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ABSTRACT

Distributed consensus algorithms such as Paxos have been studied
extensively. Many different liveness properties and assumptions
have been stated for them, but there are no systematic comparisons
for better understanding of these properties.

This paper systematically studies and compares different live-
ness properties stated for over 30 prominent consensus algorithms
and variants. We introduced a precise high-level language and for-
mally specified these properties in the language. We then create
a hierarchy of liveness properties combining two hierarchies of
the assumptions used and a hierarchy of the assertions made, and
compare the strengths and weaknesses of algorithms that ensure
these properties. Our formal specifications and systematic compar-
isons led to the discovery of a range of problems in various stated
liveness properties. We also developed TLA+ specifications of these
liveness properties, and we used model checking of execution steps
to illustrate liveness patterns for Paxos.
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1 INTRODUCTION

Distributed consensus is a fundamental problem in distributed sys-
tems. Many algorithms and variations have been created for dis-
tributed consensus. These algorithms are required to be safe in that
only a single value or a single sequence of values have been agreed
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on at any time, and the value or values agreed on are among the
values proposed by the processes.

However, liveness of these algorithms—certain desired progress
has been made in reaching agreement—has many variations and
lacks systematic comparisons. Furthermore, it is sometimes unclear
or ambiguous what exactly liveness means for these algorithms.

This paper considers the most prominent consensus algorithms
and variants listed in Table 1 and presents our results from precisely
specifying, comparing, and analyzing their liveness properties that
are stated in the literature, including the assumptions under which
the properties are satisfied. We categorize the assumptions into (1)
link assumptions, i.e., what is assumed about the communication
links, and (2) server assumptions, i.e., what is assumed about the
servers in the system. We relate different assumptions and asser-
tions by creating three hierarchies. Together they form an overall
hierarchy of liveness properties, which includes all the liveness
properties stated for the algorithms and variants considered.

We introduced a precise high-level language and formally speci-
fied all these assumptions and assertions. In fact, it was the precise
language and formal specifications that allowed us to establish the
precise relationships among all the assumptions and assertions.
The overall hierarchy not only helps in understanding liveness, but
also helps in finding tighter results. It led us to the discovery of a
range of problems in various stated liveness properties, from lack-
ing assumptions or too weak assumptions under which no liveness
assertions can hold, to too strong assumptions making it trivial or
uninteresting to satisfy the liveness assertions. For example,

e EPaxos [36] assumes that eventually, there is always some
quorum of servers that is non-faulty (what we call Alw-Q), but
this is too weak, because each such quorum might not stay
non-faulty long enough to make progress.

e Zab [20], Paxso-EPR [39], and some others assume that even-
tually, there is a server P and a quorum Q of servers, such
that always, P is non-faulty and is the primary and Q is non-
faulty (what we call PQ-Alw). Such strong assumptions make
it trivial to reach consensus.

This also led to the question of what the right liveness properties are.
In fact, many protocols assert stronger properties than necessary.

2 CONSENSUS PROBLEM AND ALGORITHMS

A distributed system is a set of processes each operating on its
local data and communicating with other processes by sending and
receiving messages. A process may crash and may later recover,
and a message may be lost, delayed, put out of order, or duplicated.
A process is said to be non-faulty if “it eventually performs the
actions that it should, such as responding to messages” [30].

The basic consensus problem, called single-value consensus, is
to ensure that a single value is chosen by non-faulty processes
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from among the set of values proposed by the processes. The more
general consensus problem, called multi-value consensus, is to
choose a single sequence of values, instead of a single value.

We identify two types of processes: servers execute some con-
sensus algorithm and together provide consensus as a service, and
clients use this service. For multi-value consensus, clients send val-
ues to servers for them to order, and each server maintains a log,
i.e., a sequence of chosen values, with indices called slots.

A server is said to be primary if it is explicitly elected by the
algorithm to be the single primary or leader among all servers in
the system. In general, the defining property of the primary is that
it is the only server that can propose values to other servers. Note
that some consensus algorithms do not use a primary.

A quorum system Qs is a set of subsets, called quorums, of servers
such that any two quorums overlap. A quorum is said to be non-
faulty if each server in it is non-faulty, and faulty otherwise.

Table 1 shows the algorithms and variants studied in five groups:
(1) algorithms based on Virtual Synchrony [6], the first algorithm
for reliable group communication using broadcast primitives.
an algorithm and variant called Viewstamped Replication [37],
the earliest that has a primary-backup architecture.
an algorithm and three core variants in the Paxos [28] family,
the earliest algorithm based on symmetric leader election.
two single-value consensus algorithms with failure detection,
for crash failure model and crash-recover failure model.
other algorithm variations, where the earliest (14-15) and latest
(25-31) are specified formally, in languages with automated
checking, and with proof support or compilation and execution.

@
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In essence, all algorithms in Table 1 are quorum-based and run
in rounds. A round is identified by a unique number, and is started
by at most one server. Multiple rounds may run simultaneously.

e A server initiates a new round once it thinks that the current
round has died, i.e., stopped making progress. Different algo-
rithms use different conditions to decide this.

o A server learns a value upon either receiving votes from a quo-
rum of servers for that value in some round or a message from
some other server informing it about the value learned.

o If the server is maintaining a state machine, it then executes the
learned value on the state machine.

o The result of executing a value is sent to the client as a response
to the value it initially requested.

3 LIVENESS SPECIFICATION AND HIERARCHY

Table 2 shows the total order of link assumptions, in increasing
strength from top to bottom. Figure 1 shows the hierarchies for
server assumptions and liveness assertions. An arrow from node A
to node B denotes that A implies B; we say that A is stronger than
B. These assumptions and assertions are summarized below.

Link assumptions.

(1) Raw: messages sent may or may not be received.

(2) Fair: all links between servers are fair, that is “if a correct
process repeatedly sends a message to another correct process,
at least one copy is eventually delivered” [40].

(3) Sure: the time between a message being sent and the message
being received has a known upper bound.

[Name [Description [Language used
1|VS-ISIS Reliable group communication, Birman-Joseph|English (items)
1987 [7]
2| VS-ISIS2 Virtual synchrony, Birman-Joseph 1987 [6] English
3|EVS Extended virtual synchrony for network partition,| pseudocode
Amir et al 1995 [2, 3]
4|Paxos-VS  |Virtually synchronous Paxos, Birman-Malkhi-van|pseudocode
Renesse 2012 [8]
5|Derecho Virtually synchronous state machine replication,| pseudocode
Jha et al 2019 [19]
6|VR Viewstamped replication, Oki-Liskov 1988 [37]  |pseudocode
(coarse)
7|VR-Revisit |VR revisited, Liskov 2012 [32] English (items)
8|Paxos- Paxos in part-time parliament, Lamport 1998 [28] |TLA  (single-
Synod value)
9| Paxos-Basic | Single-value Paxos, Lamport 2001 [29] English (items)

10| Paxos-Fast

Single-value Paxos with replicas proposing, Lam-
port 2006 [30]

English (items),
TLA+

11|Paxos- Single-value Paxos with external starting of leader|PlusCal
Vertical election, Lamport-Malkhi-Zhou 2009 [31]

12|CT Single-value consensus with crash failures, pseudocode
Chandra-Toueg 1996 [13]

13|ACT Single-value consensus in crash-recovery model,| pseudocode
Aguilera-Chen-Toueg 2000 [1]

14|Paxos-Time [Paxos with time analysis, De Prisco-Lampson-IOA (single-
Lynch 2001 [14] value)

15 |Paxos-PVS |Single-value Paxos for proof, Kelloméki 2004 [25] |[PVS

16 | Chubby Paxos in Google’s Chubby lock service, Burrows|English (partial
2006 [9] items)
17 |Chubby-  [Chubby in Paxos made live, Chandra-Griesemer- English
Live Redstone 2007 [12]
18|Paxo0s-SB | Paxos for system builders, Kirsch-Amir 2008 [27] |pseudocode
19 | Mencius Paxos with leaders proposing in turn, Mao et al|English (items)
2008 [34]
20| Zab Yahoo/Apache’s Zookeeper atomic broadcast, English (items)
Junqueira-Reed-Serafini 2011 [20]
21|Zab-FLE Zab with fast leader election, Medeiros 2012 [35] |pseudocode
22 |EPaxos Egalitarian Paxos, Moraru-Andersen-Kaminsky|pseudocode
2013 [36]
23| Raft Consensus in RAMCloud, Ongaro-Ousterhout|pseudocode
2014 [38]
24| Paxos- Paxos made moderately complex, van Renesse- pseudocode,
Complex  |Altinbuken 2015 [40] Python
25|IronRSL Paxos in Microsoft’s IronFleet for proof, Hawblitzel | Dafny
et al 2015 [18]
26 | Paxos-TLA |Paxos for proof using TLAPS, Chand-Liu-Stoller| TLA+
2016 [11]
27| LastVoting- | Single-value Paxos in Heard-Of model for proof,| PSync
PSync Dragoi-Henzinger-Zufferey 2016 [15]
28 |Raft-Verdi |Raft for proof using Coq, Wilcox-Sergey-Tatlock|Verdi
2017 [41]
29 |Paxos-EPR |Paxos in effectively propositional logic for proof,|Ivy
Padon et al 2017 [39]
30| Paxos- Paxos deconstructed, Garcia et al 2018 [16, 17] Scala/Akka
Decon
31 |Paxos-High | Paxos in high-level executable specification, Liu- DistAlgo

Chand-Stoller 2019 [33]

Table 1: Distributed consensus algorithms and variants, and
languages used to express them.

Asm

Algorithms and Variants

Raw|VS-ISIS, VS-ISIS2, Derecho, VR, VR-Revisit, Paxos-Basic, Paxos-Vertical, Paxos-

PVS, Chubby, Zab-FLE, Raft, Paxos-TLA, Raft-Verdi, Paxos-Decon, Paxos-High

Fair
Complex,

Paxos-EPR

EVS, Paxos-VS, Paxos-Fast, CT, ACT, Paxos-SB, Mencius, EPaxos, Paxos-

Sure|Paxos-Synod, Paxos-Time, Chubby-Live, Zab, IronRSL, LastVoting-PSync

Table 2: Link assumptions used by algorithms and variants.

Server assumptions. All definitions are implicitly prefixed with

“eventually”.

Alw-Q: there is always some quorum of servers that is non-faulty.
Q-Alw: there is some quorum of servers that is always non-faulty.
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Figure 1: Hierarchies of server assumptions (left) and live-
ness assertions (right) as stated by the algorithms’ authors.

P-Alw-Q: there is a server P such that, always, P is non-faulty and
is the primary and there is some quorum Q that is non-faulty.
PQ-Alw: there is a server P and a quorum Q of servers, such that
always, P is non-faulty and is the primary and Q is non-faulty.
Alw: all servers are always non-faulty, i.e., non-faulty forever
from that time on.
PQ-Dur: there is a server P and a quorum Q such that P and Q
are non-faulty and P is the primary, for some duration of time.
PQ-Extra-Dur: there is a duration of time D1 + D2 such that (1)
the set of non-faulty servers does not change in the duration,
(2) after duration D1, primary is selected, and (3) at least a fixed
quorum of servers is non-faulty during the entire duration.
Liveness assertions. For brevity, we omit describing slots here.
All definitions are implicitly prefixed with “eventually”.
Each-Vote: in some round, each server of some quorum sends a
vote for the same value in that round.
Some-Learn: some non-faulty server learns a value.
Each-Learn: each server of some quorum learns the same value.
Some-Exec: some non-faulty server executes a value.
Each-Exec: each server of some quorum executes the same value.
Resp: each client request is responded to.

4 LIVENESS PROPERTIES AND ANALYSIS

Table 3 summarizes the assumptions, assertions, the kind of proofs
of the algorithms discussed, and our analysis.

ProrosiTioN 1 (Each-Vote INsUFFICIENT). Each-Vote is not
strong enough as a liveness assertion.

ProrosITION 2 (NONE FROM Raw). No algorithm can satisfy any
liveness assertion described above under Raw.

PROPOSITION 3 (ALL FROM Q-Alw SINGLE). There is an algorithm
that solves single-value consensus and satisfies all liveness assertions
described above under Fair and Q-Alw.

PROPOSITION 4 (ALL FROM Q-Alw). There is an algorithm that
claims to solve consensus and satisfies all liveness properties described
above under Fair and Q-Alw.

Name Assumptwns Assertions Proofs Analysis
Link | Server
3|EVS Fair |Q-Alw Each-Exec [Systematic||(Prop 4)
4|Paxos-VS Fair |P-Alw-Q |Resp - (Prop 5)
5|Derecho Fair |P-Alw-Q |‘progress” - lacking assertions
7[VR7Revisit “Raw[P-Alw-Q [Resp [Prose “(Prop 2)
8|Paxos-Synod ||Sure|PQ-Extra- |[Each-Learn+|Prose assuming primary
Dur
10|Paxos-Fast  ||Fair |PQ-Alw |Some-Learn |Systematic||(Cor 5.1)
12|CT Fair |Q-Alw Each-Learn |Systematic||(Prop 3)
13|ACT Fair |Q-Alw Each-Learn |Systematic||(Prop 3)
14|Paxos-Time ||Sure/PQ-Dur |Each-Exec+ |Systematic||assuming primary
17|Chubby-Live ||Sure|Alw Resp - (Cor 5.1),
trivial from Alw
18|Paxos-SB Fair |Q-Alw Some-Exec |- (Prop 4)
19| Mencius Fair |- “liveness” - lacking assumptions
20|Zab Sure|PQ-Alw  |Each-Exec |Sketch (Cor 5.1)
22|EPaxos Fair |Alw-Q Some-Exec |- (Prop 7)
24|Paxos- Fair |- Resp - lacking assumptions,
Complex (Prop 6)
25|IronRSL Sure|PQ-Alw  [Some-Exec, |Formal (Cor 5.1)
Resp (Dafny)
26|LastVoting- ||Sure|PQ-Dur |Each-Learn+|Formal assuming primary
PSync (PSync)
29|Paxos-EPR  ||Fair |[PQ-Alw |Each-Vote |Formal (Cor 5.1),
dvy) (Prop 1)

Table 3: Assumptions, assertions, and proofs, as provided by
the respective authors, together with our analysis.

“-” indicates that the information is not provided.

in Assertions indicates that the calculation of the bound
after which the assertion would be satisfied is also given.

“« . »
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PropOsSITION 5 (Resp FROM P-Alw-Q). There is an algorithm
that claims to solve consensus and satisfy Resp under Fair and P-
Alw-Q.

CoROLLARY 5.1 (WEAK FROM PQ-Alw). A liveness property that
assumes PQ-Alw is a weak property, because the assumption is
stronger than necessary.

ProrosITION 6 (NOT Resp). Paxos-Complex cannot satisfy Resp,
even with Alw.

The following impossibility result was also discussed by Kirsch
and Amir [26, Strong L1] and proved by Keidar and Shraer [23, 24].

ProposITION 7 (NONE FROM Alw-Q). No quorum-based consen-
sus algorithm that executes in rounds can satisfy Some-Learn under
Fair and Alw-Q.

What are the right liveness properties? Clearly, Resp guarantees
server response to client requests, and Each-Exec and Each-Learn
are not needed for Resp. One can also see in existing algorithms
that Some-Learn ensures consensus, while Each-Vote might not,
and Fair with either Q-Alw or P-Alw-Q can ensure Some-Learn.
Stronger assumptions with durations can yield stronger assertions.

5 RELATED WORK AND CONCLUSION

Besides the works already discussed, there are additional studies of
consensus algorithms and variants, building on earlier works, relat-
ing existing algorithms, and discussing liveness, e.g., COReL [21, 22],
Congruity [4, 5], and GIRAF [23, 24]. Our work is a first step in pre-
cise specification of the wide variety of liveness properties. Much
future work is needed for precise complexity analysis for liveness.
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