 1, (MMT + R
(t)
k R

(t)T
k )Xk(Id −

NNT ) is of rank at least rk − rr and (Id−MMT )Xk(NNT + S
(t)
k S

(t)T
k ) is of rank at least

rk − rc, then the sequence of objective values L
(t)
k is non-increasing.

Proposition 1 only guarantees the convergence of objective values, but in practice we found

that that the sequences of R
(t)
k and S

(t)
k also converge. The convergence to the global

minimizer is not guaranteed since problem (2) is nonconvex, thus the output may depend on

initial R
(0)
k . The proposed R

(0)
k corresponds to global solution when rr = 0 due to Lemma 2.

Empirically this choice leads to a smaller objective value at convergence compared to a

random R
(0)
k , and excellent signal estimation performance.

3 Simulation studies

We generate the signal matrices Ak ∈ Rn×p given the sample size n, the number of features

p, the total signal ranks rk ≤ min(n, p), k = 1, 2, the rank of joint column structure

rc ≤ min(r1, r2) and the rank of joint row structure rr ≤ min(r1, r2) in accordance with

Lemma 1 (Supplement S3). We then set Xk = Ak + Ek, where Ek has independent entries

ekij ∼ N (0, σ2
k), i ∈ {1, · · · , n}, j ∈ {1, · · · , p}. We define the signal to noise ratio as

SNR =
‖Ak‖2F

E(‖Ek‖2F )
=

rk
npσ2

k

,

and choose σk to control the SNR at pre-specified levels.
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Algorithm 1 Iterative algorithm for (2)

1: Given: Xk ∈ Rn×p, rk, k = 1, 2; M ∈ Rn×rc , N ∈ Rp×rr , tmax, ε > 0
2: for k = 1, 2 do
3: SVD: (Id−MMT )Xk = UkDkV

T
k

4: R
(0)
k ← first rk − rc columns of Uk

5: M̃
(0)
k ← [M,R

(0)
k ]

6: t← 0
7: while t 6= tmax and |L(t)

k − L
(t−1)
k | > ε do

8: SVD: M̃
(t)
k M̃

(t)T
k Xk(Id−NNT ) = U

(t)
1,kD

(t)
1,kV

(t)T
1,k

9: S
(t+1)
k ← first rk − rr columns of V

(t)
1,k

10: Ñ
(t+1)
k ← [N,S

(t+1)
k ]

11: SVD: (Id−MMT )XkÑ
(t+1)
k Ñ

(t+1)T
k = U

(t)
2,kD

(t)
2,kV

(t)T
2,k

12: R
(t+1)
k ← first rk − rc columns of U

(t)
2,k

13: M̃
(t+1)
k ← [M,R

(t+1)
k ]

14: t← t+ 1
15: L

(t)
k = ‖Xk − M̃

(t)
k M̃

(t)T
k XkÑ

(t)
k Ñ

(t)T
k ‖2F

16: end while
17: return A∗k = M̃

(t)
k M̃

(t)T
k XkÑ

(t)
k Ñ

(t)T
k

18: end for

3.1 Rank estimation

We investigate the performance of profile likelihood (PL) method from Sections 2.3.1–2.3.2

on estimating the total signal ranks rk, the joint column rank rc and the joint row rank

rr. We compare with permutation method used in r.jive package (O’Connell and Lock,

2016) and Bi-Cross-Validation (BCV) method (Owen and Perry, 2009) implemented in

SLIDE package (Gaynanova and Yuan, 2021). JIVE and SLIDE rank selection methods are

applied in two ways: (i) column space decomposition based on matched rows (samples); (ii)

row space decomposition based on matched columns (features). When we perform JIVE on

matched rows, we denote it as JIVE (Row), similarly for SLIDE. For total rank estimation,

we also consider edge distribution (ED) method (Onatski, 2010). We implement ED method

in R ourselves by translating python code from Shu et al. (2020). For joint rank estimation,

we also consider the Wedin threshold method (Feng et al., 2018) as implemented in ajive R

package (Carmichael, 2021). The Wedin method is applied with the given true total ranks

rather than estimated total ranks as the latter is not implemented in ajive.
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We consider three settings, with 140 replications for each.

Setting 1 n = 240, p = 200, SNR = 1, r1, r2 sampled from {2, 3, · · · , 20} with replacement

and rc, rr sampled from {1, 2, · · · ,min(r1, r2, 5)} with replacement.

Setting 2 Same as Setting 1 with SNR = 0.5.

Setting 3 n = 240, p = 200, SNR = 1, r1, r2 sampled from {2, 3, · · · , 20} with re-

placement. In the first 35 replications, rc, rr = 0. In the next 35 replications,

rc = 0, rr = min(r1, r2). In the third 35 replications, rc = min(r1, r2), rr = 0. For the

last 35 replications, rc = rr = min(r1, r2). This setting is used to demonstrate cases

where there is either no joint structure or no individual structure.

Figure 4a displays the difference between the estimated total rank and the true rank rk

for each method in Setting 1. ED works the best, followed by the proposed PL. The

permutation approach in r.jive works poorly in this setting, and is also not consistent

(different ranks are estimated depending on whether the matching is done by rows or by

columns). SLIDE rank estimation based on BCV also works poorly, however this is likely

due to automatic centering implemented in the package which will perturb the column-space

of the true non-centered signal. Figure 4b displays the difference between the estimated

joint rank and the true joint rank (either rc or rr). The Wedin bound method works

perfectly, however it uses the knowledge of true total ranks. The proposed PL works as well

as Wedin bound without such knowledge with the exception of two cases. Both methods

are significantly more accurate compared to other approaches. The results in Setting 2

are qualitatively similar to results in Setting 1 (Supplement S3), however the performance

tends to be worse due to lower SNR. On total rank estimation, the median performance of

ED and PL is still superior to the permutation method used in r.jive package and to BCV ,

however ED tends to underestimate the total ranks, whereas PL tends to overestimate the

total ranks. On joint ranks estimation, the Wedin bound method still works perfectly. PL

estimates joint ranks perfectly over 90% of the times, however significantly overestimates

the rank in remaining cases. JIVE on average correctly estimates the joint ranks but has

higher IQR compared to PL. SLIDE consistently underestimates the joint ranks, which is
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Figure 4: Comparison of rank estimation for Setting 1 over 140 replications. n = 240, p =
200, 2 ≤ r1, r2 ≤ 20, 1 ≤ rc, rr ≤ 5, SNR = 1. JIVE (Column) or SLIDE (Column)
estimates the total rank when columns are matched and vice versa.

likely again due to its automatic centering within bi-cross-validation.

Figures 5a and 5b show the results on total rank estimation and joint rank estimation,

respectively, in Setting 3. As in Setting 1, ED and PL methods are significantly more

accurate in estimating total ranks rk compared to the permutation approach, and the

results of the latter are again dependent on whether the matching is based on rows or

columns. Unlike Setting 1, PL is slightly better than ED, as occasionally ED grossly

underestimates the total rank. On joint rank estimation, Wedin bound works best, however

it uses the knowledge of true total ranks. All methods correctly identify zero joint rank

when rc = rr = 0. Overall PL is more accurate than JIVE and SLIDE when rr = rc = rmin,

however in few cases it underestimates the joint rank more severely than JIVE. When

rc = 0, rr = rmin, PL and JIVE are comparable in estimating rr on average, but PL has

lower variance across replications. When rc = rmin, rr = 0, PL slightly underestimates rc

compared to the permutation approach.

Overall, we found that ED and PL work best in total rank estimation. While in Setting 1

ED works better than PL, ED assumes that the maximal possible signal rank is bounded

by 0.1 min(n, p) (Ahn and Horenstein, 2013), and this assumption is satisfied in all of

our settings. Since in practice this assumption may be violated, we use PL method as

default. On joint rank estimation, Wedin bound method works perfectly in all of the
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Figure 5: Comparison of rank estimation for Setting 3 over 140 replications. n = 240, p =
200, 2 ≤ r1, r2 ≤ 20, rmin = min(r1, r2).

settings, however it does so by using true total ranks. Since in practice the true ranks are

unknown, and PL works similarly, we use PL as default. We reach the same conclusions in

a high-dimensional setting that mimics TCGA data set in Section 4.1 (Supplement S3).

3.2 Signal identification

We investigate the performance of DMMD on estimating signals Ak in model (1) if the

true ranks are known. We also consider DMMD-i (Supplement S5) which allows iterative

adjustment of initial M and N from Step 2. We measure the performance as

Relative Error(Âk,Ak) =
‖Âk −Ak‖2F
‖Ak‖2F

.

We also measure the relative error separately on joint Jck, Jrk and individual Ick, Irk in

model (1). We compare with JIVE (Lock et al., 2013), SLIDE (Gaynanova and Li, 2019)

and AJIVE (Feng et al., 2018) using the same implementation as in Section 3.1. AJIVE,

JIVE and SLIDE are fitted in two ways: (i) column space decomposition based on matched
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rows (samples); (ii) row space decomposition based on matched columns (features). We

use JIVE (Row) to indicate model based on matched rows, and similarly JIVE (Column).

We consider three settings with 140 replications for each.

Setting 4 n = 240, p = 200, r1 = 20, r2 = 18, rc = 4, rr = 3, SNR = 1.

Setting 5 Same as Setting 4 with SNR = 0.5.

Setting 6 n = 240, p = 200, SNR = 1, r1 = 20, r2 = 18. In the first 35 replications,

rc, rr = 0. In the next 35 replications, rc = 0, rr = min(r1, r2) = r2. In the third

35 replications, rc = min(r1, r2) = r2, rr = 0. For the last 35 replications, rc = rr =

min(r1, r2) = r2. Like Setting 3 in Section 3.1, this setting is used to demonstrate

cases where there is either no joint structure, or no individual structure.

All DMMD, JIVE, AJIVE and SLIDE use true total ranks rk, true joint rank rc (for column

decomposition) and true joint rank rr (for row decomposition), k = 1, 2, as input. Ranks

misspecifications are investigated in Supplement S3, where DMMD performs best in total

signal estimation.

Figures 6a and 6b show relative errors of all methods in Setting 4 for estimated signals

based on matched rows (Jck, Ick) and matched columns (Jrk, Irk), respectively. The errors

for total signal are the same for DMMD as it enforces model (1). In contrast, the errors

for JIVE, AJIVE and SLIDE depend on matching (by rows or by columns) as it affects

the estimated signal. For joint signals, DMMD and SLIDE perform similar, and are both

more accurate than JIVE and AJIVE. DMMD has the smallest errors on full signals and

individual signals in all scenarios, confirming that taking into account double matching

leads to more accurate signal estimation. The same conclusion holds in Setting 5 with

smaller SNR (see Supplementary Materials Section 2).

In Setting 6, either joint signal matrix or individual signal matrix is exactly equal to

zero, thus we use the absolute error, ‖Estimated Signal − True Signal‖2F , rather than the

relative error to measure the performance. Figures 7a and 7b show absolute errors of the

four methods based on column space decomposition due to matched rows (Jck, Ick), or row

space decomposition due to matched columns (Jrk, Irk), respectively. When both joint
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(b) Row space decomposition (matched columns)

Figure 6: Comparison of signal identification for Setting 4 over 140 replications, n =
240, p = 200, r1 = 20, r2 = 18, rc = 4, rr = 3, SNR = 1.

column and row structures are absent (rc = rr = 0), all methods perform the same, which

is expected as the estimation is completely separate across two views. When rc = rr = r2,

DMMD gives smallest errors as it takes advantage of double matching. When rc = 0, rr =

r2, JIVE and SLIDE work better than DMMD on estimating joint row structure, whereas

when rr = 0, rc = r2, they work better than DMMD on estimating joint column structure.

A possible explanation for this is a different approach for estimating the joint structures

used by the methods. DMMD uses element-wise averaging of pairs of basis vectors from

each view with smallest principal angles as in AJIVE (Feng et al., 2018), whereas JIVE

and SLIDE extract basis vectors from concatenated matrix of view-specific residuals after

subtracting individual structures.

Overall, we find that DMMD has the smallest signal estimation error, with DMMD-i

being slightly better than DMMD. This remains true in a high-dimensional setting that

mimics TCGA data set in Section 4.1 (Supplement S3). While in Setting 6 JIVE and

SLIDE sometimes lead to better performance, these cases correspond to absent individual

structures in either row or column directions and absent joint structures in the other di-

rections, which is rarely the case for real data. When individual structures are present,

DMMD always leads to improved errors as it enforces equality in estimated total signals

from row and column decomposition of double-matched data, which subsequently leads to
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Figure 7: Comparison of signal identification for Setting 6 over 140 replications. n =
240, p = 200, r1 = 20, r2 = 18, SNR = 1.

more accurate estimation of individual structures, and consequently, of the total signal.

Computationally, DMMD is significantly faster than the competitors; its total run time

(rank estimation plus signal identification) on data with n = 100, p = 800 is 24 seconds

on Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz. As expected, DMMD-i comes with a

significantly higher computational cost taking 618 seconds on the same data. More details

are in Supplement S3. Given the relatively small improvement of DMMD-i over DMMD,

in practice we recommend to use DMMD with large datasets for computational efficiency.

4 Application

4.1 Application to TCGA data

We consider data from The Cancer Genome Atlas (TCGA) repository corresponding to

the Breast Invasive Carcinoma (BRCA) cancer type. We use TCGA-Assembler 2 software

pipeline (Wei et al., 2018) to obtain miRNA read counts corresponding to the primary

tumor tissue (view 1) and to the normal tissue (view 2) of the same subjects. We log-
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transform the counts to account for skewness, and remove the samples and features with

zero variance for both views. We then apply double-standardization as in Efron (2012) so

that all rows and columns in each matrix have mean zero and sample variance one; such

processing of multi-view data is also used in Risk and Gaynanova (2021). The double-

standardization makes the estimated decomposition mean and scale-invariant. The final

double-matched X1 (primary tumor tissue) and X2 (normal tissue) each contain p = 734

matched miRNAs from n = 87 matched samples. To evaluate possible biological relevance

of obtained decomposition, we match each sample with one of the cancer subtypes: Luminal

A (LumA), Luminal B (LumB), Basal-like (Basal), HER2-enriched (H) obtained from

https://www.cbioportal.org/study/clinicalData?id=brca_tcga_pub. For 46 out of

87 subjects there are missing clinical records which are denoted as unknown.

Our goal is to extract common (across tissues) as well as individual (tissue-specific)

signals from each view, where common/individual signals have two meanings: (i) across

subjects, and (ii) across miRNAs. Here we consider two methods: JIVE (rank selection

via permutation test with subsequent fitting of the JIVE model) and the proposed DMMD

(rank selection via profile likelihood with subsequent fitting of model (1)). For JIVE,

we consider both matching by subjects (column space decomposition), and matching by

miRNAs (row space decomposition).

First, we compare the estimated ranks. Permutation approach used by JIVE leads to

inconsistent total ranks as the estimates depend on the type of matching: matching by

samples leads to r̂1 = 11, r̂2 = 9, whereas matching by miRNAs leads to r̂1 = 14, r̂2 = 11.

The PL method gives smaller estimated ranks r̂1 = 8, r̂2 = 6. Despite the discrepancy in

total ranks between JIVE and DMMD, both lead to the same estimated joint ranks with

r̂c = 0 and r̂r = 2.

Next, we compare the variance explained by each method, together with the variance

explained separately by joint/individual parts of the estimated signal. Figure 8 shows

the percent variance explained by each part of the estimated decomposition separately for

tumor and normal tissues. The total variance explained by estimated signal (joint plus

individual) is the same for DMMD regardless of the type of matching considered, whereas
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Figure 8: Percentage variance explained by extracted DMMD and JIVE decompositions
on TCGA BRCA matched miRNA data from primary tumor and normal tissues.

it changes for JIVE due to discrepancy in estimated signals. The overall variance explained

is higher for JIVE as it estimates higher total ranks compared to DMMD. Both DMMD

and JIVE show that the variance explained by joint structure is higher for normal tissue

compared to primary tumor tissue. We believe that this is in agreement with what would

be expected from biological knowledge since tumor tissue evolves from originally normal

tissue, and becomes more heterogeneous as cancer develops.

We next display the found joint row structure (r̂r = 2) corresponding to matched

miRNAs in Figures 9a and 9b. An alternative vertical alignment of these heatmaps is in

Supplement Figure S3. The order of samples and miRNAs is the same in both tissues, and

are determined based on the hierarchical clustering of the joint structure of the primary

tumor tissue. Visually, the joint row structure captures the division of miRNAs in 3 clusters.

While the displayed cluster partition is based on tumor tissue, the heatmap of normal tissue

in Figure 9b has block structure based on the same partition.

To provide further interpretation of estimated decomposition, we next consider indi-

vidual structures from DMMD with respect to matched subjects. Figure 10a displays the

heatmaps of estimated I>ck ∈ Rp×n, k = 1, 2, from model (1) with samples sorted according

to subtype information. Here rank(Ic1) = 8 and rank(Ic2) = 6. To better visualize the

corresponding individual column spaces, Figure 10b shows the leading left singular vectors

of Ic1 and Ic2, respectively, which are the leading basis vectors for corresponding individual
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Figure 9: Joint row (miRNA) structures extracted by DMMD for primary tumor and nor-
mal tissues from matched TCGA-BRCA miRNA data. The order of samples and miRNAs
in both figures is the same, which is determined by the joint structure of primary tumor
tissue.

column spaces. For the primary tumor tissue, the basis vector displays a strong contrast

between the Basal and LumA subtypes, expresses 27.3% of the whole variation in individual

structure. The effect of this basis vector can be seen in the whole signal heatmap in Figure

10a, where the contrast in the same direction is observed roughly in the top half of the

miRNAs in primary tumor tissue, and is observed in the opposite direction in the bottom

half of the miRNAs. In contrast, the individual structure for normal tissue does not display

this contrast. Furthermore, the leading basis vector for the individual structure of normal

tissues does not appear to separate any of the cancer subtypes, which is in agreement with

what would be expected from biological knowledge since it captures individual subjects

structure in normal tissues that is not present in primary tumor tissue.

4.2 Application to soccer data

We consider data from soccer matches in the English Premier League obtained from https:

//www.kaggle.com/kenzeng24/premier-league-matches. Each row of data represents a
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Figure 10: Individual column (matched subjects) structures extracted by DMMD for pri-
mary tumor and normal tissues from double-matched TCGA-BRCA miRNA data. The
samples are ordered according to the cancer subtype. The top row shows full individual
signals, whereas the bottom row shows the leading individual basis vectors along with the
percentage of variance explained (relative to the full individual signal).

soccer match played in the English Premier League, and each column represents a unique

feature recorded for that match (e.g. Date, Home Team, Full Time Goals for each team,

etc). First, we filter the data by removing the matches with data quality issues (decimal

values recorded for the number of yellow cards or red cards), and removing the matches

corresponding to draw games. Secondly, we determine the winning and losing team for

each of the matches, and extract ten match statistics recorded for each team representing

numbers of full-time goals, half-time goals, shots, shots on target, hit woodwork, corners,

fouls, offsides, yellow cards, and red cards. To aid interpretation of extracted signals in

terms of original untransformed match statistics, we do not apply double standardization

from Section 4.1 to soccer data. In the end, we obtain two double-matched 558×10 matrices,

one for the winning team and one for the losing team, where each row corresponds to a
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Table 1: Joint row basis for winning and losing teams in English Premier League when
r1 = r2 = rr = 1.

Signal Full
Time
Goals

Half
Time
Goals

Shots Shots
on
Target

Hit
Wood-
work

Corners Fouls
Com-
mited

Offsides Yellow
Cards

Red
Cards

Joint 1.00 0.45 8.08 3.90 0.23 4.03 9.80 2.50 1.10 0.07

Table 2: Joint row basis and individual row basis for winning teams in English Premier
League when r1 = 2, r2 = rr = 1.

Signal Full
Time
Goals

Half
Time
Goals

Shots Shots
on
Target

Hit
Wood-
work

Corners Fouls
Com-
mited

Offsides Yellow
Cards

Red
Cards

Joint 1.00 0.47 7.85 3.78 0.21 4.01 11.35 2.76 1.30 0.08
Win 1.00 0.33 5.09 2.93 0.21 1.62 -4.98 -0.39 -0.88 -0.08

match, and each column corresponds to a team statistic from the match. Our goal is to

investigate the relationship between match statistics that are (i) common across teams,

and (ii) individual to the winning team.

First, we estimate the ranks of underlying signals. Both PL and ED automatically select

r̂1 = r̂2 = 1, and PL determines r̂c = r̂r = 1, which is one of the special cases considered

in simulation setting 6. DMMD works best in that setting, so we only report DMMD

results. Table 1 displays the coefficient of the extracted row basis vector normalized to have

coefficient 1 for Full time goals to assist interpretation. As this basis vector corresponds to

joint structure across both winning and losing teams, we conclude that in English Premier

League there is on average 1 goal for every 8.08 shots in the game. Also, on average, there

are more goals in the second half game compared to the first half game.

The total ranks estimated by PL and ED are quite low due to low p = 10. ED inherently

restricts the signal rank to be at most 0.1p, and thus can not possibly estimate larger ranks

for these data. PL relies on clustering singular values in two groups, which we suspect

is less reliable when the number of singular values is small. Thus here we consider an

alternative approach to rank estimation, where for each team we pick the rank to explain

90% of the variation in the respective dataset. This approach leads r̂1 = 2, r̂2 = 1, r̂r = 1.
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Thus there is a rank 1 individual structure in winning team not present in the losing

team. Table 2 displays the coefficients for the joint row basis vector, and the individual

row basis vector for winning team as estimated by DMMD. Both vectors are normalized

to have coefficient 1 corresponding to full time goals to assist interpretation. As in the

previous analyses, there are approximately 8 shots for every goal, and approximately 4

corners for every goal. However, the winning team tends to have a higher number of goals

per shots while simultaneously having fewer fouls, offsides, yellow cards and red cards.

The coefficient for offsides may appear counter-intuitive, however it can be interpreted as

the attack of winning team being less interrupted. Somewhat surprisingly, the number of

hitting woodwork does not seem to affect the winning or losing conditions.

5 Discussion

We propose a new decomposition for multi-view data with matched rows and columns,

which we call DMMD. The main novelty of our approach is in taking advantage of double-

matching property via explicit column and row space constraints in signal estimation, and

in deriving the corresponding optimization algorithm. The algorithm relies on estimated

joint column and row spaces; the proposed estimation works well numerically but can be

improved using iterative DMMD at the expense of a significantly higher computational cost.

While our exposition has been limited to the case of two views, DMMD can be applied to

more views as Lemma 1, model (1), estimation of proxy signals in Section 2.3.1 and the

Algorithm 1 still hold. Estimation of joint structures in Section 2.3.2 requires modification

for more than two views, which we outline in Supplement S6.

The method requires estimation of ranks corresponding to different parts of the decom-

position, and our empirical studies indicate that the chosen profile likelihood (PL) approach

for rank estimation is competitive compared to alternative rank estimation methods. How-

ever, we also found that PL can occasionally severely overestimate the ranks, while other

methods tend to underestimate the ranks. To help identify whether severe rank overes-

timation is an issue in practice, we recommend to simultaneously consider several rank

estimation approaches (like we did in Section 4) to verify that the ranks estimated by PL
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are not considerably higher than the ranks estimated using other methods.

Several extensions of DMMD are of interest. First, generalization to more than two

views described in Supplement S6 allows to apply DMMD to longitudinal data, albeit

the method will treat all the time points interchangeably. An alternative approach for

longitudinal data is to treat the view at starting time as base view, and apply DMMD

for each consecutive view paired with the base view. This would lead to a sequence of

joint and individual structures ordered by time, which could provide additional insights on

the time/treatment effects. It would be of interest to pursue such analyses in the future.

Second, DMMD is designed for fully observed data, thus imputation is required if some

elements of Xd are missing. As the computations rely only on the leading singular vectors

and singular values, one possibility is to adapt soft-impute algorithm (Mazumder et al.,

2010) for DMMD. Third, DMMD decomposition is not sparse, however sparse extensions

can be pursued by replacing standard SVD in Algorithm 1 with its sparse analogs, e.g.

sparse PCA method of Shen and Huang (2008) or penalized orthogonal iteration of Jung

et al. (2019). This, however, would increase computational time, and create additional

challenge of choosing appropriate sparsity tuning parameters. Finally, while DMMD is

based on the matrix models, an alternative approach is to view double-matched data as

a three-way tensor and consider tensor decompositions (Zhou et al., 2016). It is unclear,

however, how to extract individual information from the latter. Furthermore, we find that

existing tensor decompositions may have difficulties in capturing joint row and column

structures simultaneously (Supplement S7). It would be of interest to investigate extensions

of tensor decompositions that will provide more flexibility as well as preserve the matrix

interpretation of joint and individual structures.
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