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ABSTRACT

Objectives: Continuous glucose monitoring (CGM) provides temporal data on glycemic variability, a
predictor of outcomes related to type 2 diabetes mellitus. The current study sought to determine
whether CGM-derived metrics in patients with type 2 diabetes are different in moderate-to-severe
versus mild obstructive sleep apnea (OSA).
Methods: In adults with type 2 diabetes, home testing was used of assess the presence of OSA. CGM data
were collected for at least 7 days in those with an oxygen desaturation index (ODI) > 5 events/hr. The
study sample was divided into mild (ODI: 5.0—14.9 events/hr) and moderate-to-severe OSA (ODI >15
events/hr). Actigraphy was used to distinguish the wake and sleep periods. CGM-derived metrics were
compared between the two groups using multivariable regression models.
Results: Compared to mild OSA, patients with moderate-to-severe OSA had higher mean glucose levels
during sleep (adjusted difference 8.4 mg/dL; p-value: 0.03) and wakefulness (adjusted difference 7.1 mg/
dL; p-value: 0.06). Moderate-to-severe OSA patients also had lower odds for having their glucose values
within the acceptable range during wakefulness than those with mild OSA (adjusted odds ratio of 0.63;
p-value: 0.02). The mean amplitude of glycemic excursion and standard deviation of the rate of change in
glucose values (SD-ROC) were higher in moderate-to-severe than mild OSA, but only during wakefulness.
Sex modified the association between OSA severity and SD-ROC, but not the other CGM-derived metrics.
Conclusions: In patients with type 2 diabetes, moderate-to-severe OSA is associated with greater ab-
normalities in CGM-derived metrics than mild OSA with notable differences between sleep and
wakefulness.

© 2022 Published by Elsevier B.V.

1. Introduction

hemoglobin Alc (HbA1c) [7—11]. While HbA1c s a relatively simple
and clinically useful metric of glycemic control predictive of inci-

Obstructive sleep apnea (OSA) is relatively common in patients
with type 2 diabetes mellitus with prevalence estimates in the
range of 54—86% [1,2]. Clinical and epidemiological studies have
demonstrated that OSA is independently associated with insulin
resistance, glucose intolerance, and incident type 2 diabetes [3—6].
Randomized clinical trials, however, have not consistently shown
that therapy with positive airway pressure (PAP) for OSA in patients
with type 2 diabetes improves glycemic control as assessed by
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dent vascular complications [12,13], it alone may not fully charac-
terize the impact of OSA on glycemic status given that it integrates
glucose levels over several preceding months. Continuous glucose
monitoring (CGM) on the other hand provides high-resolution
temporal data on glucose levels over several days or even weeks.
Thus, CGM data are complimentary to HbAlc and can be used to
assess glycemic variability, which is being increasingly recognized
as a predictor of vascular complications even in those with well-
controlled type 2 diabetes [14—20].

An array of glucose metrics can be derived from CGM based on
prespecified time frames (e.g. wake or sleep). While some of the
CGM-derived metrics, such as mean glucose values or time dura-
tion where glucose is within a given range over specific periods,
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Abbreviation list

BMI Body mass index

CGM Continuous glucose monitoring

cv Coefficient of variation

HbA1lc Hemoglobin Alc

MAGE Mean amplitude of glycemic excursion
ODI Oxygen desaturation index

OSA Obstructive sleep apnea

SD Standard deviation

SD-ROC: Standard deviation of the rate of change
TIR Time in range

summarize the natural history of glucose levels, others depict the
trends in glucose levels within a shorter period (e.g. mean ampli-
tude of glycemic excursion, standard deviation of the rate of
change). Accordingly, CGM-derived metrics can describe the time-
varying nature of glucose levels analogous to the measures which
are derived from 24-h ambulatory monitoring of blood pressure.
With availability of data over several days or weeks, the role of OSA
in circadian-related changes in glucose levels can be probed similar
to what has been done with 24-h blood pressure [21—23]. A chal-
lenge in the analysis of temporal data on glucose is to determine
which metrics are independently influenced by OSA severity.
Furthermore, given that glycemic profiles are determined by other
factors such as meals during wakefulness and perhaps by OSA-
associated nocturnal hypoxemia, construing 24-h data on glucose
during wakefulness and sleep has pathophysiologic and clinical
value. Thus, the overarching objective of this study was to examine
which CGM-derived metrics are independently associated with
OSA in patients with type 2 diabetes and determine whether
observed associations differ during wake and sleep periods.

2. Materials and methods
2.1. Sample selection

Adults between the ages of 21—75 years with type 2 diabetes
were recruited for screening, which included a point-of-care he-
moglobin Alc (HbAlc) measurement with the DC Vantage
Analyzer® (Siemens Malvern PA). A HbAlc value > 6.5% was
required for further screening. A home sleep apnea test with the
Apnealink® (Resmed, San Diego, CA) was conducted next, and only
those patients with OSA, defined as an oxygen desaturation index
(ODI) > 5 events/hr, were enrolled. Exclusionary criteria included
pregnancy, ongoing therapy for OSA, insulin use, change in glyce-
mic medications in the previous six weeks, current oral steroid use,
other sleep disorders, habitual sleep duration of <6 h/night, or any
unstable medical condition requiring hospitalization in the prior
three months. The research protocol was approved by the Institu-
tional Review Board on human research (Number: NA_00093188).
Details regarding the study design and sample selection have been
previously reported [24].

2.2. Home sleep apnea test and actigraphy

Respiratory polygraphy was conducted using a type 3 monitor
(Apnealink®). This device was provided to evaluate for OSA with a
minimum recording threshold of 4 h duration for an acceptable
recording. Pulse oximetry was used to assess oxyhemoglobin
saturation, respiratory effort was measured with a pneumatic
sensor attached to an effort belt, and nasal airflow as recorded with
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a nasal cannula connected to a pressure transducer. An oxygen
desaturation of 4% or more was used to determine the ODI. Each
recording was manually scored and reviewed by a board certified
physician in Sleep Medicine. Sleep-wake activity monitoring was
performed with the Actiwatch (Philips Respironics, Murraysville,
PA). Participants were instructed to wear the Actiwatch on the non-
dominant wrist for at least seven 24-h periods (minimum of 5
nights, including at least one weekend/non-workday period).
Actigraphy recordings were scored using an automated algorithm
and subsequently reviewed by one of the investigators to distin-
guish periods of sleep from wake.

2.3. CGM-derived measures

Participants wore the DexCom G4 Platinum CGM device and
interstitial glucose was measured every 5 min for up to 14 days.
Calibrations for the G4 sensor were performed using capillary
blood glucose values measured at least twice per day with a Free-
Style InsuLinx glucometer (Abbott Diabetes Care, Inc, Alameda, CA).
The overall mean glucose value from all of the available CGM data
was derived along with the time in range (TIR [70, 180] mg/dL). The
standard deviation (SD) of glucose and coefficient of variation (CV)
were also determined and, in conjunction with the mean and TIR,
were used as overall or summary measures of glucose variability. In
addition, mean amplitude of glycemic excursion (MAGE) [25] and
the SD of the rate of change (SD-ROC) [26] were used to charac-
terize variations in glucose values. To derive SD-ROC, the rate of
change of glucose at each time point was first calculated by
computing the difference in glucose (Ag) over a 15 min interval (A

g/At).
2.4. Statistical analysis

Multivariable linear models were used to examine the associa-
tion between OSA severity (i.e., ODI) and CGM-derived metrics.
Variables with skewed distributions (i.e., TIR) were transformed
using log odds for normality. OSA severity was classified as mild
(ODI: 5.0—14.9 events/h) or moderate-to-severe (ODI >15 events/
hr). To assess the independent association between ODI category
and each of the CGM-derived metrics, age, sex, race, BMI, use of
hypoglycemic medications, and HbA1c were included in all of the
models. Models were initially developed using the entire 24-hr
period and subsequently stratified by wake versus sleep periods.
The distinction of wake versus sleep was based on data derived
from concurrent activity monitoring. Interaction terms between
sex and ODI category were included along with the main effects in
the multivariable models to assess for heterogeneity of associations
between ODI and the panel of CGM-derived metrics. Forest plots
were used to visualize effect sizes. All CGM metrics were calculated
using the R package iglu v.2.0.0 [27] and conducted in R version
4.0.2.

3. Results

The study sample consisted of 207 patients with type 2 diabetes
and OSA. The average age of the sample was 61.0 years (inter-
quartile range [IQR]: 53.5—67.0 years). Just over half the sample was
male (54%). Most participants were on at least one oral hypogly-
cemic agent and had fairly well controlled diabetes given the mean
HbA1c of 7.2%. The median number of days of CGM use was 11 days.
Approximately, 50% of the sample had mild OSA with the remaining
having moderate-to-severe OSA. Table 1 shows baseline charac-
teristics of the study sample stratified by OSA severity. Fig. 1
graphically depicts the calculation of MAGE and SD-ROC. MAGE
describes the average of the consecutive peak to trough differences
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Table 1
Characteristics of the study sample (N = 207).
Variable Full Sample (N = 207) Mild OSA (N = 104) Moderate OSA (N = 103) p-value
Age, years 61.0 (53.5—67.0) 62.0 (54.0—67.0) 60.0 (53.0—66.0) 0.41
BMI, kg/m? 32,9 (30.1-37.2) 31.8 (28.8—36.4) 34,5 (31.0-37.3) 0.01
Male sex 112 (54.1%) 54 (52.0%) 58 (56.3%) 0.53
Race
White 112 (54.1%) 59 (56.7%) 53 (51.5%) 0.71
Black 72 (34.8%) 34 (32.7%) 38 (36.9%) 0.71
Other 23 (11.1%) 11 (10.6%) 12 (11.6%) 0.71
oD, events/hr 149 (10.7-23.6) 10.7 (8.6—12.5) 237 (18.4-36.6) <0.0001
HbAlc, % 7.2 (6.9-7.8) 7.3 (6.9-7.8) 7.2 (6.8—7.8) 0.44
Biguanide 175 (84.5%) 91 (87.5%) 84 (81.5%) 0.24
Sulfonylurea 71 (34.3%) 34 (32.7%) 37 (36.0%) 0.63
Values are the medians (interquartile range: 25—75th percentile) or N (%); p-value reported for comparing mild to moderate-to-severe OSA.
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Fig. 1. Graphical illustration for calculation of mean amplitude of glycemic excursion (MAGE) [panel A] and standard deviation of the rate of change (SD-ROC) [panel B].

in glucoses whereas SD-ROC portrays the spread of rate of change
values, with higher values of SD-ROC indicating high frequency of
rapid glucose changes, and lower values of SD-ROC indicating
slower changes (i.e., more stable glucose dynamics). Fig. 2 shows
representative CGM profiles from two participants (mild versus
moderate OSA) and the associated derived measures including
mean glucose, TIR, SD, CV, MAGE and SD-ROC.

Regression coefficients derived from multivariable models cor-
responding to each CGM measure are displayed in Figs. 3—5. Fig. 3 is
a forest plot for models corresponding to overall measures of glucose
control (MEAN and TIR). Patients with moderate-to-severe OSA had
a significantly higher mean glucose values (adjusted difference
7.4 mg/dL; p-value: 0.041) and TIR (adjusted odd ratio 0.67; p-value:
0.039) indicating that those with an ODI >15 events/hr had higher
mean glucose values and a lower percentage of time the glucose
values were within the acceptable range. The association between
OSA severity and mean glucose values was more pronounced during
the sleep period (adjusted difference 8.4 mg/dL; p-value: 0.03) than
during wakefulness (adjusted difference 7.1 mg/dL; p-value: 0.06). In
contrast, the association between OSA severity and TIR was more
pronounced during wakefulness (adjusted odds ratio 0.63; p-value:
0.02) compared to the sleep period (adjusted odds ratio 0.71; p-
value: 0.24). Among patients with moderate-to-severe OSA, the TIR
was lower by 9% compared to those with mild OSA. An interaction
between ODI category and sex was not observed for either mean
glucose values or TIR. Other variables associated with a high mean
glucose value and a lower TIR were HbA1lc and being on a sulfo-
nylurea or biguanide. Otherwise, no other consistent associations
were noted with age, BMI, race, or sex.
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Glycemic variability, as determined by SD and CV, was also
examined as a function OSA severity. Fig. 4 displays forest plots for
these models illustrating that OSA severity was not significantly
associated with either SD (p-value: 0.11) or CV (p-value: 0.66).
Furthermore, the interaction between ODI and sex was not signif-
icant for either glucose variability metrics. Models corresponding to
dynamic measures, which consider temporal dependencies (MAGE
and SD-ROC), are shown in Fig. 5. Compared to mild disease,
moderate-to-severe OSA was associated with both MAGE (adjusted
difference 6.8 mg/dL; p-value = 0.033) and SD-ROC (adjusted dif-
ference 0.03 mg/dL/min; p-value: 0.05). Moderate-to-severe OSA
was associated with higher values of MAGE and SD-ROG, signifying
greater variations in glucose levels. The association was pro-
nounced during wake periods (adjusted MAGE difference: 8.2 mg/
dL [p-value: 0.03] and adjusted SD-ROC difference: 0.04 mg/dL/min
[p-value: 0.05]) but not observed during the sleep period. The
interaction between ODI and sex was not significant for MAGE (p-
value: 0.50). In contrast, an interaction between sex and OSA was
significant for SD-ROC with women with moderate-to-severe OSA
having a SD-ROC value higher by 0.07 mg/dL/min than men with
moderate-to-severe OSA (p-value: 0.04 of interaction).

4. Discussion

The results of the current study demonstrate several findings
regarding the potential influence of OSA severity on various CGM-
derived metrics in patients with type 2 diabetes mellitus. First,
patients with moderate-to-severe OSA had higher mean glucose
values and less time with glucose values in the acceptable range
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(TIR: 70—180 mg/dl) compared to patients with mild OSA. Second,
dynamic CGM measures, such as MAGE and SD-ROC, were also
found to be higher in moderate-to-severe than mild OSA. The
observed associations between OSA and CGM metrics varied as a
function of sleep-wake state. Finally, sex-based differences were
also seen in the association but only for OSA and SD-ROC. Both of
the latter findings are unique observations that have not been
previously reported.

The findings noted herein add to the growing body of evidence
on the impact of OSA on glucose metabolism in type 2 diabetes by
examining both overall summary measures as well as dynamic
CGM-derived metrics (i.e., SD-ROC), and by stratifying the associ-
ations by actigraphy-based assessments of wake and sleep.

108

Currently, the evidence examining the associations between OSA
and CGM-derived metrics in type 2 diabetes is limited and incon-
sistent. A few studies have shown that OSA metrics such as the
apnea-hypopnea index and nocturnal oxygen desaturation are
associated with CGM-derived 24-h MAGE [28], nocturnal MAGE
[28], nocturnal average and peak glucose levels [29], and post-
prandial fluctuations [30]. Yet, other studies have not demonstrated
any associations between OSA and CGM-derived metrics in patients
with type 2 diabetes [31,32]. In the present study, moderate-to-
severe OSA was associated with a higher overall (24-h) mean
glucose, which was driven by a higher mean glucose value specif-
ically during the sleep period. Amongst the other CGM-derived
metrics assessed in the current study, TIR, MAGE, and SD-ROC
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were also higher in moderate-to-severe than in mild OSA, but in
contrast to the mean glucose, these were driven by glucose values
during wakefulness. A decrease of 10% in TIR has been found to be
associated with an increased risk of developing microvascular
complications. In the Diabetes Control and Complications Trial
(DCCT), the adjusted hazards ratios of developing retinopathy and
microalbuminuria in those with type 2 diabetes were 1.64 (95% Cl:
1.51, 1.78) and 1.40 (95% CI: 1.25, 1.56), respectively, when the TIR
was reduced by 10% [33]. Thus, a reduced TIR of 9% in persons with
type 2 diabetes and moderate-to-severe OSA noted in the current
study has potential clinical significance. Because TIR, MAGE, and
SD-ROC are influenced by large glucose oscillations, these measures
more aptly depict glycemic variability. Several factors during
wakefulness (e.g. food intake and hypoglycemic medication use)
can contribute to large fluctuations in glucose levels. OSA may
further exacerbate these excursions with prolonged and elevated
postprandial glucose levels through the effects of increased sym-
pathetic nervous system activity, which can impair homeostatic
processes that regulate glucose disposal. In contrast, during sleep
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where there are no extrinsic challenges (e.g., food intake), OSA-
related intermittent hypoxemia and recurrent arousals may be
sufficient to cause large variations in glucose levels. While previous
studies have examined CGM data over 24-hr and fixed-time
nocturnal periods presumed to reflect sleep, there has been no
differentiation between wake and sleep using objective data (i.e.,
actigraphy or polysomnography).

Of all of the CGM-derived metrics described in this study, SD-
ROC is the most dynamic measure that informs about the homeo-
static response to glycemic challenges by characterizing the
behavior of glucose levels over short periods. It offers a unique
assessment of the variability in glucose levels because it focuses on
the change in glucose over an abbreviated time interval (e.g.,
15 min) yet summarizes that behavior across longer periods (e.g.,
days or weeks). Similar to identifying the loss of sleep-related
dipping in blood pressure as an early step in the pathogenesis of
hypertension in OSA, a time-varying metric of glucose metabolism
such as SD-ROC could also depict the earliest, most granular, and
yet clinically relevant data on glycemic perturbations in OSA. High
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variations in glucose levels can trigger oxidative stress and sub-
clinical inflammation [14,34—39], thereby potentially contributing
to adverse health outcomes when OSA and type 2 diabetes are
coexistent. Moreover, in patients with both disorders, SD-ROC may
help identify those who are most susceptible to glycemic pertur-
bations due to OSA and possibly most at risk for deterioration in
glycemic control (i.e. worsening HbA1c) and/or the development of
cardiovascular complications.

There are several strengths and limitations of the present study
that warrant discussion. Strengths include enrollment of a diverse,
community-based patient sample that adds to the generalizability
of the findings and the use of a wide array of CGM metrics over
multiple days thereby providing a comprehensive assessment of
glycemic status. Use of actigraphy is another strength that helped to
define associations between OSA and glycemic control as function
of the wake and sleep periods. Furthermore, accounting for the use
of hypoglycemic medications in the analyses uncovered indepen-
dent associations between OSA and CGM outcomes. Finally, the
inclusion of a significant number of women allowed for analyses on
sex-based differences in glycemic outcomes. Limitations include
the use of home-based sleep testing that does not provide infor-
mation on EEG, therefore associations between EEG-based arousals
or sleep stages and glycemic metrics could not be delineated. Other
limitations to consider are the absence of data on nutritional intake
and physical activity, both of which may contribute to variability in
glycemic outcomes. Furthermore, while hypoglycemic medications
were included in the analyses, differences in individual response to
medication are possible but could not be determined. Finally,
subjects had relatively well controlled type 2 diabetes as evidenced
by a mean HbA1c of 7.2%. Thus, the findings cannot be extrapolated
to persons with poorly controlled type 2 diabetes.

In summary, the current demonstrates that different CGM-
derived metrics provide distinct information about glycemic vari-
ations in patients with OSA and type 2 diabetes. Leveraging these
differences can help to further elucidate the role of OSA in altering
metabolic function particularly in OSA treatment-related random-
ized clinical trials. Furthermore, the information presented herein
suggests that the impact of OSA on glucose metabolism need to be
stratified by wake and sleep periods given that specific exposures
(i.e. meals, medications, OSA-related intermittent hypoxemia) also
vary across the 24-h period.

5. Conclusion

To uncover the association between OSA and altered glucose
metabolism, careful deliberation of the specific CGM-derived
metrics utilized and the time frame of analysis should be consid-
ered in future studies on the role of OSA or its treatment on glucose
metabolism.
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