
Brief Announcement: What’s Live? Understanding Distributed
Consensus

Saksham Chand
∗

schand@cs.stonybrook.edu

Computer Science Department, Stony Brook University

Stony Brook, New York, USA

Yanhong A. Liu

liu@cs.stonybrook.edu

Computer Science Department, Stony Brook University

Stony Brook, New York, USA

ABSTRACT
Distributed consensus algorithms such as Paxos have been studied

extensively. Many different liveness properties and assumptions

have been stated for them, but there are no systematic comparisons

for better understanding of these properties.

This paper systematically studies and compares different live-

ness properties stated for over 30 prominent consensus algorithms

and variants. We introduced a precise high-level language and for-

mally specified these properties in the language. We then create

a hierarchy of liveness properties combining two hierarchies of

the assumptions used and a hierarchy of the assertions made, and

compare the strengths and weaknesses of algorithms that ensure

these properties. Our formal specifications and systematic compar-

isons led to the discovery of a range of problems in various stated

liveness properties. We also developed TLA+ specifications of these

liveness properties, and we used model checking of execution steps

to illustrate liveness patterns for Paxos.
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1 INTRODUCTION
Distributed consensus is a fundamental problem in distributed sys-

tems. Many algorithms and variations have been created for dis-

tributed consensus. These algorithms are required to be safe in that

only a single value or a single sequence of values have been agreed
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on at any time, and the value or values agreed on are among the

values proposed by the processes.

However, liveness of these algorithms—certain desired progress

has been made in reaching agreement—has many variations and

lacks systematic comparisons. Furthermore, it is sometimes unclear

or ambiguous what exactly liveness means for these algorithms.

This paper considers the most prominent consensus algorithms

and variants listed in Table 1 and presents our results from precisely

specifying, comparing, and analyzing their liveness properties that

are stated in the literature, including the assumptions under which

the properties are satisfied. We categorize the assumptions into (1)

link assumptions, i.e., what is assumed about the communication

links, and (2) server assumptions, i.e., what is assumed about the

servers in the system. We relate different assumptions and asser-

tions by creating three hierarchies. Together they form an overall

hierarchy of liveness properties, which includes all the liveness

properties stated for the algorithms and variants considered.

We introduced a precise high-level language and formally speci-

fied all these assumptions and assertions. In fact, it was the precise

language and formal specifications that allowed us to establish the

precise relationships among all the assumptions and assertions.

The overall hierarchy not only helps in understanding liveness, but

also helps in finding tighter results. It led us to the discovery of a

range of problems in various stated liveness properties, from lack-

ing assumptions or too weak assumptions under which no liveness

assertions can hold, to too strong assumptions making it trivial or

uninteresting to satisfy the liveness assertions. For example,

• EPaxos [36] assumes that eventually, there is always some

quorum of servers that is non-faulty (what we call Alw-Q), but
this is too weak, because each such quorum might not stay

non-faulty long enough to make progress.

• Zab [20], Paxso-EPR [39], and some others assume that even-

tually, there is a server P and a quorum Q of servers, such

that always, P is non-faulty and is the primary and Q is non-

faulty (what we call PQ-Alw). Such strong assumptions make

it trivial to reach consensus.

This also led to the question of what the right liveness properties are.

In fact, many protocols assert stronger properties than necessary.

2 CONSENSUS PROBLEM AND ALGORITHMS
A distributed system is a set of processes each operating on its

local data and communicating with other processes by sending and

receiving messages. A process may crash and may later recover,

and a message may be lost, delayed, put out of order, or duplicated.

A process is said to be non-faulty if “it eventually performs the

actions that it should, such as responding to messages” [30].

The basic consensus problem, called single-value consensus, is

to ensure that a single value is chosen by non-faulty processes
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from among the set of values proposed by the processes. The more

general consensus problem, called multi-value consensus, is to

choose a single sequence of values, instead of a single value.

We identify two types of processes: servers execute some con-

sensus algorithm and together provide consensus as a service, and

clients use this service. For multi-value consensus, clients send val-

ues to servers for them to order, and each server maintains a log,
i.e., a sequence of chosen values, with indices called slots.

A server is said to be primary if it is explicitly elected by the

algorithm to be the single primary or leader among all servers in

the system. In general, the defining property of the primary is that

it is the only server that can propose values to other servers. Note

that some consensus algorithms do not use a primary.

A quorum system𝑄𝑠 is a set of subsets, called quorums, of servers

such that any two quorums overlap. A quorum is said to be non-
faulty if each server in it is non-faulty, and faulty otherwise.

Table 1 shows the algorithms and variants studied in five groups:

(1) algorithms based on Virtual Synchrony [6], the first algorithm

for reliable group communication using broadcast primitives.

(2) an algorithm and variant called Viewstamped Replication [37],

the earliest that has a primary-backup architecture.

(3) an algorithm and three core variants in the Paxos [28] family,

the earliest algorithm based on symmetric leader election.

(4) two single-value consensus algorithms with failure detection,

for crash failure model and crash-recover failure model.

(5) other algorithm variations, where the earliest (14-15) and latest

(25-31) are specified formally, in languages with automated

checking, and with proof support or compilation and execution.

In essence, all algorithms in Table 1 are quorum-based and run

in rounds. A round is identified by a unique number, and is started

by at most one server. Multiple rounds may run simultaneously.

• A server initiates a new round once it thinks that the current

round has died, i.e., stopped making progress. Different algo-

rithms use different conditions to decide this.

• A server learns a value upon either receiving votes from a quo-

rum of servers for that value in some round or a message from

some other server informing it about the value learned.

• If the server is maintaining a state machine, it then executes the
learned value on the state machine.

• The result of executing a value is sent to the client as a response
to the value it initially requested.

3 LIVENESS SPECIFICATIONANDHIERARCHY
Table 2 shows the total order of link assumptions, in increasing

strength from top to bottom. Figure 1 shows the hierarchies for

server assumptions and liveness assertions. An arrow from node 𝐴

to node 𝐵 denotes that 𝐴 implies 𝐵; we say that 𝐴 is stronger than
𝐵. These assumptions and assertions are summarized below.

Link assumptions.
(1) Raw: messages sent may or may not be received.

(2) Fair: all links between servers are fair, that is “if a correct

process repeatedly sends a message to another correct process,

at least one copy is eventually delivered” [40].

(3) Sure: the time between a message being sent and the message

being received has a known upper bound.

Name Description Language used

1 VS-ISIS Reliable group communication, Birman-Joseph

1987 [7]

English (items)

2 VS-ISIS2 Virtual synchrony, Birman-Joseph 1987 [6] English

3 EVS Extended virtual synchrony for network partition,

Amir et al 1995 [2, 3]

pseudocode

4 Paxos-VS Virtually synchronous Paxos, Birman-Malkhi-van

Renesse 2012 [8]

pseudocode

5 Derecho Virtually synchronous state machine replication,

Jha et al 2019 [19]

pseudocode

6 VR Viewstamped replication, Oki-Liskov 1988 [37] pseudocode

(coarse)

7 VR-Revisit VR revisited, Liskov 2012 [32] English (items)

8 Paxos-

Synod

Paxos in part-time parliament, Lamport 1998 [28] TLA (single-

value)

9 Paxos-Basic Single-value Paxos, Lamport 2001 [29] English (items)

10 Paxos-Fast Single-value Paxos with replicas proposing, Lam-

port 2006 [30]

English (items),

TLA+

11 Paxos-

Vertical

Single-value Paxos with external starting of leader

election, Lamport-Malkhi-Zhou 2009 [31]

PlusCal

12 CT Single-value consensus with crash failures,

Chandra-Toueg 1996 [13]

pseudocode

13 ACT Single-value consensus in crash-recovery model,

Aguilera-Chen-Toueg 2000 [1]

pseudocode

14 Paxos-Time Paxos with time analysis, De Prisco-Lampson-

Lynch 2001 [14]

IOA (single-

value)

15 Paxos-PVS Single-value Paxos for proof, Kellomäki 2004 [25] PVS

16 Chubby Paxos in Google’s Chubby lock service, Burrows

2006 [9]

English (partial

items)

17 Chubby-

Live

Chubby in Paxos made live, Chandra-Griesemer-

Redstone 2007 [12]

English

18 Paxos-SB Paxos for system builders, Kirsch-Amir 2008 [27] pseudocode

19 Mencius Paxos with leaders proposing in turn, Mao et al

2008 [34]

English (items)

20 Zab Yahoo/Apache’s Zookeeper atomic broadcast,

Junqueira-Reed-Serafini 2011 [20]

English (items)

21 Zab-FLE Zab with fast leader election, Medeiros 2012 [35] pseudocode

22 EPaxos Egalitarian Paxos, Moraru-Andersen-Kaminsky

2013 [36]

pseudocode

23 Raft Consensus in RAMCloud, Ongaro-Ousterhout

2014 [38]

pseudocode

24 Paxos-

Complex

Paxos made moderately complex, van Renesse-

Altinbuken 2015 [40]

pseudocode,

Python

25 IronRSL Paxos in Microsoft’s IronFleet for proof, Hawblitzel

et al 2015 [18]

Dafny

26 Paxos-TLA Paxos for proof using TLAPS, Chand-Liu-Stoller

2016 [11]

TLA+

27 LastVoting-

PSync

Single-value Paxos in Heard-Of model for proof,

Drăgoi-Henzinger-Zufferey 2016 [15]

PSync

28 Raft-Verdi Raft for proof using Coq, Wilcox-Sergey-Tatlock

2017 [41]

Verdi

29 Paxos-EPR Paxos in effectively propositional logic for proof,

Padon et al 2017 [39]

Ivy

30 Paxos-

Decon

Paxos deconstructed, Garcia et al 2018 [16, 17] Scala/Akka

31 Paxos-High Paxos in high-level executable specification, Liu-

Chand-Stoller 2019 [33]

DistAlgo

Table 1: Distributed consensus algorithms and variants, and
languages used to express them.

Asm Algorithms and Variants

Raw VS-ISIS, VS-ISIS2, Derecho, VR, VR-Revisit, Paxos-Basic, Paxos-Vertical, Paxos-

PVS, Chubby, Zab-FLE, Raft, Paxos-TLA, Raft-Verdi, Paxos-Decon, Paxos-High

Fair EVS, Paxos-VS, Paxos-Fast, CT, ACT, Paxos-SB, Mencius, EPaxos, Paxos-

Complex, Paxos-EPR

Sure Paxos-Synod, Paxos-Time, Chubby-Live, Zab, IronRSL, LastVoting-PSync

Table 2: Link assumptions used by algorithms and variants.

Server assumptions. All definitions are implicitly prefixed with

“eventually”.

Alw-Q: there is always some quorum of servers that is non-faulty.

Q-Alw: there is some quorum of servers that is always non-faulty.
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Alw-Q
• Paxos-SB
(Strong L1)
• EPaxos

Q-Alw
• EVS
• CT
• ACT
• Paxos-SB
(Weak L1)

P-Alw-Q
• Paxos-VS
• Derecho
• VR-Revisit

PQ-Alw
• Paxos-Fast
• Zab
• IronRSL
• Paxos-EPR

Alw
• Chubby-Live

PQ-Extra-Dur
• Paxos-Synod

PQ-Dur
• Paxos-Time
• LastVoting-
PSync

Each-Vote
• Paxos-EPR

Some-Learn
• Paxos-Fast

Each-Learn
• Paxos-Synod
• CT
• ACT
• LastVoting-
PSync

Some-Exec
• Paxos-SB
• EPaxos
• IronRSL

Each-Exec
• EVS
• Paxos-Time
• Paxos-SB
• Zab

Resp
• Paxos-VS
• VR-Revisit
• Chubby-Live
• Paxos-
Complex
• IronRSL

Figure 1: Hierarchies of server assumptions (left) and live-
ness assertions (right) as stated by the algorithms’ authors.

P-Alw-Q: there is a server P such that, always, P is non-faulty and

is the primary and there is some quorum Q that is non-faulty.

PQ-Alw: there is a server P and a quorum Q of servers, such that

always, P is non-faulty and is the primary and Q is non-faulty.

Alw: all servers are always non-faulty, i.e., non-faulty forever

from that time on.

PQ-Dur: there is a server P and a quorum Q such that P and Q

are non-faulty and P is the primary, for some duration of time.

PQ-Extra-Dur: there is a duration of time 𝐷1 + 𝐷2 such that (1)

the set of non-faulty servers does not change in the duration,

(2) after duration 𝐷1, primary is selected, and (3) at least a fixed

quorum of servers is non-faulty during the entire duration.

Liveness assertions. For brevity, we omit describing slots here.

All definitions are implicitly prefixed with “eventually”.

Each-Vote: in some round, each server of some quorum sends a

vote for the same value in that round.

Some-Learn: some non-faulty server learns a value.

Each-Learn: each server of some quorum learns the same value.

Some-Exec: some non-faulty server executes a value.

Each-Exec: each server of some quorum executes the same value.

Resp: each client request is responded to.

4 LIVENESS PROPERTIES AND ANALYSIS
Table 3 summarizes the assumptions, assertions, the kind of proofs

of the algorithms discussed, and our analysis.

Proposition 1 (Each-Vote insufficient). Each-Vote is not
strong enough as a liveness assertion.

Proposition 2 (None from Raw). No algorithm can satisfy any
liveness assertion described above under Raw.

Proposition 3 (All from Q-Alw single). There is an algorithm
that solves single-value consensus and satisfies all liveness assertions
described above under Fair and Q-Alw.

Proposition 4 (All from Q-Alw). There is an algorithm that
claims to solve consensus and satisfies all liveness properties described
above under Fair and Q-Alw.

Name

Assumptions

Assertions Proofs Analysis

Link Server

3 EVS Fair Q-Alw Each-Exec Systematic (Prop 4)

4 Paxos-VS Fair P-Alw-Q Resp - (Prop 5)

5 Derecho Fair P-Alw-Q “progress” - lacking assertions

7 VR-Revisit Raw P-Alw-Q Resp Prose (Prop 2)

8 Paxos-Synod Sure PQ-Extra-
Dur

Each-Learn+ Prose assuming primary

10 Paxos-Fast Fair PQ-Alw Some-Learn Systematic (Cor 5.1)

12 CT Fair Q-Alw Each-Learn Systematic (Prop 3)

13 ACT Fair Q-Alw Each-Learn Systematic (Prop 3)

14 Paxos-Time Sure PQ-Dur Each-Exec+ Systematic assuming primary

17 Chubby-Live Sure Alw Resp - (Cor 5.1),

trivial from Alw
18 Paxos-SB Fair Q-Alw Some-Exec - (Prop 4)

19 Mencius Fair - “liveness” - lacking assumptions

20 Zab Sure PQ-Alw Each-Exec Sketch (Cor 5.1)

22 EPaxos Fair Alw-Q Some-Exec - (Prop 7)

24 Paxos-

Complex

Fair - Resp - lacking assumptions,

(Prop 6)

25 IronRSL Sure PQ-Alw Some-Exec,
Resp

Formal

(Dafny)

(Cor 5.1)

26 LastVoting-

PSync

Sure PQ-Dur Each-Learn+ Formal

(PSync)

assuming primary

29 Paxos-EPR Fair PQ-Alw Each-Vote Formal

(Ivy)

(Cor 5.1),

(Prop 1)

Table 3: Assumptions, assertions, and proofs, as provided by
the respective authors, together with our analysis.
“-” indicates that the information is not provided.
“+” in Assertions indicates that the calculation of the bound
after which the assertion would be satisfied is also given.

Proposition 5 (Resp from P-Alw-Q). There is an algorithm
that claims to solve consensus and satisfy Resp under Fair and P-
Alw-Q.

Corollary 5.1 (Weak from PQ-Alw). A liveness property that
assumes PQ-Alw is a weak property, because the assumption is
stronger than necessary.

Proposition 6 (Not Resp). Paxos-Complex cannot satisfy Resp,
even with Alw.

The following impossibility result was also discussed by Kirsch

and Amir [26, Strong L1] and proved by Keidar and Shraer [23, 24].

Proposition 7 (None from Alw-Q). No quorum-based consen-
sus algorithm that executes in rounds can satisfy Some-Learn under
Fair and Alw-Q.

What are the right liveness properties? Clearly,Resp guarantees

server response to client requests, andEach-Exec andEach-Learn
are not needed for Resp. One can also see in existing algorithms

that Some-Learn ensures consensus, while Each-Vote might not,

and Fair with either Q-Alw or P-Alw-Q can ensure Some-Learn.
Stronger assumptions with durations can yield stronger assertions.

5 RELATEDWORK AND CONCLUSION
Besides the works already discussed, there are additional studies of

consensus algorithms and variants, building on earlier works, relat-

ing existing algorithms, and discussing liveness, e.g., COReL [21, 22],

Congruity [4, 5], and GIRAF [23, 24]. Our work is a first step in pre-

cise specification of the wide variety of liveness properties. Much

future work is needed for precise complexity analysis for liveness.
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