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Radiologist-supervised Transfer Learning
Improving Radiographic Localization of Pneumonia and

Prognostication of Patients With COVID-19
Brian Hurt, MD, MS,* Meagan A. Rubel, PhD, MPH,*

Evan M. Masutani, BS,*† Kathleen Jacobs, MD,* Lewis Hahn, MD,*
Michael Horowitz, MD, PhD,* Seth Kligerman, MD,*

and Albert Hsiao, MD, PhD*

Purpose: To assess the potential of a transfer learning strategy
leveraging radiologist supervision to enhance convolutional neural
network-based (CNN) localization of pneumonia on radiographs
and to further assess the prognostic value of CNN severity quan-
tification on patients evaluated for COVID-19 pneumonia, for
whom severity on the presenting radiograph is a known predictor of
mortality and intubation.

Materials and Methods: We obtained an initial CNN previously
trained to localize pneumonia along with 25,684 radiographs used
for its training. We additionally curated 1466 radiographs from
patients who had a computed tomography (CT) performed on the
same day. Regional likelihoods of pneumonia were then annotated
by cardiothoracic radiologists, referencing these CTs. Combining
data, a preexisting CNN was fine-tuned using transfer learning.
Whole-image and regional performance of the updated CNN was
assessed using receiver-operating characteristic area under the curve
and Dice. Finally, the value of CNN measurements was assessed
with survival analysis on 203 patients with COVID-19 and com-
pared against modified radiographic assessment of lung edema
(mRALE) score.

Results: Pneumonia detection area under the curve improved on
both internal (0.756 to 0.841) and external (0.864 to 0.876) vali-
dation data. Dice overlap also improved, particularly in the lung
bases (R: 0.121 to 0.433, L: 0.111 to 0.486). There was strong
correlation between radiologist mRALE score and CNN fractional
area of involvement (ρ= 0.85). Survival analysis showed similar,
strong prognostic ability of the CNN and mRALE for mortality,
likelihood of intubation, and duration of hospitalization among
patients with COVID-19.

Conclusions: Radiologist-supervised transfer learning can enhance
the ability of CNNs to localize and quantify the severity of disease.
Closed-loop systems incorporating radiologists may be beneficial
for continued improvement of artificial intelligence algorithms.

Key Words: transfer learning, COVID-19, artificial intelligence,
chest radiograph, chest computed tomography, patient outcomes,
closed loop, radiograph

(J Thorac Imaging 2022;37:90–99)

P neumonia and subsequent acute respiratory distress syn-
drome (ARDS) are the principal causes of death from

COVID-19. Chest radiography and computed tomography
(CT) play an important role in evaluating pulmonary
involvement. As the pandemic has evolved, quantification of
pneumonia severity has increasingly been sought as a marker
of disease severity,1–9 and standardized guides for reporting
severity have emerged.10 While CT provides exquisite details
of the lung parenchyma, in the United States, it is primarily
used as a problem-solving modality or to assess complications
associated with COVID-19. In contrast, chest radiographs
are often obtained during numerous time points throughout
the course of disease.11 Chest radiograph-based semi-
quantitative scoring metrics like the radiographic assessment
of lung edema (RALE) have been shown to correlate with
survival in ARDS,12 found to be predictive for the likelihood
of intubation and mortality, and proposed to help guide
clinical management.13–15

Several investigators have begun to explore convolu-
tional neural networks (CNNs) to assist with interpretation
of chest radiographs. Many of the earliest approaches
applied whole-image classification strategies based on find-
ings extracted from radiologist reports,16–19 and have
recently applied these strategies to identify COVID-19.2,5–9

While these studies have begun to show the diagnostic
potential of CNNs, it is often difficult to interpret the rea-
sons that the CNN makes a particular classification, a
concept in machine learning known as a network’s
“explainability.”20 A lack of explainability currently limits
the clinical utility of many algorithms. Various methods
have been proposed to highlight areas of the image that are
used by the CNN21 post hoc, but these algorithms are often
inconsistent or unreliable.22

More recently, pixel-wise segmentation CNNs have
been proposed as an alternative strategy to whole-image
classification. Pixel-wise segmentation CNNs provide
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natural explainability by directly localizing foci of pneu-
monia while achieving a diagnostic performance similar to
whole-image classification CNNs.23 Furthermore, segmen-
tation CNNs benefit from pixel-wise labels that provide a
more granular definition of ground truth. While labeling
requires radiologists to participate in image annotation, it
can allow radiologists to influence and directly teach CNNs
to highlight areas of concern and enable CNNs to adapt to
new data observed in the clinical environment. Transfer
learning allows the CNN to incorporate knowledge from
different but related source domains, and can produce
highly accurate models from a smaller number of images
than may be required to train a CNN from scratch.24

During the first wave of the pandemic in 2020, we began
evaluation of a pixel-wise segmentation CNN for pneumonia
detection23 in our clinical environment.25 We observed several
flaws that were not captured in the summary statistics of per-
formance. First, the CNN was not able to reliably detect
pneumonias in the lung bases, especially the retrocardiac region
behind the heart. Second, cardiothoracic radiologists easily
identified smaller foci of pneumonia involving less than a whole
lobe or entire lung from the clinical images, which the CNN
could not identify. We thus considered the use of transfer
learning to improve the performance of our CNN. We
hypothesized that cardiothoracic radiologists could participate
in the fine-tuning of CNNs by leveraging their ability to cross-
reference findings between CT and radiographic images
obtained on the same day. This might serve as a more reliable
definition of ground truth for algorithm training. After per-
forming transfer learning, we evaluated the performance of the
updated CNN to detect viral pneumonia on patients with
COVID-19 at our institution, testing its ability to prognosticate
clinical outcomes as an additional benchmark of effectiveness.

MATERIALS AND METHODS
The first aim of this retrospective HIPAA-compliant

and IRB-approved study sought to improve the ability of a
previously trained U-net CNN (initial CNN) to detect and
localize pneumonia on frontal chest radiographs.23 This was
accomplished by integrating a new data set, locally anno-
tated by subspecialty cardiothoracic radiologists, through a
process called transfer learning. The second aim was to
assess the ability of this updated CNN to quantify severity of
pneumonia, relative to visual scoring by subspecialty chest
radiologists. The final aim assessed the effectiveness of the
automated pneumonia quantification algorithm to prog-
nosticate outcomes in patients with COVID-19.

Data and Annotations for Transfer Learning
Two data sets were used for transfer learning. First, we

retrospectively curated an “internal data set” consisting of a
consecutive series of 1466 frontal chest radiographs and
paired chest CTs performed on the same day from patients
18 years or older from January 2020 to April 2020. No
additional inclusion or exclusion criteria were used, to
ensure inclusion of concurrent illnesses that occur in our
local population. Foci of pneumonia were annotated on
frontal radiographs based on findings on the corresponding
CT. Examinations were split among 5 board-certified car-
diothoracic radiologists with an average of 4.6 years (range:
2 to 12 y) postfellowship experience using in-house devel-
oped annotation software, which enabled pixel-wise proba-
bility assignment to each pixel of the image. No additional
clinical information was available to the radiologist.

Second, we obtained an “external data set” comprising
25,684 radiographs along with their bounding box annota-
tions of pneumonia.19,26 These same radiographs and
annotations were also used in the training of a previous
CNN,23 which we refer to as the initial CNN.

Data were split by patient with ~80% used for training
and 20% for evaluation. An overview of the data sources
used for training and their data split for evaluation is pro-
vided in Table 1 and Figure 1.

Neural Network Training
To improve the performance of the CNN with the

additional internal data, we had to solve 2 problems, which
are conceptualized in Figure 2. First, we had to identify the
optimal balance of external and internal data that would
maximize the performance of the CNN. Second, we had to
select between multiple potential loss functions that could
optimize performance. We thus conducted a hyper-
parameter search, simultaneously searching across these two
groups of variables, which produced 102 candidate CNNs.
The details of the hyperparameter search are provided in the
supplemental materials, Supplemental Digital Content 1
(http://links.lww.com/JTI/A205). Candidate CNNs were
ranked based on area under the receiver-operating curve
(AUC) and Dice similarity of overlap for their ability to
detect and localize pneumonia (detailed further below) from
the internal evaluation cohort. A single CNN with the
highest AUC and Dice was selected from these candidates as
the updated CNN for subsequent analysis.

An additional CNN was trained from scratch using
only the internal data to provide an additional benchmark
for comparison. This de novo CNN was identical in struc-
ture as the initial CNN, trained from random initial weights
with the same loss function used to train the updated CNN.
CNN training was carried out by a radiology resident
(blinded) using a NVIDIA cloud cluster of 32 GV100s lev-
eraging Kubernetes (Linux Foundation, https://www.
kubernetes.io) running Ubuntu 18.04 (Linux Foundation,
https://www.ubuntu.org) using the TensorFlow 2.0 library27

for the Python 3.8 programming language (Python Software
Foundation, https://www.python.org).

TABLE 1. Data Sources Used for Transfer Learning

External Internal

RSNA/NIH
Matched
Cohort

COVID-19
Cohort

Radiographs 25,684 1466 203
Patients 11,171 1163 203
% AP 45% 73% 89%
% Men 56% 52% 56%
Mean age

(range)
47 (1-92) 57 (18-98) 55 (19-100)

% PNA 22% 48% 86%
Application PNA

localization
PNA

localization
Clinical

evaluation

The updated convolutional neural network (CNN) was trained using a
combination of radiographs and annotations, including an internal
“matched” cohort of patients who underwent chest radiography and com-
puted tomography (CT) on the same day, and an external data set.

AP indicates anterior-posterior; NIH, National Institute of Health; PNA,
pneumonia; RSNA, Radiological Society of America.
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Postprocessing and Quantification of Regional
Severity

To quantify the severity of pneumonia, we applied post-
processing to the resulting probability map generated by the
CNNs. We created a separate CNN to segment the right and left
lung (described in supplemental materials, Supplemental Digital
Content 1, http://links.lww.com/JTI/A205), which we then used
to divide the lungs into upper, middle, and lower lung zones. The
probability map generated by the CNN was then multiplied by
the lung zone masks to estimate regional involvement of pneu-
monia. We then constructed three metrics of severity: Maximum

probability was defined as the maximum probability in each
region; mean probability was defined as the mean within each
region; and the fractional area was defined as the fraction of the
region exceeding a probability of 50%. A detailed methodology is
provided in the supplemental materials, Supplemental Digital
Content 1 (http://links.lww.com/JTI/A205).

Evaluation of Pneumonia Detection and
Localization

Whole-image pneumonia detection performance was
evaluated on the initial, de novo, and updated CNNs using

FIGURE 1. Data sources and performance benchmarks for CNN training, validation, and testing. We retrospectively obtained data from
two cohorts of patients to first fine-tune a prior CNN, and then evaluate the CNN on patients with COVID-19 pneumonia. Technical
performance of the algorithm was technically evaluated with receiver-operating characteristic area under the curve (ROC AUC) and Dice
overlap of segmentations. Algorithm clinical performance was evaluated in the second patient population by assessing colinearity with
radiologist-modified radiographic assessment of lung edema (mRALE) scores and survival analyses.

FIGURE 2. Transfer learning training strategy for CNN fine-tuning with enhanced ground truth. An initial CNN trained on external image
data was refined on images and annotations of pneumonia from patients with chest x-ray and computed tomography that was obtained
on the same day. Hyperparameters of loss function and training data that balanced multiple data sources were used to optimize the
CNN’s detection of pneumonia. KLD indicates Kullback–Leibler divergence; NIH, National Institute of Health; RSNA, Radiological Society
of America.
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sequestered validation cohort, comprising 304 internal and
3684 external radiographs. For each CNN, we compared
AUCs for both internal and external data. Dice similarity
was compared only on internal data with its higher quality
ground truth annotation. Pneumonia detection ROCs were
constructed by varying the threshold on the inferred prob-
ability maps, while setting a binary threshold on the ground
truth annotations. Sensitivities, specificities, positive and
negative predictive values, and accuracy were calculated at
an operating point that equally maximized sensitivity and
specificity (Youden J index).28

To assess regional performance, we additionally per-
formed the same analyses as above, using only the 304
internal radiographs with high-quality ground truth annota-
tions. We also evaluated the performance of our lung seg-
mentation CNN with Dice similarity coefficient, comparing
ground truth annotations to the inferred masks. Statistical
analyses were performed using the SciPy package in python
with 2-sided paired t tests and a type I error rate of 0.05. To
compare AUC, we applied bootstrap sampling with 80% of
the data to evaluate statistical significance between CNNs.

Prognostication in Patients With COVID-19
To assess the ability of the updated CNN to prognosti-

cate hospital outcomes, we retrospectively obtained an
additional independent sample of 1479 chest radiographs
between March and July of 2020 from patients with RT-
PCR-confirmed COVID-19 (Fig. 1). Each of the chest
radiographs from this cohort was independently scored by 2
readers, evenly split among 5 cardiothoracic radiologists. The
density and extent of the radiographic opacities were scored

using a modified radiographic assessment of lung edema
(mRALE) scoring system as previously described in Li et al.1

The mRALE score is calculated based on visual assessment
of the extent and density of airspace disease and range from 0
(normal chest radiograph) to a maximum of 24 (complete
consolidation of both lungs). Inter-reader mRALE agreement
between radiologists was assessed by linear Cohen κ.

Of these 1479 radiographs, 203 were performed on
unique patients within the first 3 days of presentation or
admission. None of these patients was included in algorithm
training. Of these, 7% were obtained in the outpatient setting,
58% in the ER, 35% in the inpatient setting, 16% in the
intensive care unit, and 12% were intubated. Dates of admis-
sion, discharge, intubation, and death were collected from the
medical record. Kaplan-Meier curves for 3 outcomes (intu-
bation, mortality, duration of hospitalization) and correlation
analyses were performed on 203 COVID-19+ patients, using
the radiographs taken within the first 3 days of presentation.
mRALE scores were averaged between the 2 readers for each
of these radiographs. Correlation between mean mRALE
score with severity score (maximum probability, mean prob-
ability, and fractional area) was measured using the Pearson
correlation coefficient. For survival analysis, mRALE scores
were divided into 4 categories of severity (0 to 6, 7 to 12, 13 to
18, and 19 to 24), and each CNN severity score was divided
into quartiles. Survival analyses were performed using the
survival and survminer29 packages in R. To assess the stat-
istical significance of stratification between scores or quartiles,
we conducted post hoc pairwise comparisons of each quartile
using the log-rank statistic with Benjamini-Hochberg multiple
test correction.

FIGURE 3. Improved performance of CNN pneumonia detection with transfer deep learning. The updated CNN (yellow) significantly
outperformed the initial CNN (green) on both external (left) and internal (right) validation data sets. The AUC of pneumonia detection on
the internal data set improved from 0.756 to 0.841 (right panel green to yellow; P=2.0e−4) and from 0.864 to 0.876 on external image
data (left panel green to yellow; P=3.8e−3). Finally, the de novo CNN (gray), trained with only internal data, significantly under-
performed the updated CNN. Operating points (circles) for initial and updated CNNs were defined by equally maximizing sensitivity and
specificity (Youden J Index) applied to the external and internal data sets, respectively.
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RESULTS

Selection of the Optimal CNN Algorithm
The top 10 candidate CNNs are listed in Supplemental

Table 1 (Supplemental Digital Content 2, http://links.lww.
com/JTI/A206). We selected the top performing candidate
(30x Pixel-Weighted mean squared error) CNN and refer to
this as our updated CNN for all subsequent analyses. The
CNN with the maximum performance was optimized using
a mean squared error loss function with a 30-fold weighting
of pixels exceeding 20% on the ground truth pneumonia
probability map. This CNN used an external training data
mix of 1200 negative cases and 600 positive cases for each
epoch of training.

Whole-Image Pneumonia Detection and
Localization Performance

The updated CNN significantly outperformed the ini-
tial CNN for detection of pneumonia on both the internal
and external validation data sets (Fig. 3, Table 2). AUC
improved on the internal validation data set from 0.756 to
0.841 (P< 1e−4). Similarly, AUC on the external vali-
dation data set improved from 0.864 to 0.876 (P= 2.6e−3).
In addition, pneumonia localization improved on the
internal validation data set with a mean Dice improvement

of 0.147 to 0.332 (P< 1e−3). The updated CNN also out-
performed the de novo CNN, which had an AUC of 0.771
for internal data and 0.812 for external data. Comparisons
on both data sets were statistically significant (P< 1e−7).
Dice overlap for the de novo CNN was similar to the
updated CNN on internal data, 0.295, without a statisti-
cally significant difference.

Regional Pneumonia Detection and Localization
Performance

The lung segmentation CNN achieved a Dice mean and
a SD of 0.869±0.084, despite training on only 237 chest
radiographs. On the portion of the internal data set reserved
for validation (n= 304), AUC for detection of pneumonia
improved from 0.739 to 0.812 for the right lung (P= 1.0e−3)
and from 0.776 to 0.848 on the left lung (P= 1.5e−2). We
observed the largest AUC improvement in the lower lung
regions, from 0.747 to 0.808 (P= 2.1e−2) on the right and
from 0.824 to 0.878 (P= 3.7e−2) on the left (see Table 3 for
complete regional detection performance). Similarly, mean
Dice scores for areas marked as involved with pneumonia
improved from 0.154 to 0.333 (P= 6.0e−6) for the right lung
and from 0.161 to 0.395 (P= 1.6e−2) in the left lung. We
observed the biggest improvement in the lower lung regions,
increasing from 0.121 to 0.433 (P= 2.4e−11) for the right

TABLE 2. Performance of the CNN for Whole-image Detection of Pneumonia

External (RSNA/NIH) 23% Pneumonia
Prevalence

Internal (Matched Cohort) 40% Pneumonia
Prevalence

Initial CNN* Updated CNN Initial CNN Updated CNN†

AUC 0.864 0.876 0.756 0.841
P< 2.6e−3 P< 1.0e−4

Model probability threshold 0.64 0.71 0.64 0.71
Sensitivity 0.75 0.95 0.40 0.82
Specificity 0.81 0.52 0.92 0.75
Accuracy 0.80 0.62 0.71 0.78
Negative predictive value 0.91 0.97 0.70 0.86
Positive predictive value 0.55 0.38 0.77 0.69

After employing transfer learning, the convolutional neural network (CNN) showed significant improvement in AUC on internal and external validation
data. CNN operating points were defined by Youden’s index for initial CNN when applied to the external data set (*) and on the updated CNN using the internal
data set (†). The updated CNN markedly improved in sensitivity with a modest loss in specificity when evaluating internal chest radiographs with the operating
point defined by the Youden index. These CNN fine-tuning methods improved the overall negative predictive value and the overall accuracy in our clinical
images.

NIH indicates National Institute of Health; RSNA, Radiological Society of America.

TABLE 3. Performance of the CNN for Regional Classification of Pneumonia on the Internal Data Set

Updated CNN (95% CI) Initial CNN (95% CI) Mean Difference (95% CI), P

Lungs 0.841 (0.796-0.883) 0.756 (0.699-0.814) 0.085 (0.041-0.130), <1.0e−04
Right 0.812 (0.757-0.861) 0.739 (0.680-0.798) 0.072 (0.032-0.114), 1.0e−03

Upper 0.791 (0.709-0.870) 0.771 (0.686-0.852) 0.019 (−0.053-0.093), 6.1e−01
Middle 0.825 (0.770-0.874) 0.777 (0.717-0.836) 0.048 (0.008-0.089), 1.5e−02
Lower 0.808 (0.753-0.859) 0.747 (0.680-0.810) 0.061 (0.010-0.114), 2.1e−02

Left 0.848 (0.793-0.900) 0.776 (0.713-0.838) 0.072 (0.015-0.131), 1.5e−02
Upper 0.826 (0.750-0.892) 0.846 (0.768-0.912) −0.020 (−0.077-0.037), 1.5e+00
Middle 0.871 (0.815-0.925) 0.824 (0.756-0.886) 0.047 (0.001-0.096), 4.4e−02
Lower 0.878 (0.833-0.917) 0.824 (0.768-0.881) 0.054 (0.003-0.106), 3.7e−02

The updated CNN significantly outperformed the initial CNN across nearly all lung regions, with the largest improvements occurring at the lung bases. For
each region, the AUC and Dice confidence intervals were calculated for each model using a bootstrap method (10,000 iterations). From these distributions,
pairwise mean AUC differences, confidence intervals (CI), and P-values (2-sided t test) were calculated. The regional CNN advantage was determined by the
mean difference and the associated P-value.
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lung and from 0.188 to 0.443 (P< 3.9e−15) for the left lung
(see Table 4 for complete regional localization performance).

Exemplar cases are highlighted in Figures 4–7.
Figure 4 illustrates the relationship between the radiol-
ogist’s CT-aided annotation and updated CNN’s inferred
severity of pneumonia. Figure 5 illustrates the updated
CNN’s improved sensitivity for foci of COVID-19 pneu-
monia in a patient who had a CT performed hours after the
radiograph. Figure 6 illustrates the improvement in sensi-
tivity of the updated CNN for more subtle opacities of
COVID-19 pneumonia, as it blooms over several days.
Figure 7 illustrates the regions of lung involvement inferred
by the updated CNN in three additional individuals with
COVID-19.

Severity Score and Survival Analysis
The inter-rater correlation for mRALE scores for 1479

radiographs scored by 5 cardiothoracic radiologists was
substantial (linear Cohen κ, mean: 0.72). For the 203 radio-
graphs that were obtained within 3 days of initial pre-
sentation, there was strong agreement between mRALE score
and each of the metrics from the updated CNN:
mean probability (ρ= 0.86, P< 2.2e−16), fractional area
(ρ= 0.85, P< 2.2e−16), and maximum probability (ρ= 0.64,
P< 2.2e−16) (Supplemental Table 2, Supplemental Digital
Content 2, http://links.lww.com/JTI/A206).

As anticipated, survival analysis showed that patients
with the lowest mRALE score had the best median survival,
lowest probability of intubation, and shortest duration of
hospital stay (Fig. 8). Patients with the highest mRALE
score had the opposite result. CNN estimates of severity
showed similar stratification. Notably, mean probability
and fractional area both strongly stratified patients for all
three clinical end points, though mRALE scores averaged
between 2 radiologists was superior for prognosticating
mortality. A low “maximum probability” estimated by the
CNN was a strong predictor of immediate discharge with-
out the need for hospitalization. A complete list of log-rank
pairwise comparisons with Benjamini-Hochberg correction
are provided in Supplemental Table 1 (Supplemental Digital
Content 2, http://links.lww.com/JTI/A206).

DISCUSSION
In this study, we demonstrate the flexibility and plas-

ticity of CNNs to learn from expert supervision by sub-
specialist cardiothoracic radiologists and show an improved
ability to detect and localize pneumonia. We observed that
the performance of the CNN trained initially only on
external image data did not perform well on radiographs
performed at our institution, as is often expected.18 Sim-
ilarly, the performance of the de novo CNN trained solely

TABLE 4. Performance of the CNN for Regional Localization of Pneumonia on the Internal Data Set

Updated CNN [IQR] Initial CNN [IQR] Mean Difference [IQR], P

Lungs 0.332 [0.075-0.503] 0.147 [0.000-0.285] 0.185 [0.000-0.339], 5.3e−08
Right 0.333 [0.026-0.552] 0.154 [0.000-0.244] 0.180 [0.000-0.332], 6.0e−06

Upper 0.395 [0.133-0.640] 0.161 [0.000-0.272] 0.234 [0.000-0.404], 9.6e−08
Middle 0.322 [0.000-0.685] 0.232 [0.000-0.524] 0.090 [0.000-0.229], 2.1e−01
Lower 0.343 [0.030-0.544] 0.197 [0.000-0.315] 0.147 [0.000-0.251], 2.6e−03

Left 0.433 [0.078-0.683] 0.121 [0.000-0.228] 0.312 [0.005-0.589], 2.4e−11
Upper 0.293 [0.000-0.649] 0.147 [0.000-0.245] 0.146 [0.000-0.441], 2.8e−02
Middle 0.381 [0.062-0.720] 0.242 [0.000-0.499] 0.139 [0.000-0.237], 1.6e−02
Lower 0.486 [0.267-0.723] 0.111 [0.000-0.077] 0.375 [0.075-0.636], 3.9e−15

The updated CNN significantly outperformed the initial CNN across nearly all lung regions with the largest improvements occurring at the lung bases, most
notably a > 4-fold increase at the left lung base. For each region and CNN, the mean Dice interquartile range (IQR) was calculated. Pairwise Dice differences,
IQR, and P-values (2-sided t test) were calculated. The regional CNN advantage was determined by the mean Dice difference and the associated P-value.

FIGURE 4. Quantification of the regional severity of pneumonia. Results are shown from a patient in the validation set. Manual
annotations by a cardiothoracic radiologist (top row) closely matched the regions of pneumonia detected by the updated convolutional
neural network (CNN) (bottom row). Regional quantitative measurements from manual radiologist annotation and the CNN were
similar.
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FIGURE 5. Improved pneumonia localization in a patient with COVID-19. Chest radiograph and coronal CT PE images in a 66-year-old
male with a history of a cardiac transplant and PCR+ COVID-19, who presented with acute hypoxemic respiratory failure. The updated
CNN (top right) better localizes areas of ground glass than the initial CNN (top middle), which are confirmed by CT performed several
hours later (bottom row), which shows peripheral and basal predominant ground glass opacities consistent with COVID-19
pneumonia.

FIGURE 6. Longitudinal change in pneumonia in a patient with COVID-19. This 42-year-old man initially presented with nasal con-
gestion, minimal cough, intermittent sweats, and no shortness of breath. COVID-19 RT-PCR was positive on day 0 and he was discharged
to home self-isolation. The patient returned on day 4 with acute worsening of shortness of breath, fever, chills, myalgias, arthralgias,
anosmia, cough, pleuritic chest pain, and was admitted with sepsis. The patient was discharged home on day 10. Subtle ill-defined
opacities are present on the initial chest x-ray, which bloom considerably 4 days later, and are highlighted with greater certainty by the
updated CNN algorithm.
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on a relatively small number of cases from our institution
showed relatively weak performance. The optimal CNN
was ultimately found leveraging a combination of both data

sources. Interestingly, the de novo CNN showed greater
performance on external data than internal data. We spec-
ulate that this was because the internal data included more

FIGURE 7. Updated CNN pneumonia localization on radiographs from three patients with COVID-19 pneumonia. A, Subtle bilateral
perihilar and lower lung opacities detected with intermediate confidence by the updated CNN. B, Diffuse bilateral opacities in an
intubated patient detected with high confidence by the updated CNN. C, A chest radiograph with peripherally predominant bilateral
basal opacities, confirmed by CT 2 hours later.

FIGURE 8. CNN pneumonia severity score and radiologist visual score of x-rays of patients with COVID-19. A, Correlation to radiologists’
visual scoring: convolutional neural network (CNN) severity metrics (maximum probability, mean probability, and fractional area
involvement) correlated well with visual scores. Modified radiographic assessment of lung edema (mRALE) scores are divided into colored
quartiles. The mean probability and fractional area are linearly correlated with mRALE scores. Maximum probability shows a nonlinear
relationship with mRALE. B, Survival analysis of patients with COVID-19 based on x-rays at initial presentation: stratifying patients based
on radiographs obtained within the first 3 days of presentation or hospital admission strongly prognosticated mortality, likelihood of
intubation, and duration of hospitalization. Visual mRALE score strongly separated patients for all 3 survival analyses. CNN severity
measurements of disease severity also strongly separated patients.
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patients with subtle, smaller foci of pneumonia, which made
the “internal” task more challenging. Other explanations for
the difference in performance may include differences in
equipment, image preprocessing, downsampling strategies,
and quality of image annotation. There may have been
differences in patient factors as well, including differences in
demographics, body habitus, frequency of concurrent dis-
ease like cancer or heart failure, and types and severity of
pneumonia.

Using a transfer learning approach, we were able to
specifically improve the localization of lower lobe pneu-
monias, which were not well addressed by the initial CNN.
In addition, training a de novo CNN showed inferior results
compared with our updated CNN, suggesting that transfer
learning may be a better approach for extending general-
izability of CNN algorithms across institutions. Specifically,
we highlighted how this transfer learning strategy can
maximize performance of a CNN by combining and bal-
ancing the benefit of two distinct data sets: (a) a smaller
number of chest radiographs with more precisely defined
ground truth and (b) a larger volume of radiographs with
less precisely defined ground truth. This strategy is made
feasible because of our choice to use a segmentation CNN
called a U-Net, which provides natural explainability
through its production of image maps that can be readily
interpreted by a supervising radiologist and engage this as a
natural human–machine interface.30

Much of the existing literature has emphasized classi-
fication algorithms16–19,31 and have shown impressive per-
formance without explicit radiologist annotations, with
AUCs for pneumonia detection ranging from 0.633 to
0.911.16–19,31 Classification CNNs are an attractive
approach because they do not require manual radiologist
labeling and localization of the findings on chest radiograph,
but generally require very large data sets on the order of
hundreds of thousands of chest radiographs to achieve a
high level of performance. However, they often lack clear
explainability to their results, requiring post-hoc methods to
reveal their rationale for classification.32 Furthermore, it is
unclear how classification approaches might benefit from
radiologist supervision. In contrast, we show that by lever-
aging an alternative segmentation approach, it is possible to
markedly improve performance of a pretrained CNN to
perform better in our clinical environment after incorpo-
rating training with a modest number (1,172) of additional
radiographs, while substantially increasing AUC on radio-
graphs in our clinical environment from 0.756 to 0.841. This
result highlights an opportunity for radiologists to partic-
ipate in the tuning of CNN algorithms for clinical use.
While the development of AI algorithms has been consid-
ered by many to be the domain of industry or research
laboratories, these results suggest that radiologists may play
an essential role in the training and tuning of CNNs for their
local environments.

Using a segmentation strategy also yields other bene-
fits, including the simultaneous quantification of disease. We
show that with it, it is feasible to accomplish both detection
and segmentation of pneumonia with a single segmentation
CNN, which can be further leveraged to quantify disease
severity. The performance of this strategy is comparable to
the recently described dedicated algorithms for grading
severity of pneumonia.25 In addition, we find that meas-
urements made through our CNN provide a strong prog-
nostic value, particularly among patients with COVID-19 at
our institution; they were able to stratify patients that

required longer durations of hospitalization, required intu-
bation, or ultimately succumbed to COVID-19. Fur-
thermore, it is important to note that severity scoring of
pneumonia is not routinely performed at most institutions as
part of routine clinical practice. CNNs may fill new roles in
diagnostic radiology as they are able to automatically track
disease severity and prognosticate patient outcomes to assist
in patient triage or management, as deployed into the clin-
ical environment.25,33

The strategy outlined in this study is one of the several
possible approaches to improve a pneumonia detection/
localization CNN. Other ways to improve the CNN’s per-
formance may include preprocessing radiographs to exclude
rib shadows,34 altering the CNN architecture to additionally
predict whole-image pneumonia likelihood or severity, and
other transfer learning techniques such as differential CNN
weight freezing during training. Whatever the technique,
understanding how the data and the loss functions affect the
training is pivotal to CNN improvement.

There are several limitations to this study and its proof
of technical feasibility. First, the proposed algorithm does not
incorporate clinical factors such as symptomatology, body
temperature, or supporting laboratory findings, which are
necessary for the diagnosis of pneumonia. Future algorithm
improvements may benefit from integrating nonimaging
clinical data. Second, our lung segmentation’s performance
does not approach that of similar CNN-based techniques.35

In the future, our algorithm may be improved through using
more training examples, using other CNN architectures, or
non-CNN computer vision techniques that have proven
effective in lung segmentation.36 Additional improvements
could include converting regional lung zone segmentations to
the lobar anatomic correlates using lateral radiographs.
Third, our algorithm was generated from patients at one
academic institution in the United States and may benefit
from additional data sources to ensure broad generalizability.
Nevertheless, as emphasized earlier, we anticipate that con-
tinuous learning may become an important facet of this
technology. It remains unclear how algorithms may improve
through incorporation of multi-institutional data sets, fine-
tuning that may be required to extend across regional pop-
ulations, and control for technical differences. The strategy
that we have highlighted here may be primarily beneficial for
the latter caveat. Finally, we only explored survival analyses
from a cross-section of COVID-19 patients at a single time
point of their initial presentation. Longitudinal analyses
incorporating chest radiographs and their temporal evolution
may further improve prognostic value.

We successfully show that a transfer learning strategy
incorporating radiologist-defined ground truth is feasible
and can serve as an important strategy to improve CNN
performance. This may be necessary for CNNs to perform
effectively across new and constantly changing clinical
environments. As we have observed from the COVID-19
pandemic, the practice of diagnostic radiology is dynamic
and constantly evolving. To maximize their clinical value,
artificial intelligence systems may benefit if designed to
continuously learn from radiologist expertise.
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